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ABSTRACT
The development of hyperparameter optimization (HPO) algorithms
is an important topic within both the machine learning and data
management domains. While numerous strategies employing early
stopping mechanisms have been proposed to bolster HPO e!ciency,
there remains a notable de"ciency in understanding how the se-
lection of early stopping metrics in#uences the reliability of early
stopping decisions and, by extension, the broader HPO outcomes.
This paper undertakes a systematic exploration of the impact of
metric selection on the e$ectiveness of early stopping-based HPO.
Speci"cally, we introduce a set of metrics that incorporate uncer-
tainty and highlight their practical signi"cance in enhancing the
reliability of early stopping decisions. Our empirical experiments
on HPO and NAS benchmarks show that using training loss as an
early stopping metric in the early training stages improves HPO
outcomes by up to 24.76% compared to the more widely accepted
validation loss. Furthermore, integrating uncertainty into themetric
yields an additional improvement of up to 4% under budget con-
straints, translating intomeaningful resource savings and scalability
bene"ts in large-scale HPO scenarios. These "ndings demonstrate
the critical role of metric selection while shedding light on the
potential implications of integrating uncertainty as a metric. This
research provides empirical insights that serve as a compass for
the selection and formulation of metrics, thereby contributing to a
more profound comprehension of mechanisms underpinning early
stopping-based HPO.
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1 INTRODUCTION
Recent years have seen a trend towards integrating machine learn-
ing (ML) functionalities into data management systems [8, 18, 20–
22, 28, 39, 51, 54, 56–58]. Prominent examples include Apache Sys-
temDS [7], Snorkel [41], and HoloClean [42], which facilitate di-
verse aspects of data handling from integration to predictive analy-
sis. Developing e$ective ML models to best meet the needs of data
management systems is however challenging. Although numerous
AutoML systems have emerged in recent years to facilitate the pro-
cess (e.g., Google Vertex AI [19], Amazon SageMaker Autopilot [10],
Microsoft’s FLAML [46]), a critical aspect ofMLmodel development,
hyperparameter optimization (HPO), is yet to be better understood.
The primary challenge lies in the limited understanding of how un-
certainties in model predictions a$ect the reliability of optimization,
which is vital for achieving robust HPO outcomes.

The goal of HPO is to determine the best values of some hy-
perparameters for a model or system. Its importance for tuning
data systems has been well recognized by the data system commu-
nity [30, 32, 33, 43, 47, 55, 56]. The hyperparameters for ML include
learning rates, regularization schemes, neural architecture-speci"c
con"gurations (e.g., types of layers, number of hidden units, etc.),
and so on. Their values are critical to model performance.

HPO is time-consuming due to the extensive training of numer-
ous candidate models in a combinatorial hyperparameter space [45,
50]. To address this challenge, various HPO strategies have been de-
veloped, employing methods such as Bayesian optimization, genetic
algorithms, and rule-based searches for more e!cient exploration
of the hyperparameter space [6, 53].

Regardless of the used search methods, HPO schemes can be
categorized into two main types: complete evaluation-based HPO
and early stopping-based (or multi-!delity) HPO [32]. Complete
evaluation-based HPO involves training the model to completion
for each hyperparameter con"guration, ensuring thorough testing
of each setting but at a high computational cost. In contrast, early
stopping-based HPO can "t into an acceptable time budget through
early termination of training for underperforming candidates based
on speci"c early stopping metrics [2, 35, 37]. This approach can
drastically reduce the computational time and resources, and hence
becomes dominant in HPO systems [16, 26, 27, 31, 32].

Although previous studies have explored various early stopping-
based HPO schemes [5, 13, 36, 48, 52] and highlighted their cost-
e$ectiveness, the understanding of early stopping criteria, espe-
cially the performance metrics used for model ranking, remains
incomplete. Typically, model training uses separate datasets for
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training and validation to compute respective metrics, with vali-
dation loss often being the preferred metric for guiding HPO pro-
cesses; some, especially in data management-centric production
environments, use training metrics instead [4, 9, 17].

Early stopping metrics directly determine what models to keep
and what models to discard. Despite its pivotal role in HPO, no prior
studies have systematically explored it. Existing HPOs have been
using either training loss or validation loss as the early stopping
metric; which one to use is based on the practitioners’ personal
preferences, with validation loss being a more frequent choice.

Some fundamental questions on early stopping metric remain
open:
(1) How reliable are commonly used performance metrics, specif-

ically training and validation losses, for HPO? How do they
compare to one another?

(2) How to explain the reasons for the di$erent e$ectiveness of
the metrics? More fundamentally, what are the nature of early
stopping and the key factors for its e$ectiveness?

(3) Besides the commonly considered measures, are there any
other measures worth considering for early stopping metrics?
More speci"cally, ML models have inherent uncertainty in
their predictions. How would such uncertainty impact early
stopping? Would it be worthy to incorporate it into early stop-
ping metrics for HPO? And would the combination of multiple
metrics help? How to do that?

This paper aims to answer these fundamental questions and
advance the principled understanding of early stopping in HPO.
We do that through a four-fold exploration. (i) We "rst conduct
an empirical study on nine HPO tasks in three widely used HPO
benchmarks (Nas-Bench-201, LCBench, and HPOBench) over nine
datasets, and systematically examine the e$ectiveness of the popu-
lar early stopping metrics for HPO. We use the concept of reliability
to assess if a speci"c performance metric shows statistically signi"-
cant superiority over others. (ii) From the data, we distill a set of
insights on the relative e$ectiveness of the popular early stopping
metrics, theoretically analyze the inherent nature of early stop-
ping, and reveal the reasons for the pros and cons of those metrics.
(iii) We study the impact of model uncertainty–the variations in
model predictions–on early stopping, propose a set of metrics that
integrate model uncertainty, and uncover the potential of incor-
porating model uncertainty into early stopping metrics for HPO.
(iv) By identifying distinct stages in the model learning process,
we further develop stage-adaptive metrics and augment them with
uncertainty measures. This integration aligns early stopping more
closely with the dynamics of model training, achieving signi"cant
improvement over traditional metrics.

To the best of our knowledge, this work is the "rst that gives
a systematic exploration on early stopping metric for HPO. By
addressing some fundamental open questions, it sheds light on
how uncertainty and training stages in#uence metric design and
selection, providing valuable insights and empirical guidelines for
more e$ective HPO strategies.

2 BACKGROUND — HPO OVERVIEW
Hyperparameter Optimization (HPO) is an important mechanism in
automating the adjustment of hyperparameters, enabling e!cient
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model deployment for practical applications [14]. As illustrated in
Figure 1, the HPO process begins with a problem de"nition phase,
which includes identifying hyperparameters, setting tuning objec-
tives, establishing constraints such as computational budgets, and
specifying training and validation datasets. Using these de"nitions,
the HPO Tuner initiates an iterative tuning process.

The HPO Tuner comprises a scheduler and a sampler. First, the
scheduler ✁ determines the number of samples based on available
budgets, and the sampler ✂ selects hyperparameters accordingly.
Next, the Tuner ✃ sets up candidate models with these hyperpa-
rameters and ✄ trains them for a de"ned number of epochs as per
the scheduler’s instructions. The scheduler then ☎ collects perfor-
mance metrics and ranks the models. If early stopping is employed,
the scheduler ✆ halts underperforming models and directs the rest
to continue training. At the end of a tuning cycle, the scheduler
provides training statistics to the sampler, which then ✇ updates its
internal parameters to suggest con"gurations for the next round.

Di$erent HPO strategies adopt varying scheduling policies. Strate-
gies that incorporate early stopping integrate an internal cycle
(steps ✄, ☎, and ✆) to halt unpromising models early in each tuning
round. The interaction between early stopping and sampling meth-
ods can impact the e!cacy of these strategies. General-purpose
samplers, such as random sampling, are fully compatible with early
stopping, as seen in our Hyperband experiments in the following
sections. In contrast, experience-based samplers such as Bayesian
optimization may su$er disruptions from premature stops, poten-
tially compromising their predictive accuracy and convergence
guarantees. However, advanced approaches such as BOHB [15]
reconcile sampling with early stopping by favoring evaluations
that extend to larger budgets, while tree-structured Parzen estima-
tors have been shown to outperform Gaussian Processes in early
stopping contexts due to their #exibility and scalability [15, 53].
Budget-conscious evolutionary algorithms have also been e$ec-
tively combined with early stopping [3]. In general, the success of
these strategies hinges on the performance metrics collected in step
☎, which are essential for ensuring the reliability of HPO results.

3 EMPIRICAL STUDY ON EARLY STOPPING
METRICS FOR HPO

In early stopping-based HPO, performance metrics play a criti-
cal role in assessing each con"guration’s capability at a speci"c
"delity level, informing the early stopping decision for "ltering.
An e$ective metric should consistently re#ect a model’s present
performance and its potential for improvement. Despite extensive
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Figure 2: One iteration of SH — An example of running one
round of SH on the ImageNet-16-120 benchmark, where 𝐿 = 27,
𝑀 = 3, and one unit of resource corresponds to 8 epochs.

Algorithm 1: Pseudocode for Successive Halving (SH).
Input : initial budget 𝑁0, maximum budget 𝐿, "ltering

ratio 𝑀, and set of 𝑂 con"gurations 𝑃
1 𝑁 = 𝑁0
2 while 𝑁 → 𝐿 do
3 𝑄 = {𝑅 𝐿 (𝑆) : 𝑆 ↑ 𝑃 } // early stopping metrics
4 𝑃 = top𝑀 (𝑃 , 𝑄, ↓ |𝑃 | · 𝑀↔1↗) // ranking
5 𝑁 = 𝑀 · 𝑁
6 end

Algorithm 2: Pseudocode for target HPO algorithms.
Input :budget 𝐿, "ltering ratio 𝑀

1 𝑇𝑁𝑂𝑃 = ↓log𝑄 (𝐿)↗
2 for 𝑇 ↑ {𝑇𝑁𝑂𝑃 , 𝑇𝑁𝑂𝑃 ↔ 1, . . . , 0} do
3 sample 𝑂 = ↘ 𝑅𝐿𝑀𝑁+1

𝑅+1 · 𝑀𝑅 ≃ con"gurations 𝑃 run SH on 𝑃
with 𝐿 · 𝑀↔𝑅 as initial budget

4 end

research on early stopping-based HPO methods, there is a notable
absence of consensus regarding the selection and reliability of met-
rics for guiding early stopping decisions. In this section, we address
this gap by empirically comparing commonly used metrics to un-
veil underlying di$erences. We start by detailing the experimental
setup applied across all experiments throughout this paper.

3.1 Experimental Setup
3.1.1 Target HPO Algorithm. We assess the reliability of common
metrics within single-objective classi"cation tasks using Successive
Halving and Hyperband algorithms.
Successive Halving (SH) [25] employs a heuristic approach to
allocate increasing resources to the most promising con"gurations
based on their performance metrics. As outlined in Algorithm 1,
SH begins with a prede"ned set of con"gurations, budget limits,
and a "ltering ratio. Each con"guration is initially evaluated with
the lowest budget (line 3), and only the top-performing fraction,
de"ned by 1/𝑀, is retained for the next round (line 4). This iterative
process of "ltering and reallocating resources continues until one
con"guration receives the maximum budget. Figure 2 illustrates a
single iteration of the SH algorithm.
Hyperband [31] extends SH by better balancing the number of
con"gurations and budget allocation. As outlined in Algorithm 2,
Hyperband takes two key parameters: 1) the maximum budget 𝐿
per con"guration, and 2) the "ltering ratio 𝑀, which controls how
many con"gurations advance in each SH round. These parameters
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together de"ne the maximum number of iterations 𝑇𝑁𝑂𝑃 for the
inner loop (line 1). The outer loop starts with the most aggressive
level 𝑇 = 𝑇𝑁𝑂𝑃 , exploring the widest set of con"gurations (line 2),
ensuring at least one con"guration receives the full budget 𝐿. Sub-
sequent rounds progressively reduce the number of con"gurations
by a factor of 1/𝑀 until 𝑇 = 0, at which point all con"gurations are
assigned the maximum budget 𝐿.

3.1.2 Target HPO Tasks. We apply SH and Hyperband on three
tuning benchmarks. Detailed speci"cations can be found in Table 1.

Table 1: Benchmark Speci"cations

Nas-Bench-201 LCBench

Datasets CIFAR-10 CIFAR-100 ImageNet Fashion-MNIST,
-16-120 Volkert

Train/Valid/Test 25k/25k/10k 50k/5k/5k 151k/3k/3k 4k/2k/1k

Hyperparameter
1 ⇐↔ 0
2 ⇐↔ {0, 1}⇒
3 ⇐↔ {0, 1, 2}⇒

Candidate OPs:
none,
skip_connect,
nor_conv_1x1,
nor_conv_3x3,
avg_pool_3x3

batch size: [16, 512]
learning rate: [1𝑈↔4, 1𝑈↔1]
momentum: [0.1, 0.99]
weight decay: [1𝑈↔5, 1𝑈↔1]
dropout: [0.0, 1.0]
#layers: [1, 5]
max. #units/layer: [64, 1024]

HPOBench — NN HPOBench — BNN

Datasets Higgs Adult Boston Housing Protein Structure

Train/Valid/Test 6k/3k/1k 30k/15k/5k 0.3k/0.1k/0.1k 3k/1k/1k

Hyperparameter
batch size: [4, 256], depth: [1, 3]
alpha: [1𝑈↔8, 1], width: [16, 1024]
learning rate init: [1𝑈↔5, 1.0]

burn in ratio: [0, 0.8], mdecay: [0, 1]
#𝑉𝑂𝑊𝑋𝑇1: [16, 512], #𝑉𝑂𝑊𝑋𝑇2: [16, 512]
learning rate: [1𝑈↔6, 0.1]

Neural Architecture Search (NAS) [11] provides o%ine evalua-
tions of network architectures on three datasets: CIFAR-10, CIFAR-
100, and ImageNet-16-120. It features a search space represented
by a densely connected DAG, as shown in Figure 3 (a). The DAG
contains four nodes, labeled 0-3 in Table 1. Edges connecting these
nodes are hyperparameters selected from "ve candidate operations
listed in Table 1. All con"gurations are trained for 200 epochs.
Tabular Classi"cation. We use LCBench [60], which contains
o%ine evaluations of shaped MLP models on OpenML datasets, as
shown in Figure 3 (b). The search space includes seven hyperparam-
eters: "ve are standard training parameters such as regularization
and learning rate, and two relate to architecture. LCBench evaluates
2k con"gurations under three budgets (12, 25, and 50 epochs). We
choose the maximum budget of 50 epochs for our experiments.
HPOBench. We use HPOBench [13], focusing on the Neural Net-
work (NN) and Bayesian Neural Network (BNN) benchmarks. These
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“raw” benchmarks require manual training from scratch, allowing
full access to training statistics across all epochs and supporting
multiple trials with varying random seeds. In contrast, “tabular” or
“surrogate” benchmarks that o$er limited "delity or rely on per-
formance prediction are excluded. The NN benchmark optimizes
"ve hyperparameters for a feedforward neural network trained on
OpenML datasets. The BNN benchmark involves "ve hyperparame-
ters and is applied to regression tasks from the UCI repository [12].

3.1.3 Methodology. The early stopping metrics we examine in-
clude training loss and validation loss. To validate the reliability
of these metrics, we conduct experiments across various budget
constraints (𝐿) and "ltering ratios (𝑀) within the Hyperband algo-
rithm, as detailed in Table 2. For each setting, we perform 1000
repetitions with di$erent random seeds, each including a randomly
selected subset of model con"gurations. We compare the outcomes
of early stopping decisions guided by di$erent metrics, and we
employ the Wilcoxon signed-rank test [49] to determine the pres-
ence of signi"cant di$erences among the metrics. To report results,
we consider indicators such as !nal performance, performance over
time, and performance regret (de"ned as the discrepancy between
the best-found value and the best-known value) [13].

Table 2: Early Stop Settings — 𝐿 denotes the maximum budget
available to a single con"guration. 𝑀 determines the proportion of
con"gurations that persist in every early stopping round.

Nas-Bench-201 LCBench HPOBench—NN HPOBench—BNN

𝐿 50, 81, 160, 180 10, 15, 30, 45 40, 80, 120, 160 2500, 5000, 7500, 10000
𝑀 3, 1.33 3, 1.33 3, 1.33 3, 1.33

3.2 Observed Reliability of Common Metrics
To investigate how the choice of metrics–training loss versus valida-
tion loss–a$ects early stopping strategies in HPO, we "rst conduct
a series of experiments on the Nas-Bench-201 benchmark, using
random sampling combined with SH for model selection.

Figure 4 compares "nal test accuracies achieved when using
training versus validation losses as early stopping metrics. Fig-
ure 4 (a) shows the distribution of di$erences in "nal test accuracy
between models selected respectively by these two metrics across
varying budgets. The di$erences are computed by subtracting the
test accuracies achieved using validation loss from that achieved
using training loss. Contrary to the conventional preference for
validation metrics, our "ndings in the complex Nas-Bench-201 task
indicate that training metrics consistently outperform validation
metrics in selecting better models across all budget levels, with an
average accuracy di$erence of 0.72% and a maximum of 24.76%.

Additionally, Figure 4 (b) explores how the disparity between
early stopping decisions informed by these metrics evolves under
a computational budget of 150. Performance regret, de"ned here
as the gap between the best-performing model found by HPO and
the true optimum among explored candidates, shows that rely-
ing on validation loss for early stopping frequently halts training
prematurely, yielding sub-optimal "nal selections.

These observations underscore that the choice of metric – train-
ing versus validation – signi"cantly impacts the outcomes of HPO.

Table 3: Analysis of Common Metrics with the Wilcoxon
Signed-Rank Test — The hypothesis posits that training loss𝑌T
is superior to validation loss 𝑌V . A p-value closer to zero indi-
cates higher reliability of training loss, while to one suggests better
performance of validation loss. 𝑍𝑂𝑆𝑆 (𝑍𝑇𝑈𝑅𝑅 ) represents the average
di$erence in "nal test accuracy (loss) between two metrics.

Nas-Bench-201 CIFAR-10 CIFAR-100 ImageNet- LCBench Volkert Fashion-
16-120 MNIST

𝐿 = 50 p 7.6𝑈↔109 2.2𝑈↔78 6.6𝑈↔55 𝐿 = 9 1.0𝑈↔9 5.4𝑈↔6

𝑀 = 3 𝑍𝑂𝑆𝑆 0.940 1.009 0.912 𝑀 = 3 0.187 0.060
𝐿 = 81 p 4.0𝑈↔119 3.1𝑈↔79 7.8𝑈↔49 𝐿 = 15 7.0𝑈↔12 4.0𝑈↔8

𝑀 = 3 𝑍𝑂𝑆𝑆 0.938 1.021 0.763 𝑀 = 3 0.206 0.067
𝐿 = 160 p 1.8𝑈↔40 8.9𝑈↔153 2.9𝑈↔27 𝐿 = 30 0.999 0.999
𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.279 2.476 0.347 𝑀 = 1.33 -0.243 -0.071
𝐿 = 180 p 6.1𝑈↔48 2.4𝑈↔158 3.3𝑈↔7 𝐿 = 45 0.999 0.999
𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.277 3.084 0.165 𝑀 = 1.33 -0.347 -0.066

HPOBench-NN Higgs Adult HPOBench-BNN Boston Protein

𝐿 = 40 p 5.4𝑈↔92 7.3𝑈↔17 𝐿 = 2500 p 1.5𝑈↔60 4.1𝑈↔41

𝑀 = 3 𝑍𝑂𝑆𝑆 0.003 9.5𝑈↔4 𝑀 = 3 𝑍𝑇𝑈𝑅𝑅 -36.762 -1.118
𝐿 = 80 p 9.9𝑈↔21 0.257 𝐿 = 5000 p 2.8𝑈↔145 1.7𝑈↔6

𝑀 = 3 𝑍𝑂𝑆𝑆 0.001 1.0𝑈↔4 𝑀 = 3 𝑍𝑇𝑈𝑅𝑅 -94.295 -1.167
𝐿 = 120 p 0.248 0.999 𝐿 = 7500 p 1.4𝑈↔115 3.7𝑈↔34

𝑀 = 1.33 𝑍𝑂𝑆𝑆 1.1𝑈↔4 -0.001 𝑀 = 1.33 𝑍𝑇𝑈𝑅𝑅 -79.010 -0.015
𝐿 = 160 p 0.001 0.999 𝐿 = 10000 p 4.0𝑈↔7 3.2𝑈↔5

𝑀 = 1.33 𝑍𝑂𝑆𝑆 7.1𝑈↔4 9.3𝑈↔4 𝑀 = 1.33 𝑍𝑇𝑈𝑅𝑅 -9.381 -0.009

Interestingly, our "ndings challenge the widespread practice of
favoring validation metrics, showing that training metrics can be
more e$ective in guiding early stopping in HPO.

In conjunctionwith qualitative analysis, we employ theWilcoxon
signed-rank test to statistically evaluate the di$erences between
training and validation metrics. Assuming that the "nal test re-
sults derived from training loss exceed that from validation loss,
we report the resulting p-values alongside observed performance
di$erences in Table 3. The results reveal marked disparities in HPO
outcomes. Initially, training loss (𝑌T ) signi"cantly outperforms
validation loss (𝑌V ) under limited budgets, especially during early
training stages. For example, in Nas-Bench-201, the results at𝐿 = 50
and 𝐿 = 81 show extremely low p-values and signi"cant accuracy
discrepancies. However, as budget allocation increases, validation
loss progressively becomes more indicative of "nal performance.
With larger budgets, p-values generally rise, and "nal discrepancies
diminish. Speci"cally, in LCBench and NN, validation loss shows
notable superiority over training loss when 𝐿 ⇑ 30 and 𝐿 ⇑ 120,
respectively. Conversely, in Nas-Bench-201 and BNN, training loss
consistently exhibits its advantage across varying budgets, high-
lighted by an average accuracy gap of 3% on CIFAR-100 at 𝐿 = 180.

We distill these observations into the following insight:
Insight 1: training loss, as opposed to the commonly favored

validation loss, is a more e!ective metric for guiding early
stopping in HPO across various budgets. However, as the avail-
able budget increases, validation loss becomes more e!ective.

4 THE REASONS AND THEORETICAL
ANALYSIS

This section examines the reasons for the observed variances in the
e$ectiveness of the common metrics and, more importantly, reveals
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Figure 4: SH Early Stop Comparison — SH with 𝑀 = 3 across various budget constraints. (a) illustrates the distribution of di$erences in
test accuracy obtained when employing training loss versus validation loss as early stopping metrics. (b) demonstrates the disparities in test
accuracy between the optimal models selected based on these metrics and the actual optimal models throughout the tuning process.

the underlying factors and their impact on the e!cacy of early
stopping metrics. Before delving into a detailed analysis, we "rst
examine the models’ performance across their training lifecycles.

4.1 Model Performance over Time
Figure 5 displays the performance-over-time curves for validation
and training losses across all target tasks. The benchmarks show
distinct characteristics; Nas-Bench-201 and BNN exhibit consider-
able volatility in validation losses while maintaining stable training
losses. Conversely, LCBench and NN showmoderate #uctuations in
both metrics, with more noticeable variability in validation losses.
Note that in the BNN "gures, thicker lines indicate greater perfor-
mance #uctuations. The learning trajectories also di$er; loss values
in Nas-Bench-201 and BNN decline slowly over epochs, whereas
LCBench and NN stabilize more rapidly. These di$erences can be
attributed to the varying model complexities and dataset sizes out-
lined in Section 3.1.2: LCBench and NN utilize shallow MLP models,
while BNN models weights as probability distributions, resulting
in higher computational complexity. Nas-Bench-201, on the other
hand, employs more complex architectures and larger datasets.

Moreover, initial loss values in Nas-Bench-201 are closely clus-
tered and relatively high, with signi"cant performance divergences
emerging later in training. In contrast, con"gurations in LCBench
and HPOBench show clear performance di$erences from the outset.
These patterns suggest that early stopping-based HPO is more ef-
fective for lightweight tasks, where clear early disparities facilitate
decisive early stopping. However, in Nas-Bench-201, less distinct
early performance di$erences might lead to the premature termi-
nation of potentially superior models. Therefore, careful selection
of early stopping metrics is especially crucial in Nas-Bench-201.

4.2 Theoretical Analysis
We conduct a theoretical analysis to investigate the causes of sub-
optimal decisions in early stopping strategies before convergence.
Consider an HPO task under a supervised learning context where a
model𝑎 is trained on data points D𝑉 = {(𝑏𝑊 ,𝑐𝑊 )}𝑋𝑊=1 sampled i.i.d.
from some unknown data distribution U. Let there be 𝑑 hyperpa-
rameter candidates 𝑆1,𝑆2, . . . ,𝑆𝑌 ↑ ω. We denote the model trained
with hyperparameter 𝑆 for 𝑋 epochs as𝑎𝑍

𝑎 and the converged model
as 𝑎⇒

𝑎 . Given loss function 𝑒 (·, ·) ↑ [𝑓𝑁,𝑉𝑁] (𝑓𝑁 ⇑ 0), the expected
risks of models𝑎𝑍

𝑎 and𝑎⇒
𝑎 with respect toU are de"ned as:

Figure 5: Performance over Time — Randomly select 6 con"gu-
rations to show how losses change over time in each benchmark.
Validation losses show higher #uctuation.

𝑏 𝑂 (𝑎 ) = EU
[
𝑐
(
y,𝑑𝑂

𝑃 (x)
)]

, and 𝑏 ⇒ (𝑎 ) = EU
[
𝑐
(
y,𝑑⇒

𝑃 (x)
)]

. (1)

The objective of HPO is to identify hyperparameters 𝑆𝑈 that
minimize the expected risk of converged models, expressed as 𝑆𝑈 =
argmin𝑎 ↑ω 𝑅 ⇒ (𝑆). However, the expected risk cannot be directly
computed asU is unknown. Instead, HPO relies on estimating this
risk using a "nite set D drawn i.i.d. from the distribution U. Thus,
practical HPO centers around minimizing the empirical estimate:

𝑏 ⇒ (𝑎 ) = 1
|D |

∑
𝑁𝑄 ,𝑅𝑄 ↑D

𝑐
(
𝑒𝑄 ,𝑑

⇒
𝑃 (𝑃𝑄 )

)
. (2)

Early stopping (ES) actions at epoch 𝑋 involve "ltering models
using a ranking function 𝑔 on a list of empirical estimates:

𝑓𝑔
{

(
𝑏 𝑂 (𝑎1 ), . . . , 𝑏 𝑂 (𝑎𝑆 ) |D

)}
⇓ {𝑎𝑇1 , . . . ,𝑎𝑇𝑂 }, (3)

where𝑂𝑍 denotes the number of con"gurations retained after screen-
ing. The ranking function serves as the early stopping criterion,
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utilizing performancemetrics at epoch 𝑋 to estimate themodels’ true
capability and guide resource allocation within the HPO process.
Research into early stopping criteria often employs early perfor-
mance metrics as proxies for ultimate model capability. Regardless
of the speci"c early stopping criterion, its reliability hinges on how
closely the metrics re#ect the models’ actual performance. We next
explore factors in#uencing the reliability of early stopping metrics.

P!"#"$%&%"’ 4.1. Consider an early stopping-based HPO that
uses model’s loss function as its early stopping metric. Let 𝑅 𝑍 and
𝑅 𝑍 denote the expected and empirical losses at any epoch 𝑋 before
convergence, and 𝑅 ⇒ and 𝑅 ⇒ denote the expected and empirical losses
at convergence, as de!ned in Eqs. 1 and 2. Assume 𝑅 𝑍 (𝑆) ⇑ 𝑅 ⇒ (𝑆) and
𝑅 𝑍 (𝑆) ⇑ 𝑅 ⇒ (𝑆) hold for all 𝑆 ↑ ω. Let 𝑆𝑈 = argmin𝑎 ↑ω 𝑅 ⇒ (𝑆) be the
optimal hyperparameter, and let 𝑆𝑅𝑈 denote a sub-optimal candidate.
Then, the probability of making an incorrect early stopping decision
at epoch 𝑋 can be bounded according to Markov’s inequality:

𝑖
(
𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) ⇑ 0

)
→ 1

𝑗𝐿 ↔ 𝑇𝐿

(
𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) +𝑗𝐿 ↔ 𝑇𝐿

)
. (4)

Using Hoe"ding’s inequality [23], we derive tighter bounds:

𝑖
(
𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) ⇑ 0

)
→𝑘↔

2|𝑊 |
(
𝑋 𝑂 (𝑃𝑉𝑈 )↔𝑋 𝑂 (𝑃𝑈 )

)2
(𝑌𝑍↔𝑎𝑍)2 ,

if 𝑏 𝑂 (𝑎𝑉𝑈 ) > 𝑏 𝑂 (𝑎𝑈 )

𝑖
(
𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) ⇑ 0

)
⇑ 1↔𝑘↔

2|𝑊 |
(
𝑋 𝑂 (𝑃𝑉𝑈 )↔𝑋 𝑂 (𝑃𝑈 )

)2
(𝑌𝑍↔𝑎𝑍)2 ,

if 𝑏 𝑂 (𝑎𝑉𝑈 ) → 𝑏 𝑂 (𝑎𝑈 ) .

(5)

P!""( S)*&+,. De"ne  = 𝑅 𝑍 (𝑆𝑈 ) ↔ 𝑅 𝑍 (𝑆𝑅𝑈 ) +𝑎 , where 𝑎 is
chosen to ensure  ⇑ 0. Assuming loss values are bounded within
[𝑓𝑁,𝑉𝑁] (𝑓𝑁 ⇑ 0), the maximum o$set required for  is 𝑉𝑁 ↔ 𝑓𝑁. Thus,
choosing𝑎 = 𝑉𝑁 ↔ 𝑓𝑁 guarantees  ⇑ 0. Using Markov’s inequality,
we obtain:

𝑖
(
𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) ⇑ 0

)
= 𝑖 (𝑙 ⇑ 𝑑 ) → E[𝑙 ]

𝑑

=
E[ 𝑏 𝑂 (𝑎𝑈 ) ↔ 𝑏 𝑂 (𝑎𝑉𝑈 ) +𝑑 ]

𝑑
.

Given E[𝑅 𝑍 (𝑆𝑈 )↔ 𝑅 𝑍 (𝑆𝑅𝑈 )] = E[𝑅 𝑍 (𝑆𝑈 )]↔E[𝑅 𝑍 (𝑆𝑅𝑈 )] = 𝑅 𝑍 (𝑆𝑈 )↔
𝑅 𝑍 (𝑆𝑅𝑈 ), we can establish a general upper bound as Eq. 4. To for-
mulate a tighter bound, we employ Hoe$ding’s inequality [23]. Let
 = 𝑅 𝑍 (𝑆𝑈 ) ↔ 𝑅 𝑍 (𝑆𝑅𝑈 ), we have:

𝑖 ( ⇑ 0) = 𝑖 ( ↔ E[ ] ⇑ ↔E[ ]).
When E[ ] → 0, we obtain:

𝑖
(
 ↔ E[ ] ⇑ ↔E[ ]) → 𝑈

↔ 2|D|E[𝑏 ]2
(𝑌𝑍↔𝑎𝑍)2 = 𝑈

↔ 2|D|
(
𝑋 𝑂 (𝑃𝑈 )↔𝑋 𝑂 (𝑃𝑉𝑈 )

)2
(𝑌𝑍↔𝑎𝑍)2 .

When E[ ] > 0, we obtain:
𝑖
(
𝑙 ↔ E[𝑙 ] ⇑ ↔E[𝑙 ]

)
= 1 ↔ 𝑖

(
𝑙 ↔ E[𝑙 ] < ↔E[𝑙 ]

)

⇑ 1 ↔ 𝑘
↔ 2|D|E[𝑏 ]2

(𝑌𝑍↔𝑎𝑍)2 = 1 ↔ 𝑘
↔ 2|D|

(
𝑋 𝑂 (𝑃𝑈 )↔𝑋 𝑂 (𝑃𝑉𝑈 )

)2
(𝑌𝑍↔𝑎𝑍)2 .

⊋

This proposition identi"es three key factors that impact the
e$ectiveness of early stopping strategies in HPO: 1) the dataset size
|D|, 2) the discriminative power of metrics, quanti"ed by

(
𝑅 𝑍 (𝑆𝑈 )↔

𝑅 𝑍 (𝑆𝑅𝑈 )
)2, and 3) the range of metric values (𝑉𝑁 ↔ 𝑓𝑁)2.

First, a larger dataset size |D| tightens risk bounds, enhancing
the reliability of the metrics derived. This is intuitive, as larger
datasets typically reduce the variance between estimated and true
quantities, which in turn increases the accuracy of the metrics in
re#ecting model capabilities. Second, stronger discriminative power
in the metrics, quanti"ed by (𝑅 𝑍 (𝑆𝑅𝑈 ) ↔ 𝑅 𝑍 (𝑆𝑈 )

)2, also narrows risk
bounds; thus, designingmore discriminativemetrics during training
is bene"cial. Third, narrowing the loss range 𝑉𝑁 ↔ 𝑓𝑁 further re-
duces risk bounds. Although Eqs. 4 and 5 incorporate these bounds,
re"ning the loss value ranges relevant to speci"c training stages
can further reduce the probability of early stopping errors. This
underscores the importance of variations in loss values for metric
e!cacy. Notably, the ratio

(
𝑅 𝑍 (𝑆𝑈 ) ↔ 𝑅 𝑍 (𝑆𝑅𝑈 )

)2/(𝑉𝑁 ↔ 𝑓𝑁)2 in Eq. 5
acts as a form of regularization, suggesting that the e$ectiveness
of early stopping is more signi"cantly determined by the actual
variance in metric values rather than the preset range.

These observations elucidate why, in the context of Nas-Bench-
201, training loss proves to be a more reliable metric for early stop-
ping than validation loss. Training loss accurately captures model
expressiveness, particularly in the early learning phase, leading to
more stable and consistent model rankings. In contrast, validation
loss emphasizes generalization and can favor lower-capacity mod-
els that converge prematurely. Therefore, recognizing the di$erent
stages and the inherent uncertainties in model training is crucial, as
each stage carries distinct assumptions and implications that a$ect
model evaluation and selection.

We further demonstrate these key factors with a speci"c Gauss-
ian distribution example.

Example 4.2 (Gaussian Assumption). Given the HPO task as de-
"ned in Proposition 4.1. Suppose the losses at epoch 𝑋 for hyperpa-
rameters 𝑆𝑈 and 𝑆𝑅𝑈 followN(𝑗𝑈 ,𝑘2𝑈 ) andN(𝑗𝑅𝑈 ,𝑘2𝑅𝑈 ), respectively.
The estimates 𝑅 𝑍 (𝑆𝑈 ) and 𝑅 𝑍 (𝑆𝑅𝑈 ) are averaged over the loss values
and thus follow N(𝑗𝑈 , 𝑚2

𝑈
|D | ) and N(𝑗𝑅𝑈 , 𝑚

2
𝑉𝑈

|D | ). Assume that 𝑅 𝑍 (𝑆𝑈 )
and 𝑅 𝑍 (𝑆𝑅𝑈 ) are independent. Then, the probability of an incor-
rect early stopping decision at epoch 𝑋 can be obtained using the
Gaussian cumulative distribution function (CDF) ε:

𝑖
(
𝑏 𝑂 (𝑎𝑈 ) ⇑ 𝑏 𝑂 (𝑎𝑉𝑈 )

)
= 1 ↔ ε

(
𝑛𝑈 ↔ 𝑛𝑉𝑈√
1
|D| (𝑚2

𝑈 + 𝑚2
𝑉𝑈 )

)
. (6)

P!""( S)*&+,. Let  = 𝑅 𝑍 (𝑆𝑈 ) ↔ 𝑅 𝑍 (𝑆𝑅𝑈 ). Since the di$erence
of two independent normal variables is also normally distributed, 
follows N(𝑗𝑈 ↔ 𝑗𝑅𝑈 ,

𝑚2
𝑈

|D | +
𝑚2
𝑉𝑈

|D | ). We want to "nd 𝑖 ( ⇑ 0), which
is given by:

𝑖 ( ⇑ 0) = 𝑖

(
 ↔ (𝑗𝑈 ↔ 𝑗𝑅𝑈 )√

1
|D | (𝑘

2
𝑈 + 𝑘2𝑅𝑈 )

⇑ 𝑗𝑅𝑈 ↔ 𝑗𝑈√
1

|D | (𝑘
2
𝑈 + 𝑘2𝑅𝑈 )

)
.

Now, variable 𝑙↔ (𝑛𝑈↔𝑛𝑉𝑈 )√
1
|D| (𝑚2

𝑈+𝑚2
𝑉𝑈 )

follows N(0, 1). According to the CDF

of standard normal distribution, we obtain:

𝑖 ( ⇑ 0) = 1 ↔ ε
(

𝑗𝑅𝑈 ↔ 𝑗𝑈√
1

|D | (𝑘
2
𝑈 + 𝑘2𝑅𝑈 )

)
.

⊋
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The monotonically increasing pattern of the CDF curve for a
standard normal distribution highlights the bene"ts of using a
larger dataset (|D|) and more discriminative metrics (𝑗𝑅𝑈 ↔ 𝑗𝑈 ). It
also illustrates how variations in the metrics (𝑘2𝑈 +𝑘2𝑅𝑈 ) increase the
risk of incorrect early stopping decisions.

Remark. We assume a Gaussian distribution for the model’s perfor-
mance metrics for several reasons. First, the equivalence between
in"nitely wide DNNs and Gaussian processes ensures that the
model outputs follow a Gaussian distribution [29]. Second, Perfor-
mance metrics—typically computed as aggregates (e.g., sums or
averages) of these outputs—converge to a Gaussian distribution
via the Central Limit Theorem when the individual terms are in-
dependent or weakly correlated. This assumption is widely used
in probabilistic modeling and provides a mathematically tractable
framework for uncertainty estimation [1, 34, 40, 59].

From the discussion, we distill the following insight:
Insight 2: metrics derived from large datasets and those

highlighting signi"cant di!erences between model con"gura-
tions improve early stopping, while variability in these metrics
increases error risks. Understanding distinct training stages
and uncertainties is crucial for optimal metric selection.

5 MODEL UNCERTAINTY AND EARLY
STOPPING

This section presents the "rst known exploration of model uncer-
tainty’s e$ects on early stopping and its incorporation into early
stopping in HPO. Model uncertainty, which embodies inherent pre-
diction variability, can destabilize the model and obscure its true
capacity while also o$ering valuable insights into its latent poten-
tial. We next delve into the manifestations and impacts of model
uncertainty and demonstrate how leveraging uncertainty can guide
the formulation of more reliable early stopping decisions.

5.1 Manifestations of Uncertainty
Uncertainty in ML arises from two primary sources: intrinsic noise
within the data and variability in model predictions stemming from
limited knowledge [1, 24]. Since data uncertainty remains a con-
stant, it is the variability in model predictions, referred to as model
uncertainty, that predominantly a$ects early stopping decisions.

!(#)

%&
'(!" # ~ *(%&, ,"#)& ~ * ! # , ,#

Noise Bias VarianceData 
Uncertainty Model stabilityModel cognition

= = Model 
Uncertainty

Figure 6: Decomposition of uncertainty.

For clarity and in alignment with prior research on uncertainty
in machine learning [59], we assume that model predictions follow
a normal distribution, �̂�𝑍

𝑎 (x) ⇔ N(ŷ,𝑘2𝑍 ), where ŷ = E�̂�𝑍
𝑎 (x). Let

y = 𝑙(x) + 𝑚 be an observation corresponding to a given input x ↑

Figure 7: Manifestation of model uncertainty — (a) and (b) dis-
play inter-seed and inter-epoch uncertainty in validation losses for
three randomly selected models in ImageNet-16-120, respectively.

Figure 8: Early-stage !uctuation and "nal test loss vs. model
capacity. — Correlation between the std. of inter-epoch validation
loss from the "rst "ve epochs and "nal test loss, with model capacity
quanti"ed by the number of model parameters involved in NAS.

R𝑜 , perturbed by noise 𝑚 ⇔ N(0,𝑘2). Therefore, y ⇔ N
(
𝑙(x),𝑘2

)
,

where 𝑙(x) represents the ground truth, and 𝑘 represents the noise
arising from data, which is fundamentally irreducible.

Figure 6 shows the distributions of observations and model pre-
dictions for a speci"c x at epoch 𝑋 , illustrating uncertainty decompo-
sition. The “Bias”, quantifying the gap between ŷ and 𝑙(x), re#ects
the model’s learning capacity under various training con"gurations
(e.g., hyperparameters, "delity, learning algorithms). The “Variance”
represents the model’s sensitivity to training samples and encom-
passes both the model’s current learning level and the uncertainty
associated with stability. Good early stopping decisions should
primarily rely on the model’s current learning capability.

The impact of training variation manifests in two aspects: First,
di$erent training settings, such as initialization and data batch load-
ing order, introduce variability to the learning process, enabling
models to capture diverse facets of the data and leading to di$erent
bias and error patterns. Figure 7 (a) shows the mean and variance
of validation losses across three random seeds, highlighting this
e$ect. Leveraging this variability can o$er deeper insight into the
model’s learning capabilities. Second, model uncertainty is evident
through substantial #uctuations in consecutive epochs, especially
in the validation set before the model fully adapts to underlying
data patterns. As demonstrated in Figure 7 (b), signi"cant oscilla-
tions in validation losses occur during the "rst 100 epochs. These
#uctuations diminish as the model approaches convergence.

Furthermore, Figure 8 unveils a noteworthy pattern: models with
higher expressive capacity (i.e., larger model sizes and lower "nal
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test losses) tend to exhibit greater early-stage #uctuations. This
stems from the fact that stronger models carry more uncertainty in
their initial stages when their knowledge has not yet aligned with
their expressive potential. In contrast, models with limited expres-
siveness converge sooner and display less uncertainty. Therefore,
making early stopping decisions at peaks of uncertainty may lead
to the premature termination of more capable models.

5.2 Implications of Uncertainty Integration
Next, we explore strategies for integrating uncertainty into early
stopping metric to aid in making informed early stopping decisions.

5.2.1 Benefits of Integrating Uncertainty. Observations from Fig-
ure 7 reveal considerable #uctuations in model predictions through-
out training. Building upon the insights from Section 4, improving
the stability of these metrics is posited to enhance the precision of
early stopping decisions. Therefore, we delve into the e$ect of inte-
grating uncertainty into performance metrics on HPO outcomes.
In the absence of an exact mathematical model for model’s per-
formance distribution, we opt for the simplifying assumption of a
Gaussian distribution following Example 4.2.

Example 5.1 (Uncertainty Across Random Seeds). Given the HPO
context de"ned in Example 4.2, we consider a scenario where each
model con"guration is trained 𝐿 times with distinct random seeds.
Let 𝑅 𝑍𝑝 (𝑆𝑈 ) and 𝑅 𝑍𝑝 (𝑆𝑅𝑈 ) represent the empirical risk at epoch 𝑋 for
each independent seed 𝑛 , which follow𝑜 (𝑗𝑈 , 𝑚2

𝑈
|D | ) and𝑜 (𝑗𝑅𝑈 , 𝑚

2
𝑉𝑈

|D | ),
respectively. To exploit the inter-seed uncertainty, we introduce a
new early stopping metric𝑌𝑍

𝑘 (𝑆) = 1
𝑞
∑𝑞
𝑝=1 𝑅

𝑍
𝑝 (𝑆) for each hyper-

parameter 𝑆 , as an alternative to 𝑅 𝑍 (𝑆) for model ranking in Eq. 3.
𝑌𝑍
𝑘 (𝑆𝑈 ) and𝑌𝑍

𝑘 (𝑆𝑅𝑈 ) follow N(𝑗𝑈 , 𝑚2
𝑈

𝑞 |D | ) and N(𝑗𝑅𝑈 , 𝑚2
𝑉𝑈

𝑞 |D | ). Then,
the probability of an incorrect early stopping decision is:

𝑖
(
�̂�𝑂

𝑐 (𝑎𝑈 ) ⇑ �̂�𝑂
𝑐 (𝑎𝑉𝑈 )

)
= 1 ↔ ε

(
𝑛𝑉𝑈 ↔ 𝑛𝑈√
1

𝑑 |D| (𝑚2
𝑈 + 𝑚2

𝑉𝑈 )

)
. (7)

Remark. When models are trained under identical conditions but
with di$erent seeds, each trial remains independent. In this con-
text, assuming that outcomes from di$erent seeds follow the same
normal distribution is statistically justi"ed by the Central Limit
Theorem. Averaging results across independent trials reduces vari-
ances in performance metrics, thus lowering the risk of premature
early stopping errors. However, the computational costs of multiple
training trials constrain the feasibility of this approach in practice.

Example 5.2 (Uncertainty Across Adjacent Epochs). Given the
HPO context de"ned in Example 4.2, consider a model with hyper-
parameter𝑆 , where the empirical risks 𝑅 𝑍 (𝑆) over a small window of
𝑝 consecutive epochs follow normal distributions with a constant
mean 𝑗 but distinct standard deviations 𝑘𝑍1 , . . . ,𝑘𝑍𝑒 . To exploit
the inter-epoch uncertainty, we introduce a new early stopping
metric, �̂�𝑍

𝑟 (𝑆) = 1
𝑠

∑𝑍𝑒
𝑟=𝑍1 𝑅

𝑟 (𝑆), 𝑋 = ↓(𝑋1 + 𝑋𝑠 )/2↗, which calcu-
lates the average empirical risk over the window𝑝 . Accordingly,
�̂�𝑍

𝑟 (𝑆𝑈 ) and �̂�𝑍
𝑟 (𝑆𝑅𝑈 ) are distributed as N(𝑗𝑈 , 1

𝑠 2 |D |
∑𝑍𝑒

𝑟=𝑍1 𝑘
𝑟
𝑈
2)

and N(𝑗𝑅𝑈 , 1
|𝑠 2D|

∑𝑍𝑒
𝑟=𝑍1 𝑘

𝑟
𝑅𝑈

2), respectively. The metric �̂�𝑍
𝑘 (𝑆) re-

places 𝑅 𝑍 (𝑆) for model ranking, as speci"ed in Eq. 3. Then, the

probability of an incorrect early stopping decision is:

𝑖
(
�̂�𝑂

𝑓 (𝑎𝑈 ) ⇑ �̂�𝑂
𝑓 (𝑎𝑉𝑈 )

)
= 1 ↔ ε

(
𝑛𝑉𝑈 ↔ 𝑛𝑈

1
𝑒 2 |D|

∑𝑂𝑒
𝑓=𝑂1

(𝑚𝑓
𝑈

2 + 𝑚𝑓
𝑉𝑈

2 )

)
. (8)

Remark. Assuming a constant mean loss over a short epochwindow
while allowing standard deviations to vary provides a practical
approach to analyzing complex models. This simpli"cation does not
compromise the detection of signi"cant shifts in learning behavior.

5.2.2 Uncertainty-Integrated Metrics. Building on Examples 5.1
and 5.2, we propose two metrics that integrate uncertainty to en-
hance early stopping decisions: the ensemble averaging metric𝑌𝑘
and the window smoothing metric 𝑌𝑟 . The 𝑌𝑘 metric leverages
uncertainty across multiple training trials to improve early stop-
ping reliability. It adopts an ensemble learning strategy in which
each model is independently trained on a resampled dataset with
identical con"gurations but with di$erent initialization seeds [38].
By averaging performance at the same epoch,𝑌𝑘 provides a robust
measure of model stability under varying initial conditions. We de-
note the metrics computed on the training and validation datasets
as𝑌𝑘T and𝑌𝑘V , respectively.

The𝑌𝑟 metric is designed to smooth out random #uctuations to
re"ne early stopping decisions. It operates on the premise that per-
formance #uctuations across neighboring epochs primarily re#ect
uncertainty rather than substantial changes in model performance.
𝑌𝑟 computes the average performance over a prede"ned small
window of consecutive epochs, yielding a more consistent and sta-
ble representation of the model’s performance by averaging out
short-term stochastic variations. Similarly, we de"ne𝑌𝑟T and𝑌𝑟V
for the training and validation datasets, respectively.

We "rst evaluate the ensemble averaging metric using three
random seeds and apply the Wilcoxon signed-rank test to compare
𝑌𝑘T with 𝑌T and 𝑌𝑘V with 𝑌V . Results from experiments on
Nas-Bench-201 and HPOBench are presented in Table 4. LCBench
is excluded due to a lack of training results from multiple seeds.
Our "ndings demonstrate the e!cacy of the ensemble averaging
metric. First, the consistently low p-values across various budgets
and "ltering ratios for both training and validation losses suggest
that the ensemble averaging approach signi"cantly enhances the
accuracy of early stopping decisions. This con"rms that incorpo-
rating ensemble-based uncertainty quanti"cation can substantially
enhance HPO performance when training resources are su!cient.
Second, the bene"ts of the ensemble averaging metric tend to in-
crease with larger budgets. This indicates that the diverse training
trials complement each other in re#ecting model capability and
uncertainty, thus enhancing assessments of the model’s learning
and generalization abilities.

We next evaluate the e$ect of the window smoothing metric.
We set the window size to 5 for Nas-Bench-201 and BNN, and 3 for
LCBench and NN. Again, we use the Wilcoxon signed-rank test to
compare𝑌𝑟T with𝑌T and𝑌𝑟V with𝑌V . Table 5 reveals signif-
icant disparities across benchmarks. In Nas-Bench-201 and BNN,
the window smoothing metric substantially improves validation
performance, evidenced by the low p-values of𝑌𝑟V compared to
𝑌V ; however, its bene"t diminishes with increasing budget, align-
ing with our observation that model loss volatility decreases over
time. In contrast,𝑌𝑟T shows no signi"cant di$erence from𝑌T . For
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Table 4: Comparison of Ensemble Averaging Metrics and
Common Metrics Using the Wilcoxon Signed-Rank Test —
The hypotheses are shown in the “Assumption” row. A p-value
closer to zero indicates a stronger possibility that the assumption
holds. 𝑍𝑂𝑆𝑆 (𝑍𝑇𝑈𝑅𝑅 ) represents the average di$erence in "nal test ac-
curacy (loss) between the two metrics.𝑌𝑘T and𝑌𝑘V are computed
using three random seeds.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘T > 𝑌T

𝐿 = 50/2500 p 6.4𝑈↔8 1.3𝑈↔9 5.5𝑈↔16 3.1𝑈↔17 1.7𝑈↔13 8.8𝑈↔14 5.4𝑈↔9

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.031 0.228 0.103 0.391 0.135 0.330 -1.289
𝐿 = 81/5000 p 1.4𝑈↔7 7.7𝑈↔13 3.0𝑈↔16 3.0𝑈↔17 5.0𝑈↔17 2.5𝑈↔23 6.7𝑈↔148

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.040 0.268 0.092 0.419 0.157 0.496 -1.463
𝐿 = 160/7500 p 1.5𝑈↔21 9.7𝑈↔13 1.3𝑈↔16 2.2𝑈↔20 5.3𝑈↔23 3.7𝑈↔58 6.0𝑈↔48

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.103 0.125 0.120 0.455 0.197 0.494 -1.248
𝐿 = 180/10000 p 4.9𝑈↔40 2.2𝑈↔14 4.8𝑈↔13 0.094 4.0𝑈↔26 1.4𝑈↔41 3.9𝑈↔120

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.157 0.123 0.116 0.046 0.224 0.370 -3.704

NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘T > 𝑌T 𝑌𝑘V > 𝑌V 𝑌𝑘V > 𝑌V

𝐿 = 40/2500 𝑞 2.1𝑈↔26 3.3𝑈↔24 3.0𝑈↔45 1.3𝑈↔45 1.2𝑈↔120 1.2𝑈↔156 1.0𝑈↔34

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.002 0.002 0.002 0.001 -2.402 -3.774 -1.159
𝐿 = 80/5000 𝑞 1.3𝑈↔26 1.0𝑈↔41 1.0𝑈↔54 1.3𝑈↔50 9.7𝑈↔88 1.0𝑈↔133 5.0𝑈↔137

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.002 0.003 0.002 0.002 -0.284 -3.197 -3.060
𝐿 = 120/7500 𝑞 7.5𝑈↔28 4.9𝑈↔41 3.8𝑈↔11 3.3𝑈↔119 1.8𝑈↔70 3.5𝑈↔155 9.8𝑈↔125

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.001 0.002 0.001 0.003 -1.458 -4.730 -3.049
𝐿 = 160/10000 𝑞 2.1𝑈↔42 1.7𝑈↔118 4.4𝑈↔8 7.6𝑈↔107 1.3𝑈↔86 2.1𝑈↔154 1.1𝑈↔127

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.001 0.004 0.002 1.9𝑈↔4 -2.729 -4.028 -3.414

LCBench and NN, however, window smoothing metrics generally
perform worse than the conventional loss metrics, likely due to
rapid convergence and signi"cant loss reductions between epochs
that deviate from the assumptions outlined in Example 5.2. These
"ndings motivate further exploration into the variability of model
performance throughout training to re"ne early stopping metrics.

The analysis leads to the following insight:
Insight 3: leveraging uncertainty across di!erent seeds and

consecutive epochs can enhance the reliability of early stop-
pingmetrics for HPO. Speci"cally, harnessing inter-seed uncer-
tainty consistently yields superior outcomes, while exploiting
inter-epochuncertainty demandsmore nuanced strategies and
a deeper comprehension of the model’s learning trajectory.

6 TRAINING STAGES AND EARLY STOPPING
The above analysis shows that employing di$erent early stopping
metrics at various training stages can lead to distinct outcomes.
Figure 4 compares the e$ects of using training versus validation
losses under di$erent computational budgets, while Figure 7 sheds
light on performance #uctuations throughout training. These obser-
vations underscore the necessity of a comprehensive understanding
of model behavior in selecting e$ective early stopping metrics.

6.1 Evolution of Model Performance
In Section 4.1, we presented performance trends of various HPO
tasks across their training cycles, o$ering initial insights into their
complexity and e$ectiveness. We now extend this analysis through
a statistical examination of their distinct training stages.

6.1.1 Derivative of Losses. We calculate the derivatives of losses
for all model con"gurations, as shown in Figure 9. The derivative
quanti"es performance changes between adjacent epochs.

Table 5: Comparison ofWindow SmoothingMetrics andCom-
mon Metrics Using the Wilcoxon Signed-Rank Test — The
hypotheses are shown in the “Assumption” row. A p-value closer to
zero indicates a stronger possibility that the assumption holds. 𝑍𝑂𝑆𝑆
(𝑍𝑇𝑈𝑅𝑅 ) represents the average di$erence in "nal test accuracy (loss)
between two metrics. The window size is set to 5 for Nas-Bench-201
and BNN, and 3 for LCBench and NN.

Nas-Bench-201 CIFAR-10 CIFAR-100 ImageNet-16-120

Assumption 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V

𝐿 = 50 p 0.482 1.1𝑈↔16 0.499 3.2𝑈↔15 0.417 1.3𝑈↔14

𝑀 = 3 𝑍𝑂𝑆𝑆 0.0 0.331 0.0 0.398 0.001 0.386
𝐿 = 81 p 0.540 1.1𝑈↔23 0.043 7.6𝑈↔17 0.517 9.6𝑈↔27

𝑀 = 3 𝑍𝑂𝑆𝑆 8.6𝑈↔4 0.381 0.012 0.447 1.3𝑈↔4 0.532
𝐿 = 160 p 0.311 0.357 3.9𝑈↔4 5.7𝑈↔26 0.187 2.7𝑈↔28

𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.004 0.043 0.033 0.548 0.004 0.326
𝐿 = 180 p 1.4𝑈↔17 5.1𝑈↔6 5.0𝑈↔3 3.5𝑈↔7 0.968 7.1𝑈↔17

𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.098 0.077 0.031 0.214 -0.011 0.209

LCBench / NN Fashion-MNIST Volkert NN-Higgs

Assumption 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V

𝐿 = 9/40 p 0.999 1.0 1.0 0.998 1.0 1.0
𝑀 = 3 𝑍𝑂𝑆𝑆 ↔5.0𝑈↔4 ↔6.8𝑈↔4 -0.173 -0.076 ↔3.0𝑈↔3 ↔3.1𝑈↔3

𝐿 = 15/80 p 1.0 0.998 0.958 0.504 1.0 0.999
𝑀 = 3 𝑍𝑂𝑆𝑆 ↔3.4𝑈↔4 ↔3.3𝑈↔4 -0.059 -0.001 ↔2.2𝑈↔3 ↔1.4𝑈↔3

𝐿 = 30/120 p 0.196 0.942 0.005 0.863 0.210 0.815
𝑀 = 1.33 𝑍𝑂𝑆𝑆 9.6𝑈↔5 ↔7.4𝑈↔5 0.0074 -0.015 ↔2.5𝑈↔3 ↔4.4𝑈↔3

𝐿 = 45/160 p 0.973 0.800 6.2𝑈↔12 7.1𝑈↔5 0.624 0.918
𝑀 = 1.33 𝑍𝑂𝑆𝑆 ↔5.9𝑈↔5 ↔2.6𝑈↔5 0.205 0.092 ↔2.0𝑈↔3 ↔1.5𝑈↔3

NN / BNN NN-Adult BNN-Boston BNN-Protein

Assumption 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V 𝑌𝑟T > 𝑌T 𝑌𝑟V > 𝑌V

𝐿 = 40/2500 p 0.999 0.999 1.2𝑈↔5 3.7𝑈↔10 0.004 4.0𝑈↔4

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 ↔5.8𝑈↔4 ↔5.9𝑈↔4 -0.709 -0.326 -0.103 -0.220
𝐿 = 80/5000 p 0.992 0.998 0.425 2.6𝑈↔4 0.449 0.042

𝑀 = 3 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 ↔2.3𝑈↔4 ↔3.5𝑈↔4 0.015 -0.601 -0.017 -1.534
𝐿 = 120/7500 p 0.999 9.1𝑈↔27 0.356 3.6𝑈↔4 0.552 0.033

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 ↔2.0𝑈↔4 1.2𝑈↔3 2.090 -3.063 0.014 -0.020
𝐿 = 160/10000 p 1.9𝑈↔10 5.0𝑈↔5 0.099 2.2𝑈↔7 0.683 3.2𝑈↔5

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 5.0𝑈↔4 3.4𝑈↔4 -0.053 -4.182 0.009 -0.088

Key observations from Figure 9 include: First, except for BNN,
the mean derivatives for all tasks are consistently negative. The
volatility observed in BNN stems from its special training tech-
nique of modeling probability distributions; nonetheless, its loss
is gradually stabilizing. This indicates an overall improvement in
performance, suggesting that training processes are e$ective. Sec-
ond, in the later training stages, both training and validation loss
derivatives converge toward zero, with few signi"cant decreases in
training loss or increases in validation loss. This suggests minimal
over"tting and supports the reliability of "nal test performance
as robust HPO objectives. Third, all benchmarks exhibit notable
#uctuations in validation loss derivatives, with larger shaded ar-
eas indicating higher instability. This instability undermines the
reliability of early stopping decisions based on validation loss.

We employ the ruptures toolkit [44], which specializes in change-
point detection, to analyze model convergence. ruptures is adept
at handling non-stationary signals and is particularly e$ective
for identifying phase transitions in model losses. We utilize its
RBF kernel-based cost function for robust detection. The identi"ed
change points are marked with red lines in Figure 9.

Limiting the detection to two change points, ruptures success-
fully pinpoints critical transitions in model performance. The "rst
change point marks a shift from rapid to slower learning, and the
second indicates stabilization as loss derivatives approach zero. In
most HPO tasks–except Volkert–training losses stabilize before
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Figure 9: Derivative of Losses — The derivatives of training and
validation losses over epochs. The solid line represents the mean
loss across model con"gurations, while the shaded area denotes the
range of one std. Negative derivatives suggest model improvement.
Red lines mark transition points identi"ed using ruptures.

validation losses. Speci"cally, in Nas-Bench-201, convergence oc-
curs around epochs 110–120 for training losses and 160–185 for
validation losses. In contrast, for LCBench, NN, and BNN, the con-
vergence points for both losses are closely aligned (15–30, 100–120,
and 4500–5000 epochs, respectively), indicating more synchronized
stabilization compared to Nas-Bench-201.

6.1.2 Uncertainty in Losses. The derivative of loss serves as an
indicator of model learning progress. To further assess volatility
changes, we calculate the standard deviations (std.) of losses across
speci"c epoch windows, as shown in Figure 10. A std. value ap-
proaching zero suggests that model performance is stabilizing.

Figure 10 reveals several observations: First, the training loss
std. is generally smoother than validation loss std., indicating less
variability. Validation losses exhibit pronounced #uctuations, as
highlighted by both solid lines and shaded areas, particularly in
Nas-Bench-201. Although both training and validation std. values in
BNN are high, the training std. remains consistently lower. Second,
as training progresses, std. values gradually decrease, re#ecting
reduced loss volatility. Third, in Nas-Bench-201 and Boston from
HPOBench, the validation loss std. initially increases before de-
clining. This pattern re#ects models’ adaptation to complex tasks.
Early in training, the model adjusts from a basic state, resulting in
increased #uctuations in validation losses. As training progresses,
the model stabilizes and converges to optimal parameters, leading
to more consistent performance and reduced std. values.

To further delineate these trends, we apply ruptures with a linear
cost function to identify change points in the std. curves. For Nas-
Bench-201, these change points e$ectively segment the learning

Figure 10: Standard Deviation of Losses across Consecutive
Epochs — A window size of 5 is used for Nas-Bench-201 and BNN,
while a size of 3 is used for LCBench and NN. The solid line repre-
sents the average std. of loss across all model con"gurations. The
shaded area denotes the range of max. and min. values observed.
Red lines mark transition points identi"ed using ruptures.

trajectory into phases of rising, falling, and stabilizing std., o$ering
structured insights into the model’s performance evolution.

6.1.3 Learning Stage Division. Our analysis of the derivatives and
stds. of losses reveals four distinct stages in model training:
(1) Initial Exploration. In this stage, the std. of validation loss

increases, re#ecting the model’s exploratory adjustments and
signi"cant instability in generalization performance.

(2) Optimization. The second stage shows a decreasing trend in
both validation and training losses and their stds. This suggests
that models are re"ning their parameters, leading to reduced
uncertainty and more stable, reliable behavior.

(3) Convergence. Training and validation losses, along with their
stds, stabilize at a plateau, indicating that the models’ learning
and generalization capabilities have reached optimal levels.

(4) Potential Over"#ing. This stage is marked by a decline in
training loss coupled with an increase in validation loss. In our
study, however, benchmarks are con"gured with a maximum
number of epochs to prevent over"tting.

Table 6 details the epoch ranges for the benchmarks as deter-
mined by change-point detection. In our early stopping setups for
Nas-Bench-201 and BNN-Boston, when 𝐿 → 81 and 𝐿 → 5000 with
𝑀 = 3, the early stopping points fall within stage 1. For 𝐿 ⇑ 160
and 𝐿 ⇑ 7500 with 𝑀 = 1.33, the early stopping points extend into
stages 2 and 3. In LCBench, NN, and BNN-Protein, early stopping
points for 𝐿 → 15, 𝐿 → 80, and 𝐿 → 5000 with 𝑀 = 3 are con"ned
to stage 2, while for 𝐿 ⇑ 30, 𝐿 ⇑ 120, and 𝐿 ⇑ 7500 with 𝑀 = 1.33,
they reach stage 3. This stage division elucidates why, as shown in
Table 3, the bene"t of the training metric diminishes under larger
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budget settings. Notably, for LCBench and NN, the validation met-
rics at𝐿 ⇑ 30 and𝐿 ⇑ 120 signi"cantly outperform trainingmetrics.
This systematic stage division provides a structured framework for
analysis and guides the design of subsequent experiments.

Table 6: Epoch Range of Training Stages — Nas-Bench-201 and
Boston encompasses all three stages, while others start from stage
2. Stage 4 is omitted due to the absence of over"tting in these tasks.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Boston

Stage 1 1-70 1-95 1-95 1-2385
Stage 2 70-180 95-175 95-165 2385-5500
Stage 3 180-200 175-200 165-200 5500-10000

Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Protein

Stage 2 1-15 1-15 1-75 1-75 1-5000
Stage 3 15-50 15-50 75-243 75-243 5000-10000

6.2 Stage-Adaptive Early Stopping
We next investigate the integration of stage information into early
stopping metrics to improve decision-making. To achieve this, we
develop and evaluate a set of stage-adaptive metrics.

6.2.1 Stage-Adaptive Metrics. We introduce a stage-adaptivemetric
𝑌T/V that re"nes the tuning process by selectively using training
or validation loss at di$erent early stopping points. Due to the high
uncertainty associated with validation loss in stage 1,𝑌T/V ini-
tially relies on training loss. As training progresses into later stages,
it transitions to validation loss. The metrics allowing this transition
from stages 2 and 3 are denoted as𝑌 (2↔3)

T/V and𝑌 (3)
T/V , respectively.

Furthermore, we explore how the integration of uncertainty with
stage adaptiveness can improve early stopping decisions. We also
introduce a stage-adaptive ensemble averaging metric𝑌𝑘T/V and
a stage-adaptive window smoothing metric𝑌𝑟T/V to demonstrate
their e!cacy in this context.

6.2.2 Applying Stage-Adaptive Metrics in Early Stop. We begin with
a comparison of the stage-adaptive metrics against conventional
metrics, as presented in Table 7, excluding setups where early stop-
ping points occur solely in stage 1. For benchmarks that do not
include stage 1, we focus on comparing𝑌 (3)

T/V , which starts using
validation loss from stage 3, with𝑌V , which starts from stage 2.

The results lead to a key conclusion: initiating early stopping
with validation loss from stage 2 is less e$ective than consistently
using training loss, while switching to validation loss in stage 3
o$ers some advantages. Speci"cally, the near 1 p-values when com-
paring𝑌 (2↔3)

T/V and𝑌T in Nas-Bench-201 and BNN-Boston suggest
that transitioning to validation loss at stage 2 adversely a$ects
early stopping accuracy, particularly in low-budget settings where
most early stopping points fall in stage 2. Nonetheless,𝑌 (2↔3)

T/V sig-
ni"cantly outperforms 𝑌V , con"rming the bene"t of retaining
training loss in stage 1. Further examination shows that 𝑌 (3)

T/V
generally exceeds the performance of𝑌T . In Nas-Bench-201, the
similarity between𝑌 (3)

T/V and𝑌T is attributed to a late triggering
of stage 3, where most early stopping points are concentrated in

stages 1 and 2, leaving only a small subset of con"gurations for
stage 3 evaluation. However,𝑌 (3)

T/V signi"cantly outperforms𝑌V

and𝑌 (2↔3)
T/V , reinforcing the advantages of using training loss in

stage 2. In LCBench and NN, the bene"ts of stage adaptiveness
are less pronounced but still observable. As shown in Table 3, the
impact of validation loss on guiding early stopping becomes more
evident at larger budgets. This is because models in LCBench and
NN converge quickly, revealing their generalization ability earlier.
Consequently, metrics that switch to validation loss from stage 3
onward exhibit improved performance over those relying solely on
training loss, thus enhancing the reliability of "nal HPO outcomes.

Next, we integrate the uncertainty metrics discussed in Sec-
tion 5.2 with stage-adaptive strategies. First, we consider the stage-
adaptive ensemble averaging metric𝑌𝑘T/V . Previous experiments
have demonstrated the advantages of the ensemble averaging met-
ric 𝑌𝑘 . Table 8 further shows that switching to validation loss
from stage 3 signi"cantly enhances performance compared to𝑌𝑘 .
Second, we explore the stage-adaptive window smoothing metric
𝑌𝑟T/V . Table 9 demonstrates that applying window smoothing
to the stage-adaptive metrics consistently yields signi"cant bene-
"ts across various benchmarks and budget settings. By comparing
Tables 5, 7, and 9, we "nd that the combined approach is more
e$ective in optimizing early stopping outcomes than either tech-
nique used separately. Overall, when metrics accurately re#ect
the characteristics of the training stages, introducing uncertainty,
such as ensemble averaging and window smoothing techniques,
signi"cantly enhances the performance of early stopping.

6.2.3 Analysis of the Most E!ective Budget Se"ing. We further ex-
tend our analysis to explore the most e$ective budget settings for
the stage-adaptive window smoothing metric, which has thus far
been identi"ed as the most e$ective metric. Figure 11 shows repre-
sentative results across four benchmarks, tracking the performance
regret (i.e., the di$erence between HPO outcomes and optimal can-
didates) as the budget increases. Each budget setting was evaluated
over 1,000 random repetitions. The weaker vertical dashed lines
in Figure 11 mark the minimum budgets required for increasing
numbers of early stopping points to appear at di$erent stages; for
example, the second green dashed line marks the smallest budget
where two early stopping points occur in stage 2.

We draw several conclusions from Figure 11. First, HPO perfor-
mance improves with increased budget, as evidenced by reduced
mean regrets, narrower shaded areas, and higher probabilities of
identifying optimal solutions. Second, the probability of "nding
optimal solutions in ImageNet is notably lower than in other bench-
marks, likely due to the greater complexity of Nas-Bench-201, where
performance di$erences manifest later; thus, more advanced HPO
strategies are required. Third, HPO performance stabilizes once
early stopping points appear in stage 3, particularly in Nas-Bench-
201 and BNN, but further budget increases yield diminishing returns.
This suggests a single early stopping point in stage 3 is adequate. If a
performance gap of less than 4% is acceptable (or 7% for Nas-Bench-
201), ensuring early stopping points occur in stage 2 is su!cient.

The analysis leads to the following insight:
Insight 4: leveraging distinct stages of model training can

enhance early stopping e!ectiveness. Adapting to the stages
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Table 7: Comparison of Stage-Adaptive Metrics and CommonMetrics Using theWilcoxon Signed-Rank Test — 𝑍𝑂𝑆𝑆 (𝑍𝑇𝑈𝑅𝑅 ) denotes
the mean disparity in "nal test accuracy (loss) between two metrics, with “-” indicating no di$erence in outcomes.

Nas-Bench-201 / HPOBench CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑌 (2↔3)
T/V > 𝑌T 𝑌 (2↔3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (2↔3)
T/V > 𝑌T 𝑌 (2↔3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (2↔3)
T/V > 𝑌T 𝑌 (2↔3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T

𝐿 = 160/7500 p 1.0 9.5𝑈↔7 - 1.8𝑈↔40 1.0 1.5𝑈↔15 - 8.9𝑈↔153 0.999 5.6𝑈↔10 - 2.9𝑈↔27 1.0
𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 -0.192 0.088 0.0 0.279 -2.161 0.315 0.0 2.476 -0.208 0.139 0.0 0.348 0.014

𝐿 = 180/10000 p 1.0 9.2𝑈↔14 0.683 8.0𝑈↔24 1.0 3.2𝑈↔5 0.339 2.8𝑈↔11 0.991 3.1𝑈↔5 0.710 4.1𝑈↔5 0.999
𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 -0.164 0.113 -0.015 0.162 -2.955 0.128 -0.029 0.283 -0.078 0.087 -0.073 0.092 0.010

LCBench / HPOBench Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (2↔3)
T/V > 𝑌T 𝑌 (2↔3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌T 𝑌 (3)

T/V > 𝑌V 𝑌 (3)
T/V > 𝑌V

𝐿 = 30/120/7500 p 3.8𝑈↔5 0.495 1.7𝑈↔5 0.308 0.248 0.086 6.4𝑈↔6 1.6𝑈↔6 1.0 6.3𝑈↔18 - 1.3𝑈↔37 5.6𝑈↔4

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 5.7𝑈↔4 1.4𝑈↔4 0.189 5.4𝑈↔5 0.001 4.549 3.4𝑈↔4 2.6𝑈↔4 63.128 -15.882 -0.311 -32,638 ↔3.5𝑈↔4
𝐿 = 45/160/10000 p 1.4𝑈↔5 0.795 0.502 0.279 9.3𝑈↔5 0.002 1.2𝑈↔44 0.011 1.2𝑈↔12 5.1𝑈↔19 1.4𝑈↔14 1.8𝑈↔18 0.005

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 5.6𝑈↔4 9.9𝑈↔5 2.5𝑈↔4 3.7𝑈↔5 0.031 1.9𝑈↔4 0.001 2.0𝑈↔4 -12.871 -22.252 -12.909 -22.290 -0.389

Figure 11: Performance Regret across Budgets. —The solid blue line shows mean regret. The dark and light blue areas indicate one std.
and max. values, respectively. Strong vertical dashed lines mark the stage division points. Weaker lines mark the min. budgets required for
increasing numbers of early stopping points in each stage. The solid red line denotes the probability of HPO identifying optimal solutions.

Table 8: E#ect of Combining Stage-Adaptive Strategy with
Ensemble Averaging — Using Wilcoxon Signed-Rank Test. Hy-
potheses are shown in the “Assumption” row. “-” indicates no di$er-
ence in outcomes. Metrics are calculated with three random seeds.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘T

𝐿 = 160/7500 p - 3.0𝑈↔26 - 1.4𝑈↔133 - 0.012 7.8𝑈↔4

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.0 0.158 0.0 1.839 0.0 0.044 -1.693
𝐿 = 180/10000 p 3.8𝑈↔39 6.0𝑈↔59 1.6𝑈↔151 7.3𝑈↔157 0.001 0.002 8.9𝑈↔3

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 0.181 0.253 2.775 2.938 0.072 0.068 -0.289

NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘T 𝑌 (3)

𝑘T/V > 𝑌𝑘V 𝑌 (3)
𝑘T/V > 𝑌𝑘V

𝐿 = 120/7500 p 6.0𝑈↔7 0.058 7.5𝑈↔3 0.014 1.6𝑈↔36 1.9𝑈↔3 2.8𝑈↔3

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 5.5𝑈↔4 4.0𝑈↔5 0.002 9.4𝑈↔5 -0.629 -0.054 -0.493
𝐿 = 160/10000 p 8.3𝑈↔3 0.337 - 0.184 0.065 0.150 2.1𝑈↔4

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 4.0𝑈↔4 4.5𝑈↔6 0.0 2.4𝑈↔5 -0.595 -0.384 -0.345

Table 9: E#ect of Combining Stage-Adaptive Strategy with
Window Smoothing — Using Wilcoxon Signed-Rank Test. Hy-
potheses are shown in the “Assumption” row. The window size is
set to 5 for Nas-Bench-201 and BNN, and 3 for LCBench and NN.

CIFAR-10 CIFAR-100 ImageNet-16-120

Assumption 𝑌 (2↔3)
𝑟T/V > 𝑌 (2↔3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (2↔3)
𝑟T/V > 𝑌 (2↔3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (2↔3)
𝑟T/V > 𝑌 (2↔3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V

𝐿 = 160 p 0.239 0.311 1.7𝑈↔12 3.9𝑈↔4 8.3𝑈↔23 0.187
𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.031 0.004 0.379 0.033 0.233 0.004
𝐿 = 180 p 0.041 0.001 4.3𝑈↔10 2.7𝑈↔8 1.0𝑈↔13 5.2𝑈↔14

𝑀 = 1.33 𝑍𝑂𝑆𝑆 0.023 0.024 0.269 0.226 0.171 0.164

Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V 𝑌 (3)
𝑟T/V > 𝑌 (3)

T/V

𝐿 = 30/120/7500 p 0.729 0.229 0.823 3.8𝑈↔13 0.046 3.8𝑈↔3

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 7.0𝑈↔6 0.024 6.3𝑈↔3 8.8𝑈↔4 -1.087 -0.103
𝐿 = 45/160/10000 p 0.189 2.0𝑈↔21 0.624 0.018 4.3𝑈↔4 7.8𝑈↔4

𝑀 = 1.33 𝑍𝑂𝑆𝑆/𝑇𝑈𝑅𝑅 1𝑈↔4 0.351 1.4𝑈↔3 9.8𝑈↔4 -1.048 ↔4.2𝑈↔5

and integrating uncertainty into early stopping metrics can
amplify the bene"ts. Ensuring early stopping in stage 3 is
optimal, while additional budget leads to diminishing returns.

7 DISCUSSION AND FUTUREWORK
This paper presents the "rst known systematic study on early stop-
ping metrics in HPO, and introduces model uncertainty into this
context. Our study yields several guidelines for metric selection
that bene"t both users and HPO tools: (i) utilize training loss for
tasks with slow convergence; (ii) capture uncertainty across dif-
ferent training trials and neighboring epochs; (iii) identify model
training stages and select metrics based on uncertainty levels; and
(iv) integrate stage adaptation and uncertainty into metric design.

Our "ndings o$er practical guidance for future HPO research. Po-
tential directions include developing precise techniques for charac-
terizing model uncertainty and training stages, exploring dynamic
metric-switching frameworks, and integrating uncertainty as a sec-
ondary optimization objective. We also advocate for task-speci"c
early stopping metrics tailored to various datasets and model ar-
chitectures, which necessitates dedicated, in-depth studies. Such
e$orts are expected to yield deeper insights into model selection
and budget allocation in HPO.
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