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ABSTRACT
B
+
-trees are prevalent in traditional database systems due to their

versatility and balanced structure. While binary search is typically

utilized for branch operations, it may lead to inefficient cache uti-

lization in main-memory scenarios. In contrast, trie-based index

structures drive branch operations through prefix matching. While

these structures generally produce fewer cache misses and are thus

increasingly popular, they may underperform in range scans be-

cause of frequent pointer chasing.

This paper proposes a new high-performance B
+
-tree variant

called Feature B+-tree (FB+-tree). Similar to employing bit or

byte for branch operation in tries, FB
+
-tree progressively considers

several bytes following the common prefix on each level of its inner

nodes—referred to as features, which allows FB
+
-tree to benefit

from prefix skewness. FB
+
-tree blurs the lines between B

+
-trees and

tries, while still retaining balance. In the best case, FB
+
-tree almost

becomes a trie, whereas in the worst case, it continues to function as

a B
+
-tree. Meanwhile, a crafted synchronization protocol that com-

bines the link technique and optimistic lock is designed to support

efficient concurrent index access. Distinctively, FB
+
-tree leverages

subtle atomic operations seamlessly coordinated with optimistic

lock to facilitate latch-free updates, which can be easily extended

to other structures. Intensive experiments on multiple workload-

dataset combinations demonstrate that FB
+
-tree shows comparable

lookup performance to state-of-the-art trie-based indexes and out-

performs popular B
+
-trees by 2.3x ∼ 3.7x under 96 threads. FB

+
-tree

also exhibits significant potential on other workloads, especially

update workloads under contention and scan workloads.
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Figure 1: (a) Hardware statistics under uniform distribution,
(b) Single-threaded throughput under different distributions.

1 INTRODUCTION
The storage engine significantly influences the overall performance

of a database system, especially the index data structure. Even in

main-memory systems, index query operations account for 14% ∼
94% of the overhead [35]. B-trees (B

+
-tree, B

∗
-tree, etc.) are ubiq-

uitous in disk-based database systems because of their prominent

IO efficiency [19], yet scarcely exist in main-memory database sys-

tems due to their poor utilization of hierarchical caches. ART [43],

Masstree [49], and other trie-based structures are generally more

efficient than main-memory B
+
-tree [1, 10, 43, 49, 72], which makes

them more prevailing in modern main-memory systems (e.g., Silo

[65] and HyPer [31]). What makes main-memory B
+
-tree untenable

is the orders of magnitude difference in access latency between disk

and memory. Generally, main memory provides an access latency of

80 ∼ 100 ns, whereas the disk and flash access latency are about 10

ms and 50 us, respectively [57]. When IO dominates the overhead of

a B
+
-tree, the impact of CPU caches is nearly negligible. However,

effective cache utilization becomes prominent in enhancing index

performance when IO is eliminated [27, 43, 49, 56, 60].

Cache and Branch Optimization. A B
+
-tree consists of inner

nodes and leaf nodes. Inner nodes serve as index nodes, containing

anchor keys
1
and pointers to child nodes. Key-value pairs are stored

in leaf nodes sequentially or semi-ordered [47, 53]. All leaf nodes

are linked together in a linked list, enabling efficient range queries.

A query starts from the root node and navigates to a leaf node using

binary search for branch operations, i.e., index traversal. Thanks

to such design, B
+
-tree shows efficient disk access. But when it

comes to main-memory scenarios, B
+
-tree suffers from several

interconnected and complex problems.

First, B
+
-tree’s structure and binary search render it inefficient on

cache utilization, as detailed in Section 3. Second, each comparison

1
Also known as separator keys, we follow the term anchor keys used in previous work.
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Figure 2: (a) Multi-core scalability of B𝑙𝑖𝑛𝑘 -tree, B+-treeOLC,
and FB+-tree, (b) Access latency of memory hierarchies.

in binary search depends on the outcome of the previous compari-

son, and the result of each comparison is hard to predict [43]. This

intrinsic characteristic of binary search hinders the full exploitation

of modern CPUs’ computational and memory-level parallelism po-

tential. Hard-to-predict comparisons pose challenges for dynamic

branch prediction, causing modern CPUs’ long pipelines to stall.

Dependences between instructions render superscalar, speculation,

and out-of-order execution powerless [21, 22].

In this paper, we propose a new optimistic main-memory B
+
-tree

variant named Feature B+-tree (FB+-tree) to tackle these issues.

FB
+
-tree effectivelymitigates themismatch between B

+
-tree’s mem-

ory access patterns and the intrinsic characteristics of hardware

architecture through progressively byte-wise parallel processing.

In addition, FB
+
-tree employs a simple for loop for branch opera-

tions in most cases. This enables FB
+
-tree to fully leverage modern

CPUs’ parallelism potential and to facilitate sequential memory ac-

cess. Figure 1 illustrates a comparison of throughput and hardware

event statistics of FB
+
-tree, FAST [32] and STX B

+
-tree [9] dur-

ing 100 million random 64-bit integer lookups following uniform

and zipfian distributions on a dual-socket, 48-core (96-hyperthread)

server. Hardware events during lookups under uniform distribu-

tion are measured with perf. Compared to STX B
+
-tree, FB

+
-tree

shows fewer branch instructions, branch misses, LLC loads and

LLC misses. The FAST tree is a binary tree that collapses multiple

nodes into one large node to facilitate SIMD instructions and cache

consciousness. Although FAST has fewer branch instructions and

branch misses, FB
+
-tree has better cache utilization due to its dis-

criminative byte processing. This makes FB
+
-tree outperform STX

B
+
-tree and FAST in single-threaded execution.

Synchronization Protocol. Another crucial factor that impacts

the overall performance of a database system is the synchronization

protocol of its index. A fine-grained locking protocol, such as lock

coupling (hand-over-hand lock) [3] and B
𝑙𝑖𝑛𝑘

-tree [38, 40], has

poor scalability in main-memory database systems. Optimistic lock

utilizes a version combined with a lock to detect changes within

a node [14, 28, 42, 49]. These protocols enable latch-free
2
index

traversal except during node modification, thereby ensuring high

scalability. FB
+
-tree employs a similar yet highly optimized protocol

for index traversal and incorporates the link technique [40] for

concurrent structure modification (i.e., node split and merge).

The salient innovation of FB
+
-tree’s synchronization protocol

is latch-free update. Previous work acquires a lock on a node or

2
We follow the term "latch-free" used in OLFIT [14] which means without acquiring

locks to distinguish it from the term "lock-free" which means non-blocking. We follow

the synchronization literature to use "lock" except "latch-free".

locks on more nodes when performing an update. They protect

overmuch auxiliary computations in critical sections and frequently

retry if they cannot hold the lock, leading to coherence cache inval-

idations. Such locks thus prevent other threads from performing

even unrelated operations and make updates poorly scalable under

high-contention workloads. As shown in Figure 2(a), B
+
-treeOLC

synchronized by optimistic lock coupling [42] is more scalable than

B
𝑙𝑖𝑛𝑘

-tree on YCSB-C workload (read-only). However, it suffers

from performance collapse on YCSB-A workload (50%-read, 50%-

update). FB
+
-tree mitigates such collapse via latch-free update.

In short, FB
+
-tree employs a more fine-grained synchroniza-

tion protocol which enables an update to be performed without

acquiring any locks. FB
+
-tree executes an update using the compare-

and-swap (CAS) instruction. This way, a lookup can be executed

simultaneously with updates, and updates only contend on the

same key-value pairs. Our protocol offers a general technique for

performing updates without acquiring any locks. Index structures

synchronized by optimistic lock can implement latch-free updates

with a few changes to existing code. Benchmarks on YCSBworkload

A (update heavy) demonstrate that FB
+
-tree outperforms existing

indexes with optimistic lock under contentions.

Contributions and Paper Organization. This paper makes

the following contributions:

• A technique supporting arbitrary key types named feature com-

parison is introduced, which allows FB
+
-tree to work like a trie

and leverage modern CPUs’ computational and memory-level

parallelism potential. This technique combined with hashtags

in leaf nodes enables FB
+
-tree to outperform typical B

+
-trees in

both performance and scalability on index traversal.

• Thanks to feature comparison, FB
+
-tree does not need to fre-

quently access anchor keys like typical B
+
-trees. FB

+
-tree thus

only stores pointers to anchor keys for space efficiency.

• A highly optimized optimistic synchronization protocol is de-

vised to facilitate multi-core scalable concurrent index accesses.

In particular, the protocol introduces a general latch-free up-

date technique that utilizes CAS primitive for update operations

without holding any locks.

• Comprehensive experiments are conducted onmultipleworkload-

dataset combinations for existing index structures and FB
+
-tree.

The results demonstrate that FB
+
-tree outperforms popular B

+
-

trees by 2.3x ∼ 3.7x on read-only workloads under 96 threads.

On update-heavy workloads, FB
+
-tree shows the best scalability

thanks to latch-free update technique.

The rest of this paper is organized as follows. Section 2 introduces

background and related work. Section 3 presents the motivation,

data structure, and algorithm of FB
+
-tree. Section 4 describes the

synchronization protocol enabling FB
+
-tree multi-core scalable.

Section 5 shows the experiment setup, workloads, and evaluation

results. The conclusion is given in Section 6.

2 RELATEDWORK
Querying an index for a key (i.e., index traversal) involves the pro-

cess of narrowing the search key space until confirmingwhether the

key exists. In B-trees, the process relies on comparisons between the

target key and the anchors. Meanwhile, in tries, it depends on prefix

matching. This section provides some background and related work
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on ordered index. In addition, previous work on synchronization

protocols is presented at the end.

Memory Access. From a more detailed perspective, index tra-

versal can be divided into memory access and actual computation.

Compared to memory access, the computational overhead is almost

negligible. Onmodernmachines, several to hundreds of instructions

can be evaluated and retired in parallel, and most SIMD instructions

have 1-cycle throughput [21, 22, 25]. However, memory access typ-

ically takes several hundred cycles to complete, as shown in Figure

2(b). Various main-memory ordered indexes have been proposed

to optimize cache utilization. We categorize existing ordered in-

dexes into three groups: B-trees, tries, and learned indexes. Next,

we introduce their related work respectively.

B-trees. B-trees are a class of balanced, comparison-based in-

dexes
3
, encompassing many variants such as B-tree, B

∗
-tree, B

+
-

tree, binary B-tree, AVL tree, and others [19]. As memory capacity

increased, the T-tree placed multiple records in one binary tree’s

node for main-memory database systems [41]. The CSS-trees [55]

and CSB
+
-tree [56] store each node’s children in contiguous mem-

ory to mitigate pointer chasing. Bender et al. conducted an intensive

theoretical analysis and experimental evaluation on cache-oblivious

B-trees [5–8]. Chen et al. proposed to optimize B
+
-trees’ perfor-

mance through prefetching for both cache and disk [17, 18].

Currently, software prefetching is extensively used in main-

memory indexes [10, 43, 49], as it targets short array streams and

irregular memory address patterns [24, 39, 66]. The prefix B-trees

explored not directly storing keys but constructing prefixes in inner

nodes [4, 26]. The pkT-trees and pkB-trees store fixed-size parts

of keys directly in the tree nodes [12, 52]. The B
2
-tree organizes

inner nodes as embedded trie-like structures for indexing string

keys [59]. The DB
+
-tree [37] incorporates the discriminative bits

from HOT [10] into B-trees. From another perspective, k-Ary, FAST

, P-ary, etc. exploit binary search with SIMD instructions to lever-

age parallelism of both CPUs and GPUs [30, 32, 58, 61, 75]. PALM

performs multiple concurrent queries in batches [60].

Tries. Tries, also known as radix trees, prefix trees, or digital

search trees, drive branch operations through prefix matching, as

illustrated in Figure 3. These data structures directly use the digital

representation of keys and may have excessive worst-case space

consumption [43]. The Patricia trie introduces path compression

and only stores prefixes of keys in trie nodes [51]. The burst trie

substitutes leaf nodes with containers maintaining a small set of

keys [29]. The HAT-trie maintains hash tables as containers for

better performance [1]. The generalized prefix tree is a trie with

variable prefix length for indexing arbitrary data types [13].

The Adaptive Radix Tree (ART) adaptively uses four different

node layouts depending on the number of child nodes [43]. Path

compression and lazy expansion allow ART to efficiently index

string keys by collapsing nodes. The Masstree is a trie-like con-

catenation of B
+
-trees, where each trie node is a B

+
-tree indexing

different 8-byte slices of keys [49]. The Height Optimized Trie

(HOT) dynamically varies the number of discriminative bits consid-

ered at each node [10, 11]. Similar to B
+
-trees, another interesting

design Wormhole [68] maintains a double-linked list of leaf nodes.

3
Skip list [54] and its variants are also comparison-based.

It then constructs a trie with all prefixes of the lower bound of

leaf nodes and represents the trie with a hash table. The Cuckoo

Trie shares a similar idea and exploits memory-level parallelism to

alleviate pointer chasing [71].

Learned Indexes. Indexes can be viewed as models to map a key

to the position of a record. Kraska et al. proposed learned indexes

(machine learning models) as replacements for index structures.

They have demonstrated that learned indexes have the potential to

offer benefits over state-of-the-art indexes [36]. The ALEX exploits

linear regression combined with exponential search to guarantee

accuracy and enable adaptive update [23, 48]. Some previous work

has explored indexing string keys using learned indexes [33, 34, 64,

70]. Learned indexes and database systems with AI have become a

prominent research topic, and extensive work has been dedicated

to making them practical [16, 33, 46, 73, 74, 76].

In summary, previous research has demonstrated that tries out-

perform B-trees in terms of point lookup. For range iteration, B-

trees, especially B
+
-trees, demonstrate better performance because

of their balanced structure. The Wormhole combines the strengths

of B
+
-tree and trie. Unfortunately, its hashed representation of meta-

trie and indirect ordered leaf node may incur significant overhead

for insert and range scan operations, respectively. Learned indexes

may offer advantages; however, challenges still exist in achieving

accuracy, adaptive update capabilities, and indexing string keys.

Synchronization on Indexes. Designing an efficient synchro-

nization protocol is critical and challenging. Lock coupling [3] and

B
𝑙𝑖𝑛𝑘

-tree [40] lock only one node simultaneously, thus demon-

strating good scalability in traditional database systems. Optimistic

lock coupling, OLFIT, Masstree, and many other indexes combine

version with lock to avoid coherence cache miss [10, 14, 28, 42,

43, 49, 71]. In these protocols, readers verify the version to detect

changes within a node without acquiring the lock. Meanwhile, writ-

ers acquire a write lock and update the version when modifying

a node. The Read-Optimized Write Exclusion (ROWEX) protocol

used by ART and HOT goes one step further by only providing

exclusion relative between writers while allowing readers to always

succeed without block nor restart [10, 42, 44].

OLFIT and several indexes employ a bottom-up strategy for

structure modification, e.g. split and merge, and adopt the link

technique and high key from B
𝑙𝑖𝑛𝑘

-tree for concurrency support

[14, 49]. Optimistic lock coupling provides a more general approach

to synchronize index structures [42, 44], utilizing a top-down strat-

egy for concurrent structure modification. If a change occurs during

index traversal, it restarts from the root. ROWEX utilizes subtle

atomic operations to ensure that reads are always consistent and

never restart [44]. OptiQL incorporates queue-based locking and

opportunistic read techniques into optimistic lock coupling to miti-

gate performance collapse under high contention [63]. The Bw-tree

implements lock-free operations through delta records and map-

ping table [45, 67], but it may incur heavy overhead. Some work

has proposed universal construction strategies to transform trees

from sequential code to linearizable concurrent versions [62].

We have learned lessons from previous work. FB
+
-tree considers

a B
+
-tree from trie’s prefix matching perspective. Common pre-

fixes and parts of anchors are directly stored in inner nodes but

with a quite different arrangement. Unlike k-ary, FAST, etc., which
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Figure 3: Illustration of a trie and the main idea of FB+-tree

only consider data types supported by SIMD instructions, FB
+
-tree

facilitates byte-wise parallel processing for branch operations, al-

lowing arbitrary data types. For concurrency support, FB
+
-tree

uses a highly optimized optimistic synchronization protocol and

employs the link technique for concurrent structure modification.

Furthermore, FB
+
-tree allows multiple writers to perform updates

on one leaf node without blocking other updates nor reads.

3 THE FB+-TREE DATA STRUCTURE
In this section, we start by providing a comprehensive analysis of

the overhead associated with comparison operations in B
+
-trees.

Next, we introduce our feature comparison technique, FB
+
-tree’s

data structure, and the branch algorithm. The synchronization

protocol is discussed in Section 4.

3.1 Dissonance between B+-tree and Hardware
As previously mentioned, binary search is employed to retrieve

child nodes in index traversal of B
+
-trees. In binary search, the

anchor key for comparison is the median of the current search

key space. This leads to a complex memory access pattern that un-

derutilizes effective hardware and software prefetching. Moreover,

hard-to-predict comparisons and dependences between compar-

isons make memory-level parallelism unattainable [71].

Consider a B
+
-tree indexing string keys, where only pointers to

anchor keys are stored in inner nodes and the contents of anchors

are stored in memory allocated via malloc. Assuming a fanout factor

256, binary search in an inner node would typically involve eight

comparisons. On modern 64-bit machines, storing 256 pointers to

anchors would require 256 * 8 bytes of space, equivalent to 32 cache

lines. Consequently, each binary search would access six cache lines

for pointers alone, whereas only eight pointers are effectively used.

For B
+
-trees indexing integer keys, similar issues arise. Several

indexes therefore configure their nodes as 256 bytes with a proper

fanout to alleviate this cache inefficiency. [10, 43, 49, 67].

After obtaining the pointer to an anchor, the content of the an-

chor is compared with that of the target key following dereference.

No matter how many bytes the anchor has and how many bytes

are used for comparison, at least one complete cache line is loaded

from memory. However, in many cases, only a few bytes are neces-

sary to establish the relative order between string keys (similarly

for integer keys) [4, 12, 52]. Consequently, this results in wasted

memory bandwidth and the eviction of several hot cache lines.

This problem is exacerbated on modern CPUs, because continu-

ous several cache lines will be automatically prefetched but remain

unused, leading to bandwidth waste [21, 24]. In concurrent environ-

ments, these random small memory accesses further impede full

utilization of memory bandwidth and Ultra Path interconnect (UPI)

bandwidth [21, 71]. These problems result in B
+
-trees’ sub-optimal

scalability even on read-only workloads.

3.2 Feature Comparison
3.2.1 Motivation. Tries have advantages over B+-trees in cache

utilization, as they drive branch operations through prefix match-

ing. The key idea of FB
+
-tree is to integrate such mechanism into

B
+
-trees to benefit from architecture while preserving B

+
-trees’

properties, particularly balance. We start with the intrinsic similar-

ities between B
+
-trees and tries, as illustrated in Figure 3.

In B
+
-trees, the entire key space is divided into intervals defined

by anchors in inner nodes, which serve as the upper and lower

bounds of these intervals. In contrast, tries partition the entire key

space into sub-trees using prefixes. B
+
-trees and tries are function-

ally equivalent in this partition sense. In other words, trie nodes

inherently imply the relative order between keys through their

digital representation. Tries accomplish key space partitioning with

byte-wise prefix matching (or using smaller radix), whereas com-

parisons between strings are also performed in a byte-wise manner.

Comparison between binary keys can be conducted similarly after

code transition, as detailed in Subsection 3.6. These similarities

suggest that branch operation in B
+
-trees could potentially be im-

plemented similarly to prefix matching in tries.

As shown in Figure 3, we build a trie and a B
+
-tree for a collection

of keys, where the anchor keys of the B
+
-tree are highlighted in

both structures. Consider a use case of querying the trie for the key

"John". The most significant byte "J" is used to retrieve the dotted

node following the root node. The search key space is then reduced

to the sub-tree with the dotted node as root. Next, the latticed

node is retrieved via the second byte "o", followed by reaching the

leaf node "John". Revisiting this byte-wise prefix matching from

a B
+
-tree’s comparison perspective, it implies the first byte "J" is

compared with the first byte of the four anchor keys "Andrew",

"James", "Julia", and "Kristina" simultaneously. After this byte-wise

parallel comparison, the search key space is narrowed down to the

keys greater than "Andrew" and less than "Kristina".

3.2.2 Algorithm. Obviously, this byte-wise parallel comparison can

be implemented with SIMD instructions. B
+
-tree’s branch operation

can be implemented with progressively byte-wise processing, as

shown in Figure 3. As anchor keys may share a common prefix,

byte-wise processing on the common prefix is unproductive and

space-inefficient. FB
+
-tree constructs the common prefix in inner

nodes and performs byte-wise parallel processing on the following

bytes. An interesting property similar to prefixes in tries is that the
common prefix length of a child node is no smaller than that of its
parent node. Branch operation could skip the common prefix and
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Figure 4: Binary search vs. FB+-tree’s branch algorithm.

index traversal could gradually handle different slices of a target

key on each level of inner node. FB
+
-tree thus almost becomes a

trie in terms of computational complexity.

One reason why tries are generally more cache-conscious is their

capability to fit complex data distribution or prefix skewness. Trie

nodes shared by more keys would reside in a cache level closer to

CPUs. By contrast, B
+
-trees mechanically select the middle key as

the anchor key during node split, which is unconscious of prefix

skewness. In other words, several anchors may share a much longer

common prefix (sparse keys). Performing byte-wise parallel pro-

cessing over all the remaining bytes following the common prefix

thus may be inefficient. For space efficiency, FB
+
-tree only stores a

few fixed-size discriminative bytes of anchors directly in inner node.

A binary search over suffixes will be performed when byte-wise

parallel comparison cannot achieve branch operation.

For example, consider the B
+
-tree’s third leaf node shown in

Figure 3 as an inner node. We show the process of querying the

key "John" with binary search, totally byte-wise parallel processing,

and FB
+
-tee’s hybrid branch algorithm respectively in Figure 4,

where the numbers highlight the order of memory access along

hierarchical inner nodes. Binary search generates irregular and

small memory access, as shown in Figure 4(a). Totally byte-wise

parallel processing does not take into account common prefixes

and sparse keys, as shown in Figure 4(b). Supposing only two bytes

following common prefix are stored directly in inner nodes in Figure

4(c). In the root node, branch operation succeeds after two byte-

wise comparisons. In the child node, the common prefix "J" can be

skipped. In this special case, byte-wise parallel processing fails in

branch and a binary search over suffixes has to be performed.

3.2.3 Discussion. With this byte-wise parallel processing on dis-

criminative bytes, FB
+
-tree works like a trie and alleviates direct

access to anchors. As index traversal descends to a leaf node, com-

mon prefix length grows and branch operation gradually processes

different slices of a target key. Therefore, binary search over suffixes

would occur with very low probability. FB
+
-tree thus evolves into

a trie in the best case. In the worst case, branch operations on all

inner nodes depend on binary search over suffixes, which is almost

impossible. FB
+
-tree thus degenerates into a B

+
-tree.

In most cases, FB
+
-tree forms a hybrid structure that combines

the characteristics of both B
+
-trees and tries. Prefix matching is

significantly efficient for dense keys but sub-optimal for sparse

keys
4
[10, 43, 49]. Binary search generally incurs expensive cache

4
For tries, node collapse or path compression can mitigate this problem but not com-

pletely. HOT dynamically changes the number of discriminative bits used in a node,

and meanwhile almost stays a constant fanout. HOT thus achieves almost extreme

1 // for binary keys // for string keys
2 struct InnerNode: struct InnerNode:
3 Control control; Control control;
4 int knum; int knum;
5 int plen; int plen;
6 char prefix[8]; String* huge; // huge prefix
7 node* next; node* next;
8 char features[fs][ns]; char features[fs][ns];
9 node* children[ns]; char tiny[224]; // embedded prefix
10 String* anchors[ns];
11 node* children[ns];

13 struct LeafNode: struct String:
14 Control control; int len;
15 uint64_t bitmap; char str[];
16 KeyType high_key;
17 LeafNode* sibling; struct KVPair:
18 char tags[ns]; KeyType key;
19 KVPair* kvs[ns]; ValueType value;

Figure 5: Node structures of FB+-tree.

misses, while not affected by the sparseness of keys. FB
+
-tree em-

ploys byte-wise parallel processing for dense keys to enhance cache

consciousness. For sparse keys, this byte-wise processing on dis-

criminative bytes acts as a filter to narrow the search space for

binary search. This hybrid structure allows FB
+
-tree to efficiently

index both sparse and dense keys while maintaining a balanced

structure that facilitates efficient range iteration.

To some extent, these discriminative bytes imply some data dis-

tribution characteristics of the keys in node intervals (sparse or

dense). Therefore, we refer to these bytes as features and name this

byte-wise parallel processing as feature comparison. Even though

FB
+
-tree stores feature bytes, FB

+
-tree only stores pointers to an-

chor keys in inner nodes, making it even more space-efficient than

typical B
+
-trees. Next, we introduce the node implementation, al-

gorithm, and some optimizations.

3.3 Node Implementation
Figure 5 illustrates the node structures of FB

+
-tree. The control is an

8-byte atomic variable that governs the synchronization behaviors.

The knum and plen indicate the number of anchor keys and the

length of the common prefix in an inner node. The next specifies an
inner node’s sibling or last child. The fs and ns which can be man-

ually configured represent the feature and node size, respectively.

In leaf nodes, the bitmap indicates whether the corresponding slot

in kvs is occupied and the tags field contains the corresponding

hashtags. The high_key is the upper bound of a leaf node.

Essentially, both structures of FB
+
-tree’s inner nodes and leaf

nodes are identical to that of a typical B
+
-tree, except for the fea-

tures in inner nodes and the hashtags in leaf nodes. To facilitate

concurrent structure modification, all nodes on the same level are

linked in a single-linked list. Each node starts with an 8-byte control
field, indicating the node type. Binary keys and string keys share

similar inner node and leaf node structures.

Leaf Node. Typically, key-value pairs are ordered in leaf nodes,

which could lead to time-consuming rearrangement and binary

search during insertion. These complex operations within a critical

section may limit multi-core scalability. To address these issues,

we store the unsorted key-value pairs in a pointer array kvs and

cache utilization for lookup. Unfortunately, the common problems of trie structures

still exist, which is inefficient and complicated concurrent range iteration.
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1 void* branch(String& key) { // inner node
2 void* node = nullptr;
3 int pcmp = prefix_compare(key);
4 if (pcmp == 0) { // prefix matches
5 int idx, fid, cmps = min(fs, key.len - plen);
6 uint64_t mask, eqmask = (0x01ul << knum) - 1;
7 for (fid = 0; fid < cmps; fid++) {
8 char byte = key.str[plen + fid] + 128;

9 mask = compare_equal(features[fid], byte);

10 mask = mask & eqmask;
11 if (mask == 0) break;
12 eqmask = mask;
13 } // feature comparison
14 if (fid < cmps) {
15 char byte = key.str[plen + fid] + 128;

16 mask = compare_less(features[fid], byte);

17 mask = mask & eqmask;
18 if (mask == 0) idx = index_least1(eqmask);
19 else idx = 64 - countl_zero(mask);
20 } else { // binary search on suffixes
21 int hid = 64 - countl_zero(eqmask);
22 int lid = index_least1(eqmask);
23 idx = suffix_bs(key, plen + cmps, lid, hid);
24 }
25 node = children[idx];
26 } else { node = children[0]; }
27 return node;
28 }

30 KVPair* lookup(String& key) { // leaf node
31 char tag = hash(key.str, key.len);
32 uint64_t mask = compare_equal(tags, tag);
33 mask = mask & bitmap; // candidates
34 while (mask) {
35 int idx = index_least1(mask);
36 KVPair* kv = kvs[idx].load();
37 if (kv != nullptr && key == kv->key)
38 return kv; // key found
39 mask &= ~(0x01ul << idx);
40 }
41 return nullptr; // key not found
42 }

44 // compare 64 bytes to a char 'c', AVX512
45 uint64_t compare_equal(void* p, char c) {
46 __m512i v1 = _mm512_loadu_si512(p);
47 __m512i v2 = _mm512_set1_epi8(c);
48 return _mm512_cmpeq_epi8_mask(v1, v2);
49 }

Figure 6: Lookup Related Algorithms

utilize hashtags for efficient lookup, as in previous work [47, 53,

68]. Additionally, each leaf node includes a high_key to support

concurrent structure modification, which indicates the upper bound.

For binary keys, the high_key is directly stored in the node; for

string keys, each leaf node maintains a pointer to high_key.

Inner Node. The anchor keys in an inner node are ordered. For

binary keys, all bytes of an anchor are directly stored in features.
The common prefix is stored in prefix. For better performance, the

prefixes of anchors are truncated and the remaining bytes in features
are shifted adjacent to the next field.

For string keys, anchor keys are stored in a pointer array—anchors.
Thanks to feature comparison, branch operation would rarely ac-

cess anchors. Therefore, unlike typical B
+
-trees that copy anchor

keys into inner nodes, FB
+
-tree stores the actual contents of anchor

keys in leaf nodes (i.e., high_key), while inner nodes only maintain

pointers to high_key, which makes FB
+
-tree more space-efficient.

Whenever possible, the entire common prefix is embedded in the

tiny field
5
. Slab memory allocators, such as jemalloc and tcmalloc,

5
For the sake of concurrency support, the entire common prefix is embedded in an

inner node, even if the parent and child nodes have exactly the same common prefix.

always allocate a memory block not smaller than the required size.

Therefore, we configure the size of tiny to fully utilize any excess

memory available. The huge field points to the first anchor as the

common prefix in case it is too long to reside in tiny.

3.4 Lookup and Update
Figure 6 presents the slightly simplified code for branch in inner

nodes and lookup in leaf nodes, without considering concurrency.

The lookup process in an FB
+
-tree is identical to that in a typical

B
+
-tree. Index traversal utilizes the branch algorithm (lines 1 ∼ 28)

to retrieve child nodes until a leaf node. Subsequently, the hash-

based lookup algorithm (lines 30 ∼ 42) is executed to retrieve the

key-value pair in the leaf node. Similar processes are used for binary

keys. The update process of FB
+
-tree has a minor difference from

the lookup process (lines 36 ∼ 38). An atomic update operation

based on CAS is employed without holding any locks.

The branch algorithm begins by comparing the target key with

the common prefix (line 3). The most significant difference between

FB
+
-tree’s branch algorithm and typical binary search lies in the fea-

ture comparison (lines 7 ∼ 13). Each byte of the target key following

the prefix is compared with the corresponding byte in features (line

9), until either the last feature is reached or there is no more match-

ing byte. No matching bytes in features means that the child node

could be determined immediately using the compare_less function
(line 16). In cases where a binary search on suffixes is necessary, the

bytes including both the common prefix and features are truncated

to improve performance (line 23). The reason why 128 is added to

each byte (lines 8 and 15) will be presented in Subsection 3.6.

The lookup algorithm employs a hash fingerprint in leaf nodes.

Candidates are first filtered with hashtags (line 32), followed by

a verification comparison using the real content to prevent false

positives (line 37). Lines 45 ∼ 49 show the implementation of com-
pare_equal using AVX512. BMI and SIMD instructions, such as

LZCNT, are utilized for efficient bit manipulation, for instance,

index_least1 (line 18) and countl_zero (line 19).

3.5 Insert and Remove
A key-value insertion into a leaf node simply requires locating an

empty slot using hashtags and then installing the key-value into kvs.
FB

+
-tree adopts a bottom-up strategy for insertion that involves

structure modification. The algorithm for finding the position to

insert an anchor key into an inner node also relies on feature com-

parison. The primary disparity lies in the recomputation of the

common prefix and features. The common prefix of an inner node

is recomputed only when the new anchor is less than the minimum

anchor key. In most cases, an anchor key insertion could be easily

conducted by inserting the pointer and features. Meanwhile, inner

nodes are modified only during structure modifications. Remove

follows a similar process.

3.6 Optimization and Tricks
We summarize some optimizations and technique tricks in FB

+
-tree:

Optimization. As discussed in previous work, tree nodes of four

cache lines exhibit the highest overall performance [49, 67]. Modern

machines have nearly identical latency for 64-byte and 256-byte

memory accesses. For better single-threaded performance and space
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Figure 7: The layout of optimistic lock variable (control).

efficiency, the ns and fs are configured to 64 and 4, respectively.

A smaller fanout increases the tree depth, while a larger feature

size entails more bandwidth requirements and incurs higher access

latency. A feature size of four ensures that feature comparison

would not lead to excessive overhead when it fails to determine the

branch. To minimize space consumption, the inner nodes only store

pointers to anchor keys (i.e., high_key in leaf nodes). The high_key
serves as the upper bound of a leaf node and can be constructed

using discriminative prefixes to improve performance and space

consumption. Additionally, anchor keys in an inner node can also

be copied to contiguous memory to enhance locality.

Tricks. The relative magnitude between two unsigned integers

can be determined by byte-wise comparison. For signed integers,

however, such a pattern doesn’t work because of its complement

representation. In essence, complement representation is designed

to utilize the overflow bit to operate positive and negative integers

uniformly. The relative magnitude among positive or negative inte-

gers depends on the remaining bits except for the signed bit. For

example, in 8-bit complement representation, -2, -1, 0, 1, and 2 are

represented as 0xFE, 0xFF, 0x00, 0x01, and 0x02, respectively. An un-

signed comparison on the integers whose sign bit is flipped can be

treated equivalently to a signed comparison on the original integers,

and vice versa. Except for AVX512, the unsigned byte comparison

instructions are not supported in AVX2 and SSE2. Therefore, we

add a magic number 128 before feature comparison in Figure 6,

making FB
+
-tree widely applicable.

4 SYNCHRONIZATION PROTOCOL
Besides cache utilization, the performance of a main-memory index

significantly depends on its synchronization protocol. In this sec-

tion, we begin by introducing lock-based synchronization protocols

and their optimistic variants. Next, we present how FB
+
-tree is

synchronized using an optimistic protocol and an optimization that

mitigates the overhead caused by synchronization protocol dur-

ing index traversal. In particular, we propose a general latch-free

update technique that allows updates without holding any locks.

4.1 Preliminaries to Index Synchronization
Index synchronization consists of two parts: node protection and

concurrent structure modification. Traditional database systems

typically use pessimistic lock for node protection, along with lock

coupling [3] or the link technique from B
𝑙𝑖𝑛𝑘

-tree [38, 40] for con-

current structure modification. In main-memory scenarios, opti-

mistic lock combines version with lock to replace pessimistic lock,

allowing index traversal without holding locks [14, 42, 44, 49]. For

structure modification, optimistic lock coupling (OLC) keeps track

of versions across multiple nodes and restarts if a change occurs

[42, 44]. OLFIT proceeds to sibling node when detecting a structure

modification through comparison with high key [14, 40].

Optimistic lock offers a general approach to accessing a node

without holding the lock, making it particularly beneficial for read-

heavy workloads. However, update-heavy workloads under con-

tention suffer from performance collapse in two aspects. First, ex-

isting optimistic locks are typically implemented as spin locks with

optimistic reads [28, 42, 44, 63]. Writers must acquire an exclusive

write lock via CAS instruction before modifying a node. This often

leads to a scenario where many writers frequently retry CAS in

a single node until they hold the lock. A backoff algorithm may

somewhat mitigate this collapse, but not completely. Second, read-

ers usually have to wait for the writer’s modification and may have

to restart if the version validation fails.

OptiQL extended the classic MCS lock with optimistic reads

to alleviate the former problem [50, 63]. ROWEX mitigates the

latter problem by only providing exclusion relative among writ-

ers while allowing readers to always succeed without block nor

restart [42, 44]. The Bw-tree, incorporating lock-free semantics

through chaining delta records and mapping table, seems to be

an ideal solution. Unfortunately, delta records require expensive

merge operations and the mapping table incurs additional over-

head for other operations. FB
+
-tree alleviates the former problem

by minimizing the critical section to allow latch-free update opera-

tion. Read operations thus can always succeed when concurrent

with updates, which eliminates the latter problem. We show their

comparisons when reads are concurrent with updates in Table 1.

Next, we introduce FB
+
-tree’s synchronization protocol.

Table 1: Comparisons of Synchronization Protocols

OLC ROWEX OptiQL Bw-tree FB
+
-tree

latch-free update ✓ ✓

no merge overhead ✓ ✓ ✓ ✓

non-blocking read ✓ ✓ ✓

no auxiliary struct ✓ ✓ ✓ ✓

4.2 FB+-tree’s Synchronization Protocol
FB

+
-tree utilizes a similar optimistic lock for node protection and

latch-free index traversal. Figure 7 illustrates the layout of per-node

optimistic lock variable, denoted as control in Figure 5. Insert and

remove operations increment the version, while update operations
do not, which differs from previous work. The splitting is only used

in leaf nodes, indicating whether the node is undergoing a split

and if the new node has not been inserted into its parent node. The

ordered field indicates whether the key-value pairs in leaf nodes are

ordered, which is lazily set only when either split and merge of leaf

nodes or range iteration. The leaf specifies the type of node. The

sibling indicates whether the node has a sibling node. The locked
is set when acquiring an exclusive write lock. The deleted is set

if the node’s contents have been merged into its left-sibling node,

indicating that the node can be safely reclaimed later.

Node Protection. Index traversal loads the version before access-

ing a node and validates that it has not changed after the access.

If validation fails, node access needs to restart. Both insert and

remove operations acquire an exclusive write lock to prevent con-

current modification within the same node. Since read-only node
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1 KVPair* lookup(String& key) {
2 void* node = root_;
3 while (!is_leaf(node)) {
4 node = InnerNode(node)->branch(key);
5 }
6 uint64_t version;
7 do { // descending to leaf node
8 version = Control(node)->begin_read();
9 while (LeafNode(node)->to_sibling(key, node)) {
10 version = Control(node)->begin_read();
11 } // check whether to proceed to sibling node
12 KVPair* kv = LeafNode(node)->lookup(key);
13 if (kv != nullptr) return kv; // key found
14 } while (!Control(node)->end_read(version));
15 return nullptr; // key not found
16 }

Figure 8: Concurrent Lookup Algorithm

access may occur concurrently with node modification, atomic op-

erations are employed for insert and remove operations. Lookup

operation atomically loads the pointer, thereby preventing readers

from accessing a partially modified key-value.

Concurrent Structure Modification. FB+-tree adopts the link tech-

nique from B
𝑙𝑖𝑛𝑘

-tree.
6
The top half of Figure 10 illustrates the

process of concurrent node split.
7
A leaf node split involves two

steps: (1) transfer the greater half key-value pairs into the newly

created node, denoted as n′; (2) insert the pointer to node n′ into its
parent node p. A leaf node n is said to be undergoing a split until

the pointer to the new node n′ is inserted into its parent node.

After step (2), an index traversal could correctly descend to node

n′. An incorrect leaf node occurs only when an index traversal

descends to a leaf node that is undergoing a split. Given that the

key-values in node n′ are greater than those in node n, it can be

addressed through an alternative bypass by linking node n to n′.
Therefore, upon descending to a leaf node, a comparison is per-

formed with the upper bound to determine whether it is necessary

to proceed to the right sibling node. Split operations that propagate

to higher-level nodes can be performed iteratively.

4.3 Concurrent Lookup
Figure 8 presents the concurrent lookup algorithm. The branch
algorithm (line 4) has been slightly modified to start by loading

the version using begin_read and to restart if validation fails using

end_read. Unlike its sequential version in Figure 6, the branch may

return a sibling node if a node split occurs. Similarly, the lookup
in leaf node (line 12) is protected by begin_read and end_read. To
avoid retrieving an incorrect leaf node, the to_sibling function (line

9) performs a comparison with high_key upon descending to a leaf

node. If the key-value pair is found, the result is returned directly

to eliminate unnecessary restarts (line 13).

Cross-Node Tracking. The overhead of comparison with high_key
is negligible for traditional systems, but it may be expensive in

main-memory scenarios. Since structure modifications occur infre-

quently, this comparison is unnecessary in most cases. We eliminate

this comparison overhead through a technique named cross-node

tracking. Index traversal descends to an incorrect leaf node only

6
FB

+
-tree can also utilize lock coupling for concurrent structure modification. We

employ the link technique because it facilitates optimizations to latch-free update.

7
Concurrent node merge can be implemented similarly to node split [38].

1 node = index_traversal()

2 node->lock_exclusive()

3 ... querying / validation

4 ... install kv into kvs

5 node->unlock_exclusive()

1 node = index_traversal()

2 ver = node->begin_read()

3 ... querying / validation

4 ... install kv into kvs

5 node->end_read(ver)

Figure 9: Lock-based (left) and latch-free update (right).

when the node is undergoing a split. Additionally, a leaf node split

ends up after inserting the new anchor key into its parent node.

We thereby embed a splitting field in control indicating the node is
undergoing a split, which is set when step (1) begins. Once the new

anchor key is inserted into the parent node in step (2), the splitting
field is unset and the version of the parent node is incremented.

Through validating the splitting and the version of the parent node,

it can be shown that index traversal descends to a correct leaf node.

Consequently, the comparison is performed only when the splitting
is set or the version of the parent node has changed.

4.4 Latch-free Update
We propose a general latch-free update technique to achieve good

scalability in heavy-contention scenarios. Figure 9 with the critical

sections highlighted illustrates the key difference between the tra-

ditional lock-based approach and latch-free update. One primary

reason for their sub-optimal scalability is that too many ancillary

operations are protected inside the critical section. In previous op-

timistic protocols, a write lock is held to prevent other concurrent

modifications when reaching the leaf node. Unfortunately, querying

the node for the existing key-value pairs or validation process is

also protected in the critical section. Our latch-free update allows

this process to be executed in parallel. Only the process of installing

kv into kvs is protected in the critical section.

When only considering update and lookup, tree structure and

key-value residences in leaf nodes never change. Update operation

thus can be easily implemented using CAS primitive. The challeng-

ing problem arises when another thread concurrently performs a

split operation on the leaf node. As a result, the key-value to be

replaced might have been moved to another node. For example,

consider an update operation that tries to replace the key-value

5-5 with 5-6 as shown in the bottom half of Figure 10. In this case,

the update descends to the leaf node and then stalls, while another

thread performs a node split on this node. When the update re-

sumes, it definitely fails because the key-value with key 5 cannot be

found. Similar issues exist in node merge and node rearrangement.

Our latch-free update solves this false negative problem by check-

ing the version. If the version has not changed, the update fails

because the key-value to be updated has not been inserted yet. Oth-

erwise, if the version changes, it implies that the key-value may

have been moved to another node. In such cases, a comparison with

high_key is then performed to determine whether the key-value

is beyond the current node. If so, it proceeds to the sibling node

to perform the update again, as illustrated in the bottom half of

Figure 10. Otherwise, it indicates that either the node may have

been rearranged or the key-value may have been removed. Restart

in the leaf node could deal with these situations.
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Figure 10: Illustration of structure modification (top half) and update-insert coordination (bottom half, T1-update, T2-insert).

To coordinate with latch-free update when moving key-value

pairs to another node, we utilize atomic exchange instruction to

replace the pointer with nullptr and obtain the latest pointer to a

key-value. Concurrent updates would thus fail because they load a

nullptr or fail to perform CAS, and then proceed to the sibling

node accordingly. Node merge and rearrangement coordinate with

updates similarly. Consequently, updates are performed in an al-

most non-blocking way, and lookups can be executed concurrently.

4.5 Range Iteration
In FB

+
-tree, all the leaf nodes are linked in a totally ordered list. A

concurrent scan operation can be performed in two steps: (1) find

the starting point on the leaf node list; (2) sequentially iterate on the

list. The former is achieved using the upper_bound and lower_bound
functions, and the latter is implemented with a concurrent iterator.

Lazy Rearrangement. Step (1) is akin to a lookup operation ex-

cept lazy rearrangement. Since maintaining key-values in order

is expensive for both lookup and insert, FB
+
-tree stores unsorted

key-values in leaf nodes. The ordered bit is embedded in control to
indicate whether the key-values are in order. When descending to a

leaf node, it checks the ordered bit. If unordered, it acquires a write

lock and then rearranges the key-value pointers, allowing range

iteration to benefit from a sequential memory access pattern. Oth-

erwise, it finds the start point without holding the lock. It should

be noted that lazy rearrangement incurs a small overhead, because

over half of key-values are sorted during node split or merge.

FB
+
-tree’s concurrent iterator in step (2) is almost identical to an

STL iterator. In concurrent environments, however, an iterator has

to coordinate with insert and remove operations. FB
+
-tree’s iterator

thus contains a version to detect whether any modifications occur

in a leaf node. If the version changes during iteration, the ordered
would be checked and the node could be rearrangedwhen necessary.

The iterator can thus access the newly inserted key-values.

Cross-Node Tracking. If a node split occurs when the iteration

crosses leaf nodes, the successor key-value is determined using

binary search. The cross-node tracking technique is employed to

detect if any structure modifications occur when crossing nodes

during range iteration. If no changes have occurred after proceeding

to the sibling node, the iteration could optimistically access the

minimum key-value for better performance.

5 EXPERIMENT EVALUATION
In this section, we experimentally evaluate FB

+
-tree and compare

it with other state-of-the-art main-memory index structures.

5.1 Experiment Setup
Platform. We use a Dell PowerEdge R740 Server with two

NUMA nodes. Each node contains an Intel Xeon(R) Gold 6248R

processor with 24 3.0 GHz cores (with up to 48 hyperthreads). Each

processor has 35.75 MB L3 cache and is equipped with 64 GB DDR4-

2133 memory. We run Ubuntu 20.04 with kernel version 5.4.0. All

our code is implemented with C++ 17 and compiled using GCC/G++

11.4.0 with O3 optimization level. We use jemalloc to reduce dy-

namic memory allocation overhead at runtime. Threads are pinned

to hardware threads to avoid migrations by the OS scheduler.

Indexes. We compare FB
+
-treewith seven popularmain-memory

index structures, including the variants of both B
+
-tree and trie:

• STX B
+
-tree

8
: A highly optimized B

+
-tree container with im-

proved memory fragmentation and cache efficiency [9].

• FAST
9
: A read-only binary search tree that collapses multiple

nodes into one large node to facilitate SIMD instructions [32].

• B
+
-treeOLC

10
: A thread-safe B

+
-tree implementation synchro-

nized by optimistic lock coupling [67].

• ART: The default index of HyPer [31]. We use two thread-safe

implementations ARTOLC
10

and ARTOptiQL
11
, synchronized

by optimistic lock coupling and OptiQL, respectively [63, 67].

• HOT
12
: The Height Optimized Trie dynamically varies the num-

ber of discriminative bits considered in each node[10]. HOT

utilizes the ROWEX protocol for synchronization [42, 44].

• Masstree
13
: The Masstree is a trie-like concatenation of B

+
-tree

used by silo [49, 65]. It employs a customized optimistic lock

protocol along with the link technique for synchronization.

• Wormhole
14
: The Wormhole substitutes inner nodes of B

+
-tree

with a trie structure and represents it as a hash table. It takes

𝑂 (𝑙𝑜𝑔 𝐿) worst-case time for querying a key of length 𝐿 [68].

8
https://github.com/tlx/tlx.git

9
https://github.com/RyanMarcus/fast64.git

10
https://github.com/wangziqi2016/index-microbench.git

11
https://github.com/sfu-dis/optiql

12
https://github.com/speedskater/hot.git

13
https://github.com/kohler/masstree-beta.git

14
https://github.com/wuxb45/wormhole.git
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In STX B
+
-tree, B

+
-treeOLC, and FB

+
-tree, integer keys are stored

directly in inner nodes, whereas string keys are stored via pointers.

In our experiments, all indexes maintain a pointer to each key-

value. To avoid excessive compiler optimization, such as unused

result optimization, we compile the code of index structures into

a shared library. For FB
+
-tree, the ns and fs are configured to 64

and 4 respectively, and AVX2 instructions are configured as default.

Other indexes are configured to their default configurations. We do

not compare against learned indexes, as these hardly support insert

operation. We also do not compare against hash tables, because

these do not support range iteration.

Workloads. Our experiments are based on the standard work-

loads from the Yahoo! Cloud Serving Benchmark
15

(YCSB) [20].

We evaluate four core workloads with the default YCSB parame-

ters (requests follow the Zipfian distribution, skew=0.99): LOAD

(100% insert), A (50% read, 50% update), C (100% read), and E (95%

range-scan, 5% insert). Our main concern is the index structure

itself, so range scan only reads pointers without actually accessing

the records. Each workload consists of two phases: the load phase

inserts 100 million keys in random order into indexes (one percent

of keys are inserted for warmup); the run phase executes 100 million

operations specified by the workload multiple times. We evaluate

each workload on five datasets with different key lengths (Table

2). The rand-int consists of random 64-bit integers. The 3-gram16

[15] contains unique sequences of triple words often used in lan-

guage models. We also use the default keys generated by YCSB. The

twitter17 (cluster-27) is anonymized data by collecting real-world

production traces from in-memory cache clusters at Twitter [69].

The url consists of distinct URLs in DBPedia dataset [2].

Table 2: Datasets used in the experiments.

Name Description Avg. key size (bytes)

rand-int 64-bit random integers 8.0

3-gram unique sequences of triple words 15.8

ycsb keys generated by YCSB 22.9

twitter anonymized keys in cluster-27 52.7

url urls in DBPedia dataset 76.8

5.2 Comparison against B+-tree Variants
We first measure the single-threaded performance of B

+
-tree vari-

ants to evaluate the structural optimization of FB
+
-tree. Figure 11

shows the throughput of FB
+
-tree and two competitors, STX B

+
-tree

and B
+
-treeOLC. On all workload-dataset combinations, FB

+
-tree

outperforms the other two competitors—by up to 2.5x (LOAD), 2.9x

(YCSB-A), 2.9x (YCSB-C), and 2.2x (YCSB-E). As presented in Sec-

tion 3.2, the feature comparison technique significantly reduces

cache misses and enables memory-level parallelism, leading to supe-

rior single-threaded lookup, update, and scan performance. Besides

feature comparison, the unordered arrangement of key-values in

FB
+
-tree contributes to efficient insert performance. Since FAST is

a read-only structure and only supports integer keys, we compare

it to FB
+
-tree in a separate evaluation, as shown in Figure 1.

15
https://github.com/brianfrankcooper/YCSB/

16
https://www.statmt.org/lm-benchmark/

17
https://github.com/twitter/cache-trace
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on workload YCSB-C by gradually enabling the optimiza-
tions, and (b) Memory consumption of different indexes.

5.3 Evaluation on Our Optimizations
Factor Analysis on Structural Optimizations. We gradually

enable the optimizations to evaluate the multi-threaded throughput

of FB
+
-tree, as shown in Figure 12(a). We initially consider the

B
+
-tree without any optimization, which employs binary search in

inner and leaf nodes. Next, we enable prefix (denoted as +prefix) and

hashtag (in leaf nodes, called +hashtag) in sequence to evaluate the

structural optimizations described in Section 3.3. The +prefix only

stores the common prefixes of anchors directly in inner nodes, in

which branch operation compares the target key with the common

prefix and then performs a binary search on the suffix.

It even decreases the performance, since more cache lines need to

be loaded, as discussed in Section 3.1. We then evaluate the effects

of the feature comparison technique (i.e., +feature2 and +feature4,

by configuring two and four features, respectively), which improves

cache utilization and exploits memory-level parallelism. Lastly, we

enable the cross-node tracking optimization (denoted as +cross-

track), which eliminates the overhead of accessing the high_key in

leaf nodes, as detailed in Section 4.3. Since some optimizations in

Figure 12(a) are not employed for binary keys, we do not evaluate

these on rand-int dataset. In conclusion, the multi-threaded (48

cores) throughput of FB
+
-tree (+cross-track) on YCSB-C is higher

than that of typical B
+
-tree—by 2.3x (3-gram), 2.9x (ycsb), 2.6x

(twitter), 2.0x (url), and 2.1x (rand-int, as shown in Figure 17).

To deeply evaluate the impact of feature size, we also evaluate the

multi-threaded (48 cores) performance, average suffix comparison
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Figure 14: Scalability under different skews (YCSB-A).

count per operation, and average LLC-misses per operation with

different feature sizes, as shown in Figure 13. Since the feature size

of binary keys is fixed, we do not evaluate these on rand-int dataset.

Although the average suffix comparison count per operation grad-

ually declines as feature size increases, the average LLC-misses per

operation first decreases and then gradually increases, as shown

in Figure 13(b)(c). This occurs because the mechanical selection

of anchor keys is unconscious of prefix skewness, as discussed in

Section 3.2. As a result, the performance of FB
+
-tree first increases

with feature size, then gradually decreases, as shown in Figure 13(a).

In addition, Figure 13 also illustrates the reason why FB
+
-tree’s

performance varies across different datasets. The twitter and url

datasets have more complicated prefix patterns leading to more

suffix comparisons and LLC-misses.

Scalability of Latch-free Update. First, we compare FB
+
-tree

with other state-of-the-art index structures to evaluate their scala-

bility on rand-int dataset using YCSB-A (update-heavy) workload

with different skews. The results are shown in Figure 14. All index

structures are multi-core scalable under low contention. Thanks

to its latch-free update and non-blocking read described in Sec-

tion 4.1 and Section 4.4, FB
+
-tree is almost linearly scalable under

median contention, while other index structures suffer from per-

formance collapse. Due to retrying CAS on the pointers, FB
+
-tree

also experiences performance collapse under high contention. How-

ever, it still maintains the best performance thanks to its minimal

hardware-level critical section, as illustrated in Figure 14(c).

Next, we horizontally compare the latch-free update with two

other competitors, optimistic lock using CAS primitive (denoted as

OptLock) and optimistic lock with backoff (called OptLock-Backoff).

The scalability of the three techniques on FB
+
-tree is illustrated in

Figure 15. Due to space limitation, we only evaluate the rand-int and
url datasets (the highest and lowest performance on YCSB-C) with

the standard workload YCSB-A (skew=0.99). The OptLock suffers

from scalability collapse over 48 threads on rand-int dataset and
over 64 threads on url dataset, respectively. The OptLock with back-

off algorithm could mitigate such performance collapse, however,

leading to performance degradation with fewer threads. Our latch-

free update exhibits the best scalability and outperforms OptLock

by 6.6x (rand-int) and 2.8x (url) under 96 threads.

5.4 Comparison against State-of-the-art
We compare FB

+
-tree with five state-of-the-art main-memory in-

dexes to evaluate their scalability and performance in a concurrent

environment. Meanwhile, we use the statistic interface of jemalloc

to evaluate their space efficiency.

Memory Consumption. Since these indexes utilize different

key-value storage formats, we only report the index memory con-

sumption (the memory required by the index, including the pointers

to key-values but excluding the key-values). The Masstree employs

a complicated design, in which key-values are not stored together

and key slices are stored in its inner nodes. We count the whole

memory footprint and then subtract the memory footprint for stor-

ing key-values as Masstree’s memory consumption. The results on

3-gram, ycsb, twitter, and url datasets are presented in Figure 12(b).

The results on rand-int dataset is consistent with results on 3-gram
dataset. HOT only considers discriminative bits in inner nodes and

thus is highly space-efficient. Except for HOT, FB
+
-tree is more

space-efficient than other indexes on almost all datasets.

Performance and Scalability.The throughput and scalability of
these indexes on all workload-dataset combinations are illustrated

in Figure 17. On workload LOAD, FB
+
-tree outperforms all other

indexes on all datasets. ARTOptiQL and HOT exhibit comparable

scalability and performance on ycsb, twitter, and url dataets. Thanks
to the latch-free update technique, FB

+
-tree shows the best scalabil-

ity on workload YCSB-A. All other indexes suffer from performance

collapse as threads increase. On the read-only workload YCSB-C,

HOT gives the best performance and scalability on all datasets ex-

cept rand-int. FB
+
-tree performs almost as fast as other trie-based

structures. As shown in Figure 16, the average LLC-misses and

branch misses per operation of all index structures are counted un-

der a multi-threaded (48-core) environment as a shred of evidence.

Except for these two metrics, parallelism between instructions,

memory access patterns, and memory bandwidth utilization are

also significant, which leads to FB
+
-tree’s better performance than
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Figure 17: Index throughput and scalability on different workload-dataset combinations.

ART and Mastree. It should be mentioned that all these structures

perform lookup without holding any locks.

The performance of range scan may be vitally important in many

database applications, especially when secondary indexes are ex-

tensively utilized to retrieve valuable information and translate

database operators into computations based on primary keys. In

these scenarios, a balanced structure may be extremely effective.

FB
+
-tree exhibits superior performance than other structures on

workload YCSB-E thanks to its balanced structure and sequential

pointer arrangement as described in Section 4.5. Although Worm-

hole has a similar leaf node structure, its indirect ordered key-value

arrangement hinders efficient range scan. Frequent pointer chasing

in trie-based index structures leads to inferior range scan perfor-

mance. For completeness, we also illustrate the range scan per-

formance with the actual key-value records access. In summary,

the experiments demonstrate that FB
+
-tree dominates existing B

+
-

tree variants on all the workload-dataset combinations. Compared

with trie-based structures, FB
+
-tree may have lower performance

on point lookup, while it has a big advantage on range scan. On

update-heavy workloads, FB
+
-tree also demonstrates significant

potential and better scalability over other structures.

6 CONCLUSION
In this paper, we present the FB

+
-tree, a fast, cache-efficient, and

balanced B
+
-tree variant taking memory-level and computational

parallelism into consideration.We show how to reduce cachemisses

in binary search and exploit prefetching to leverage memory-level

parallelism. We highlight our feature comparison technique en-

abling vectorization of binary search from a different perspective

than previous work. The evaluation results demonstrate FB
+
-tree

exhibits comparable point lookup performance to state-of-the-art

indexes, while exhibiting superior range scan performance. We

sincerely believe that mitigating dependences and exploring the

possibility of parallelization and vectorization would be increas-

ingly important to improve the performance of existing algorithms.
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