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ABSTRACT
Vector databases are designed to e�ectively store, organize, and re-
trieve high-dimensional vectors, enabling faster and more accurate
querying and analysis. This study highlights that the performance
of cutting-edge vector databases hinges on their pro�ciency in
managing heterogeneous data embedding and handling compound
queries. The former task revolves around converting varied data
types into a cohesive vector format, while the latter involves pro-
cessingmultimodal or single-modal queries with precise constraints.
The paper advocates for evaluating these dual tasks within an in-
tegrated benchmark framework. However, state-of-the-art vector
database benchmarks overlook heterogeneous data embedding and
compound queries, creating a gap in evaluating vector database
performance.

To address this gap, we introduce BigVectorBench, a benchmark
suite designed to evaluate vector database performance. BigVec-
torBench contributes by de�ning and evaluating the embedding
performance of heterogeneous data. Additionally, it abstracts com-
pound queries, which are increasingly used in real-world appli-
cations, replacing unimodal vector searches. Our rigorous evalu-
ations validate the two design decisions of BigVectorBench and
identify performance bottlenecks of mainstream vector databases.
Its source code and user manual are available from https://github.
com/BenchCouncil/BigVectorBench.
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Figure 1: Benchmarking a state-of-the-art vector database:
Milvus using ANN-Benchmarks and our BigVectorBench, re-
spectively. Our experiments show data embedding latency
has signi�cant impacts on user query response time; Com-
pared to vectorized unimodal queries, vectorized compound
queries signi�cantly decrease recall by 48.54% and reduce
throughput by 23.38%. Here, ’recall’ refers to the fraction
of the true top-k nearest neighbors retrieved in top-k near-
est neighbor searches. This substantial performance gap
highlights the critical importance of heterogeneous data
embedding and compound queries in benchmarking vector
databases.

1 INTRODUCTION
High-dimensional vector data is the cornerstone for various tech-
niques and applications, including Retrieval-Augmented Genera-
tion (RAG) in Large Language Models (LLMs) [32, 48, 54, 100, 104],
recommendation systems [98, 99], and Bioinformatics [18, 63, 87].
Vector databases are designed to e�ectively store, organize, and re-
trieve high-dimensional vectors, enabling faster and more accurate
querying and analysis.

State-of-the-art vector databases [39, 72, 73] like Milvus, Weavi-
ate, and Qdrant necessitate direct user engagement and facilitate
the handling of raw compound queries. Raw queries undergo two
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essential processes: data embedding and retrieval. This necessity
arises from their pivotal role in transforming a variety of user
queries - whether text, images, or other data types - into vectors
for e�cient retrieval. These databases boast two key features that
distinguish them from traditional databases. Firstly, they excel in
e�ectively managing diverse data types. Secondly, vector databases
showcase remarkable pro�ciency in executing rapid Approximate
Nearest Neighbor (ANN) searches under various constraints. Lever-
aging these advantages, vector databases have become founda-
tional infrastructure in modern arti�cial intelligence (AI) applica-
tions [53, 71, 90].

State-of-the-art vector database benchmarks primarily focus
on the performance of Approximate Nearest Neighbor (ANN) al-
gorithms for unimodal queries [11, 12, 55, 84] while overlooking
the increasing importance of data embedding [16, 22, 53], leading
to a focus solely on optimizing vector indexing in current vec-
tor database enhancements. Meanwhile, ANN-Benchmarks only
model unimodal queries while overlooking compound queries. As
depicted in Figure 1, these omissions result in a notable disparity
when assessing the performance of vector databases across various
evaluation conditions that are of interest to stakeholders.

To address these issues, this paper proposes BigVectorBench,
a novel benchmark suite speci�cally designed to evaluate vector
databases. The main contributions are summarized as follows:

(1) We have discovered that the quality and latency of embedding
heterogeneous data have substantial e�ects on user query response
times and the recall of approximate nearest neighbor searches.
Therefore, we contend that assessing these two tasks within an
integrated benchmark framework is crucial. A thorough exami-
nation of both heterogeneous data embedding and approximate
nearest neighbor searches is necessary to precisely identify system
bottlenecks.

(2) We propose a methodology for de�ning evaluation conditions
for vector databases based on real-world application requirements.
We have meticulously designed and developed an extensible bench-
mark framework named BigVectorBench that is tailored for vector
databases. It comprises �ve datasets, ten workloads, four funda-
mental compound query types, and various variations.

(3) We conduct hundreds of experiments on the leading-edge vec-
tor databases, including Milvus [93], Weaviate [3], and Qdrant [5].
Predominantly, embedding latency, especially inmultimodal queries,
signi�cantly a�ects response times, often exceeding hundreds of
milliseconds. Current optimizations in vector databases focusmainly
on improving indexing for faster retrieval in large datasets, neglect-
ing embedding performance enhancements. This oversight is a
signi�cant gap in making vector databases more e�cient. Addi-
tionally, vectorized compound queries signi�cantly reduce retrieval
throughput and recall, with recall nearly halving compared to uni-
modal queries.

2 BACKGROUND AND RELATEDWORK
2.1 The background of vector databases
Vector databases are designed to e�ciently handle and search
through high-dimensional vector data, streamlining the process
of managing complex inputs like images, text, or multimodal data.
As illustrated in Figure 2, the retrieval process in vector databases

begins with the receipt of raw user queries, which predominantly
involves two key modules: heterogeneous data embedding and
vectorized query retrieval.

Nowadays, embedding techniques have emerged as pivotal tools
for the nuanced understanding and processing of text, images, and
multimodal data. These techniques, tailored to the speci�cs of
the original data types and their intended applications, exhibit
a remarkable specialization [66]. Text embedding e�ciency in-
versely correlates with text length, decreasing from words to doc-
uments [52, 64, 65, 75]. Unlike word embedding models, sentence
and paragraph models capture context well within a 512-token
limit. Meanwhile, document models manage longer texts up to 8191
tokens, capturing extensive context [7, 17, 41, 57, 70, 95–97]. Em-
bedding techniques for image, audio, and multimodal data include
models like ResNet [45], VGG [85], DeepSpeech [43], Wavenet [89],
and wav2vec [14, 81]. The above models often work in isolation and
cannot align heterogeneous data types e�ciently. To address this,
models like CLIP [76], ImageBind [35], ViLBERT [59], LXMERT [86],
OSCAR [56], and UNITER [20] are designed to embed heteroge-
neous data into a uni�ed embedding space.

Upon translating original data into vectors, vector databases
build speci�c indexes to optimize data retrieval. These indexes are
categorized into tree, hash, quantization, and graph-based types [55,
73]. While tree-based indexes [2, 23, 24, 67, 68, 80, 83, 101] excel in
low-dimensional vector range searches, hash-based indexes [8, 9,
19, 25, 47] are adept at managing high-dimensional data by group-
ing similar items into hash buckets. Speci�cally, HD-Index [10]
is constructed upon the RDB-tree (Reference Distance B+-trees),
facilitating Approximate Nearest Neighbor searches within high-
dimensional datasets. Quantization indexes [13, 33, 34, 37, 38, 40,
50, 58], on the other hand, economize on storage at the expense of
feature loss and recall. Graph-based indexes [27, 31, 44, 46, 49, 61,
62, 92] stand out for their e�ciency in pinpointing nearest neigh-
bors in large datasets and their ability to add new data points, albeit
at the cost of increased index construction time and computational
resources.

2.2 State-of-the-art and state-of-the-practice
benchmarks

While heterogeneous data embedding and compound queries are
widely used in the industry, it has come to our attention that
these critical features have yet to be integrated into any existing
benchmarks. Currently, there is a notable absence of a specialized
benchmark tailored for vector databases. In this context, Big-ANN-
Benchmarks [84] and ANN-Benchmarks [11, 12] stand out as the
most relevant benchmarks available and are designed to evaluate
the performance of Approximate Nearest Neighbor (ANN) algo-
rithms. Lin et al. [55] contribute extensively by providing numerous
datasets and conducting a comprehensive experimental evaluation
of 16 ANN algorithms under various settings.

The primary goal of ANN-Benchmarks is to evaluate how well
approximate nearest neighbor algorithms work since this is the
most crucial function in vector databases. It contains synthetic
and realistic datasets and is compatible with the majority of ANN
libraries, including FAISS [30, 51], Annoy [2], NMSLIB [61], and
HNSWlib [62]. A distinctive feature of ANN-Benchmarks is its

1537



Figure 2: The vector database retrieval work�ow.

Table 1: Comparing BigVectorBench against leading-edge benchmarks.

Benchmarks Embedding Unimodal
queries

Compound queries Large-scale
datasetsText Vision Audio Multimodality Multi-vector

queries
Multi-modal

queries
Filter
queries

Big
queries

ANN-Benchmarks ⇥ ⇥ ⇥ ⇥ p ⇥ ⇥ ⇥ ⇥ ⇥
Big-ANN-Benchmarks ⇥ ⇥ ⇥ ⇥ p ⇥ ⇥ p ⇥ p

BigVectorBench
p p p p p p p p p p

�exibility, allowing users to tailor vector indexes with customized
parameters. Ultimately, ANN-Benchmarks deliver comprehensive
performance metrics, including search time and recall metrics. De-
pending on the evaluation results, it automatically generates either
scatter plots or interactive visualizations, o�ering intuitive insights
into algorithm performance. Big-ANN-Benchmarks are a more ad-
vanced version of ANN-Benchmarks, speci�cally engineered to
tackle the complexities of large-scale datasets emblematic of real-
world scenarios, where data volumes can soar into the billions.

We compare BigVectorBench with ANN-Benchmarks and Big-
ANN-Benchmarks in Table 1. Existing benchmarks focus solely on
evaluating the performance of ANN algorithms through unimodal
queries, neglecting the crucial aspects of embedding performance
and the compound queries existing in modern vector databases.
Additionally, existing benchmarks fail to demonstrate how the
quality of heterogeneous data embedding in�uences approximate
nearest neighbor search performance.

Embeddings are essential for translating data and capturing its es-
sential structure, and the quality of heterogeneous data embeddings
substantially a�ects the recall of compound queries. Our experi-
mental results show the embedding latency for an 8192-length text
spirals to a staggering 800 milliseconds. This duration even exceeds
the latency incurred during a top-k approximate nearest neighbors
search. Intuitively, we can truncate a long text to a shorter length

to achieve reduced embedding latency. For instance, processing a
128-length text merely requires 52 milliseconds. Unfortunately, we
found that the trade-o� for reducing embedding latency comes at
the cost of sacri�cing context richness, leading to poor embedding
e�ciency. As a result, this translates into a less than satisfactory
outcome of identifying fewer than 12 accurate nearest neighbors
in a top 100 nearest neighbors search.

Moreover, we quantify the performance gap between unimodal
queries and compound queries, such as vector query within re-
strictive conditions, which signi�cantly impact the retrieval per-
formance of vector databases. Figure 1 illustrates that on a CPU
platform, using the IVF_PQ index, there is a signi�cant decrease in
both throughput and recall for Milvus, one of the state-of-the-art
vector databases, by 23.38% and 48.54%, respectively. The detailed
di�erences between unimodal and compound queries are presented
in Section 4.3.

3 MOTIVATION
3.1 Evaluating heterogeneous data embedding

latency and e�ciency is essential for vector
database evaluation

The comprehensive benchmarking of vector databases necessitates
the inclusion of embedding of original heterogeneous data, a critical
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execution path in the retrieval process in vector databases. Raw user
queries, whether text, images, audio, or multimodal, are initially
processed through the data embedding module. This crucial step
translates high-dimensional data into a more manageable, lower-
dimensional, dense, and continuous vector space, setting the stage
for subsequent operations. However, prevailing benchmarks tend
to focus narrowly on the performance of the top-k approximate
nearest neighbors search within vector databases, inadvertently
overlooking the signi�cance of heterogeneous data embedding in
the total execution path of the retrieval process. This oversight
is nontrivial as the e�ciency and latency of heterogeneous data
embedding are instrumental in determining the end-to-end perfor-
mance of retrieving vector databases.

Each user query response fundamentally depends upon two
key execution paths: the embedding latency for raw user queries
and the retrieval latency from the vector database. Embedding
latency thus plays a critical role in in�uencing user response times.
Additionally, the e�ciency of the embedding process is essential for
conducting e�ective top-k approximate nearest neighbor searches.
Striking a balance between embedding latency and e�ciency is
crucial for optimizing user experience. In the realm of embedding
models, the richness of the original data correlates directly with the
quality of the resulting embedding vectors. However, this richness
comes at a cost, introducing challenges that cannot be overlooked.
For example, longer texts, brimming with contextual information,
demand signi�cantly more computational power, memory, and time
for processing, thus heightening the embedding latency.

Embeddings are pivotal for translating data and capturing its
essential structure. Our experimental results underscore the need
for a trade-o� between embedding latency and e�ciency to opti-
mize vector database response time. This balance ensures rapid and
precise vector retrieval, highlighting the necessity of considering
both factors in vector database evaluations.

3.2 Exploring the core competency of vector
databases: the critical importance of
handling compound queries

Traditional vector databases are designed for simple unimodal
queries, which search for the top-k approximate nearest neigh-
bors from the large-scale data set. These databases aim to estab-
lish more e�cient indexes for quickly retrieval the approximate
nearest neighbors, such as tree-based, graph-based, hash-based,
quantization-based, and hybrid indexes. However, the workload
patterns processed in vector databases are changing from simple
unimodal queries to compound queries because of the complex
application scenarios. The natural productive environment leads
to similarity queries that accompany many compound restrictive
conditions, such as date, space, and topics.

ANN-Benchmarks stand as the leading benchmark for evaluating
the approximate nearest neighbor (ANN) capabilities of existing
vector databases. It posits that superior vector databases excel in
processing a higher number of queries per second and achieving
high recall on large-scale data sets. This benchmark has guided
developers to primarily focus on enhancing the ANN capabilities of
vector databases. However, it inadvertently overlooks the critical

need for handling compound queries, which are prevalent in real-
world production environments.

For instance, in content-based recommendation scenarios, users
often seek the top-k news items related to the speci�c news within
restrictive conditions, such as a given time frame, rather than sifting
through the entire data set. This requirement emphasizes the neces-
sity for vector databases to e�ciently execute vector queries within
restrictive conditions on partial data sets, as opposed to merely
performing simple unimodal queries on extensive data collections.
In the realm of vector databases, the shift towards executing within
restrictive conditions on partial datasets, as opposed to conducting
simple similarity queries on extensive data collections, necessitates
a comprehensive reassessment of system architecture and optimiza-
tion strategies. This paradigm shift has profound implications for
indexing strategies, where a transition to more dynamic and �ne-
grained indexing is imperative to facilitate e�cient data retrieval
from subsets. Instead, BigVectorBench underlines the importance
of developing and optimizing vector databases to support more
complex, real-world workload patterns.

4 BENCHMARK DESIGN AND
IMPLEMENTATION

In this section, we present BigVectorBench, a benchmark suite
designed to evaluate vector databases e�ectively.

4.1 Methodology
Our aim with BigVectorBench is to conduct a meticulous evaluation
of leading-edge vector databases [3–5]. Inspired by the methodol-
ogy in [102], we have conducted a thorough survey of use cases in
real-world applications of vector databases, including cross-modal
retrieval, image-text matching, and video recommendation. This
comprehensive analysis has provided a solid foundation for estab-
lishing evaluation conditions.

Derived from the requirements of real-world applications, we
distill two essential tasks for evaluating vector databases: heteroge-
neous data embedding and compound query execution. Then, we
establish evaluation conditions by varying di�erent and represen-
tative task instances, algorithms, algorithm instances, processors,
and systems. We use an example to illustrate how we developed
the evaluation conditions for evaluating vector databases.

For example, in vector database evaluations, both users and
vector database developers are concerned with the retrieval perfor-
mance of compound queries, where �lter queries serve as a key task
instance. Filter queries are commonly found in e-commerce appli-
cations, such as in the recommendation system of Amazon book 1.
Our evaluation objectives are multiple ANN algorithms to handle
�lter queries in vector databases, covering various vector indexing
algorithms, including tree-based, hash-based, quantization-based,
and graph-based indexes, with speci�c implementations such as
the ivfpq index in Milvus.

Given the extensive complexity and size of the datasets and
workloads, a full-scale evaluation of vector databases could be
prohibitively expensive and time-consuming. To ensure a focused
and representative evaluation, we carefully select relevant datasets

1https://www.amazon.com/books-used-books-textbooks
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andworkloads that best capture the essence of these tasks. Use cases
and benchmark design will be elaborated in Sections 4.2 and 4.3.

4.2 Real-world use case studies

We have summarized corresponding use cases for data embed-
ding and compound queries, including E-commerce recommen-
dations, keyframe recommendations, cross-modal text-to-image
searches, and long text searches. Due to space limits, this subsec-
tion will mainly introduce the cross-modal text-to-image search
use cases. Additional details are available at our GitHub repository:
https://github.com/BenchCouncil/BigVectorBench.

Cross-modal text-to-image search represents an emerging use
case of vector retrieval, where both text and image are converted
into vectors using multi-modal embedding models like CLIP. This
use case is increasingly employed in popular social networking
platforms such as TikTok 2 and REDnote 3. Users can input textual
descriptions — for instance, detailing a historical event or artwork
— and the application then retrieves and displays images that are
visually similar to the described content. This approach not only
makes the information more accessible but also enhances its visual
appeal, facilitating a more intuitive understanding of the search
results.

4.3 Benchmark design
4.3.1 Basic types of compound query. We abstract four distinct
instances of compound queries: multi-vector query, multi-modal
query, vector query with �lters, and big query, delineated as follows:

• Multi-vector query: It consists of multiple vectors of the
same modality, each describing aspects of a single object or
feature. For instance, in video recommendation systems, we
employ a segmentation and equal-spacing sampling strat-
egy to extract four keyframes from each short video [15],
following prominent works such as FiT [15], TSN [94], and
GST [60]. These keyframes are then used to construct a
multi-vector query to retrieve videos with similar content.
Additionally, another variant of the multi-vector query inte-
grates both dense and sparse vectors. Currently, BigVector-
Bench only supports multi-vector workloads using vectors
of equal dimensionality that utilize Euclidean distance.

• Multi-modal query: It integrates heterogeneous modal
data, such as textual and visual data, into a single query.
A common application is an image-text retrieval task, es-
pecially in the context of large language model retrieval
systems, where the query involves processing and under-
standing both textual and visual information.

• Vector query with �lters: It employs speci�c �lters as
criteria or labels to search for similar vectors. This type of
query is particularly common in business-critical applica-
tions where users need to �nd products or services that
meet certain constraints, like price ranges, sales volumes,
or delivery timelines. A common �ltering criterion is the
timestamp. For instance, in the cc_news dataset [42], each
record consists of a timestamp paired with corresponding

2https://www.tiktok.com/about
3https://rednote.in/

news text. By converting timestamps into Unix time, it be-
comes feasible to conduct e�cient similarity searches for
news articles within speci�ed time intervals.

• Big query: It encompasses signi�cantly more information
than an unimodal query, potentially including extensive
text documents or lengthy audio recordings. These queries
are typically represented as high-dimensional vectors, of-
ten exceeding 1,000 dimensions, with examples featuring
dimensions of 1,536 and 2,072. Abstracted from real produc-
tion environments, big queries incorporate extensive and
complex information, making them exceptionally suitable
for data-intensive applications.

We have abstracted and de�ned four fundamental types of com-
pound queries as above. In practice, a compound query manifests
as a combination of one or more basic types, re�ecting the complex
and diverse needs of users in a production environment.
4.3.2 Workloads design principles. The workloads in BigVector-
Bench should represent and amplify these four fundamental aspects
as follows:

(1) Data points in the same workload should be in the same
Euclidean space and directly available for use in calcula-
tions, including but not limited to addition, subtraction,
scalar multiplication, and dot product. The selection of dis-
tance metrics aligns with the implementation of vector
databases. Euclidean distance is the only metric universally
supported byMilvus,Weaviate, andQdrant, emphasizing its
importance for comparable performance evaluation across
various vector databases. Similarity calculations are funda-
mental to many nearest-neighbor search algorithms.

(2) Although data points within the same workload occupy
the same dimensional space, the dimensionality can vary
signi�cantly across di�erent workloads. This diversity in
dimensions leads to a cluttered and unorganized appearance
of the data on a larger scale. The challenge in managing this
clutter lies in designing vector databases that are �exible
enough to handle data points across varying dimensions
rather than being optimized for a speci�c dimensionality
or data structure.

(3) BigVectorBench should include large-scale workloads to
mimic the challenges of processing and analyzing vector
data in real-world scenarios. The workload must be repre-
sentative of the colossal nature of vector data in produc-
tion environments, encompassing tens of millions to even
hundreds of millions of data points. Large-scale workloads
help in testing the scalability and performance of vector
databases, ensuring that they can handle the voluminous
and complex nature of real-life vector data e�ciently.

(4) The workloads in BigVectorBench should be continuous,
re�ecting the ongoing nature of data generation in real-
world applications. Continuous vector data are produced
from various devices and applications, such as sensors in
IoT devices, user interactions in web applications, and real-
time monitoring systems. Consequently, BigVectorBench
should include workloads that simulate or originate from
continuous data sources, facilitating the development and
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Figure 3: BigVectorBench architecture.

evaluation of vector databases that can embed and retrieve
data in a real-time or near-real-time context.

In essence, to thoroughly evaluate vector databases, the workloads
employed must obey the above characteristics. This comprehensive
design ensures that the workloads not only simulate real-world
complexities but also serve to evaluate the ability of existing vector
databases to handle complex vector data in a production environ-
ment.
4.3.3 Dataset and workload details. We have meticulously chosen
�ve datasets and ten workloads, all commonly used in real-world
applications, to thoroughly evaluate the embedding and retrieval
performance of vector databases.

Dataset sources. Aligned with our motivation, we meticulously
selected 5 datasets and 10 workloads from typical real-world sce-
narios to achieve two main goals. The �rst goal is to evaluate the
latency and e�ciency of embedding models, while the second goal
focuses on evaluating the search performance in vector databases.

We conducted a comprehensive evaluation of various embed-
ding models, including text, image, audio, video, and multi-modal
datasets. The text datasets were categorized based on the number
of tokens in a single entry, leading to the formation of BigVector-
Bench, which encompasses sentence-level, paragraph-level, and
short document-level datasets. Speci�cally, the maximum token
count in the paragraph-level dataset is eightfold that in the sentence-
level, and similarly, the short document-level dataset contains up
to eight times the tokens of the paragraph-level dataset.

To gauge the latency and e�ciency of embedding models, we in-
troduced text and image classi�cation datasets. In practical settings,
vector databases often process complex inputs like PDF screenshots

and user voice recordings, necessitating Optical Character Recog-
nition (OCR) and Automatic Speech Recognition (ASR) for initial
data conversion into text. The precision of this conversion is crucial
for embedding e�ciency, while the conversion speed signi�cantly
impacts user response times. Our datasets also aim to evaluate the
performance and latency of OCR and ASR tools.

Additionally, we provide variousworkloads to evaluate the search
performance of vector databases for fundamental compound queries,
categorized into multi-vector, multi-modal, �lter, and big query
workloads. Multi-vector workloads, derived from tasks like multi-
image retrieval, are vital in contexts like video recommendation,
where keyframes are extracted to �nd similar content. Multi-modal
workloads, such as those combining image and text for retrieval
tasks, are prevalent in industry production, facilitating the search
for similar images, texts, or combinations thereof. Filter workloads
are often used to �lter content by speci�c criteria. For instance,
users can �lter news by speci�c time ranges or select books with
high ratings for purchase. Finally, the characteristics of big datasets
are notable in two respects: �rst, the colossal volume of datasets,
and second, the rich information contained within each data point,
as seen in tasks like long-text retrieval.

Workloads formats. Workloads are stored in HDF5 format.
Each workload is comprised of two components: a training set and a
testing set. The original dataset comes pre-partitioned into training
and testing sets, whichwewill directly adopt. For workloads lacking
a prede�ned testing set, we will employ a pseudorandom method
to extract 10,000 data points as the testing set. This pseudorandom
approach ensures reproducibility, guaranteeing that the testing set
comprises the same data points in each instance.

Consistent with the basic type of compound queries, the data
point formats in the training set are categorized into four basic
types. The �rst type comprises an identi�er (id) accompanied by
multiple identical modal vectors, represented as Equation 1. The
second type includes an id alongside multimodal vectors, as shown
in Equation 2. The third type involves an id, a single vector, and a
set of �lters, detailed in Equation 3. The �nal type consists of an
id paired with a single vector, formalized in Equation 4. In speci�c
application contexts, data point formats may naturally exist and
can be represented by any combination of the four basic types
previously outlined.

The workloads consist of training sets, testing sets, and ground
truth, where the ground truth consists of the IDs of the top-k nearest
neighbors and the distances between each testing point and its
respective neighbors. We will provide a detailed explanation of the
ground truth computation process in Section 4.3.3.

[id, vector1, vector2, . . . , vector=] (1)

[id, vector1m, vector2m, . . . , vector=m] (2)

[id, vector, label1, . . . , label=] (3)

[id, vector] (4)
Ground truth computation. In our approach, for each testing

point in the testing dataset, we employ the k Nearest Neighbors
(kNN) algorithm to identify the top-k nearest neighbors from the
corresponding training set. We formalize the identities of these
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neighbors as [id1, id2, . . . , id: ] and also record the Euclidean dis-
tances between the testing point and each of the top-k nearest
neighbors, presented as [dis1, dis2, . . . , dis: ].

The method for computing ground truth varies depending on
the type of compound query. For multi-vector queries, where all
vectors are of the same modality, we apply fusion techniques to
amalgamate them into a single comprehensive vector. This facili-
tates the comparison of distances between each testing point and all
training points. The top-k nearest neighbors are determined as the
K training points that exhibit the smallest distances to this testing
point. For multi-modal queries, common existing in image-text and
audio-text retrieval tasks, we utilize textual information to establish
a baseline ground truth. In the case of labeled queries, we initially re-
�ne the candidate set based on the �lters before selecting the top-k
nearest neighbors according to the distance metrics from the testing
point to the candidates. For big queries and unimodal queries, the
selection of the top-k nearest neighbors is straightforwardly based
on the distances between the testing points and the entire training
set, ensuring simplicity and consistency in BigVectorBench.

4.4 BigVectorBench implementation
BigVectorBench is crafted to assess the latency and e�ciency of
the embedding process, as well as to gauge the performance of
insertion, updating, deletion, and search operations within vector
databases. Implemented in Python, the architecture of BigVector-
Bench, as depicted in Figure 3, begins by parsing con�guration
settings. It loads the training data into a chosen vector database
and constructs the speci�ed index on this data while the time taken
to build the index is recorded. Subsequently, the query sender dis-
patches the original query to a designated embedding module, and
the embedding time is logged.

To accelerate data loading and query processing, BigVector-
Bench utilizes a thread pool technique. Once the original com-
pound queries are converted into testing vectors, they are channeled
through the database interface layer into the vector database for
various operations, with performance metrics being meticulously
captured and reported by the statistics module.

Furthermore, BigVectorBench pioneers the establishment of a
standardized interface protocol for vector database interactions,
positioning it as a trailblazing benchmark in the �eld. It encom-
passes four basic operations, as detailed below, allowing any new
vector database to be evaluated through the implementation of
these operations:

• Insert(): Adds individual or multiple vector points to a
designated vector collection, respecting the speci�c index
type.

• Update(): Modi�es an existing vector point within the vec-
tor collection.

• Delete(): Removes a vector point from the vector collection.
• Search(): Retrieves the top-k approximate nearest neigh-

bors for a testing point or locates other speci�c vector
points within the vector collection.

5 EVALUATION

5.1 Experiment setup
The server includes 2 Intel Xeon 5218R@2.10GHz CPUs, 512 GB
memory, and an NVIDIA V100-PCIE-16GB GPU connected via
PCIe 3.0. Each CPU has 20 physical cores, and hyper-thread is
enabled. We used all of the 80 hardware threads. The operating
system is Ubuntu 20.04 with the Linux kernel 5.15.0. The GPU driver
version is 535, and CUDA 12.2 is used for GPU computing. We use
Python 3.10 and Docker 26.1 for all experiments. We choose Milvus,
Weaviate, and Qdrant because they support diverse computational
hardware resources, employ various indexing types, and utilize
unique strategies for processing compound queries, exemplifying
the diverse landscape of vector databases.

5.2 Experiment methodology
As illustrated in Table 2, our experimental methodology is struc-
tured into three related parts:

First, we verify the critical design decision of BigVectorBench
on two subjects, Jina Embedding v2 [41] and Milvus [4], detailed in
subsection 5.3. Our focus narrows to two pivotal aspects: (1) why
heterogeneous data embedding performance is essential for
vector database evaluation; and (2) how compound queries
impact the vector database performance.

5.2.1 Image embedding. Second, we utilize BigVectorBench to in-
vestigate the impacts of key in�uencing factors of the embedding
layer and expose the trade-o�s between embedding latency and e�-
ciency, as outlined in subsection 5.4. While not exhaustively testing
all existing embedding models, we aim to highlight critical latency
and e�ciency trade-o�s crucial for stakeholders’ considerations.
Speci�cally, we evaluate:

• Image Embedding: Using clip-ViT [76] as the subject, utiliz-
ing image patches in base 16, base 32, and large 14 formats
to measure embedding latency, GPU memory consumption,
and accuracy. Here, "accuracy" is de�ned as the proportion
of predictions that the clip-ViT model correctly identi�es
in comparison to the actual labels in the ImageNet [26]
dataset.

• Text Embedding: Employing Jina Embeddings v2 [41] as
the subject with truncation lengths of 128, 1024, and 8192
to assess embedding latency and GPU memory usage.

• Multimodal Embedding: Implementing ImageBind [35] as
the subject to handle data across six di�erent modalities. In
real-world business applications, two predominant modal
alignment strategies are observed. The �rst leverages a joint
embedding model, such as the open-source ImageBind, to
integrate multimodal data into a uni�ed embedding space.
The second strategy converts multimodal data into a sin-
gular modality, employing techniques like OCR (Optical
Character Recognition) for text-rich images [1] or ASR (Au-
tomatic Speech Recognition) for audio [91], subsequently
processed using ImageBind.

Third, employing BigVectorBench, which is built on the datasets [6,
15, 36, 42, 69, 74, 82, 88, 103] to thoroughly evaluate the subjects
— leading-edge vector databases like Milvus [4, 93] version 2.4.1,
Weaviate [3] version 1.24.12, and Qdrant [5] version 1.9.2. These
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Table 2: Experimental Methodology.

Experimental Methodology Subject Subject’s Key Factors Dataset / Workload Performance Metric

Key
Feacture

Veri�cation

Embedding Jina Embeddings v2 Truncation length D1: arXiv and PubMed (768) Latency
and e�ciency

Retrival Milvus 2.4.1 Index Types: HNSW, IVF_PQ,
GPU_CAGRA, GPU_IVF_PQ W3: app_reviews (384) QPS and recall

Embedding
Latency
and

E�ciency

Image
CLIP-ViT-B-16 Pixel dimensions

of the image patches D2: ImageNet (512)
Embedding latency
GPU memory usage

and accuracy

CLIP-ViT-B-32
CLIP-ViT-L-14

Text Jina Embeddings v2 Truncation length D1: arXiv and PubMed (768)
D3: squad_v2 (768) [78, 79]

Multi-modal
ImageBind

Modal alignment strategy

D4: img-wikipedia (1024)
D5: librispeech_asr (1024)

ASR + ImageBind D4: img-wikipedia (1024)
OCR + ImageBind D5: librispeech_asr (1024)

Retrieval
speed
and

accuracy

Filter
queries

Milvus 2.4.1
Weaviate 1.24.12
Qdrant 1.9.2

Index Types
Milvus: HNSW,

IVF_PQ,
GPU_CAGRA,
GPU_IVF_PQ,
GPU_IVF_FLAT
Weaviate: HNSW
Qdrant: HNSW

W1: ag_news (384)

QPS and recall

W2: cc_news (384)
W3: app_reviews (384)
W4: amazon_books (384)

Multi-modal
queries

W5: img-wikipedia (1024)
W6: librispeech_asr (1024)
W7: gpt4vision (1024)

Multi-vector
queries W8: webvid (512)

Big queries W9: dbpedia-entities (1536)
W10: dbpedia-entities (3072)

Note: ⇡8 represents the dataset,,8 denotes the workload, and the parentheses following the dataset/workload indicate the dimensions of the vector embeddings.

databases collectively handle workload volumes ranging from hun-
dreds of thousands to tens of millions of records. Our evaluations
meticulously assess performance metrics such as Queries Per Sec-
ond (QPS) and top 100 recall across various query types, including
�lter, multi-vector, multi-modal, and large queries. To ensure a com-
prehensive assessment and to explore the balance between retrieval
speed and accuracy, we con�gure nearly the entire parameter space
for retrieval indexes in each database, extending our performance
evaluation to include insert, update, and delete operations within
these mainstream vector databases.

5.3 Key features veri�cation
5.3.1 Embedding latency and e�iciency. We demonstrate that the
performance of heterogeneous data embedding is critical for evalu-
ating vector databases. To our knowledge, no existing benchmarks
speci�cally address the performance of heterogeneous data embed-
ding in vector databases. However, our experiments reveal that the
latency of heterogeneous data embedding on GPUs is 91.474 times
greater than its retrieval latency. For our study, we utilized the Jina
Embeddings v2 model, the Milvus database, and a summarization
dataset from arXiv and PubMed [21].

Our �ndings show that the embedding latency for a trunca-
tion length of 8192 is 15.548 times higher than for a truncation
length of 128 on GPUs, and 268.615 times higher on CPUs. While
shorter truncation lengths achieve lower latency, they result in sig-
ni�cant information loss, thereby reducing embedding e�ciency.
Our results indicate that the Approximate Nearest Neighbor search
accuracy with a truncation length of 128 is only 11.407% of that
achieved with a truncation length of 8192. Additionally, the GPU

DRAM consumption for the truncation length of 8192 is 3.582 times
that of the truncation length of 128.

5.3.2 Retrieval speed and accuracy. Another important feature of
our benchmark is the ability to comprehend the behavior of a
vector database with compound queries. BigVectorBench supports
four basic types of compound queries: multi-vector, multi-modal,
vector with labels, and big queries. In this experiment, we focus
on comparing unimodal queries and vector queries with labels in
Milvus across both CPU and GPU platforms.

In real-world applications, vector queries are commonly paired
with one or more labels. For instance, users of a news application
may prefer to retrieve Approximate Nearest Neighbors based on
timestamps, while e-commerce app users might prioritize retrieval
based on price ranges and commodity ratings. Despite this, the
state-of-the-art benchmark — ANN-Benchmarks, typically only
provides unimodal queries for evaluation.

Figure 1 illustrates the performance impact when labels are in-
jected into unimodal queries. On the GPU platform, the throughput
and recall for a standard unimodal query are 148.510 queries per
second and 61.093%, respectively. However, with labels added, these
�gures decrease by 23.388% and 48.542%. Similarly, on the CPU plat-
form, unimodal query performance stands at 172.839 queries per
second and 61.023% recall. When labels are incorporated, through-
put and recall drop by 5.462% and 31.224%, respectively.

5.4 Embedding latency and e�ciency
Building on subsection 5.3.1, which highlights the importance of
embedding performance in evaluating vector databases, this sub-
section provides a deeper analysis of heterogeneous data latency
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(a)

(b)

(c)

Figure 4: Image embedding latency, GPU memory consump-
tion, and accuracy on D2: ImageNet.

and e�ciency. This analysis is important as it directly impacts user
experience and the search performance of vector databases.

We conducted experiments using BigVectorBench to examine the
trade-o� between image embedding latency and e�ciency, allowing
users to determine the most suitable embedding model for their spe-
ci�c application scenarios. BigVectorBench incorporates the CLIP-
ViT-B-16, CLIP-ViT-B-32, and CLIP-ViT-L-14 models [28, 29, 77],
which vary in model size and the resolution of processed image
patches. Here, "B" and "L" denote base and large model sizes, re-
spectively, while "16", "32", and "14" indicate the pixel dimensions
of the image patches. The benchmark records average embedding
latency, GPU memory usage, and the accuracy of these models.

Figure 4 presents the results on embedding latency, GPUmemory
consumption, and accuracy for each model. The CLIP-ViT-L-14,
being the largest model with the most parameters, exhibits the
highest embedding latency at 26.863 milliseconds and the greatest
GPU memory consumption at 1657.924 MB. The CLIP-ViT-B-16
and CLIP-ViT-B-32 models show similar performances in terms of
latency and GPU usage. Speci�cally, the latency of CLIP-ViT-L-14 is
approximately twice that of the CLIP-ViT-B-16 and CLIP-ViT-B-32
models, and its GPU memory usage is over 2.8 times higher. In
terms of accuracy, the CLIP-ViT-B-16 achieves 85% of the CLIP-ViT-
L-14’s accuracy, while the CLIP-ViT-B-32 reaches 76% of that �gure.
This trade-o� highlights the need for careful image embedding
model selection based on speci�c stakeholders’ concerns, balancing
embedding accuracy with latency demands.

5.4.1 Text embedding. Next, we utilize BigVectorBench to evaluate
the performance of text embeddings, which is crucial for improving
the semantic search capabilities of vector databases. As detailed in
Section 4.3.3, our experiments focus on measuring the latency for
embedding texts of varying lengths — speci�cally sentences, para-
graphs, and documents — using the Jina Embeddings v2 model [41].
This approach contrasts with our image embedding experiments,
where we compared models with varying numbers of parameters;

(a)

(b)

Figure 5: Text embedding latency and GPU memory con-
sumption on D1: arXiv and PubMed and D3: squad_v2.

here, we are exclusively concerned with the embedding latency
associated with di�erent text lengths.

Our �ndings reveal that embedding latency signi�cantly in-
creases with the length of the text. As shown in Figure 5a, em-
bedding a document containing 8192 tokens can take as long as
400 milliseconds on a GPU. Furthermore, the retrieval latency for
document-level vectors in Milvus is noted to be around ten mil-
liseconds. These results highlight a signi�cant bottleneck within
vector databases — the excessive latency of document embedding,
which di�ers from past focuses in vector database optimizations
that predominantly aimed at reducing retrieval latency and improv-
ing recall for vector searches. Moreover, our experiments in Fig-
ure 5b underscore that document embedding is highly demanding
in terms of computational resources. Speci�cally, the GPU memory
consumption for document embedding is 3.590 times greater than
that required for sentence embedding.

5.4.2 Multi-modal data embedding. In this subsection, we evaluate
the latency and e�ciency of various strategies for embedding multi-
modal data using BigVectorBench. The �rst approach utilizes a joint
embedding model, exempli�ed by the open-source ImageBind, to
integrate multimodal data into a single embedding space. Although
this model eliminates the need for aligning multimodal data, its
current stage of development shows limited alignment capabilities,
resulting in suboptimal embedding e�ciency. Our experimental
results (Figure 6) indicate that the image embedding latency for
ImageBind is only 42.943 milliseconds, while the audio embedding
latency is 15.811 milliseconds. However, the ine�ciency in handling
multimodal data leads to a recall of no more than 0.06 for the top
100 nearest-neighbor searches.

The second strategy involves converting multimodal data into
a single modality, such as transforming text-rich images to text
via OCR (Optical Character Recognition) or converting audio to
text using ASR (Automatic Speech Recognition). Once the data is
translated into text, it is processed using a text embedding model.
This approach signi�cantly enhances the recall of the top 100 near-
est neighbor searches to over 0.8. However, this improvement in
recall is achieved at the expense of increased latency. OCR and ASR
exhibit extraction delays nearing 100 milliseconds, and the latency
for text embedding extraction is even higher.
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(a) D4: img-wikipedia [6] (b) D5: librispeech_asr [74]

Figure 6: Comparison of multi-modal embedding strategy
performance.

Figure 7: QPS/Recall tradeo� on W1: ag_news
Left: unimodal query, right: �lter query with one label.

Up and to the right is better. Subsequent �gures follow the same
pattern and will not be reiterated.

5.5 Retrieval speed and accuracy
In this subsection, we explore the trade-o� between retrieval speed
and accuracy for compound queries, which are categorized into
four types: �lter, multi-modal, multi-vector, and big queries. This
analysis provides insights that help users determine the optimal
trade-o� between speed and accuracy depending on the speci�c
index and vector database con�gurations. To accommodate the
diverse scales of workloads, we have established several distinct ex-
perimental setups using BigVectorBench. This structured approach
allows us to systematically evaluate performance across a range of
data volumes and query complexities.

5.5.1 Filter queries performance. Figure 7-9 illustrate the perfor-
mance of various databases on the ag_news, cc_news, as well as
app_reviews workloads. The hardware con�guration employed
in these tests encompassed 16 hardware threads, 64GB of mem-
ory, and one NVIDIA V100-PCIE-16GB GPU. Indexes (Milvus with
GPU_CAGRA index and Milvus with GPU_IVF_FLAT) running on
the GPU generally exhibit higher QPS than the HNSW index on
the CPU, and QPS without �lters tend to be higher than QPS with
�lters applied. Notably, Qdrant shows the steepest decline in QPS
in the presence of �lters, plummeting from over 100 to less than 25.

Figure 8: QPS/Recall tradeo� on W2: cc_news
Left: unimodal query, right: �lter query with one label.

Figure 9: QPS/Recall tradeo� on W3: app_reviews
Left: unimodal query, right: �lter query with 3 labels.

Figure 10 presents the outcomes of the amazon_books workload
on Milvus under the resources of 80 hardware threads, 512GB mem-
ory, and one NVIDIA V100-PCIE-16GB GPU. Due to the limited
resources, we only test with GPU_IVF_PQ and HNSW index. The
app_reviews and amazon_books workloads show an increase in
maximum recall when �lters are applied, as opposed to when no
�lters are used. Speci�cally, on the app_reviews workload, the use
of �lters boosts the maximum recall from 0.91 to 0.95, with the
HNSW index demonstrating a particularly pronounced e�ect, as
the recall approaches the maximum value under all parameter set-
tings. Furthermore, on the amazon_books workload, the recall of
the GPU_IVF_PQ index is also enhanced, rising from around 0.3 to
a maximum of 0.56 with �lter conditions. This might be due to the
�ltering process, which potentially reduces the density of the data,
making it more distinct and thereby increasing recall.

5.5.2 Multi-modal queries performance. Figure 11-13 presents the
search performance of various databases on multi-modal workloads.
The upper limit of Recall for direct embeddings on these workloads
(Figure 11 left, Figure 12 left and Figure 13) is not very high, which is
in�uenced by the insu�cient alignment capability of the embedding
models when dealing with multi-modal data (see Section 5.4.2 and
Figure 6). Figure 12 right displays the results for the audio workload
librispeech_asr after text extraction via ASR. There is a trade-o�
between QPS and Recall, with the following order of performance
from highest to lowest: Milvus with GPU_CAGRA index > Milvus
with GPU_IVF_FLAT index > Milvus with HNSW index > Weaviate
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Figure 10: QPS/Recall tradeo� on W4: amazon_books
Left: unimodal query, right: �lter query with �ve labels.

Figure 11: QPS/Recall tradeo� on W5: img-wikipedia
Left: directly embedding multimodal data into a vector space, right:

unifying via OCR before embedding.

with HNSW index > Qdrant Standard mode. Consequently, indexes
running with the GPU indexes exhibit notably better performance.

5.5.3 Multi-vector queries performance. Since onlyMilvus supports
multi-vector retrieval, Figure 14 solely illustrates the performance
of the webvid dataset on various indexes within Milvus. Apart from
Milvus with the GPU_IVF_PQ index, the recall for other indexes
hovers around 0.72, which might be attributed to di�erences in the
re-ranking strategies employed.

5.5.4 Big queries performance. Figure 15 presents the results of the
HNSW index onWeaviate and theHNSWandGPU_IVF_PQ indexes
on Milvus. The Recall of the GPU_IVF_PQ index is signi�cantly
lower than that of the HNSW index. For the two workloads with
di�erent vector dimensions, the HNSW index achieves a Recall
close to 1.0, while the GPU_IVF_PQ index only reaches a maximum
Recall of 0.237 for the 3072-dimensional vectors and 0.299 for the
1536-dimensional vectors. Additionally, it can be observed that an
increase in dimensionality leads to a decrease in QPS. Moreover,
under the same resources and index of HNSW, Milvus exhibits a
higher throughput rate compared to Weaviate.

5.6 Other operation performance
In this section, we delve into the performance of other essential
operations in vector databases, namely insert, update, and delete.
These operations are crucial for dynamic vector data management
and are often performance bottlenecks in real-world applications.
We evaluate the latency of these operations across di�erent vector

Figure 12: QPS/Recall tradeo� on W6: librispeech_asr
Left: directly embedding multimodal data into a vector space, right:

unifying via ASR before embedding.

Figure 13: QPS/Recall tradeo� on W7: gpt4vision
Embedding multimodal data into a vector space.

dimensions and data types to provide insights into their e�ciency
and scalability. The experiments were conducted using the HNSW
(Hierarchical Navigable Small World) index with parameters M=36
and efConstruction=200. The results for vector dimensions 384 and
1024 were obtained on a hardware con�guration with 16 cores and
64GB of memory, while the results for dimensions 1536 and 3072
were obtained on a more robust setup with 32 cores and 128GB of
memory.

5.6.1 Insert Performance. The insert operation’s latency is a critical
metric for scenarios where large volumes of vector data need to be
ingested into the database. As shown in Table 3, the inclusion of a
�lter in the Milvus HNSW algorithm increases the insert latency.
This suggests that the additional processing required for �ltering
impacts the e�ciency of data insertion. Additionally, there is a
general trend of increasing latency with higher dimensionalities,
with Qdrant showing the most signi�cant increase. This is likely
due to the increased computational complexity of processing higher-
dimensional vectors.

5.6.2 Update Performance. The update operation’s latency is es-
sential for applications that require frequent modi�cations to vector
data. Our results indicate that the update latency follows a sim-
ilar trend to insert latency, with higher dimensionalities leading
to increased latency. Notably, Milvus HNSW exhibits higher up-
date latency compared to insert, indicating that updating vectors is
more computationally intensive than inserting them. In contrast,
Weaviate HNSW shows a slightly faster update latency compared
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Figure 14: QPS/Recall tradeo� for multi-vector query on W8:
webvid

Figure 15: QPS/Recall tradeo� on W9&W10: dbpedia-entities
Left: Big query of dimension 3072, right: dimension 1536.

to insert, suggesting that its internal data structures and algorithms
are optimized for updates.

5.6.3 Delete Performance. The delete operation’s latency is crucial
for scenarios where vector data needs to be removed or pruned
from the database. Our �ndings show that the delete operation
consistently demonstrates the lowest latency across all systems
and dimensions, indicating that vector removal is the most e�cient
operation. However, an anomaly was observed in Milvus HNSW at
1536 dimensions compared to 3072 dimensions, where the former
exhibits a slightly higher latency.

5.7 Experimental results summary
First, we observe that the quality of embedding heterogeneous
data signi�cantly in�uences the retrieval recall of complex queries.
Existing uni�ed embedding models face challenges in accurately
aligning audio and text, leading to a compound query recall rate of
less than 0.4% across three databases.

Secondly, the Amazon dataset, with the lowest �lter ratio of 0.1%,
encounters the most signi�cant decline in query-per-second (QPS)
performance, plummeting by more than 53% in Milvus’s HNSW
index. We attribute this decrease to Milvus transitioning from ap-
proximate to exact searches when the �lter ratio falls below 7%. In
contrast, Weaviate and Qdrant employ unique �ltering approaches.
When Weaviate handles �lter queries, the QPS diminishes rapidly
due to its integration of inverted indexing with HNSW for query
processing. This method involves using an inverted index to pre-
cisely identify and store data points meeting �ltering criteria in an
allow_list, retrieving only the nearest neighbors from this re�ned

Table 3: Insert, update, and delete latency.

Operator Dimension
Algorithm Milvus

HNSW
Weaviate
HNSW Qdrant

Insert
Latency
(ms)

384-�lter 4.73 43.27 73.51
384 3.73 20.97 37.55
1024 4.36 30.91 167.80
1536 5.66 23.26 -
3072 6.36 37.29 -

Update
Latency
(ms)

384-�lter 5.28 8.46 68.52
384 4.17 7.22 52.10
1024 4.59 12.81 169.99
1536 5.02 19.73 -
3072 7.89 29.86 -

Delete
Latency
(ms)

384-�lter 2.46 1.4 71.92
384 2.19 0.98 34.57
1024 2.25 1.39 120.09
1536 2.40 0.95 -
3072 2.08 1.57 -

list. On the other hand, when Qdrant executes �lter queries, the
QPS almost drops to zero, while maintaining stable recall. This
is because Qdrant �lters out navigational points, disrupting the
HNSW structure and necessitating the establishment of new costly
edges to compensate for this disruption.

Thirdly, a notable decrease in recall to less than 40% is noted
when utilizingMilvus’s IVFPQ algorithm for retrieving high-dimen-
sional data at 1536 and 3072 dimensions. This decline is attributed to
the limitations of clustered algorithms in high-dimensional spaces,
where they encounter challenges in distinguishing closely posi-
tioned data points, consequently impacting retrieval e�ciency.

Lastly, heightened vector dimensions signi�cantly raise the la-
tency of retrieval, insertion, and update operations as a result of
heightened computational complexity and resource requirements,
thereby prolonging overall processing durations.

6 CONCLUSION
In this paper, we presented BigVectorBench, the �rst benchmark
suite explicitly designed for vector databases. We quantitatively
explained why modeling heterogeneous data embedding and com-
pound query handling abilities in benchmarking vector databases
is essential. We meticulously designed and developed an extensible
benchmark framework tailored for vector databases. BigVector-
Bench comprises �ve datasets, ten workloads, four fundamental
compound query types, and various variations.

Our extensive evaluation across leading-edge vector databases,
including Milvus [93], Weaviate [3], and Qdrant [5] reveals that the
primary bottleneck in serving a user query lies in the embedding
latency rather than the latency of similarity searches. Furthermore,
we have observed that compound queries have a signi�cant impact
on both the query per second and recall of vector databases, result-
ing in a halving of the recall. The results highlight a critical need
within current vector databases for a uni�ed embedding model
to align multimodal data and decrease embedding latency e�ec-
tively. Moreover, there is an evident demand for advanced indexing
mechanisms that enhance the handling of compound queries.
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