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ABSTRACT
Modern data-intensive applications require databases that support
fast analytical processing on massive dynamic graphs in real time,
while simultaneously providing transactional guarantees for modi-
fying graph-based objects (i.e., edges, vertices and their properties).
Achieving efficient Hybrid Graph Transactional/Analytical Pro-
cessing (HGTAP) in a database poses significant challenges due to
the simultaneous requirements of high operation throughput, high
data freshness, and high performance isolation when processing
concurrent read/write queries on intricate graph topology. Existing
disk-based graph databases fail to meet these requirements at the
same time due to their inclined data layout, such as the transac-
tional storage based on adjacency list and the analytical storage
based on CSR (compressed sparse row) format.

To address these challenges, we present BACH (Bridging Adja-
cency List and CSR Format using LSM (Log-Structured Merge)-
Trees for HGTAP Workloads) to fill the gaps in HGTAP databases.
BACH expands the design space of traditional LSM-Trees to ac-
commodate different graph data layouts in different levels. The
compaction process is further extended to seamlessly transform
the graph layout from the TP-friendly adjacency list to the AP-
friendly CSR format through the data propagation to deeper levels
in the LSM-Tree. A novel compaction policy, namely elastic merge,
is carefully devised to adapt to diverse workloads and the skew
vertex degree distribution on graph data. These techniques lead to
a Graph-aware Real-time (GR)-LSM-Tree, which can provide consis-
tently efficient data access for diverse workloads throughout the
entire lifespan of graph objects. Then, a lightweight multi-version
scheme is devised for the GR-LSM-Tree to accelerate the concur-
rent read/write processing with the snap-shot isolation guarantee.
Comprehensive experiments demonstrate that BACH significantly
outperforms other disk-based graph database solutions in HGTAP
workloads.
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1 INTRODUCTION
Graph data has become increasingly crucial in modern data-driven
applications [1, 2], as massive graph processing is behind numerous
computing scenarios, such as e-commerce recommendation [3, 4],
social media network analysis [5, 6], fraud detection [7, 8] and
graph-based deep learning [9, 10]. To accommodate various appli-
cation scenarios, graph databases are required to support a wide
range of graph computations, which can be broadly categorized
into two types of workloads: graph transactional processing (GTP)
and graph analytical processing (GAP) [1]. Typically, GTP queries
access individual edges, vertices, or the neighborhood of a spe-
cific vertex (i.e., the edges, and vertices that are adjacent to it) and
require atomicity and isolation during the concurrent insertion,
deletion, or modification of multiple vertices and edges. While
GAP queries typically involve exploring a large portion or the en-
tire graph (e.g., PageRank and Breadth-First Search) on a static
graph snapshot, requiring complicated multi-hop graph traversal
and pattern matching processing. And graph pattern matching in
contemporary applications often incorporates costly scan-based
predicates on properties of graph objects, such as filtering, aggre-
gation, and projection [11], which introduces more challenges for
efficient graph analytical processing.

Meanwhile, there is a growing demand for hybrid graph transac-
tional/analytical processing (HGTAP) in real-world applications [12,
13]. These applications require fast real-time analysis on dynamic
graphwith transactional guarantees for precise and prompt decision-
making. For instance, in the task of real-time tele-fraud detection,
phone signaling transactions are recorded as edge insertions be-
tween users. It is imperative to detect abnormal calling behaviors
and annotate the phone number of criminals in real-time based on
graph analysis for timely user notification prior to answering mali-
cious calls. While in short video applications, real-time user behav-
iors (e.g., clicks, likes, comments), which are recorded in the form
of edge insertions or updates between users and videos vertices
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in a graph, are aggregated to optimize real-time recommendation
strategy [13]. Other examples include real-time adjustments for
marketing planning based on sales transactions in live streaming
e-commerce and real-time fraud detection based on trading transac-
tions in finance [8, 14, 15]. It’s hard for in-memory storage systems
to handle such scale of large graphs in these scenarios (billions of
edges), while it is also a waste of resources to store the entire graph
in memory as not all graph data are needed for query processing at
all times.

Unfortunately, building a disk-based graph database lacking the
byte addressing capability to efficiently support HGTAP is not a triv-
ial task since it simultaneously requires high operation throughput,
high data freshness, and high performance isolation when pro-
cessing concurrent read/write queries on intricate graph topology.
Existing graph storage structures, despite offering hard trade-offs
between update friendliness and static analytic performance, fail
to meet these requirements at the same time due to their inclined
design. For example, the TP-friendly adjacency list structure repre-
sents a graph as a collection of unordered lists, where each list stores
the set of neighbors of a particular vertex in the graph. The separat-
ing management enable adjacency list-based structures to support
efficient graph transactional processing, but it fails to support high
throughput graph analytical processing due to the large amounts of
random I/Os caused by inconsecutive edge scans [12, 16, 17]. The
AP-friendly CSR structure, on the other hand, represents a graph in
the form of an adjacency matrix and compresses the sparse matrix
into two compact one-dimensional arrays for storage. Due to its abil-
ity to ensure purely sequential edge scan, the CSR format has been
widely acknowledged as the most compact and efficient structure
for most graph analytical processing tasks [14, 17–21], but will incur
significant write amplifications and data movements when process-
ing in-place edge deletions and insertions, thus failing to support
high-throughput graph transactional processing [12, 16, 18].

In order to provide more balanced query performance and better
trade-offs between graph transactional and analytical processing
in a database, recent research focuses on transforming graph data
between different types of storage structures in batches [14, 22], or
devising novel MVCC (multi-version concurrent control) schemes
to alleviate concurrent read-write blocking based on a specific graph
storage structure, such as the adjacency list-based schemes [12, 16,
23] and the CSR-based schemes [18–20]. Despite offering good per-
formance isolation and operation throughput, the first solution fails
to support real-time analysis due to its low data freshness, and sig-
nificantly increases the difficulty in guaranteeing data consistency
and the system maintaining cost due to the existence of two data
pipelines. While the second solution provides higher data fresh-
ness, it compromises the original benefits of basic graph storage
structure and introduces extra overhead to search for the appro-
priate version of graph-based objects, resulting in worse operation
throughput and lower performance isolation. Consequently, con-
temporary designs of disk-based dynamic graph storage still face
significant challenges in supporting efficient HGTAP.
Desiderata. To address these challenges, we outline the following
desiderata for disk-based HGTAP databases to meet the simultane-
ous requirements of high operation throughput (D1, D2), high
data freshness (D3) and high performance isolation (D4):

𝐷1○ The graph transactional processing should prioritize se-
quential and batched disk I/Os, while minimizing write am-
plification and data movement. To achieve high TP throughput,
the writes of graph objects should be flushed into disk in batches,
rather than incurring a large amount of fragmented, random disk
I/O operations or causing severe write amplifications like CSR.
𝐷2○ The graph analytical processing should achieve compa-
rable query performance and the same computational com-
plexity to static CSR-based purely sequential edge scans. To
achieve high AP throughput closed to static CSR format, the edge
scan should be almost purely sequential and causes only a constant
times of additional random I/O operations in addition.
𝐷3○The data changes committed by graph transactions should
be promptly accessible for graph analytical processing. To
achieve high data freshness, ideally, there should not be any time
gap and batched transformation between graph transactions com-
mitted and their accessibility in graph analytical processing.
𝐷4○ The concurrent graph transactional and analytical pro-
cessing should be controlled without interruption or block-
ing between them, while not introducing extra complexity to
edge scans. To achieve high performance isolation, the concurrent
graph transactional and analytical processing should not interrupt
or block each other. And the control scheme should not introduce
extra random I/O operations to edge scans.
Opportunities. As shown in Table 1, satisfying any two of the four
desiderata is relatively simple, but the combination of three or four
is significantly challenging, and none of the existing graph storage
structures satisfies all four desiderata to our best knowledge. In
this paper, we revisit the classic LSM (Log Structured Merged)-
Trees structure and discover that it provides a potential framework
to achieve the aforementioned desiderata for HGTAP due to the
following reasons:
𝑂1○ LSM-Trees are write-optimized. The edge writes are initially
buffered in memory and only incur batched and sequential disk
I/Os within LSM-Trees. And the write amplifications are amortized
at file grain and concealed by the backstage compactions.
𝑂2○ The sequential data structure within LSM-Trees can facil-
itate sequential edge scans. The inner sequential data structure
in LSM-Trees has the potential to accommodate CSR-like graph
storage layout, thereby facilitating sequential edge scans.
𝑂3○ LSM-Trees can accommodate different graph layout in dif-
ferent levels within one data pipeline, ensuring continuous
accessibility throughout the entire lifespan of graph objects.
LSM-Trees store older data in deeper levels and enable seamless
graph layout transitions during the data propagation to deeper lev-
els. The committed graph transactions can be immediately accessed
by graph analysis, thereby providing high data freshness.
𝑂4○ LSM-Trees follow the out-of-place data ingestion para-
digm and naturally support multi-versioning. The writes to
LSM-Trees are first buffered in memory, and then be propagated to
immutable read-only disk files in batches, providing high perfor-
mance isolation. And the scan for searching appropriate version is
ensured to be sequential and will not introduce extra random I/Os.
Contributions.We tend to seize these opportunities and take a first
step in expanding the design space of LSM-Trees and providing
efficient navigation for HGTAP to achieve enhanced operation
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throughput, data freshness, and performance isolation. In summary,
this paper makes the following contributions:
• We propose the Graph-aware Real-time (GR)-LSM-Tree, which

extends the traditional LSM-Trees structure for the first time
with the ability to accommodate different graph-aware storage
layouts in different levels to accelerate HGTAP (§3).

• The compaction process is further extended to enable seamless
transitions of graph layouts from TP-friendly adjacency list to
AP-friendly CSR format through the data propagation to deeper
levels in the GR-LSM-Tree, ensuring consistently efficient data
access throughout the entire lifespan of graph objects (§4, §5).

• A novel fine-grained compaction policy, namely Elastic merge,
is carefully devised for GR-LSM-Tree to adapt to diverse graph
workloads and skew vertex degree distributions, providing better
trade-offs between write amplifications and lookups latency (§6).

• A novel lightweight MVCC scheme is devised based on the
characteristics of the GR-LSM-Tree, incorporating a fine-grained
garbage collection mechanism to ensure efficient HGTAP with
snapshot isolation guarantee (§7).

Table 1: Comparison between different dynamic graph stor-
age systems (DT for Desiderata, ADJ for adjacency list, ⃝ for
partial support, failing at the worst case).

DT Livegraph [12]
ADJ-based

LLAMA [19]
CSR-based

GraphOne [22]
Hybrid store

Teseo1 [20]
𝐵+-Tree based

BACH
LSM-based

D1 × ✓ ✓ × ✓
D2 × × × ⃝ ✓
D3 ✓ ✓ × ✓ ✓
D4 ⃝ × ✓ ⃝ ✓

2 BACKGROUNDS
Graph Representation. BACH adopts the property graph (PG)
model to represent graph data due to its flexibility and popularity [1,
12, 13], where both vertices and edges can have associated labels and
properties. Figure 1 (a) shows an example of a property graph used
in short video app (e.g., TikTok), which contains vertices labeled
User and Video, and edges labeled Follows, Like and Post. The schema
is varied with the labels of vertices/edges (e.g., User with {name, age}
properties, Like with {time} property). Like most graph systems, we
adopt the no-repeated-edges semantics as foundation [11] (i.e., an
edge is uniquely determined by its source and destination vertex).

As mentioned above, the graph topology is typically stored in the
TP-friendly adjacency list (AL) or the AP-friendly CSR structure in
the graph databases. As shown in Figure 1, the properties in the PG
model can be stored correspondingly in an inconsecutive format
with the adjacency list (Figure 1 (b)) or in a consecutive columnar
format with the CSR structure (Figure 1 (d)). Another graph storage
format is edge list (Figure 1 (c)), which is commonly employed
when storing a graph in a key-value or relational database, as it
represents each edge and its property as a key-value pair. This
format facilitates graph transactional processing but is rarely used
for graph analytical processing due to its redundant storage and
inefficient edge scans.

Given a graph pattern matching query with filters in Cypher
language: “MATCH (a:User)—[e:like]→(b:Video) WHERE e.time
1 Although Teseo [20] focuses on in-memory storage for dynamic graphs, the intro-
duced 𝐵+-Tree variant exhibits the promising potential to support disk-based HGTAP.
In this analysis, we intactly extend its applicability to the disk storage model.

> 𝑑0 and b.tag = 𝑡0 RETURN ∗ ”, processing the filter “e.time >
𝑑0” triggers a purely sequential scan on the edge property col-
umn in the CSR-based structure (Figure 1 (d)), while introducing
four random I/O operations in the AL-based structure (Figure 1
(b)). However, when it comes to updating, inserting, or deleting
the edges, it is obvious that the separating management makes
AL-based structure more efficient than the CSR-based structure,
as the latter typically requires to rebuild the overall compact ar-
rays. Despite the utilization of auxiliary structures (e.g., snapshots,
multi-versions, or hybrid structures) can enhance the analytical
performance of adjacency lists [12, 16, 22], or improve the update
friendliness of the CSR structure [14, 18, 19], these approaches of-
ten compromise their original advantages due to poor performance
isolation or sacrifice data freshness and transactional supports.
LSM-Trees Basics. The LSM-tree (Log-structured Merge-tree) has
been widely adopted in the storage layer of modern NoSQL systems
(e.g., key-value storage RocksDB [24]). Different from traditional
index structures that apply in-place updates, LSM-Trees defer data
file writes and buffer data modifications in a memory-resident seg-
ment, while employing a tree structure or skip-list to maintain the
order of inserted records. These modifications are then propagated
to the immutable disk files through sequential and batched I/Os.
The immutable files on the disk are organized into sorted runs in dif-
ferent levels. The entries in each sorted run are sorted based on the
index keys, which can be stored as a single file or alternatively parti-
tioned into several smaller files known as Sorted String Tables (SSTs).
A trivial way to store graphs in LSM-trees is using the edge list
format. As mentioned above, the edge list format represents each
edge and its property in the PG model as a key-value pair, where
the key is typically composed of the ID of the source vertex and
the destination vertex (Figure 1 (c)). In this way, the LSM-Trees can
be employed to improve the write efficiency of graph transactional
processing based on the edge list format.
The Compaction Policy.With the continuous writing of changes
to edges, the files on disk accumulate over time. And the query
performance tends to degrade, as it may require accessing more
files with overlapping key range in order to locate a record with a
given key. To alleviate this problem, the disk segment is organized
into 𝐿 logical levels of increasing size with a size ratio of 𝑇 . And
the files are merged during the data propagation to deeper levels by
a backstage process called compaction. As shown in Figure 2, two
types of merge policies are typically used in practice, namely tiering
and leveling [25]. The core difference between the two strategies
lies in the number of sorted runs permitted in each level within a
LSM-Tree. The leveling strategy strictly limits a single sorted run
for each level. As shown in Figure 2 (a), in leveling merge, a SST at
level 𝐿 will be merged multiple times with incoming SSTs at level
𝐿−1 until it fills up. Then it will be merged with the multiple SSTs at
level 𝐿 + 1 that share the overlapping key ranges with it. The tiering
merge, on the other hand, allows multiple sorted runs in a level, and
the size of SSTs increases in deeper levels. As shown in Figure 2 (b),
when a SST is full, it will be merged with several adjacent SSTs in
the same level into a larger sorted run and be directly propagated to
the next level. The trade-offs between the two merging policies are
well understood: the leveling suffers higher write amplifications,
but provides better read performance than tiering. As the leveling
policy necessitates multiple merges of a full SST with several SSTs
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Figure 1: Example property graph instance and various graph storage structures for edge labeled Like.
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Figure 2: Edge list based LSM-Tree structure

in the subsequent level, but ensuring non-overlapping key ranges
among the SSTs within each level after merges. While the tiering
reduces the merge frequency, it introduces additional complexity in
the search of a specific key due to overlapping key ranges among
multiple SSTs.

However, although the LSM-Tree based on edge list graph storage
format can improve the efficiency of edge writes, it fails to meet all
the requirements for efficient HGTAP. This is mainly attributed to
the inherent limitations of trivial key-value storage structure within
LSM-Trees, which fails to ensure sequential edge scans for efficient
graph analytical processing compared to graph-aware structures
like the CSR format. In fact, expanding the design space of LSM-
Trees to support efficient HGTAP is not straightforward. As the
fulfillment of all desiderata for HGTAP mentioned above requires
careful and thorough optimization of the embedded data structures,
compaction policy, and MVCC scheme within LSM-Trees.

3 DESIGN OVERVIEW OF THE GR-LSM-TREE
The design overview and system architecture of GR-LSM-Tree are
depicted in Figure 3. The GR-LSM-Tree comprises of a Memory-
Resident Component based on the adjacency list to buffer edgewrites
and a On-Disk Component based on the CSR format to facilitate
sequential edge scan. In memory, the active AL-tables first buffer
the edge writes and organize the graph data in the form of an adja-
cency list to enable efficient graph transaction processing with high
throughput (Figure 3 (a)). Upon reaching its maximum capacity, an

active AL-table will be frozen and compacted into an immutable
CSR-table that is ready to be flushed to disk (Figure 3 (b)). On disk,
the space is organized into multiple logical levels by the compaction
process as well. Once a level reaches its maximum capacity, CSR-
tables in this level will be merged to a larger one in the next level
by the tiering-like or leveling-like merge policy. The determination
of the merge policy is driven by the running workloads and the
vertex degree distribution, enabling GR-LSM-Tree to possess self-
tuning capability and provide consistently superior performance
throughout the lifespan of all graph objects (§6). And the snapshot
isolation is consistently ensured throughout the HGTAP by employ-
ing a cooperative in-memory lifetime interval-based and on-disk
file snapshot-based multi-version concurrent control scheme.

Overall, the GR-LSM-Tree accommodates different graph data
layout in different levels, facilitating seamless transitions of graph
storage structure from TP-friendly adjacency list to AP-friendly
CSR format during data propagation to deeper levels, thereby pro-
viding consistently superior performance throughout the entire
lifespan of graph objects. The detailed graph-aware structures of
GR-LSM-Tree and corresponding graph operations are illustrated in
the following sections.

4 THE GRAPH-AWARE STRUCTURES
The GR-LSM-Tree incorporates two essential graph-aware data
structures: the AL-table and the CSR-table, which respectively orga-
nize the graph data in the form of adjacency-list and CSR format.
Memory-Resident AL-table. Edge writes are initially buffered in
memory and hashed into multiple memory partitions at 𝑂 (1) cost
based on the source vertex ID. Each of these memory partitions is
referred to as an AL-table, as it stores the graph data in the form of
an adjacency list. For example, in Figure 3 (a), edges sourced from
sixty source vertices are hashed into fourAL-tables. In eachAL-table,
an edge pool is maintained to facilitate efficient memory allocation
and sequential edge insertion. In case an edge has multiple versions
(i.e., it has been modified multiple times), the stale versions will
not be deleted immediately. Instead, the lifetime information of
each edge version will be recorded as a time interval [Creation_time
(𝑇𝐶 ), Deletion_time (𝑇𝐷 )] to avoid read-write blocks. And a skip-list
index is maintained for each adjacency list to accelerate the location
to the newest versions in the edge pool (ignored in Figure 3). If the
stale version has already been flushed to disk, a tombstone will be
inserted to the original position to indicate its deletion. Additionally,
each version will have a physical pointer that points to the previous
version in memory, resulting in a version chain. Upon reaching its
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Figure 3: Overview of Graph-aware Real-time (GR) LSM-Trees

maximum capacity, the AL-table becomes immutable (i.e., frozen)
and triggers a transition of the graph storage format from adjacency
list to CSR format, resulting in an immutable CSR-table (Figure 3
(b)). This transition prepares the data to be flushed to disk in a
sequential data structure and facilitates efficient graph analytical
processing, since the CSR-table is more compact and ensures purely
sequential edge scans. Meanwhile, since the disk files in GR-LSM-
Tree are not required to handle in-place data updates, fine-grained
lifetime information is no longer needed in CSR-tables. And all of
the stale versions (i.e., are already deleted before the flush) will be
timely deleted before being propagated to disk.
On-disk CSR-table. As shown in Figure 3 (b), there are only three
compact arrays stored in a CSR-table: the edge array, destination
array, and property array. The edge array and destination array
represent the classic CSR graph storage format, while the property
array consecutively stores the edge properties in blocks, ensuring a
purely sequential edge scan. Additionally, each CSR-table maintains
a bitmap of the source vertices and a vertex-grained edge bloom
filter, as well as an overall lifetime information interval of all stored
versions in metadata to facilitate a quick determination of whether
the appropriate edge versions sourced from a specific vertex are
stored in this CSR-table. Specifically, BACH replaces the file-grained
probabilistic bloom filter (bf ) in traditional LSM-Tree with a de-
termined and lightweight source vertex bitmap together with a
vertex-grained edge bloom filter to amortize the false positive rate
and provide better neighborhood locality, while still remaining the
𝑂 (1) complexity for edge lookups. This is mainly attributes to the
source vertex-based fixed partition scheme, which allows us to de-
termine the concrete size of the bitmap in each CSR-table during the
compactions. The lightweight bitmap index can be further cached
in memory to avoid unnecessary I/Os [25, 26]. As files accumulate,
the disk space is organized into multiple logical levels by the com-
paction process. Once a level reaches its maximum capacity, smaller

CSR-tables in this level will be merged to a larger one in the next
level by tiering-like merge or leveling-like merge.

5 BASIC GRAPH OPERATIONS
Edge Inserts.The edge inserts are initially buffered in the in-memory
active AL-table. This process involves hashing the newly inserted
edges to their respectiveAL-tables and allocating the corresponding
list based on the source vertex ID of each edge in 𝑂 (1) complexity.
The newly inserted edge versions will be sequentially written at the
tail of the edge pool array. After insertion, the Creation_time of this
version will be recorded as the timestamp at which this transaction
is processed according to the transaction pool management (§7),
while the Deletion_time is set to −1 (indicating that it is still alive)
for subsequent updates or deletions of this edge.
Edge Deletes. Rather than directly execute in-place edge deletes,
BACH employs a lazy deletion strategy like other LSM-based sys-
tems. Specifically, if the target edge has the most recent version
stored in the memory-resident active Al-table, the deletion process
will directly modify the Deletion_time of the target edge version to
match the timestamp at which the deletion transaction is processed.
Otherwise, if the stale versions of the target edge has already been
flushed into disk within a immutable CSR-table, the deletion process
will not require in-place modification of the edge version on disk
in case of causing a large amount of random and fragmented disk
I/Os. Instead, a tombstone will be inserted to its corresponding
position in AL-table following the same insert process (as depicted
in Figure 3 (a)), which records the timestamp of when the edge
version is deleted. The tombstone will be subsequently propagated
to deeper levels by the compactions and be reclaimed at the bottom,
ensuring that all stale versions with the same key remaining in
upper levels have been physical deleted.
Edge Updates. The processing of an edge update operation is sim-
ilar to that of edge insertion. Specifically, if there exist previous
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versions of this edge in the memory-resident active AL-table, the
new version will be linked to the head of the version chain and a
physical pointer will be added between the version and its prede-
cessor. Followed by modifying its Creation_time and Deletion_time
of the previous version of this edge. Otherwise, the new version
will be directly inserted to its position if the previous version has
already been flushed to disk. The simplified update operation will
not introduce any chaos, as only the entry with the most recent
timestamp can survive during a compaction.
Edge Lookups. During the search for a specific edge, the memory-
resident AL-tables are accessed with preference. This process in-
volves 𝑂 (1) adjacency-list location and 𝑂 (𝑙𝑜𝑔𝐷) edge lookup to
the newest version facilitated by the skip-list index. If there is no
appropriate version that satisfies the query condition in the version
chain within the AL-table, the on-disk component is accessed for
further search. Specifically, the search on disk will initiate at the top
of the GR-LSM-Tree (i.e., level 0) and gradually proceed to deeper
levels, accessing CSR-tables with the key range that contains the
edge’s source vertex ID. The search process first verifies whether
the timestamp of the read query falls within the overall lifetime
interval maintained in the metadata and subsequently checks the
source vertex bitmap and the edge bf to determine whether the
target edge is stored in the CSR-tables. If either of the two checks
returns false, the search process will directly skip the scan of this
CSR-table. Otherwise, the Edge array and the Destination array will
be further accessed to locate the target edge and obtain the offset of
the edge property in the Property array. If the search process first
encounters the tombstone of this edge, it indicates that the edge
version has already been deleted and will return empty results. The
search process will end as soon as it finds the appropriate version
of the edge in an AL-table, or encounters the latest version of the
edge or its tombstone in a CSR-table, since there is only a correct
version living at the time of the read query is processed.
Neighborhood Scans. Neighborhood scan of a specific vertex will
first locate all AL-tables and CSR-tables with the key range contain-
ing the vertex ID across all levels within the GR-LSM tree. Since a
CSR-table indexes the source vertex IDs as keys, the neighborhood
scan can be accelerated by the memory-cached bitmap to reduce
unnecessary file accesses. The file snapshot-based MVCC scheme
(§7) ensures that the latest version of a specific edge is just the
appropriate version in the accessible snapshot of GR-LSM-Tree as-
signed to a read transaction. Therefore, during the top-to-down
search in the GR-LSM-Tree, we maintain an intermediate bitmap to
indicate whether the latest version of an edge has been processed al-
ready and skip the evaluation of staled versions. Within a CSR-table,
the search process will allocate the target neighborhood based on
the Edge array in 𝑂 (1) complexity. And the staled edge versions
will be identified and discarded if their corresponding unit in the
intermediate bitmap has already been set to 1.
Edge property (Long range) Scans. Graph analytical processing
on property graphs (e.g., complex sub-graph pattern matching with
filters) requires to scan a large part of the graph. During which, the
full scan of edge properties with a specific label may be required.
As shown in Figure 1, processing the filter “Like.time > 𝑑0” requires
to scan all edge properties labeled Like. In GR-LSM-Tree, the CSR-
tables are scanned level by level in a purely sequential way. In each

CSR-table, the property array are scanned to evaluate the filter while
the Edge array and the Destination array are scanned to retrieve
the corresponding source and destination vertices of legal edges.
Followed by generating a {source vertex, edge property, destination
vertex} tuple in the intermediate table. The ordered intermediate
results obtained from scanning each level will be merged with the
result from the previous level to discard staled edge versions, and
get a final result upon completion of the search in the last level.
Vertex Operations. Vertex reads first access the vertex index and
then the vertex block. The frequency of updates for vertices is
comparatively lower than that of edges [1, 12, 13], thus vertex
writes create a version chain of the vertex block on disk, and set the
vertex index to point to the newest version. In the uncommon case
where a read requires a previous version of the vertex, it follows
the per-vertex linked list of vertex block versions in backward
timestamp order until it finds a version with a timestamp smaller
than its read timestamp.

6 WORKLOAD-DRIVEN ELASTIC MERGE
The Problems of Current Designs. Compaction policy greatly
influences the performance of LSM-based systems by determin-
ing their update cost, delete persistence latency, point and range
lookups performance, space amplification, and write amplifica-
tion [25–27]. However, as depicted in Figure 4 (a), both the tiering
and leveling compaction polices present hard trade-offs between
these performance indicators in HGTAP, resulting in an imbalanced
and non-hexagonal shape on the performance radar chart. Unbal-
anced performance severely restricts the effective adaptation of a
single compaction policy to diverse graph workloads and vertex
degree distributions. As shown in Figure 4 (b), existing compaction
policies fail to achieve excellent and stable performance when graph
workloads vary across vertex ranges and change over time, which
is a common situation in real-world HGTAP scenario (e.g., a sudden
burst of likes to a specific video in TikTok). Because neither the
leveling nor the tiering merge can maintain high throughput when
varying read ratios over time within a fixed vertex range or varying
average read ratios across vertex ranges within a fixed time win-
dow. Due to the imbalanced performance, the operation throughput
curve of leveling roughly varies in accordance with the trend of
read ratio and exhibits large fluctuations, while the throughput
curve of tiering exhibits synchronously opposite fluctuations (as
shown by the black and blue dashed line in Figure 4 (b)).

Read ratio
 

Read ratio

Leveling merge
Tiering merge
Elastic merge

Edge 
Update cost

Edge Delete 
persistence

Neighborhood
(short range) 

scans cost

Wirte amplification Space amplification

Better
State-of-the-art
 leveling merge

State-of-the-art
tiering merge

Elastic merge

Edge Property
(long range) 
scans  cost

time 0

1

vertex key

Operation 
throughput

Fixed vertex range 

0

1
Operation 
throughput

Fixed  time window

(a) Performance radar chart (b) Example of performance on varying workloads

     read_edges
  ( read_edges
 + write_edges)

Figure 4: The trade-offs between different compaction polices

BACH’s Solutions. BACH addresses this problem by carefully
devising a novel fine-grained merge policy for GR-LSM-Tree, named
Elasticmerge, which enables eachCSR-table to independently choose
the merge policy based on the characteristics of running workloads
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on it. This is mainly attributed to the optimization of memory-
resident AL-tables, which facilitates data propagation to the disk
within smaller fixed ranges of the source vertices. Specifically, a
𝑘−ary tree is constructed with these smaller vertex ranges as leaf
nodes when the corresponding CSR-tables are flushed to disk, where
𝑘 is the number of CSR-tables operated in one compaction. The
𝑘−ary tree is maintained in memory to track the running status of
the entire LSM-tree, where each node stores the counts of each type
of running operation and a file list of CSR-tables associated with the
corresponding vertex range. As shown in Figure 3 (c), 𝑘 adjacent
CSR-tables can be either merged into the latest CSR-table in their
father node following the leveling-like policy, or be merged together
to a new larger CSR-table and be directly added to the file list of
their father node following the tiering-like policy. The selection of
the compaction policy of target files is automatically tuned based on
the information of running workloads maintained in each node of
the 𝑘−ary tree. The compaction to the currently last level is strictly
controlled to follow the leveling-like policy, ensuring that the ma-
jority of the inserted graph data are compacted into CSR arrays
without overlapping ranges to facilitate sequential edge scans.

Furthermore, as illustrated in Figure 3 (c), BACH optimizes the
execution of tiering-like and leveling-like policy for CSR-tables to
achieve enhanced performance. Specifically, the tiering-like com-
paction will prioritize merging the CSR-tableswith non-overlapping
key ranges. This strategy enables pure splicing of the compact ar-
rays within CSR-tables, thereby fully leveraging the consecutive-
ness of the CSR format and reducing fragmented and random edge
retrievals during compactions. However, this kind of sequential
splicing compaction will hinder read performance and delete per-
sistence, since the tombstones will never encounter their owner
during the compactions. As for leveling-like merge, we optimize the
execution by enabling multiple adjacent CSR-tables to be merged
into the same CSR-table in the deeper level, thereby alleviating the
average edge write amplifications and the update costs.

Upon a level or an interval reaches its maximum capacity, 𝑘 adja-
cent CSR-tables in this level that share the same father in the 𝑘−ary
tree will be randomly selected and collectively added to a backstage
compaction queue. The compaction policy of the 𝑘 adjacent CSR-
tables will be determined by their Tombstone ratio and the Read ratio
maintained in their father node within the 𝑘−ary tree at execution
time. Specifically, as the Tombstone ratio and Read ratio increase,
the compaction execution tends to choose the leveling-like strategy
because it offers better edge read performance and enables more
timely deletion persistence. Conversely, as the two ratios decrease,
the tiering-like strategy will be chosen with preference to reduce
write amplifications and update costs for intensive edge writes.
In the current implementation, we employ the classic weighted
average method to drive the decision of the merge policy and leave
a space for users to tune the compaction policy between the pure
tiering-like and leveling-like execution based on customized require-
ments. This kind of fine-grained compaction strategy optimization
enables BACHwith self-tuning ability to efficiently handle a sudden
burst of edges writes to a super vertex while having slight impact
on the edges scan over other vertices. Furthermore, in case of the
intensive reads after the edge writes burst, BACH will trigger a
leveling-like major compaction to merge all tiered runs within the
target range into one sorted run in each level.

Complexity Analysis.Wemake detailed analysis of the operation
complexity for different graph storage layouts in Table 2, where 𝐷
represents the degree of target vertex and 𝐷 represents the average
degree of target vertex in each CSR-table, |𝐸 | represents the total
number of edges, 𝐵 represents the number of entries that fit into
a storage block, 𝐹𝑃𝑅 represents the false positive rate of bf, 𝑇 rep-
resents the size ratio between levels, 𝐿 represents the total levels
in GR-LSM-Tree and𝑀 represents the number of levels that exists
tired runs within the target vertex range made by Elastic merge.

The results show that leveling and elastic merge based GR-LSM-
Tree reaches the same operation complexity as CSR format in
Edge_lookup and Long range_scan, and achieves a great promotion
in sequential Edge_write performance, while slightly sacrifices the
efficiency of Neighbor_scan. This is because the most of edges (e.g.,
90% when 𝑇 is set to ten) are compacted to the overall CSR-table
at the bottom of GR-LSM-Tree, dominating the cost of scanning
other levels. While the cost of Neighbors_scan and Edge_lookup
are comparable to CSR format since it incurs at most 𝐿 times of
random I/Os (extra 𝑇 times for tiered runs) at the worst case. This
drawback can be potentially mitigated by utilizing the source vertex
bitmap in practice. Regarding edge insert performance, GR-LSM-
Tree significantly out performances CSR and adjacency list due
to the memory-resident buffering structure and the capability to
ensure batched and sequential disk I/Os. The analysis verifies the
promising advantages of GR-LSM-Tree in facilitating efficient HG-
TAP. As for the comparison between different compaction polices
in GR-LSM-Tree, Elastic merge reveals a more balanced performance
and offers better trade-offs between read performance and write
amplifications, which can be illustrated by the consistent color
shade of signs in Table 2. Therefore, Elastic merge enables BACH
to provide consistently superior performance and better overall
throughput for diverse graph workloads and skew vertex degree
distributions in HGTAP.
Table 2: The worst-case disk I/O cost comparison for different
graph storage solutions (▼, ♦, ▲ represents worse, the same,
or better compared to the classic graph storage structures
while the shades of color represent the degrees).

Operations ADJ CSR GR-LSM-Tree
Tiering Leveling Elastic

Edge_lookup 𝑂 (1) 𝑂 (1) 𝑂 (1 + 𝐹𝑃𝑅 ·𝑇 )▼ 𝑂 (1)♦ 𝑂 (1)♦
Neighbors_scan 𝑂 (𝐷

𝐵
) 𝑂 (𝐷

𝐵
) 𝑂 (𝑇 ·𝐿 ·𝐷

𝐵
)▼ 𝑂 ( 𝐿 ·𝐷

𝐵
)▼ 𝑂 ( (𝐿+𝑀 · (𝑇−1) ) ·𝐷

𝐵
)▼

Long range_scan
(random/sequential)

𝑂 ( |𝐸 |
𝐵
)

r.d
𝑂 ( |𝐸 |

𝐵
)

s.q.t
𝑂 (𝑇 · |𝐸 |

𝐵
)

s.q.t
▼ 𝑂 ( |𝐸 |

𝐵
)

s.q.t
♦ 𝑂 ( |𝐸 |

𝐵
)

s.q.t
♦

Edge_write
amplification
(random/sequential)

𝑂 (𝐷
𝐵
)

r.d
𝑂 ( |𝐸 |

𝐵
)

r.d
𝑂 ( 𝐿

𝐵
)

s.q.t
▲

𝑂 (𝑇 ·𝐿
𝐵

)
s.q.t

▲ 𝑂 (𝑀+𝑇 · (𝐿−𝑀 )/𝑘
𝐵

)
s.q.t

▲

7 MVCC SCHEME
To facilitate efficient HGTAP with timely correct results and reduce
concurrent read/write blocking, a novel lightweight MVCC scheme
is further devised for BACH based on the characteristics of GR-LSM-
Tree. The snapshot isolation is consistently ensured throughout the
lifespan of graph data by employing cooperative in-memory lifetime
interval-based and the on-disk file snapshot-based multi-version
concurrent control scheme.
Concurrent Transaction Processing. As shown in Figure 3,
BACH maintains a thread pool for concurrent transaction pro-
cessing, with each thread responsible for managing a transaction.
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All threads share two global epoch counters: GWC for writes and
GRC for reads, both of which are initiated to 0 and increase as trans-
actions progress. Each transaction maintains two local parameters:
local write counter (LWC) and local read counter (LRC).

A write transaction goes through three phases: start, persist and
commit. At the start phase, a write transaction initiates its LWC and
LRC to the current GWC and GRC, respectively. Then, the write
transaction will be added to an ongoing write list, and the GWC
will increment by one. At the persist phase, the write transaction
will perform the Edge operations (§5) in the target AL-table and
modify the Creation_time or Deletion_time of the edge version to its
LWC. Where the edge pool is implemented using a lock-free space-
doubling blocked linked list based on CAS (Compare-and-Swap)
operations to facilitate concurrent edge insertions, while the skip-
list index is also implemented in a lock-free manner. Thereby, the
anomalous situation of dirty writes, which occurs when a trans-
action updates a record and another transaction modifies it again
before the former commits, is excluded in a purely lock-free way.
Then, the modification log entries will be added to a sequential
write-ahead log (WAL) and be persisted to stable storage on disk for
database recovery. The write transaction is now ready to be com-
mitted and moved out from the ongoing write list. Meanwhile, the
GRC requires to be updated, as it equals the minimum LWC of trans-
actions in the ongoing write list minus one, thereby making the
committed transactions visible to read transactions. However, the
GRC may remain unchanged if there are transactions with smaller
LWC still being processed. This prevents a transaction from reading
a value written by another transaction that has not yet committed
(i.e., dirty reads), while also ensuring that the LRC of a transaction
is always smaller than the LWC of any ongoing transaction.
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Figure 5: The illustration of co-operative MVCC.

In-memory Lifetime Interval based MVCC. For a read transac-
tion, its LRC will be initiated to the current GRC as it starts. Then it
accesses a snapshot of the database determined by its LRC. Specifi-
cally, for the search in memory, it only considers the edge versions
whose lifetime interval satisfies ((Creation_time < LRC) AND ((LRC
< Deletion_time) OR (Deletion_time < 0))) during the search in tar-
get AL-table. This prevents BACH from the situation of read skew
and phantom reads, as the modification made by subsequent write
transactions is not visible (i.e., the life intervals of edge versions do
not satisfy the former condition) to the current read transaction.
On-disk File Snapshot based MVCC. As all files in GR-LSM-Tree
are immutable and only the compaction process can change the
file layout, expensive fine-grained lifetime information is no longer

needed. Instead, BACH assigns an accessible file snapshot to each
read transaction according to its LRC to ensure the correct retrieval
of edge versions. Each file snapshot involves the current state of
the in-memory 𝑘−ary tree, which maintains the physical addresses
of each CSR-table. Each snapshot also maintains an epoch counter,
namely GSN, which is determined when the snapshot is created.
Only the compaction (including the flushes of AL-tables) can trigger
a snapshot evolution. Upon reaching its maximum capability, an
AL-table will be frozen before being flushed to disk. Each frozen
AL-table maintains a epoch counter named LSN, which is equal
to the largest LWC of the committed transactions that operated
on it before the AL-table is frozen (e.g., 4 in FAT2 and 2 in FAT3
in Figure 5), and will be linked to a chain. When a new snapshot
is created by the flush of a frozen AL-table, its GSN will be set to
𝑚𝑎𝑥 {GSN of the last snapshot, LSN of the flushed AL-table} (e.g., 4
in Sn4 and 4 in Sn5 shown in Figure 5), and the frozen AL-table will
be linked to the stale snapshot (e.g., the link between Sn3 and the
FAT2). While the new snapshot will directly inherit the GSN of the
last snapshot if it is triggered by the backstage compaction (e.g., 1
in Sn3 shown in Figure 5).

As shown in Figure 5, a read transaction will first get its LRC
from the GRC and locate the newest frozen AL-table. Then it will
begin searching for legal versions in the active AL-tables and obtain
an accessible file snapshot whose GSN value is less than or equal
to its LRC. And the frozen AL-tables range from the newest to
the one linked to its obtained snapshot are also visible to the read
transaction (e.g., FAT2 in R4 in Figure 5), where the evaluation of
legal versions is based on the lifetime interval as well. Meanwhile,
all of edge versions and the tombstones in the assigned accessible
snapshot are ensured to have a Creation_time less than the LRC of
the read transaction. Thus, during the top-to-down search, the first
live version (which has not yet encountered its tombstone) of the
target edge is ensured to be legal, since its Deletion_time is ensured
to be larger than the LRC of the read transaction or be less than
zero. As for garbage collection, file snapshots (including stale files
that do not have snapshot references) and corresponding frozen
AL-tables will be physically deleted in time at once when there is
no ongoing read transaction holding them.

In summary, the snapshot isolation is efficiently supported by
BACH throughout the lifespan of graph objects since we rule out
the anomalous situations of dirty writes, dirty reads, read skew and
phantom reads. And all the necessary information for controlling
the concurrent read/write processing is directly embedded within
the inherent data structure in GR-LSM-Tree or be maintained by
the snapshot mechanism, thereby eliminating the need to build
auxiliary data structures and avoiding introducing extra complex-
ity to sequential edge scans.

8 EVALUATION
8.1 Experimental setup
Graph Datasets and Workloads.We employ four simple graph
datasets to test the performance of typical graph analytical algo-
rithms including BFS (breadth first search), CDLP (community
detection through label propagation), Pagerank, SSSP (weighted
shortest paths), WCC (weakly connected components), LCC (local
triangle counting) based on the same implementation in the GFE
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driver [28]. And two LDBC social network datasets with a scale
factor of 30 and 100 are employed to test the performance of com-
plex graph pattern matching with property filtering based on the
official driver. Detailed information of different graph datasets is
presented in Table 3.

Table 3: Graph dataset information
Dataset |𝑉 | |𝐸 | 𝐴𝑣𝑔.𝐷 𝑀𝑎𝑥.𝐷 𝑇𝑜𝑝1%.𝐷 Size

Datagen-8_5-fb (DA) 4.6M 332.0M 72 3.8k 783 10.3GB
Graph500-26 (GR) 32.8M 1.1B 32 668.9k 392 18.6GB
Com-friendster (CF) 65.6M 1.8B 28 3.5k 412 32.4GB
UK-2007-05(UK) 105.9M 3.3B 62.8 975.4k 596 58.2GB
LDBC-SF30 88.8M 540.9M 12 920.6k 185 34.4GB
LDBC-SF100 312.0M 1.1B 12 3.0M 194 102.3GB

Competitors. We comprehensively choose four disk-based graph
storage engines that support real-time analysis on dynamic graph
as competitors: Livegraph [12] (represents the adjacency list based
edge logs structure), LLAMA [19] (represents the CSR based snap-
shots structure), RocksDB [24] (represents the edge list based LSM
structure) and Neo4j [29] (represents linked list based adjacency
list). The selected competitors encompass the mainstream cate-
gories of disk-based dynamic graph storage structures.While Chunk-
Graph [30] is employed as a representative of the state-of-the-art
static hierarchical CSR format for analytics on simple graphs.
Platform. All experiments are performed on a 64-bit Ubuntu22.04
LTS workstation, equipped with an Intel Xeon E7-8860 @2.2GHz,
384GB DDR4 RAM and 2TB SATA SSD, which can achieve up to
400MBps sequential read/write performance. All codes are pro-
grammed in C++ and compiled using GCC v12.3.0 with O3 opti-
mization. The available memory for all systems has been uniformly
limited to 16GB in each experiment by using the Linux cgroup tools.
The timeout limitation is set to 3.6 × 104 seconds. All systems are
allocated 32 threads by default, with 16 threads for edge reads and
16 threads for edge writes. While the LSM-based systems use half
of the write threads for backstage compactions.
GR-LSM-Tree parameters setting. The size ratio 𝑇 is set to 10 by
default [24, 26, 27]. 1𝑀𝐵 limitation is set for each memory-resident
AL-table to contain edges sourced from up to 216 vertices and the
number of operated CSR-tables for one compaction operation 𝑘 is
set to 16 at most based on the size of the dataset. The weighted
average function for Elastic merge is set to 𝑇𝑅1/2 + 𝑅𝑅 with 1 as
the decision bound to facilitate timely garbage collection and edge
lookups, where TR represents for Tombstone ratio and RR represents
for Read ratio.

8.2 Graph Transactional Processing
Edge Insertion. In the edge insertion experiment, we first evaluate
the performance in terms of random access pattern, where the edges
are shuffled in a random order and sequentially inserted within
each transaction. As shown in Figure 6, BACH significantly outper-
forms other competitors in terms of both transactional operation
throughput and P99 latency for random access. Livegraph2 [12] ex-
hibits a fine insertion throughput due to its transactional adjacency
list-based storage structure. However, the in-place edge insertion
will lead to a significant number of random data accesses and reduce
2 We relax the memory limitation for Livegraph to exclude the influence of its mmap-
based implementation and focus on the comparison of transactional efficiency of
different graph storage structures for the moment.
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Figure 6: The GTP throughput comparison (r.d denotes ran-
dom pattern, s.q.t denotes sequential pattern, d.l.t denotes
deletion, P99 denotes the P99 latency in microsecond and dec
denotes performance decline rate of average throughput)

the overall throughput. While other systems follow the out-of-place
data ingestion paradigm, which enables batched and sequential I/Os
by buffering edge writes in memory first. However, LLAMA [19]
processes edge insertions by taking incremental snapshots in CSR
format, which is limited to be flushed to disk in serial to main-
tain the update orders. And the simple key value-based memory
structure employed by RocksDB [24] will significantly increase
the cost of sorting and allocating inserted edges for a huge part of
the graph, while the adopted group commit mechanism will some-
times choke the transactional processing as well. In contrast, Bach
optimizes the memory-resident structure by partitioning it into
smaller transactional ADJ-tables with fixed source vertex range to
provide better edge locality and higher insert parallelism. And the
tiering-like compaction outperforms the leveling-like compaction
in BACH due to its lower write amplifications and reduced disk
flush latency. As a result, tiering merge based BACH consistently
achieves an average TP throughput of over 1 million across all tests,
significantly outperforming all other competitors.

Sequential Access Pattern. Numerous real-world applications
require to process intensive edge insertions in terms of sequential
access pattern (e.g., a sudden burst of likes to a video). Where the
edge insertions within a period of time are highly related to the
same group of vertices and exhibit a strong temporal locality [21].
In this experiment, most competitors experienced notable declines
in performance due to the obstruction of write transactions. Liveg-
raph encounters the most severe degradation, as it requires a lock
of the entire adjacency list when processing edge insertion and
necessitates resizing the edge transactional files upon reaching its
full capacity. As for LLAMA, the sequential insertions will cause
a more significant data movement to modify the CSR-like array
within an incremental snapshot, leading to a considerable degrada-
tion as well. RocksDB demonstrates moderately low, yet consistent
throughput in sequential access pattern, attributed to its absence

1517



DA GR CF UK
(A) BFS

100

101

102

103

104

Q
ue

ry
 la

te
nc

y(
s)

BACH-leveling BACH-tiering LiveGraph RocksDB LLAMA Neo4j ChunkGraph

DA GR CF UK
(B) Pagerank

101

102

103

104

DA GR CF UK
(C) SSSP

100

101

102

103

104

DA GR CF UK
(D) WCC

100

101

102

103

104

DA GR CF UK
(E) CDLP

101

102

103

104

Q
ue

ry
 la

te
nc

y(
s)

DA GR CF UK
(F) LCC

102

103

104

Short-SF30 Short-SF100 Complex-SF30 Complex-SF100
LDBC Interactive (average)

0

200

400

600

800

1000

Q
ue

rie
s p

er
 se

co
nd

s

BI-3-SF30 BI-3-SF100 BI-12-SF30 BI-12-SF100
LDBC BI

102

103

104

Q
ue

ry
 la

nt
en

cy
(s

)

3.6x10^4 3.6x10^4 3.6x10^4 3.6x10^4

3.6x10^4 3.6x10^4 3.6x10^4

Figure 7: The Graph Analytical Processing Performance comparison

of graph-aware structures in basic key-value storage. BACH vari-
ants sustain fairly high transaction throughput due to the lock-free
AL-table implementation, which substantially reduces the block of
edge writes in sequential pattern. However, the leveling-like merge
experiences a more significant performance decline and higher tail
latency compared to the tiering-like merge, as evidenced by both
throughput and P99 latency. This is attributed to its higher merging
costs, which can potentially lead to more frequent write stalls in
temporal intensive insertions within certain vertex ranges.
Edge Updates. We further test the GTP performance when incor-
porating edge updates in random edge insertions. Bach variants
remain minimally affected by this issue, as we employ the lifetime
interval-based MVCC scheme in conjunction with tombstone-based
edge deletions to facilitate concurrent edge writes. This approach
enables append-only edge writes and effectively mitigates memory
write amplifications. RocksDB remains stable, but relatively low
throughput due to its similar tombstone-based deletion mechanism
and the naive key value-based memory structure. While Liveg-
raph experiences performance degradation caused by an expensive
search for the target edges in the TEL structures during the in-place
modifications. LLAMA is excluded from the evaluation due to its
inability to accurately process edge deletions on disk [31].

In summary, Bach variants exhibit the most excellent and stable
graph transactional throughput in all tests due to its efficient lock-
free implementation of the graph-aware memory-resident AL-table.
And the tiering-like merge-based BACH achieves an average 1.08x
(up to 1.21x) higher transactional throughput than leveling-like
merge, 34.12x (up to 85.31x) higher than Livegraph, 5.15x (up to
7.51x, expect edge deletions) higher than LLAMA and 12.73x (up
to 18.96x) higher than RocksDB.

8.3 Graph analytical Processing
Graph Analytics. ChunkGraph [30] and Neo4j [29] are incorpo-
rated in the static graph analytic tests. In this process, we thor-
oughly evaluate the average latency of executing the six typical
graph algorithms in five runs. These algorithms typically involve

intensive sequential/random vertices accesses followed by a sequen-
tial scan to their adjacency edges. The results show that leveling-
like merge-based BACH exhibits performance comparable to static
Chunkgraph and significantly outperforms other competitors in
all algorithm tests. Compared to snapshot-based LLAMA and link-
list-based Neo4j, BACH effectively reduces the significant number
of random I/O operations caused by accessing multiple snapshot
files or the costly pointer hopping in neighborhood scan. As Bach
will only introduce 𝐿 (height of the tree, which is less than 5 in
all tests, extra T runs for tiering-like merge) random I/Os at the
worst case. And this process can be further accelerated by using
the memory-cached vertex bitmap to prune unnecessary file ac-
cesses. Although RocksDB theoretically causes the same scale of
random I/O operations as BACH, the efficient edge indexing capa-
bility of CSR format embedded within the GR-LSM-Tree provides
a significant advantage over RocksDB when it comes to intensive
neighborhood scans. Livegraph, although theoretically capable of
ensuring a pure sequential neighborhood scan, experiences sig-
nificant performance degradation due to frequent memory-disk
swapping of mmap files when it exceeds the memory restriction.
This limitation is endogenous, as the frequent resizing of TEL files
and the in-place modifications required by Livegraph will lead to
heavy I/O costs and severe write amplifications, which are barely
intolerable without the mmap-based implementation in real-world
scenarios. Overall, the leveling-like merge-based BACH achieves
an average speedup of 3.25x (up to 3.94x) tiering merge, 22.52x
(up to 68.94x) over Livegraph, 34.98x (up to 96.16x) over RocksDB,
6.52x (up to 15.50x) over LLAMA, and 78.62x (except timeout) over
Neo4j, while average 3.13x (minimum to 1.04x) slower than static
ChunkGraph.
Subgraph matching in property graphs. To evaluate the per-
formance of more complex graph analytical processing tasks that
incorporate subgraph matching with predicates on edge proper-
ties, both interactive and business intelligence (BI) workloads are
conducted on the LDBC SF30 and SF100 datasets. All 1-14 com-
plex reads and 1-7 short queries in the interactive LDBC workload
are evaluated, along with three BI queries 3, 12 that cover most
choke points with respect to complex joins and predicates [32].
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Figure 8: Hybrid Graph Analytical/Transactional Processing Performance

The efficient neighborhood scan of BACH enables it to consistently
outperform all competitors in interactive workloads, showcasing
its superior performance. And the advantages of BACH become
even more pronounced in BI tests that involve intensive scan-based
filters on all edges (i.e., long range scan). This is attributed to the
compact CSR-tables and the enforced leveling compaction in the
last level, ensuring a purely sequential scan of edge properties and
maintaining the same complexity for long range lookups as static
CSR format. While the performance of the adjacency list-based
graph storage solutions will significantly degrade as a substantial
number of random I/Os are caused by cross-neighborhood accesses.

8.4 Hybrid Analytical/Transactional Processing
Real-time Graph Analytics. As for the hybrid workload, we first
evaluate the real-time graph analytics on simple graphs. During the
experiment, the first 20% graph transactions continuously insert
the edges and the rest 80% transactions involve balanced edge inser-
tions and deletions to keep the scale of graph. All systems will begin
to cyclically perform the graph algorithms as soon as they complete
the first 10% transactions. The time-varying tendency of transaction
throughput and analytic latency is shown in Figure 8. The BACH
variants exhibit consistently superior performance in terms of both
transaction throughput and analytical latency throughout the en-
tire lifespan of graph objects. While the mmap-based Livegraph
demonstrates strong GTP throughput and GAP performance at the
beginning of the experiment, as all data are processed in memory.
However, whenmemory usage approaches the controlled limitation,
the transaction throughput of Livegraph experiences a significant
degradation from about four hundred thousand ops to a few thou-
sand ops. And the GAP latency also starts to increase drastically due
to the frequent random I/Os caused by themmap-files swapping be-
tween memory and disk. While RocksDB demonstrates a relatively
stable transaction throughput in the medium position due to its
leveling merge-based LSM structure and edge list-based key value
model. However, it remains a relatively high analytic latency due to
the lack of graph-aware storage structures. In addition to BACH’s

efficient underlying data layout, the excellent performance in HG-
TAP is also attributed to its lightweight snapshot-based MVCC
and timely garbage collection mechanism. As garbage collection is
inherently included in the backstage compactions, and the redun-
dant computations of filtering lifetime interval to discard stale edge
versions are efficiently excluded by the disk-based snapshot mech-
anism. While other MVCC-based dynamic graph storage engines
typically employ an extra thread to periodically scan the entire
graph to collect stale versions, which will disturb the processing of
foreground workloads and damage the performance of HGTAP.
HGTAP with sequential insertion pattern. Sequential access
patterns also play a crucial role in real-world HGTAP scenarios.
It poses more significant challenges for graph storage engines, as
it may incur severe chokes in transaction processing and further
block the analysis. In this experiment, we replace random edge
insertions in the GR dataset with sequential access pattern, while
keeping the other settings unchanged. As shown in Figure 8 (a),
the BACH variants continue to maintain exceptional performance
and further widen the gap with other competitors due to the pure
lock-free implementation of the memory buffering structure. How-
ever, the trade-offs between different merge polices in BACH have
become more significant in this test. As shown in Figure 8, the
tiering-like compaction policy achieves an average 1.73x improve-
ment of GTP throughput, but an average 3.05x degradation of GAP
latency than the leveling-like compaction. This is because, with
limited memory, the more serious write amplification of temporary
intensive compactions within a key range will significantly impede
the transactional processing. Since it will block the data flushes
from memory-resident structure to disk and require page swapping
with virtual memory to make room for new edge insertions. The
same situation is revealed in the leveling merge-based RocksDB.
However, tiering-like merge will significantly increase the GAP
latency due to the existence of files with overlapping key ranges.
The Elastic merge seamlessly combines the strength of the two
compaction policies by enabling each CSR-table to flexibly choose
between the two compaction policies based on running workloads.
As a result, Elastic merge shows a competitive GTP throughput (only
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1.12x lower in average) to tiering-like compaction while remaining
a close GAP latency (only 1.76x higher in average) to leveling-like
compaction, and efficiently avoid temporary write stalls caused by
temporary intensive compactions.
HGTAP in property graphs.We next evaluate the performance
when incorporating complex subgraph matching with heavy joins
and predicates on edge properties in HGTAP using the LDBC 30
and LDBC 100 dataset. The result is shown in Figure 8 (b), where
the update-only QPS represents the throughput during edge in-
sertions, and the mixed QPS represents the average throughput
incorporating updates with interactive queries (including short
queries 1-7 and complex queries 1-14) based on the official shuffling
setting. The BI latency that incorporates intensive updates is also
measured. The results have reinforced the outstanding HGTAP
capabilities of BACH, demonstrating the highest throughput across
every test compared to its competitors, with the least performance
decline due to heavy concurrent read/write operations. Moreover,
its performance has remained consistent on large-scale data, thanks
to the embedded CSR-based layout that facilitates purely sequen-
tial edge scans. While other adjacency list-based competitors have
demonstrated significant performance declines during complex BI
tests on larger graphs due to the substantial increase in random
I/Os required for cross-neighborhood scans. The superior mixed
QPS of elastic-merge further confirms its strengths in optimizing
the trade-offs between write amplification and read performance,
enabling BACH to possess the self-tuning ability to smartly adapt
to diverse workloads and skew vertex degree distributions.

9 RELATEDWORK
Storage for Dynamic Graphs. Numerous graph storage formats
have been developed to enhance the performance of graph transac-
tional and analytical processing. Adjacency list-based [12, 16, 22]
structures facilitate rapid and efficient update operations. They are
particularly well-suited for maintaining dynamic graphs, as they
only require local structural maintenance during transactional op-
erations. LiveGraph [12] devises the Transactional Edge Log (TEL)
structure based on the adjacency list to provide snapshot isolation
while ensuring sequential neighborhood scans, but failed to main-
tain the sequentiality of edge scans when processing the long range
lookups and is limited by its mmap-based implementation. Sortled-
ton [16] employs adjacency list based structures to support graph
pattern matching by computing intersections in linear time, but the
performance will be gradually degraded as the versions accumula-
tive due to the link list based MVCC. GraphOne [22] transforms the
edge list into snapshots of the static adjacency list in batches for
fast graph analysis, resulting in a lower data freshness. CSR-based
structures [18–20, 33], store graph data in compact arrays to ensure
purely sequential edge scans, leading to superior graph analytical
performance, but incur great write amplifications when process-
ing graph modifications. LLAMA [19] maintains an incremental
CSR-based snapshot for dynamic graphs. VCSR [34] and PCSR [33]
use memory packed array variant structures with reserved slots
to reduce the update overheads, and Teseo [20] further combines
the similar structure within 𝐵+-tree variants to facilitate efficient
HGTAP with full transactional support. Spruce [21] employs the
tree-likemultilevel structure to provide enhanced performancewith

lower memory footprints. In this paper, we leverages LSM-trees
to seamlessly bridge the adjacency lists and CSR formats, harness-
ing their complementary strengths to enhance the efficiency of
disk-based HGTAP workloads.
The Design Space of LSM-Tree. LSM-trees are widely used in
various storage systems, such as HBase [35], LevelDB [36], and
RocksDB [24], to flush in-memory caches to disk. The compaction
policy greatly influences the performance of LSM based systems by
determining their write amplification and point and range lookups
performance [37]. WriteBuffer Tree [38] organizes the SSTable
groups into a 𝐵+-tree-like structure for self-balancing and employs
hash partitioning to achieve workload balance. Dayan et al. [26, 39]
collaborates the tiering and leveling policy at level granularity to
achieve better performance trade-offs. Real-time LSM-Tree [40]
firstly utilizes the compaction process to change the storage layout
from row-based to column-oriented for relational HTAP. Sarkar
et al. [27] systematically construct the design space of compaction
policy for LSM-based systems. While BACH targets at optimiz-
ing the compaction policy to adapt to diverse graph workloads
and skew vertex degree distributions by introducing elastic merge
policy, which can provide better trade-offs between edge write
amplifications and lookup latency in HGTAP workloads.
Graph Databases. Numerous graph databases [13, 29, 41, 42] have
been developed and are widely utilized in industrial applications.
Due to the need for high reliability in supporting graph transactions,
analytical processing can incur significant overhead. Neo4j [29]
uses adjacency lists to store the graph structure, with vertices, edges,
and properties stored as pointers on disk, resulting in a significant
number of random disk I/Os when processing graph analysis. Some
graph databases also employ LSM-Tree-based structure to facili-
tate concurrent read/write processing, such as NebulaGraph [41],
Dgraph [42] and ByteGraph [13]. However, they basically employ
the simple edge list based key-value model and the naive imple-
mentation of LSM-Tree-based storage engines, resulting in a lack
of in-depth optimization towards the characteristics of HGTAP
workloads. Instead, BACH constructs the Graph-aware Real-time
LSM-Tree, which carefully expands the design space of LSM-Trees
for HGTAP by integrating the graph-aware sequential structure
and devising a customized compaction policy.

10 CONCLUSION
This paper proposes GR-LSM-Tree, which expands the design space
of LSM-Trees for the first time to bridge the transactional adjacency
list and the analytical CSR format for efficient HGTAP. The two
graph-aware structures are seamlessly embedded within the inher-
ent framework of LSM-trees and gradually transformed through
the data propagation to deeper levels by a novel fine-grained com-
paction policy. Extensive evaluations confirm the strength and
efficiency of GR-LSM-Tree in HGTAP workloads.
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