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ABSTRACT
Distributed coordination services are fundamental components of
distributed systems, employing durable replicated state machines
(RSMs) to ensure consistency across replicas and prevent data loss,
even in the event of all nodes failing. These services typically rely
on persistent logs for rapid recovery, as a universally agreed-upon
log allows replicas to restore their state by sequentially replaying
ordered log entries. However, the requirement for a totally ordered
log inherently limits opportunities for parallelism.

This paper introduces Fleet, a high-performance durable RSM
protocol that combines a hybrid scattered-entry log with an asyn-
chronous ordered log. Our approach integrates synchronous persis-
tence of scattered entries with asynchronous persistence of ordered
entries, ensuring both rapid recovery and high levels of parallelism.
Additionally, we propose a parallel applying optimization for the
etcd database, named pre-apply. Experimental results demonstrate
that Fleet significantly outperforms Raft and Scalog in terms of
throughput and latency, achieving up to 10× the throughput under
specific configurations and scaling effectively across multiple nodes.
Additionally, with the pre-apply optimization, Fleet delivers a 10-
fold increase in throughput compared to sequential applying on
etcd. Although Fleet incurs a 5% overhead in recovery time during
leader failure, this delay is tolerable given the rarity of such events.
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1 INTRODUCTION
Distributed coordination services, such as etcd [20], Zookeeper [26],
and Chubby [9], are essential components in distributed computing.
They support critical tasks such as leader election, service discov-
ery, resource management, group membership, and consistent data
replication [1], forming the backbone of modern cloud comput-
ing infrastructures (e.g., Kubernetes). These services are typically
implemented as durable Replicated State Machines (RSMs) [51],
employing consensus protocols to ensure state synchronization
across nodes. In addition to consistency, several other capabilities
are also critical for the effective operation of coordination services:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718077

1. Durability: Ensures that the state machine remains consistent
and persistent across all nodes, even in scenarios where all nodes
crash (e.g., due to disasters or operator errors).

2. Low Latency: These systems often function as the control
plane for large-scale systems, necessitating rapid response to client
requests. Immediate state persistence and swift recovery following
restarts are therefore essential.

While RSMs have garnered significant research attention [34,
35, 38, 41, 43, 55, 56], the techniques required to achieve durable
RSMs that meet the aforementioned requirements have been less
extensively discussed. Current RSM systems for ensuring durability
can be categorized into three main types:

(1) Fail-Stop Assumptions: Many RSM studies, especially those
based on Paxos, assume fail-stop failures, so they have not been
designed for rapid recovery. Some approaches never persist
data to disk (e.g., CMP [56]), or use ambiguous descriptions of
persistence, making it difficult to assess their impact on perfor-
mance. Protocols like MultiPaxos [55], EPaxos [43], and Men-
cius [42] simply assume that the entire state on the replicas
is made durable by "logging every state change before acting
upon or replying to any message" [43]. However, in practice, the
state changes can be large or frequent, making recovery costs
impractically high.

(2) Eventual Durability: Some studies, for better performance,
accept the risk of data loss and only guarantee eventual durabil-
ity [31]. For instance, approaches that use asynchronous storage,
like FasterLog [10, 40], are implemented to boost performance.
These methods often do not suit our targeted scenarios well.

(3) Fail-Recovery Model: Raft uses the fail-recovery model, ex-
plicitly incorporating a globally ordered, durable replicated log.
This approach makes the protocol easier to understand and im-
plement, leading to widespread adoption in industry [2].

In conclusion, the market favors a synchronized, ordered dura-
bility approach for immediate persistence and fast recovery.

However, maintaining the aforementioned logs across replicas
introduces significant performance challenges. Extensive prior re-
search has highlighted the poor performance of coordination ser-
vices such as Zookeeper and etcd [7, 14, 29, 47, 48, 57]. A common
misconception attributes this subpar performance primarily to slow
durable storage devices. However, despite substantial advances in
fast persistent storage technologies, such as NVMe and RAID, the
performance issues persist [7]. This "slowness" inherently origi-
nates from the consensus protocols, specifically from the waiting
time required by the coordination mechanisms needed to maintain
order. For instance, the Raft protocol’s AppendEntries RPC(see [45],
Figure 2) mandates that followers receive and persist entries in ac-
cordance with the Log Sequence Number (LSN) order. Furthermore,
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concurrency control mechanisms, such as locks, are essential for
maintaining consistent order while dispatching entries to different
replicas within the same sequence. These factors significantly re-
strict the parallelism of Raft’s log entry processing, an issue that
cannot be resolved by faster storage solutions. Another perspective
is batch processing, which can amortize coordination costs and po-
tentially enhance throughput(e.g., Scalog’s ability to maintain both
ordering and parallelism, detailed in §2.3). However, the resultant
high latency of batching may be prohibitive for many applications,
especially in light of the low-latency requirements.

Our key observation is that current solutions unnecessarily sac-
rifice parallelism to maintain a totally ordered durable log. It is
well-known that achieving both serial and concurrent persistence
within a single log is infeasible. However, a hybrid approach can
achieve the advantages of both methods with minimal cost: scat-
tered log entries for fault tolerance and eventually durable ordered
logs for fast recovery. Since these two forms are complementary,
they do not require doubling the disk space for the entire content.

Based on our observations, we introduce Fleet, a scalable RSM
that merges a scattered-entry log with an asynchronous ordered log.
First, Fleet utilizes a stable leader to efficiently determine the order
of log entries, leveraging a fleet of storage nodes as an unordered
entry set for synchronous persistence. Significantly, we discovered
that removing the ordering restriction during the transmission and
persistence phases of log entries markedly increases system con-
currency. Furthermore, these scattered log entries endow Fleet
with enhanced scale-out capabilities. Second, Fleet integrates the
synchronous persistence of scattered entries with the asynchronous
persistence of ordered entries. This hybrid methodology facilitates
rapid recovery while maintaining high levels of parallelism. Third,
we identify that etcd’s sequential applying process can become a
performance bottleneck in highly parallel systems like Fleet, thus
propose a parallel applying technique for the etcd database, termed
pre-apply, which requires the co-design of the consensus layer and
the database layer. The concept behind pre-apply is akin to parallel
replay [22, 23] in primary-backup systems with log shipping. How-
ever, unlike traditional methods that demand a dependency graph
(among transactions or rows) generated by the primary, pre-apply
eliminates the need for such dependencies. Our optimization in-
volves maintaining an additional visibility watermark, below which
monotonic prefix applying has been completed. This approach fa-
cilitates efficient parallel applying without the requirement for
dependency graphs.

To demonstrate the performance of Fleet, we implemented the
protocol based on the open-source etcd [20] version 3.5, and evalu-
ated it with two different upper-layer applications: an in-memory
key-value store (MemKV) and the fully-featured etcd, which uti-
lizes a persistent B-tree-based multi-version database (MVDB). Our
experimental results indicate that Fleet significantly outperforms
both Raft and Scalog in terms of throughput, without sacrificing
latency. Specifically, in the MemKV application, Fleet achieves
up to 7× the throughput on the same hardware configuration, and
up to 10× the throughput when utilizing additional local disks. In
scalability tests using up to 15 machines, Fleet achieved 5 million
operations per second (Mops) for writing small values (64 bytes),
fully saturating the thread responsible for applying commands. For

larger values (4 kilobytes), Fleet effectively utilized the 20 Gbps net-
work cards on our server machines, approaching the performance
upper bound of a non-replicated state machine. As a trade-off, Fleet
incurs a modest overhead of 5% in recovery time, translating to
an acceptable 50 ms delay upon leader failure, an event which is
expected to be infrequent. To assess the efficiency of our pre-apply
optimization, we conducted experiments on a 5-node etcd cluster.
The pre-apply optimization increased throughput by a factor of 4.4
while consistently maintaining lower latency compared to sequen-
tial applying. In a scale-out cluster configuration, the pre-apply
enabled etcd achieved around 600k operations per second, which is
10× faster than using sequential apply.

In summary, this paper makes the following contributions:
• We introduce Fleet, a scalable and durable state machine repli-
cation protocol that significantly enhances parallelism and scal-
ability through the use of scattered log entries.
• We design a novel recovery mechanism combining synchronous
scattered persistence for high performance with asynchronous
centralized persistence for fast recovery.
• We propose a parallel RSM application optimization for etcd,
utilizing MV storage and the parallel capabilities of Fleet.
• We implement and evaluate Fleet using a well-established open-
source coordination service. Our experimental results demon-
strate that Fleet significantly outperforms both Raft and Scalog
in terms of throughput and latency.

2 MOTIVATION AND BACKGROUND
This section starts with target scenarios and essential characteristics
of durable RSMs for use cases. Then, background on durable RSMs
is given, with Raft as an example. Finally, it identifies limitations of
current distributed log solutions in coordination services.

2.1 Motivation
Orchestration systems such as Kubernetes (K8S) [3], Twine [53],
and Autopilot [27] typically utilize event-based declarative engines
and loosely coupled distributed services. A key component of these
systems is a strongly consistent and persistent data store, such
as etcd [20], ZooKeeper [26], or Chubby [9]. The performance
of etcd significantly impacts the scalability and user experience
of K8S [29, 49, 57]. As the control plane of K8S, etcd is critical
for ensuring predictable low latency for persistence, even in the
presence of stragglers and during recovery. For instance, in the
event of service anomalies, it is essential to promptly report node
status and rapidly reroute user traffic to healthy nodes.

As K8S is increasingly adopted in cloud environments, and as
applications on K8S become more reliant on etcd, the performance
issues become more pressing. This calls for a high-throughput
solution that can scale out effectively. Sharding is a commonly em-
ployed technique to enhance the scalability of an RSM. It divides
the state space into disjoint partitions, each managed by an inde-
pendent RSM instance. While this method improves parallelism, it
sacrifices the guarantee of total order for operations involving mul-
tiple RSM instances. Moreover, sharding is susceptible to hotspot
workloads. For example, when a small number of applications on
K8S generate spiky workloads (e.g., a sudden influx of new jobs or
a failure impacting numerous nodes), the corresponding etcd shard
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Table 1: Fleet and existing systems compared against perfor-
mance requirements

Fleet Raft CMP Corfu Scalog EPaxos
Low Latency ✓ ✓ ✓ ✓ ✗ ✓

High Throughput ✓ ✗ ✓ ✗ ✓ △
Fast Recovery ✓ ✓ ✗ ✓ ✓ ✗

Straggler-friendly ✓ ✓ ✓ ✗ ✓ ✓
Hotspot Tolerance ✓ ✗ ✓ ✗ ✓ ✗

may become overloaded, as other shards cannot assist in offloading
the workload of the hotspot partition.

As summarized in Table 1, no existing systems fulfill all the
highlighted requirements. Raft [45] persists log entries in order,
thereby limiting its throughput and scalability. Compartmentalized
MultiPaxos (CMP) [56] does not maintain a persisted ordered log,
resulting in high recovery overhead. Distributed log protocols such
as Corfu [4] and Scalog [15] enhance concurrency by utilizing addi-
tional servers. However, Corfu’s limited throughput motivated the
development of Scalog [15]. As outlined in § 2.3, Corfu is vulnerable
to stragglers and negatively impacted by single-node hotspots and
Scalog trades off latency for throughput. EPaxos [43] uses topo-
logical sorting for ordering but suffers under high contention (e.g.,
accessing the same key in a key-value store). As our aim is a general-
purpose RSM where all concurrent operations may conflict, EPaxos
is likely to underperform in such scenarios.

2.2 Durable RSM
Replicated StateMachines (RSMs). Consensus protocols are vital
to RSMs, constructing a continuous log of client commands and
coordinating nodes to ensure that all replicas maintain identical
log entries in the same order, even amid failures. Each replica’s
state machine executes commands deterministically by applying the
log entries in sequence and returning results to clients. Consensus
protocols typically guarantee two fundamental properties when
a majority of replicas are operational: (1) safety, which ensures
consistency among replicas at all times, and (2) liveness, ensuring a
client command will eventually be appended to the log.

Durability. Durability guarantees that no operation acknowl-
edged to clients is lost, even if all nodes fail. This is possible because
each node can recover its state from data stored on disk after a crash.
However, the recovery speed critically impacts the actual availabil-
ity of the coordination service. Consequently, selecting a durable
RSM that supports rapid recovery is a careful decision. For instance,
while both unordered and ordered durable log entries ensure dura-
bility, their recovery costs vary significantly. Ordered logs can be
loaded sequentially with ease, whereas unordered logs must be
loaded into memory and sorted before applying the entries. For
large data volumes (e.g., several hours of logs), the sorting process
can exceed available memory. Some scale-out optimizations (e.g.,
CMP) further complicate recovery by requiring log entries to be
gathered from remotemachines before sorting, incurring significant
overhead. Thus, widely-used open-source systems in the industry,
such as etcd and ZooKeeper, employ ordered persistent logs.

Raft. Raft is a widely implemented consensus protocol, espe-
cially in industry. It employs a leader election process to appoint
a stable leader for each term from a group of nodes. The leader
decides the order of client commands. Raft achieves fault tolerance

through log replication. Specifically, the leader assigns a unique LSN
to each log entry and determines when it is safe to apply that entry.
The leader commits an entry only after replicating all preceding
entries to a majority of nodes. Subsequently, followers apply the
entry after the leader has committed it. Each replica maintains a
local persistent log where log entries are written sequentially.

To ensure global consistency, Raft introduces several coordina-
tion points during log persistence: followers must wait for commit
decisions from the leader, leaders must wait for acknowledgments
from a quorum of followers before committing, and each follower
must persist log entries in LSN order, waiting for all preceding
entries to be persisted first.

2.3 Distributed Logs
Distributed replicated logs [4, 5, 15] are often engineered with
scalability as a primary objective. Unfortunately, these designs do
not fulfill the essential functional requirements for coordination
services, as discussed in Section 2.1.

Sharding is a commonly employed technique to enhance concur-
rency. To maintain the order of log entries across different shards,
all shards must agree on the mapping of each LSN to the storage
location of its corresponding entry.

Corfu [4] utilizes a static round-robin strategy for mapping en-
tries to shards and their locations. However, this placement strategy
lacks the flexibility to avoid imbalanced load distribution and the
occurrence of straggler shards. Consequently, some shards can be-
come overloaded while others remain under-utilized, negatively
impacting the parallelism of log persistence.

Scalog adopts a persistence-first and assign-LSN-later model: (1)
Entries can be written to any shard without the need for LSNs. (2)
However, to assign LSNs to persistent log entries within an epoch,
Scalog must achieve consensus (using Paxos) on the LSN mapping
across all shards before committing the log entries. Scalog commits
a command only after consensus is reached across all shards for
the LSN assignment of all commands within an epoch.

Scalog maintains a total ordering among entries while facili-
tating concurrency across shards. However, this design inevitably
introduce additional latency in two key areas: (a) The necessity for
an additional write and coordination step (first, for entries with-
out LSNs, and second, for mapping the LSNs to the respective
entries); (b) Scalog’s epoch-based batching mechanism. As a result,
this design leads to increased latency, representing a "fundamental
limitation of Scalog" [15].

Moreover, both Corfu and Scalog require that replicas within
each shard be identical, meaning all log entries across shard-wide
replicas must maintain the same order. The coordination needed to
ensure this uniform order incurs substantial overhead.

3 FLEET ARCHITECTURE
This section overviews Fleet’s architecture, introduces its modules,
shows an example of handling client requests, and discusses two
deployment types: co-located and separated modes.

3.1 Modules
Figure 1 depicts the architecture of Fleet, which consists of Replica
Nodes (RNodes) and Storage Nodes (SNodes). Note that RNode and
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Figure 1: Architecture of Fleet. RNodes execute client re-
quests; Snodes persist scattered and unordered entries.

SNode are logical units; in practice, they may be colocated on the
same physical server (§ 3.3).

3.1.1 RNodes. An RNode maintains the state of the RSM along
with a consensus-agreed log array. This design is similar to other
consensus protocols such as Raft and Zab. However, unlike these
protocols, the log entries in our system are not subjected to a voting
process by the group of RNodes. Additionally, unlike Raft, which
ensures durability by storing the log on stable storage devices (e.g.,
disks), our log resides in volatile memory.

A notable innovation introduced by Fleet is theAsynchronous
Persistence (AP) module, which persistently writes the log to
disk in an asynchronous manner. This persisted version of the log,
referred to as the Ordered Log (Olog), may occasionally miss some
of the tail entries if the log array undergoes continuous updates.
Importantly, the AP module is not involved in the critical path of
Fleet’s normal operations.

Fleet can still operate without the APmodule, albeit with slower
recovery performance, as it does not lose data and can be fully re-
covered from the storage layer alone. The AP module is introduced
to expedite recovery by reducing the time required to collect log
entries from storage nodes. The AP module ensures the presence
of 𝑓 + 1 local Olog files to tolerate 𝑓 failures, or alternatively, it can
utilize a remote file, provided that it is ordered and replicated.

RNodes process client requests. When a client request is received,
Fleet employs its consensus mechanism to achieve log replication
across RNodes and subsequently applies the operation to the system
state (§ 4.2). One of the RNodes is elected as the leader(§ 4.3), while
the remaining RNodes serve for fault tolerance.

3.1.2 SNodes. SNodes store scattered log entries used for recovery.
There is no ordering guarantee for entries that are durable on
SNodes; hence, each SNode is expected to have multiple disks to
enhance write concurrency. Each SNode provides simple interfaces
for storing and retrieving durable data:

• SaveRPC(entry) persists a given entry to disk.
• Since(lsn) retrieves entries with LSN greater than 𝑙𝑠𝑛.
• Trim(lsn) removes entries with LSN smaller than 𝑙𝑠𝑛.

For clarity of presentation, we organize the storage nodes into
groups, each comprising 2𝑓 +1 storage nodes. However, the correct-
ness of Fleet does not depend on statically binding each storage
node to a specific group. This approach contrasts with protocols
such as CMP [56] or grid quorum [24], which require nodes to form
predefined row or column layouts. Fleet only necessitates that any
group possesses enough replicas to effectively tolerate faults.

Moreover, Fleet does not mandate the presence of multiple
groups. In fact, our experiments (§6.2) indicate that even with a
single group (co-located deployment in §3.3), writing scattered log
entries is significantly faster than writing a totally ordered log.

3.2 Fleet Example
Figure 1 illustrates a scenario with three concurrent operations:
𝑤 (𝑎),𝑤 (𝑏), and𝑤 (𝑐). The operation𝑤 (𝑏), served by a non-leader
RNode, has its message flow indicated by red circles. Within the
Fleet protocol, this RNode proposes appending the byte array 𝑏

to the log. 1 and 2 involve obtaining an ordering LSN from the
leader. 3 and 4 show the log entry persisted by an arbitrary set
of 𝑓 + 1 nodes within a storage group to tolerate stragglers. 5
depicts the replication of the persisted log entry to other replicas.
Each RNodes applies the committed entry according to the LSN
order. Therefore, the entry can be applied by the receiving RNode
as long as its preceding entry has been applied. Concurrently, the
AP modules in the RNodes asynchronously write the ordered log
to durable storage for rapid recovery.

The message flow for operations𝑤 (𝑎) and𝑤 (𝑐) follows a similar
pattern but saves a round-trip for obtaining the LSN, as they are
directly served by the leader. These operations are persisted in
parallel, ensuring high concurrency without coordination.

Summary. This example demonstrates several advantages: 1.
Unlike Raft, where log entry persistence must be ordered, our sys-
tem allows out-of-order persistence (e.g., 𝑎 and 𝑏 can be persisted in
different orders on different machines), thus increasing concurrency.
Additionally, persisting entries on Snodes enhances scalability (e.g.,
𝑐 is persisted in group 𝑁 on SNodes instead of group 1 or RNodes).
2. Compared to consensus protocols lacking a durable Ordered Log
(e.g., CMP), our system’s AP module facilitates faster recovery.

3.3 Deployment
Figure 2 illustrates the two deployment modes of Fleet.
Co-located Mode: In this deployment, an RNode and an SNode are
integrated into the same server, forming a single group of SNodes.
While this setup is similar to the conventional Raft deployment,
there are significant differences in the persistence mechanism of
log entries. In Raft, log entries are written to disk in a strictly or-
dered manner, facilitating streamlined recovery through sequential
reads from the disk. Conversely, in Fleet, log entries are dispersed
across the disk without maintaining a strict order, which enhances
concurrency. Nevertheless, without an AP module, recovery be-
comes more complex, requiring the aggregation and reordering
of all log entries to reestablish the correct sequence. Under high
load conditions, the volume of data needing sorting may surpass
available memory capacity, leading to prohibitively slow recovery
times and rendering this design impractical.
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Figure 2: Illustration of log entry layouts: (1) Raft: Entries
must be persisted and transmitted in order. Recovery: Read-
ing the ordered entries from disk. (2) Colocated Fleet: Entries
may be out-of-order. Naïve Recovery: Requires sorting un-
ordered entries from disk. (3) Separated Fleet : Entries can
be stored across servers. Naïve Recovery: Requires collecting
and sorting entries from all servers to find committed entries.
This figure emphasizes the advantages of using scattered log
entries, hence it does not include the AP model.

SeparatedMode: In this deployment configuration, RNodes and
SNodes are deployed on separate servers. To enhance scalability,
the system can be configured with multiple SNode groups. Each
SNode group employs a majority quorum mechanism to replicate
log entries and tolerate up to 𝑓 failures. Therefore, each group
necessitates 2𝑓 + 1 nodes.

Due to space constraints, this paper presumes a static deploy-
ment configuration. Nonetheless, we posit that Raft’s reconfigura-
tion mechanisms can be adapted to Fleet.

4 PROTOCOL
Given Raft’s widespread adoption and understandability in the
industry, this section focuses on comparing Fleet with Raft to facil-
itate a deeper understanding of the protocol. Table 2 summarizes
the similarities and differences between Fleet and Raft.

4.1 System Model
Assumptions. The network is asynchronous, meaning messages
can be lost, delayed, or transmitted out of order. Servers can fail
by stopping, but may later recover from a stable storage state and
rejoin the cluster. Byzantine failures are not considered. The safety
of our protocol does not depend on clock synchronization. However,
skewed clocks may impact availability (the ability to respond to
clients in a timely manner).

Alternatively, availability issues can be addressed under the
assumption of bounded clock skew (see §5.6 in [45]). On this basis,
the leader could utilize a read lease [21] or other optimizations [44]
to enhance read performance.

Basic Rules. We adopt the concept of a term from Raft, which
segments time into disjoint intervals, akin to the concept of a view
in Viewstamped Replication (VR) [41]. Our protocol adheres to the
basic rules of Raft as outlined below:

Each server maintains a current term variable, included in every
outbound message. Servers only process normal protocol messages

with terms matching their current terms. If the sender’s term is out-
dated, the receiver rejects the message. Conversely, if the sender’s
term is more recent, the receiver updates its term variable and
purges all unprocessed messages and incomplete log replication
procedures (i.e., Propose) with stale terms from its buffers.

Consistent with Raft, when the term is updated, a leader from
the preceding term must transition to a follower role. Additionally,
the term must be stored on durable storage to ensure persistence
across power failures and reboots.

Each term includes an election period and a normal operation pe-
riod if a leader is elected. Since each server only processes messages
tagged with the matching term during normal operation periods,
we do not explicitly include the term in the RPC parameters in the
following pseudocode.

4.2 Log Replication
The algorithms for log replication are detailed in algorithm 1, algo-
rithm 2, and algorithm 3. Here, R denotes the set of all replica nodes,
while G denotes the set of all storage node groups, each comprising
2𝑓 +1 storage nodes. Storage nodes (SNodes) may maintain multiple
write-ahead log (WAL) files across different disks and employ
an in-memory buffer, cached, for recently saved entries pending
flush to AP. This buffer facilitates recovery operations. Each replica
node (RNode) maintains a state and a log array for applied entries,
with lastApplied LSN indicating the latest applied slot. The leader
node additionally maintains an assigned array to track assigned
LSNs and their corresponding entries.

The protocol begins with a client sending a command to an
RNode, which then invokes the Propose procedure. It starts by
retrieving an LSN from the leader, which determines the entry’s
ordering. Subsequently, it selects an arbitrary group for persistence.
Upon confirming that the entry is persisted on at least 𝑓 + 1 nodes
of the group, the log entry is considered committed and can be
replicated to the log array of all RNodes. Each RNode may re-
ceive persisted log entries out of order, resulting in holes within
the log array. However, the commitIndex serves as a cursor, en-
suring that the prefix preceding the commitIndex is free of holes,
and all committed entries maintain non-decreasing term values
(Rule 1). Entries between lastApplied and commitIndex can be
sequentially applied to the state (Rule 2). Once the RNode applies
a command, the client receives a response indicating that the entry
has been applied to the RSM (Rule 3).

The procedures on the storage nodes, as illustrated in algorithm 3,
simply save the entries to an arbitrary WAL file. Storage nodes also
temporarily buffer the data in cached before it has been confirmed
in in APs. This optimization aims to facilitate rapid recovery, which
will be elaborated upon in subsection 4.3.

In comparison with Raft, Fleet achieves higher concurrency
in two dimensions: (1) Log entries can be independently trans-
mitted and persisted without the need for coordination, whereas
Raft requires log entries to be transmitted and persisted in LSN
order, limiting concurrency in multiple scenarios. (2) Raft treats
all nodes as identical, without a distinction between RNodes and
SNodes, effectively resulting in a single SNode group that cannot
scale out. Fleet’s architecture, however, can enhance scalability by
adding more SNode groups. Additionally, Raft couples RNodes and
SNodes together, necessitating that the number of RNodes equals
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Table 2: Similarities and Differences between the Raft and Fleet Protocols

Raft Fleet
Safety State Machine Safety
Liveness Progress When Clock Skew is Bounded*

Failure Model Failure Recovery

Log
Replication

Persist Choice Single Group (for each log entry) Random Group

Order on Disk In-order (Sync) Scattered Entries(Out-of-order, Sync)
In-order (Async)

Leader
Election

Vote By Single Group All (SNode) Groups
Recovery Apply Ordered Entries Apply Ordered + Scattered Entries

* As defined in [45], §5.6: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒 ≪ 𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡 ≪ 𝑀𝑇𝐵𝐹 .

the number of SNodes. Fleet, however, decouples these compo-
nents, allowing for different 𝑓 values for RNodes and SNodes in
certain scenarios to further optimize resource utilization.
Garbage Collection(GC). Scattered log entries can be deleted from
disk to reclaim storage space once they can be reliably recovered
from the Olog. The leader maintains the maximum LSN that has
been flushed to the ordered log in all AP modules and uses the Trim
API to notify SNodes. SNodes can then lazily delete all files that
contain only older LSN entries.

Consequently, only a small portion of log entries consume stor-
age capacity in both SNodes and AP modules. During GC, SNodes
do not need to rescan the file contents because the WAL files are of
fixed length, and each file name contains the maximum and mini-
mum LSNs. The Trim procedure can determine which files can be
safely deleted solely based on their file names, while other files can
be temporarily retained.

Similarly, the trim mechanism can be employed to clear outdated
log entries from the cache. Moreover, upon reboot, an SNode only
needs to load the small subset of log entries with LSNs greater than
the trim LSN into memory.
Checkpointing. Checkpointing is a widely employed optimization
in RSMs and databases to facilitate rapid recovery. Although it
involves asynchronously dumping the state of an RSM to expedite
recovery [41], the approach and granularity differ significantly from
those in Fleet.

Checkpointing typically involves asynchronously dumping the
entire RSM state or database to avoid the costly replay of the entire
log from the beginning. This process is performed infrequently
in practice, often at hourly intervals. Checkpointing assumes an
totally ordered log that can be directly loaded, whereas Fleet’s
asynchronous Olog dump avoids the overhead of assembling a
scattered log into that ordered log. Fleet’s asynchronous dumping
operates at a sub-realtime granularity, calling flush by sub-second
intervals. Fleet’s checkpoint generation is akin to that of Raft, with
the notable exception that it only compacts the entries that are in
the Olog for simplicity.
Filling Holes. A "hole" refers to a scenario where a slot has been
reserved but not committed to the log[]. Such holes may occur
during normal operations due to an incomplete Propose procedure,
often caused by an RNode crash. Unfilled holes pose significant
liveness issues for the system.

Holes can be readily identified when the commitIndex remains
stagnant and is lower than the leader’s index. Non-leader RNodes
can detect and fill these holes by heartbeating with the leader. In

contrast, the leader must retrieve the entry 𝑒 from the assigned ar-
ray and execute lines 13- 15 of algorithm 1, which cover the persist
and replicate operations. These actions are idempotent, guarantee-
ing that even if both the leader and the original RNode execute
them, the final state remains consistent, with 𝑒 correctly written to
log[e.lsn].

4.3 Leader Election and Recovery
To ensure that each term has at most one leader, the leader elec-
tion protocol must achieve consensus among all nodes and persist
the election decision (new term and leader ID) across all storage
groups before processing any new client requests. Subsequently,
each SNode group will refrain from persisting entries from older
terms, thereby preventing any former leader from proposing new
commands. It is important to highlight that our solution is resilient
to stragglers, as each group requires the acknowledgment of a
majority quorum.

4.3.1 Leader Election. The leader election protocol in Fleet is fun-
damentally derived from Raft: nodes maintain their roles through
heartbeats and use heartbeat timeouts and election messages to
transition between leader, candidate, and follower roles (detailed in
Section 5.1 of [45]). However, due to the decoupling of RNodes and
SNodes in Fleet, there are notable differences in the election logic:
(1) The leader is selected from one of the RNodes; however, deci-
sions are made exclusively by the SNodes (SNodes never become
candidates and RNodes never grant votes). (2) Whereas Raft oper-
ates with a single SNode group, Fleet comprises multiple SNode
groups, necessitating that the final leader coordinate a consistent
result across all groups.

Strawman Version: Each RNode 𝑅𝑖 requests each SNode group
to vote for itself(𝑅𝑖 ). Each SNode grants the vote to the first request
in a term and rejects subsequent requests, responding with the
granted candidate ID. A majority vote from the nodes in a group
is required for an RNode to win that group. For any given SNode
group,𝑅𝑖 can encounter one of three outcomes: (1) it wins the group,
(2) another RNode wins the group, or (3) no RNode wins the group.
Upon receiving results from all groups, 𝑅𝑖 may discover (1) very
fortunately, a single RNode has won all groups, or (2) no RNode
has won all groups. In the first scenario, the election concludes. In
the second scenario, a new term is initiated, and after waiting a
randomized interval, the process is retried. The probability of each
group independently electing the same RNode is low, prompting
the need for an optimization.

Front-Runner Version: A pre-election round is conducted
among the RNodes before the strawman version. During this round,
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Algorithm 1: Log Replication Procedures on All RNodes

Volatile State:
1 state: The state machine.
2 term: Current term (see subsection 4.1).
3 lead: Leader of this term.
4 log[]: RSM execution history.
5 lastApplied: Index of the last log entry applied to state.
6 commitIndex: Highest committed log entry index.

Persistent State:
7 R: Set of RNodes.
8 G: Set of SNode groups, each group has 2𝑓 + 1 SNodes.
9 Olog[]: Asynchronously persists the prefix of log[] indexed

up to commitIndex.
10 Procedure Propose(command c)
11 𝑙 ← lead.SeqRPC(c)
12 𝑒 ← ⟨lsn: 𝑙, cmd: 𝑐, term: term⟩
13 repeat

Persist(e)
until Persist(e) returns True;

14 parallel-foreach 𝑛 ∈ R do
15 𝑛.ReplicateRPC(𝑒)

/* Persist entry 𝑒 on a random group of nodes */

16 Procedure Persist(entry e)
17 𝑠𝑢𝑐𝑐 ← 0
18 parallel-foreach 𝑛 ∈ 𝑔, randomly choose 𝑔 ∈ G do

if 𝑛.SaveRPC(𝑒) returns success then
19 𝑠𝑢𝑐𝑐 + +

/* Check if the majority has succeeded */

20 return 𝑠𝑢𝑐𝑐 ≥ 𝑓 + 1
21 Procedure ReplicateRPC(entry e)
22 log[𝑒.𝑙𝑠𝑛] ← 𝑒

Rules for all RNodes:
23 R1: If log[𝑖 + 1] (where 𝑖 = commitIndex) is assigned and

log[𝑖 + 1] .term ≥ log[𝑖] .term, then increment
commitIndex.

24 R2: If commitIndex > lastApplied, increment
lastApplied, apply log[lastApplied] to the state.

25 R3: If a command is received from a client, call Propose()
and respond after the entry is applied to the state.

RNodes elect a front-runner (e.g., using Raft). Only the front-runner
proceeds to participate in the subsequent strawman version. With
this optimization, it is likely that only one candidate will participate
in the strawman version, resulting in the front-runner securing
leadership within a single round trip time, regardless of the number
of groups and nodes. It is important to note that the front-runner
must gather votes from all the storage groups; otherwise, certain
Snode groups may remain unaware of the new leader’s emergence
and continue to accept requests from the old leader.

4.3.2 Recovery. Upon election, the new leader must recover all
committed entries from the SNodes before serving any new client
requests. A naïve approach to recovery involves loading and sorting

Algorithm 2: Log Replication Procedures on the Leader

Volatile State:
1 assigned[] : Array to hold entries assigned LSNs.
2 index: LSN to be assigned to the next slot; initially set to 1.
3 Procedure SeqRPC(entry e)
4 assigned[index]← 𝑒

5 return index++

Algorithm 3: Procedures on All SNodes

Volatile State:
1 cached: In-memory cache of log entries.

Persistent State:
2 files: A set of WAL files to persist scattered log entries.
3 Procedure SaveRPC(entry e)
4 𝑓 ← randomly choose 𝑓 ∈ files
5 if 𝑓 .Save(𝑒) then
6 cached[e.lsn]← 𝑒

7 return success
8 return fail
9 Procedure Since(lsn l)

10 return {𝑥 | 𝑥 ∈ cached ∧ 𝑥 .𝑙𝑠𝑛 > 𝑙}

all scattered log entries. However, we propose an innovative recov-
ery mechanism in Fleet that combines synchronous persistence
with asynchronous ordered logging.

Algorithm 4 illustrates the pseudocode for the recovery process.
During recovery, the elected leader executes the BecomeLeader pro-
cedure. Initially, it replays the Olog if it contains a more extensive
log than its local log. If the leader lacks a local Olog, it can read the
files from a remote node. Notably, even if the Olog is empty due
to the AP module’s unavailability, the correctness of the recovery
remains unaffected.

The leader then resolves the entries absent from the Olog by
invoking the Since RPC on all storage nodes. Typically, the number
of these entries is expected to be small, as it depends on the lag
between asynchronous logging and synchronous persistence. We
collect entries from all groups, requiring responses from a majority
of nodes within each group. These retrieved entries are processed
by the Recovery procedure, which reconstructs the log array by
resuming each log entry in LSN order.

The process involves sorting the entries by LSN in ascending
order and breaking ties by term in descending order. Only one entry
per LSN is applied, skipping subsequent entries with an LSN equal
to the applied LSN (line 15). Recovery stops when no log entry
satisfies the following conditions: (1) The entry’s LSN is equal to
curLsn+ 1. (2) The entry’s term is greater than or equal to the term
of the entry in the previous slot.

Lines 23 and 16 of the pseudocode correspond to scenarios where
specific conditions are violated. The case in Line 23 is straightfor-
ward; however, Line 16 requires further explanation: a) The entry 𝑒
has the minimum LSN among entries with lsn > curLsn; b) The
above two conditions cannot be simultaneously satisfied for 𝑒 .
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Algorithm 4: Recovery Procedures on the New Leader
Note: commitIndex is automatically refreshed per Rule 1.

1 Procedure BecomeLeader()
2 if len(Olog) > commitIndex then
3 log← Olog

4 ents← ∅
// Collect entries from all SNode Groups

5 parallel-foreach 𝑛 ∈ ⋃𝑔∈G do
6 ents← ents ∪𝑛.Since(commitIndex)
7 Recovery(ents)

8 assigned← log

9 index← commitIndex + 1
10 Procedure Recovery(entry[] ents)

// Sort by LSN asc (Prim.), Term desc (Sec.)

11 ents← ORDER ents BY ⟨LSN ASC, Term DESC⟩
12 curTerm← log[commitIndex].term
13 curLsn← commitIndex

14 foreach 𝑒 ∈ ents do
15 if curLsn = e.lsn then

continue
16 if 𝑒.𝑡𝑒𝑟𝑚 < curTerm then

break // a hole, explained in § 4.3.2

17 if 𝑒.𝑡𝑒𝑟𝑚 > curTerm then
curTerm← 𝑒.𝑡𝑒𝑟𝑚

18 if 𝑒.𝑙𝑠𝑛 = curLsn + 1 then
19 Persist(e)
20 log[e.lsn]← 𝑒

21 curLsn← 𝑒.𝑙𝑠𝑛 + 1
22 continue
23 break // LSN curLsn + 1 is a hole

Regarding a), since the entries are sorted by LSN in ascending or-
der, curLsn acts as a movable cursor. Entries with an LSN less than
curLsn are processed before curLsn is incremented, and Line 15 is
not satisfied, hence e.lsn > curLsn.

Regarding b), even if 𝑒.lsn = curLsn+ 1, Line 16 indicates that 𝑒
does not meet the condition because its term is too small (it already
has the maximum term among entries with the same LSN).

4.4 Correctness
Fleet provides the same liveness and safety guarantees as Raft.
This section informally discusses these properties in Fleet.

4.4.1 Liveness. Similar to Raft, Fleet relies on a stable leader to
ensure progress. In our implementation, Fleet uses Raft to elect a
front-runner, which must be accepted by all SNode groups before
being recognized as the new leader. Therefore, Fleet shares the
same liveness properties as Raft. The additional SNode voting and
persisting processes require a majority quorum within each group,
thus posing no additional liveness challenges.

Note: Unlike Raft, which uses 2𝑓 + 1 nodes to tolerate 𝑓 failures,
Fleet may increase the number of SNode groups to enhance overall
system performance and scalability rather than to increase fault
tolerance. Thus, even with (2𝑓 + 1) × (𝑁 + 1) nodes (where 𝑁 is the
number of groups), Fleet’s fault tolerance guarantee remains 𝑓 .

4.4.2 Safety. The correctness of a RSM is defined by state machine
safety, which can be stated as: if a server has applied a log entry 𝑒1
to its state machine, no other server will ever apply a different log
entry 𝑒2 with 𝑒1 .𝑙𝑠𝑛 = 𝑒2 .𝑙𝑠𝑛.

It is clear that within a given term, there is only one leader, and
this leader ensures that each slot is assigned a unique entry. There-
fore, the key to state machine safety is maintaining correctness
during term transitions: every committed operation must survive
into all subsequent terms at the same position in the log[]. This
condition evidently holds in the initial term. Using induction, we
must prove that if an entry 𝑒 satisfies this condition in term 𝑡 , it
will also satisfy the condition in term 𝑡 + 1.

As a committed entry, 𝑒 must satisfy the following: (1) It is
persisted in 𝑓 + 1 SNodes within a group. (2) 𝑒 is the entry with the
highest term among entries in Recovery with the same LSN 𝑒.𝑙𝑠𝑛.

Because 𝑒 persists across e.term and its recovery ensures that
any new leader will assign LSNs greater than 𝑒.𝑙𝑠𝑛 for new com-
mands, the Recovery procedure guarantees that 𝑒 will be restored
in term 𝑡 +1. Hence, correctness is maintained during term changes.

5 OPTIMIZATION: ETCD PARALLEL APPLY
In the existing etcd system, a consensus layer (i.e., the Raft package)
produces a commit log, while a separate DB layer (i.e., the mvcc
package [16]) consumes this commit log. Both of these packages are
integrated within the etcdServer package [17], enabling seamless
communication between packages and across hosts. One can easily
replace the Raft package with Fleet in the consensus layer without
necessitating modifications to other system components, as both
protocol inputs consist solely of proposed byte arrays from clients,
while the outputs are sequential log entries. However, an accelerated
consensus layer may render the etcd database layer a bottleneck,
given that the etcd database processes log entries sequentially.

To address this issue, we propose a co-design of the consensus
and application layers to enable parallel application, leveraging
the high parallelism offered by Fleet and the multi-versioning
capability of etcd. There are two sources of increased parallelism:
(1) Instead of assigning the next LSN to any arbitrary entry, the
leader assigns the next LSN to the winner of the execution of DB
concurrency control. This allows for higher parallelism compared
to sequential applying. (2) By using multi-versioning, each applied
entry inserts a new revision into the MV storage.

In this section, we first provide background information on the
MV storage in etcd, then present our pre-apply optimization. Lastly,
we compare our method with log replay in DB replication.

Datamodel of etcd [18]. The database of etcd is a persistentMV
key-value store. Unlike databases that perform in-place updates, the
key-value pairs of etcd are immutable. A new update inserts a new
revision, which grows monotonically over the cluster’s lifetime.
The key space maintains multiple revisions, starting from 1. A new
revision is created when an atomic mutation is applied to the key
space. For example, multiple keys updated by the same transaction
share the same revision. Old data from previous revisions remains
unchanged until garbage collection is triggered. Once GC is invoked,
all revisions before a target revision are removed. Each key-value
pair is also tagged with a version, but revisions increase cluster-
wide, while versions increase key-wise.
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RSM pre-apply in etcd. In the pre-apply optimization, when an
entry is sent to the leader for ordering (L3 in Algo2), the following
steps occur: (1) The leader optimistically applies the entry and
generates revisions/versions for each key-value pair, although the
revisions are not visible for reads. The leader can concurrently
apply entries as long as each applying is atomic. The leader assigns
the LSN based on the actual applied order. (2) As described in
section 4, Fleet persists and replicates each entry, along with its
LSN and revisions/versions. (3) Upon receiving the entries, each
non-leader replica inserts the new revisions/versions into the MV
storage, where these revisions are also not visible. (4) Each replica
(leader included) maintains a visibility revision watermark (VRW),
ensuring that read operations ignore all versions/revisions above
VRW (i.e., search only begins from VRW). Thus, applying an entry
(as per Rule 2 of algorithm 1) in this optimization barely updates
the VRW, making it unlikely to become a performance bottleneck.
Thus, the performance of the applying is significantly enhanced.

During leader election and recovery, the new leader identifies
the latest applied LSN 𝑙 and notifies the other RNodes. The etcd
MVCC database on the other RNodes must remove revisions larger
than 𝑙 before updating the node’s term. It is important to note that
pre-apply is not a universal optimization for RSM, as it relies on
storage that maintains immutable old versions. Thus, databases
that perform in-place updates are not suitable for our optimizations.
Additionally, consensus protocols that do not allow concurrent log
entries (e.g., Raft) do not benefit from pre-apply.

Comparison with log replay on backup. The problem of ap-
plying the committed log resembles primary/backup replication
with log shipping. Recent research [6, 22, 23] has proposed concur-
rent replay transactions with monotonic prefix consistency. How-
ever, pre-apply optimization differs in the following ways: (1)Works
on parallel replay [6, 22, 23] rely on some form of dependency graph
generated by the primary, such as dependencies among transac-
tions or rows, and the backup must follow this dependency order
during replay. Our technique does not require this dependency
graph; a follower can apply an entry immediately upon receipt, as
our consistency is provided by the visibility control of VRW. (2)
The primary DB typically generates an ordered log, imposing order
restrictions on transmission. In other words, the backup DB must
receive log entries in the same order as the primary DB sends them.
Our technique, using Fleet, does not have such restrictions and
achieves high parallelism.

6 EVALUATION
We have integrated the proposed techniques into the code of etcd
v3.5 and evaluated them on two types of distributed applications: an
in-memory key-value store and the fully-featured etcd database (a
persistent B-tree MV). Both applications ensure that all operations
are executed in the same order across all replicas.

Given that this paper focuses on durable RSMs, our experiments
do not include protocols based on the fail-stop model such as
CMP [56] because they do not persist data to disk or lack clarity
on recovery, making them unsuitable for our target scenarios.

6.1 Experimental Setup
6.1.1 Implementation. We used the code base of etcd [20] v3.5,
which includes a well-established Raft [44, 45] implementation thor-
oughly studied by open-source communities [2] and widely used in
real-world applications. To ensure an apples-to-apples comparison,
our implementation reuses etcd’s modules for network transport,
disk I/O (e.g., WAL), and message processing. We have added Fleet
related fields to the message structure and implemented our own
message handling logic. Fleet asynchronously dumps ordered logs
to local disks through (f+1) non-leader replicas. To ensure a fair
comparison, Fleet follows the same batching behavior as the open-
source etcd code, including aspects such as message processing,
data persistence, and transaction group commitment. The pre-
apply optimization has also been implemented in etcd’s official
database package (server/mvcc), which is a disk-backed MV B-tree.

We have also implemented Scalog within the same framework,
using primary-backup replication and the "Mask" failure-handling
strategy, which can automatically ignore failed nodes. This strategy
is comparable to the quorum replication used by other competitors.
Each node in this setup is equipped with 𝑛 log segments (where
𝑛 equals the replication factor) to increase parallelism. The cor-
rectness of Scalog requires that all backups receive the same order
of operations within each log segment. This is achieved by us-
ing a single thread to copy the reference of operations into the
queues (channels in Golang) for each of the backup nodes. Conse-
quently, the actual transmission of operations can be handled by
separate threads, enabling parallelism. This method exactly follows
the open-source Scalog [50]. Additionally, a co-located aggregator
summarizes a local cut every 0.1 milliseconds, as described in [15].
The ordering layer utilizes Raft, co-located within the same 𝑛 nodes,
to ensure data persistence.

Application. To evaluate Fleet, we use MemKV as the appli-
cation layer (RSM state). The implementation of MemKV consists
of multi-bucket in-memory hash tables. Each bucket is accessed
using a hash function and protected by a read-write lock. A single
apply thread sequentially executes write operations to ensure con-
sistency, as multiple apply threads may violate this principle. To
improve efficiency, we assign the apply thread to a dedicated OS
thread and offload work such as serialization and deserialization to
other threads whenever possible. To evaluate the efficiency of the
pre-apply optimization, the consensus-committed log is applied to
the etcd’s MV database (a disk-backed, B-tree-based structure).

6.1.2 Environment Settings. Our test environment consists of 15
virtual machines in the same availability zone of a public cloud.
Each instance is equipped with 64 cores, 512 GB memory, 6 NVMe
SSD drives with 1920GB capacity (Spec: write bandwidth 2 GB/s,
130k IOPS), and 20 Gbps network bandwidth. The OS is Linux kernel
5.10 LTS, and we used Golang v1.9 to generate executables. We
evaluated the performance using two types of deployment layouts:
(1) For the scale-out and skewness experiments, we used separated

deployment with 3 serving nodes and multiple storage groups,
each consisting of 3 machines that can tolerate one failure.

(2) For all other experiments, we used a co-located deployment
with 5 machines that can tolerate up to 2 failures, a typical
setting that handles one unexpected failure along with one
scheduled maintenance.
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Figure 3: Throughput and Latency Comparison for 64B (Left)
and 4KB (Right) Value Sizes

In co-located deployments, we optimize the setup by buffering
entries to avoid repeatedly sending the same entry.

6.1.3 Workloads. To evaluate the performance of the MemKV, we
employed workloads generated by YCSB [13]. The keyspace con-
sists of 1 million keys, each with a size of 256 bytes, and values
of either 64B or 4KB. We used a uniform key distribution unless
otherwise stated. For etcd, we used the official etcd benchmark
tools, with default key and value sizes of 8 bytes. All experiments
focused primarily on write operations, running for 60 seconds, and
we recorded results excluding the first and last 15 seconds. Each
experiment was run 3 times, and we used vertical bars to indicate
the maximum and minimum results.

6.2 Write Performance
Fleet and Scalog writes to all 6 local disks available on each ma-
chine. Raft server writes to a single local disk and cannot benefit
from extra disks due to the ordering restriction. For completeness,
we also include the performance of Fleet that writes to a single
disk on each machine.

Figure 3 presents results obtained using both small and large val-
ues. Our findings indicate that Fleet achieves 1.5× higher through-
put (113 Kops) for 4KB values and around 10× higher throughput
(1008 Kops) for 64B values compared to Raft. Even when using a
single disk, Fleet achieves 85 Kops for 4KB values and 800 Kops
for 64B values, representing a 14% and 7× improvement respec-
tively. Scalog also achieves 5.6× higher throughput than Raft for
small values. The superior performance of Fleet is attributed to
the increased parallelism enabled by its out-of-order and concur-
rent persistence layer. In particular, the left figure (small value
cases) can be used to illustrate that using a "persistence-first and
assign-LSN-later" approach (see §2.3) in Raft does not achieve the
performance levels of Fleet. This is because the size of only the per-
sisted entry reference and LSN mapping is comparable to the small
value entries, leading us to predict that the performance will not
exceed that of the small value Raft configuration. Furthermore, this
scenario indicates that Raft’s performance is restricted by the con-
currency limitations inherent in the protocol, as evidenced by the
fact that storage, network, and CPU utilization remain significantly
below the thresholds of potential resource bottlenecks. Although
both Scalog and Fleet benefit from increased parallelism, Scalog’s
performance is lower than Fleet across various settings due to

Figure 4: Performance Breakdown: Ordering Time (Left) and
Persisting Time (Right) for Write Operations (Shared Y-Axis)
limitations in its parallelism mechanisms. In the next subsection,
we will analyze the reasons for these differences in detail.

Compared to Raft, Fleet also achieves lower latency in most
cases. However, under extremely low client load (with 2 client
threads), Fleet exhibits slightly higher p90 latency compared to
Raft (0.97 ms vs 0.85 ms), which is negligible in most use cases.

6.3 Performance Profile
We further break down the performance of Fleet and Scalog, both
of which support parallelism. We enhanced the code with profiling
to record the time each operation (log entry) takes to (1) determine
the LSN, referred to as ordering time, and (2) persist the log entry
on replica nodes, referred to as persisting time. For Scalog, the
ordering time is measured from when a log entry is written to
disk until the LSN is received from the ordering layer. For Fleet,
this refers to the round-trip message time of querying the leader
for the LSN. Persisting time for both systems is the time spent on
persisting the log entry on the replicas. The key difference between
the two is that Fleet does not impose order constraints between
log entries, whereas Scalog requires that each primary sends log
entries to backups in a consistent order.

Figure 4 presents the results, illustrating the ordering time (left
figure) and persisting time (right figure) under varying throughput
levels. We provide a range of percentiles to offer a comprehen-
sive depiction. It is important to note that the profiling introduces
a slight overhead, resulting in absolute latency values that are
marginally higher than those shown in Figure 3. Nevertheless, this
overhead is consistent across both systems, rendering the relative
values comparable. Under low system load (low throughput), Sca-
log’s ordering time is noticeably higher than that of Fleet. This
discrepancy arises because Scalog’s ordering layer necessitates a
complete Paxos/Raft consensus to determine the LSN, which is
inherently more time-consuming than a simple leader query in
Fleet. Although Scalog’s ordering layer resolves the LSNs for all
shards in a single consensus round, we observe that as system load
increases, the ordering time correspondingly escalates. Under high
load conditions, the P90 and P99 ordering times for Scalog are 9
times and 3.3 times higher than those for Fleet, respectively. Fur-
thermore, the variability in Scalog’s ordering time is substantially
greater, as evidenced by the spread between the P1 and the P99.
This increased variability is attributable to Scalog’s requirement
for coordination across all replicas of all shards, rendering it more
vulnerable to tail latency and straggler effects.
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Figure 5: Scale-out performance for 64B (left) and 4KB (right)
value sizes. The red dashed line shows the 3-node Raft result.

More interestingly, the graph of persisting time contrasts the
cost of enforcing ordering on the processes of replication and per-
sisting. Under low system load, Scalog and Fleet exhibit similar
median and P90 persisting times, but Scalog’s P99 persisting time is
noticeably higher. At higher throughput levels, Scalog’s median and
P90 persisting times also surpass those of Fleet. This observation
indicates that enforcing strict ordering, as opposed to out-of-order
execution, results in lower concurrency. Moreover, it is more sus-
ceptible to head-of-line blocking and tail latency effects, leading to
greater latency variance under high system loads.

6.4 Scale Out
The purpose of this experiment is to examine the scalability of
Fleet by adding more machines to the cluster. Clients are spawned
only on machines that host storage nodes.

Figure 5 presents the results obtained using 64B values and 4KB
values, respectively. Both figures illustrate how optimal throughput
changes with the increasing number of storage nodes. For reference,
each figure includes a horizontal line representing the optimal
throughput of Raft using 3 replicas.

For 64B values, the performance of Fleet scales until it reaches
the maximum speed at which the apply thread can execute put
operations on the in-memory map, approximately 5 Mops. This is
35× Raft’s 147 Kops. For 4KB values, Fleet achieves a throughput
of 456 Kops, which is almost 5.4× Raft’s 84 Kops. The bottleneck for
Fleet lies in the network, as its performance scales linearly until
the network bandwidth is saturated. When using 12 storage nodes,
each replica consumes 2.4GBps of its 2.5GBps bandwidth, which is
roughly the maximum throughput achievable by a no-replication
state machine using this type of machine.

The results for Scalog confirm that it can scale out nearly linearly
but achieves slightly lower throughput than Fleet. We attribute the
performance difference to the additional work Scalog performs in
generating and transmitting local cuts and global decisions periodi-
cally (every 0.1 ms). Besides, as previously discussed, the scale-out
results of the Fleet have reached the maximum replication capacity.
Consequently, any additional scaling of Scalog will only approach
this limit, as Fleet merely converges on the threshold.

6.5 Comparison with Partitioned Clusters
Classical consensus protocols cannot scale effectively by adding
moremachines. However, partitioning states into shards allows scal-
ing by assigning each an independent RSM. This section compares
the performance of this approach to the performance of Fleet in a

(a) Various Skewness(64B value) (b) Recovery Experiment
Figure 6: Various Skewness and Recovery Experiments.

realistic scenario: a spiky workload originating from a small portion
of applications. The goal is to determine if the peak throughput
remains within acceptable limits when the workloads concentrate
on a small range of keyspace.

In this experiment, we use a total of 9 machines for each setup.
For Raft, we evenly divide the keyspace into three shards, each
managed by a Raft group with 3 replicas. For Fleet and Scalog, we
use the separated deployment type with 3 replicas and 6 storage
nodes. It is important to note that we do not partition the keyspace
for Fleet and Scalog, as they apply all commands in a total order.
In contrast, Raft only provides weaker consistency since there is
no ordering constraint across shards.

The key access distribution follows a Zipfian distribution with 𝜁
ranging from 0 to 0.9. When 𝜁 = 0, the distribution is equivalent to
the uniform distribution. As 𝜁 increases, the distribution becomes
more skewed, such that requests disproportionately target one of
the shards. For each value of 𝜁 , we gradually increase the number
of spawned client threads until the throughput converges.

Figure 6a presents the results obtained using 64B values. Even
when the key access distribution is uniform (𝜁 = 0), Fleet achieves
more than 6.5× the throughput using the same number of machines
despite the weaker consistency of multiple Raft groups. This is
because each Raft group still faces limited parallelism due to the
aforementioned ordering restriction. At the highest skew level
(𝜁 = 0.9), Fleet outperforms Raft by an even larger margin.

Figure 6a also demonstrates that the performance of multiple
Raft groups declines as 𝜁 increases, because an increasing number
of requests are sent to the same Raft group. In contrast, Fleet main-
tains stable throughput because the workload can be distributed
across the entire cluster. Additionally, Fleet maintains 25% higher
throughput than Scalog, as observed in previous experiments.

6.6 Failure Recovery
This experiment aims to evaluate the performance of Fleet and
Raft under failure conditions. Since Scalog also uses Raft as its fault-
tolerance layer, its behavior is similar to that of Raft (e.g., Figure 4
in Scalog [15]). Therefore, we excluded Scalog from this subsection.

The YCSB target throughput is set at 10,000 ops, a rate at which
neither system is saturated and both maintain steady throughput.
We intentionally kill the leader and a non-leader replica at times (
t = 5 ) seconds and ( t = 10 ) seconds, respectively. The heartbeat
interval plays a crucial role in failure detection, as false suspicions
of failure can negatively impact performance. For our evaluation,
we use the heartbeat interval value suggested by etcd: 100 ms,
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Figure 7: Left: Throughput vs. Latency of etcd Benchmark.
Right: etcd Scale-Out Experiments. etcd-opt uses pre-apply.

with an election triggered after 10 missed heartbeats. YCSB reports
the throughput at its minimum interval of 1 second. In addition
to throughput, we measure the time taken for the new leader to
become fully functional.

Based on 100 runs, Raft takes 1126 ms for recovery after a leader
crash, while Fleet takes 1175 ms. The additional 50 ms overhead
(4.5% increase) is acceptable given the infrequency of recovery
operations. This overhead has minimal impact on throughput, as
demonstrated by Figure 6b. Both Raft’s and Fleet’s throughput
drop at similar rates after the leader crashes and resume to the target
throughput around the same time after the new leader is elected
and becomes functional. Furthermore, we observe that non-leader
crashes have no impact on throughput for either system.

6.7 Experiment of etcd
To evaluate the improvement in parallelism achieved by pre-applying
compared to the original sequential apply, we use Fleet as the un-
derlying log replication technique and the etcd MV database as the
application layer.

In Figure 7, the left figure illustrates the results of throughput
and latency using 5 nodes. Pre-apply outperforms sequential ap-
ply in both metrics. Even under extremely low client load (with 2
client threads), sequential apply exhibits 14% higher 90th percentile
latency (1.46 ms vs. 1.27 ms). Meanwhile, pre-applying achieves a
peak throughput that is 4.4× higher than sequential apply.

The right figure shows the results of scale-out experiments, with
settings the same as in §6.4. We observe that sequential apply has
stable throughput as it already reaches its peak performance. On
the other hand, pre-applying enables throughput to grow nearly
linearly until 9 storage nodes (a total 12-node cluster), achieving a
peak throughput of around 600K ops—more than 10× higher than
sequential apply. However, when 12 storage nodes are used, the
leader becomes overloaded in this implementation, resulting in a
slight performance decline.

7 RELATEDWORK
Coordination services can be implemented using the abstraction
of RSMs [33], which rely on consensus protocols to coordinate
replicas to agree on the same sequence of deterministic commands.
According to the FLP impossibility theorem [19], consensus is not
solvable in an asynchronous setting even with a single failure.

Paxos [34, 35, 38, 55] is one of the most influential consensus pro-
tocols, inspiring a series of works [32, 36, 37, 42, 43]. Despite their

significant influence in academia, the Paxos/Multi-Paxos protocols
are challenging to implement in practice due to their lack of clarity
in technical details. Raft [44, 45], a more recent protocol, addresses
this gap by introducing a more comprehensible approach, which
has gained substantial traction in industry [20, 25, 45, 52]. Both
Raft and Paxos are leader-based protocols susceptible to the single-
leader bottleneck, and several works have attempted to mitigate
this issue [12, 37]. Various systems have been proposed to enhance
the performance. Some improve read throughput by allowing reads
from followers [11, 54], while others enhance write throughput
by distributing writes to shards in a round-robin manner [4, 42].
Additional approaches include persisting entries before ordering
them [8, 15, 43], using weaker consistency or persistence guaran-
tees [30, 32], or offloading consensus functions to new network
hardware [28, 39]. Nonetheless, none of these solutions satisfy all
five requirements for coordination services as specified in § 2.1.

Whittaker et al. [56] analyze the performance bottlenecks of
consensus protocols and apply their compartmentalization tech-
nique to MultiPaxos. The resulting Compartmentailized MultiPaxos
(CMP) outperforms MultiPaxos at the expense of more machines.
CMP uses grid quorum [24, 46], a type of flexible quorum that or-
ganizes nodes into a grid layout. Furthermore, CMP is completely
in-memory while Fleet persists all data to disk to further reduce
the chance of data loss.

Bessani et al. [7] analyzed the performance problems of durable
RSMs and proposed parallel logging, which aims to batch loggings
from different consensus groups to improve efficiency when writ-
ing to disk. This approach is orthogonal to Fleet’s enhancements
in the concurrency within a single consensus group. Eventually
Durable (ED) RSM [31] allows applications to make latency/dura-
bility tradeoffs but entails the risk of data loss, making it unsuitable
for our target scenarios.

8 CONCLUSION
This paper identifies several bottlenecks in existing coordination
services and proposes Fleet, a high-performance RSM protocol that
leverages a hybrid log approach to enhance performance. Fleet
decouples the fast persistence of individual log entries from the re-
quirement for totally ordered persistence. By relaxing ordering and
placement restrictions, Fleet achieves higher parallelism without
compromising consistency. It achieves fault tolerance through a
hybrid storage layer that integrates scattered log entries for syn-
chronous persistence and centralized ordered logs for asynchronous
persistence, facilitating rapid recovery. Additionally, Fleet incor-
porates a parallel applying optimization for etcd.

Our evaluation demonstrates that Fleet significantly enhances
throughput without compromising latency, achieving a 7× increase
in throughput compared to Raft on identical hardware. With ad-
ditional resources, Fleet can scale linearly until constrained by
network bandwidth or single-thread processing limitations. En-
abled with the pre-apply optimization in etcd, it achieves 600k
operations per second using a 12-node cluster, which is 10× faster
than the baseline. Although Fleet incurs a 50ms delay in recovery
time following leader failures, the impact is minimal due to the
infrequency of such events.
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