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ABSTRACT

In the era of big data, the demand for historical data analytics is

growing across various applications. Simultaneously, range queries

have been extensively explored within the domain of databases. Bi-

nary search trees are a classic type of in-memory index for facilitat-

ing range queries. Persistent binary search trees provide read-only

snapshots of these trees, allowing range queries to be processed

during updates while ensuring consistency. Additionally, multiple

versions of snapshots support queries related to historical moments

to meet the demands of numerous applications.

However, existing implementations do not support both high-

speed updates and e�cient, accurate historical queries on multi-

core platforms. Motivated by this gap, we propose a novel concur-

rent update strategy to balance update and query performance. For

a binary search tree containing = elements, our approach completes

< updates in O(log= +<) time using O(log=) threads. We further

implement a hybrid concurrent strategy to improve the scalability

and practical performance of our solution.

The experimental results demonstrate that our proposal strikes a

good balance between update and query performance. In particular,

our proposal outperforms existing solutions under workloads with

di�erent data distributions and varying update-query ratios.
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1 INTRODUCTION

In the era of big data, characterized by exponential growth in data

volume and information richness, the e�ective processing of his-

torical data meets a wide array of real-world needs, facilitating

sophisticated analyses in practical scenarios. Historical data have a

wide range of applications in science [60], web applications [59, 70],
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complex business analytics [23, 42], and more. This broad applica-

bility highlights the need for storage solutions capable of managing

such data. In reality, numerous applications, such as Microsoft Im-

mortal DB [47], Ganymed [55], Skippy [62], and othermulti-version

systems, have been developed to meet various demands.

In the meantime, range aggregation is a classic topic in the data-

base area. Various range queries have been explored within the

realm of relational database [22, 34, 37, 41], spatial databases [33,

53, 54, 73], large scale key-value stores [6, 67], and more. In the

real world, most database systems utilize column stores to support

e�cient data statistics, while transaction processing is typically

based on row stores [3]. However, in many applications, it is not

necessary to maintain a HTAP [32] database for complex analytical

tasks that involve numerous predicates or costly operations like

joins. Instead, user may simply need a basic statistical result within

a range. In these situations, selecting an appropriate in-memory

index to manage aggregate information can be advantageous.

Binary search trees stand out as a traditional and e�ective choice

among the various types of in-memory indices used for set opera-

tions and range queries [10, 11, 69]. They provide e�cient search

and retrieval capabilities, making them well-suited for handling

large datasets. Compared to other tree structures such as B-Trees, it

incurs lower overhead for range aggregation due to its small node

fanout. Additionally, the small node size of the binary search tree

results in lower overhead when implementing the read-copy update

strategy [50]. This enables both e�cient updates and concurrent

range queries. Furthermore, by retaining copies of every updates,

persistent1 binary search tree [29] can serve as an index to support

e�cient historical range statistics for key-value stores.

However, existing implementation of persistent binary search

trees struggle to simultaneously accommodate updates performance

and e�cient accurate historical queries. Algorithms onmodern com-

puter platforms enhance performance by adopting multithreading,

while existing concurrent persistent binary search trees [31] can-

not ensure that the order of committed versions matches the order

of updates submissions, making it di�cult to associate a version

with a timestamp to support accurate historical queries. Another

approach is based on batch processing [13], where a su�cient num-

ber of updates are processed as a batch to leverage the power of

multi-core platforms. As a trade-o�, batch-based multithreaded

updates generate coarse-grained versions, where each version con-

tains numerous updates. This results in additional costs to pinpoint

the speci�c timestamp when handling historical queries.

1A persistent data structure indicates that it is immutable, meaning any changes
will create an updated copy instead of modifying it in place. This di�ers from a data
structure on persistent media, which is designed for non-volatile storage.
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Figure 1: BST Rebalancing by Rotation.

In this paper, we introduce a novel concurrent update strategy

for persistent binary search trees. Our solution, namely Contreap

(Concurrent treap), leverages randomized binary search trees, aka

treaps [61], to implement e�cient concurrent updates. For a set

consisting of= elements, Contreap completes< updates inO(log=+
<) time using a pipeline withO(log=) stages. Based on the pipeline,
Contreap provides one immutable version for each update and

guarantees that the versions are generated in the same order as the

updates. These features enable Contreap to support e�cient and

accurate historical queries. We further propose some optimizations

to improve the scalability and practical performance of Contreap.

We experimentally evaluate the performance of our solution. The

results indicate that Contreap outperforms batch-based updates for

moderate batch sizes, such as 103. Even when batch sizes increase to

107, Contreap remains competitive with batch-based methods. By

maintaining immutable versions for each update, Contreap signi�-

cantly improves query e�ciency compared to batch-based methods.

The experimental results further demonstrate that Contreap out-

performs the batching strategy under workloads that incorporate

interleaved reads and writes, providing evidence that it achieves

an excellent balance between update and query performance.

2 PRELIMINARIES

2.1 BSTs and Range Queries

A binary search tree (BST) is either an empty tree, denoted as nil, or

a tuple ) = ⟨)!, �,)'⟩, where � = ⟨:, E⟩ is a key-value pair stored
at the root of ) , while )! denotes the left subtree and )' denotes

the right subtree of ) . We also use the notation 30C0() ) to denote

the element of ) , i.e., 30C0() ) = �, while the notations ;2 () ) = )!
and A2 () ) = )' represent the subtrees of ) . For an element �, we

use :4~ (�) = : and E0; (�) = E to denote the key and the value of �,

respectively. For simplicity, we use :4~ () ) and E0; () ) as synonyms

for :4~ (30C0() )) and E0; (30C0() )), respectively. We say a non-

empty node ) is a leaf node if both ;2 () ) and A2 () ) are empty.

Otherwise, ) is called an internal node. For any internal node ) , all

keys in its left subtree must be less than :4~ () ), and all keys in

its right subtree must be greater than :4~ () ). In other words, the

in-order traversal of a BST is a sorted sequence, which is referred

to as its sorted property.

The height of a binary tree, denoted as ℎ() ), is de�ned as 0 for

nil and 1+<0G (ℎ(;2 () )), ℎ(A2 () ))) otherwise. The size of a binary
tree, denoted as B () ), is de�ned as the number of nodes in the tree,

which is 0 for nil and B (;2 () ))+B (A2 () ))+1 otherwise. Besides, the
depth of a node) with respect to a tree )̂ , where )̂ is an ancestor of

) , is the distance between ) and )̂ . This is denoted as 3
)̂
() ), with

3
)̂
()̂ ) = 0. For simplicity, we also use 3 () ) to denote the distance

from ) to the actual root, which is the node without any ancestors.

A BST takes O(ℎ() )) time to support inserting, deleting, or

searching for an element. Additionally, a range scan, which returns
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Figure 2: Treap Rebalancing by Rotation.

all elements with keys within the given range, can be executed in

O(ℎ() )+I) time, where I is the number of returned elements [9].

Sometimes, it is not necessary to retrieve all elements within a

range. Instead, we may want to obtain some statistical properties

within that range. An augmented binary search tree [67] speeds up

statistics within any given range. In augmented BSTs, each node

) maintains some extra statistical information about its subtree,

referred to as augment and denoted as 0D6() ). The augment for a

leaf node is statistical information about the element �, denoted

as 0D6(�). For an internal node ) , 0D6() ) is obtained by sequen-

tially aggregating 0D6(;2 () )), 0D6(30C0() )), and 0D6(A2 () )). After
a single element in the augmented BST is updated, it takes O(ℎ() ))
time to correct the a�ected augments. With this augment scheme,

range statistics can be processed by aggregating augments of the

subtrees that cover the query range in O(ℎ() )) time.

2.2 Balanced BSTs

If updates are generated randomly, a vanilla BST ) is expected to

have a height ℎ() ) = O(log B () )). However, in the worst case, a

BST can degenerate to a linked list, where its height ℎ() ) is identi-
cal to the size B () ), leading to a terrible e�ciency for updates and

search. Hence, a series of balanced binary search trees, such as AVL

trees [5], BBU trees [52], and Red-Black trees [36], maintain the bal-

ance that ℎ() ) = O(log B () )). These balanced BSTs have di�erent

balancing invariants to guarantee update and query complexity.

If the balancing condition is violated after an update, it performs

rotations, a class of operations that change the positions of nodes

while holding the sorted property, to rebalance itself. Consider the

following example for better illustration:

Example 1. Assuming that we have a set of elements {1, 2, 4, 6, 8},
insert elements 5, 7, 9, and 3 into this set in order.

Fig. 1(a) shows an instance corresponding to the example, where

the balance is violated after inserting node 5 into the AVL tree.

Fig. 1(b) shows the rebalanced AVL tree achieved by performing

a left rotation followed by a right rotation on node 4. Other bal-

anced trees can also use rotations to ensure that the rebalanced

BST adheres to their balancing conditions.

Apart from the deterministic rebalancing schemes, treaps [61],

also known as randomized binary search trees, assign a uniformly

random positive priority, denoted as ?A~ () ), to each node ) . A

treap is thus organized by key-priority pairs, where the keys follow

the sorted property as BSTs and the priorities adhere to the heap

property. Formally, it is ensured that for any node) , the conditions

?A~ () )>?A~ (;2 () )) and ?A~ () )>?A~ (A2 () )) hold, with the priority
of nil de�ned as 0. With uniformly random priorities, for any set, a

treap holds that ℎ() ) = O(log B () )) in expectation and with high

probability. Fig. 2(b) shows an example of treap, where the number

in the brackets indicates the priority.

1482



Updates to a treap may spoil the heap property, and a treap can

restore this through rotations. Fig. 2(a) shows a treap after inserting

node 3 with priority 8. Then, the heap property is violated. To �x

this, it then repeatedly do a left/right rotate with its parent until

the heap property is no longer violated. For the example in Fig. 2(a),

by performing two right rotations followed by one left rotation on

node 3, we can restore the heap property, as shown in Fig. 2(b).

Treaps are a type of uniquely represented data structure [66].

Assuming that the priorities of di�erent elements are distinct and

that the priority of an element is �xed, the pattern of a treap is

unique for a particular set of elements, regardless of the order of

updates [14]. In practice, we can adopt a perfect hash function

with the hash value of the key serving as the priority. We use the

notation ?A~ (:) to represent the priority corresponding to the key

: , and the notation ?A~ (�) as a synonym for ?A~ (:4~ (�)).

2.3 Consistency in Multithreaded Environments

In real-world applications, data is continuously updated while a

large number of queries are processes simultaneously. Modern com-

puter platforms leverage multithreading to enhance performance,

which poses challenges for maintaining the evolving data.

One issue is supporting concurrent queries during updates while

ensuring consistency. Consider the case that we need to handle

range scans during processing the updates as Example 1 shows. In

a single-threaded environment, one possible case is that a scan for

the range [3, 8] is performed after the insertion of 5 �nishes but

before the insertion of 7 begins. In this case, the scan operation

will return {4, 5, 6, 8}. In a multi-threaded environment, suppose

we use one thread, denoted as P, to handle the updates and another

thread, denoted as S, to perform a range scan from 3 to 8. Without

loss of generality, assume that S iterates to list elements within the

range from front to back. A possible case is that P inserts 5 when

S reaches 6, followed immediately by P inserting 7, after which S

retrieves 7 and 8. In this case, S fetches 7 but misses 5. However,

the result {4, 6, 7, 8} has never existed at any moment, indicating an

illegal state. Therefore, in a single-writer environment, we desire

the consistency that if the result of a query incorporates the impact

of an update, it also re�ects the e�ects of all preceding updates,

which is crucial for avoiding illegal results.

If updates are processed by multiple threads concurrently, di�er-

ences in update complexity, thread performance, or other in�uenc-

ing factors may cause updates submitted earlier to be completed

later. Assume that we have two threads, P1 and P2, to handle the

updates. One possible scenario is that P1 completes the insertion

of 5 later than P2 completes the insertion of 7, although 5 appears

before 7. In this case, the order of updates is disrupted, which is

crucial in many applications. To avoid such unexpected results, we

should support order preservation in a multi-writer environment,

meaning that updates submitted �rst must be completed �rst.

2.4 Persistent BSTs and Join-Based Methods

Persistent data structures are a class of data structures that do not

visibly update in place. Instead, they perform a copy-on-write (CoW)

process that yields a new version to represent the updated structure.

Based on this feature, persistent data structures naturally implement

the read-copy update (RCU) mechanism [50]. This ensures the

Algorithm 1: Join-Based Parallel BST

1 Function Join()!, �,)')

// return a new balanced tree containing �

and all elements in )! and )'
2 Function Expose())

3 return ⟨;2 () ), 30C0() ), A2 () )⟩
4 Function Split() , :)

5 if ) = nil then return ⟨nil, nil, nil⟩
6 else if : == key(T) then return ⟨)!, �,)'⟩
7 else

8 ⟨)!, �,)'⟩ ← Expose())

9 if : < key(�) then

10 ⟨)!!, �!,)!'⟩ ← Split()! , :)

11 return ⟨)!!, �!, Join()!', �!,)')⟩
12 else

13 ⟨)'!, �',)''⟩ ← Split()' , :)

14 return ⟨Join()!, �,)'!), �',)''⟩
15 Function Union()�,)�)

16 if )� = nil then return )�
17 else if )� = nil then return )�
18 else

19 ⟨)�!, ��,)�'⟩ ← Expose()�)

20 ⟨)�!, ��,)�'⟩ ← Split()� , key(��))

21
)! ← Union()�! , )�!)

)' ← Union()�' , )�')

22 if �� ≠ nil then �� ← Update(�� , ��)

23 return Join()! , �� , )')

consistency when querying during updates by separating reads

and writes. In detail, queries are always performed on a read-only

snapshot, ensuring that updates do not a�ect existing queries.When

a new stable version is ready, subsequent queries will operate on

this new version, while ongoing queries remain una�ected.

Additionally, since a persistent data structure preserves previ-

ous versions rather than modifying in place, it supports accessing

data at a speci�c version. This gives persistent data structures the

potential to support temporal data management. If updates are

order-preserved, i.e., �rst submitted �rst committed, persistent data

structures can generate a version for each item in data stream,

thereby supporting queries for the state at any point in history.

Persistent binary search trees (PBSTs) is usually built with a join-

based process [13], which leverages the power of multithreading

by applying nested fork-join parallelism [18]. The e�ciency of al-

gorithms based on fork-join parallelism can be analyzed using the

work-span model, which states that a procedure with a work ofF

(the total number of operations executed by the procedure) and a

span of 3 (the longest chain of sequential dependencies in the com-

putation), can be processed in O(F/? + 3) time using ? processors.

Alg. 1 shows the pseudo-code of the join-based method to union

two balanced BSTs. The expose function takes a balanced tree) as a

parameter and separates it into ;2 () ), 30C0() ), and A2 () ). The join
function takes three parameters: two balanced trees )! and )' , and

an element �, where all keys in)! are less than :4~ (�), and all keys
in )' are greater than :4~ (�); returns a balanced tree that includes

� and all elements from the two subtrees. The implementation of
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join varies depending on the balancing strategy [13], and it does

not necessarily have its root store � after rebalancing. Based on

join and expose, the split function divides a balanced tree ) into

two subtrees with keys smaller than and larger than the given key

: , and also returns an element exactly matching the key if it exists.

Derived from expose, join, and split, the union operation can be

performed in parallel using a divide-and-conquer strategy. First,

expose one of the two trees (Line 19) and then use the exposed key

: to split the other (Line 20). At this point, the problem is divided

into two disjoint parts: merging the two trees that contain elements

less than : , and merging the two trees that contain elements greater

than : . These processes can be executed in parallel (Line 21). Finally,

return the join of the exposed element and the merged subtrees as

the union of the inputs (Lines 22-23).

Using the parallel union operation, we can handle the parallel

insertion to a PBST with batch processing. To insert < elements

into a tree containing = ≥ < elements using join-based method,

it �rst constructs a balanced tree consisting of new elements in

O(< log<) work andO(log<) span [13, 15, 56]. Then, it unions the
old tree with the newly generated tree in O(< log (=/<)) work and
O(log= log<) span [4, 13, 16]. Similarly, the batch deletion can be

handled using set di�erence with the same theoretical complexity.

Finally, we have that the insertion and deletion can �nish with a

work of O(< log=) and a span of O(log= log<). Besides, the space
overhead for storing this new immutable version is O(< log (=/<))
since that number of nodes has been modi�ed during update.

Compared to updating each element serially with a single thread,

parallel processing with a batching strategy is e�cient in both

time and space. As a trade o�, batch-based method generates an

immutable version for each batch containing< updates rather than

for each update. As a result, if we want to handle a historical query

for a speci�c moment, we need to perform additional computa-

tions in the batched version to retrieve the data corresponding

to that time point. Therefore, the performance of historical query

processing depends on the batch size. If the batch size is large, the

version of the PBST will be coarse-grained, making it challenging

to handle historical queries with both high e�ciency and accuracy.

Conversely, maintaining a �ne-grained version for better query per-

formance requires a small batch size, which limits the advantages

of the batching strategy, as it necessitates packing a signi�cant

number of elements into each batch for e�cient updates.

2.5 Concurrent BSTs

There also exist some methods to update a BST concurrently. The

Relaxed balance AVL trees [19] implement concurrent updates using

locks, with a relaxed balancing condition. A lock-free implementa-

tion [51] of internal BST is proposed using the compare-and-swap

(CAS) operation, while it has not guarantee to be balanced. Besides,

NB-BSTs [30] implement lock-free concurrent updates for leaf-

oriented BSTs without balance guarantee. These solutions perform

updates in-place and do not provide consistency between range

queries and updates without blocking.

Subsequently, PNB-BST [31] implements a persistent variety

of NB-BST that supports unit-grained updates, i.e., it maintains

a persistent version for each update. Nevertheless, PNB-BST is

not order-preserving for updates. In a PNB-BST, threads compete

Algorithm 2: Insertion for Vanilla PBSTs

1 Function CopyInsert(), �)

2 if ) = nil then return NewNode(�)

3 ) ′ ← Copy())

4 if key(�) = key()) then

5 val() ′) ← Update(val()), val(�))

6 else if key(�) < key()) then

7 ;2 () ′) ← CopyInsert(;2 () ), �)
8 else

9 A2 () ′) ← CopyInsert(A2 () ), �)
10 return ) ′

for updates via CAS operations, which means an earlier update

may appear in a later version. Then, a version of PNB-BST cannot

correspond to all updates up to a speci�c timestamp, making it

ine�ective for historical queries. Besides, PNB-BST is also proposed

without balancing strategy, which greatly limits its applicability.

3 CONCURRENT UPDATES WITH PIPELINE

Motivated by the issues discussed in Sec. 2, in this section, we pro-

pose a practical, concurrent, balanced, persistent binary search tree.

Literally, our solution, Contreap, is a PBST with a balancing strat-

egy that supports e�cient concurrent updates. In contrast to batch-

based parallel solutions, our solution is unit-grained, meaning that

it maintains an immutable version for each update. In contrast to

existing concurrent PBSTs, our solution is order-preserving. These

properties ensure e�ciency and accuracy for historical queries.

We start by implementing the concurrent insertions for a PBST

without balancing strategy in Sec. 3.1. Then, in Sec. 3.2, we discuss

the challenges of keeping balance when performing concurrent

updates in a PBST, along with our solution for concurrent insertions

with balancing guarantee. Next, in Sec. 3.3, we provide our solution

for concurrent deletions with balancing guarantee.

3.1 Update without Balancing Scheme

Consider serially inserting an element into a PBST without rebal-

ancing schemes. To create a new version of the tree, we �rst fetch

the previous version as a reference. Then, as shown in Alg. 2, we

perform a top-down search starting from the root, copying all nodes

along the search path until we reach an empty node or �nd that

the given key exists. Fig. 3 shows an instance of persistent tree for

Example 1, where )= represent the =-th version of the tree.

If we want to perform insert operations concurrently, a straight-

forward approach is to assign each thread to handle a single update.

To preserve the order of updates, it is clear that the (=+1)-th update

must refer to the =-th version. That is, the thread handling the

(=+1)-th update can only start after the thread handling the =-th

update sets the reference to the root node. Besides, any visited node

along the search path, including its data and references to its left

and right subtrees, must be fully initialized before it is copied.

In concurrent environments, the naive recursive process shown

in Alg. 2 is not applicable. In the non-terminal case, i.e., if the current

node is not empty and its key di�ers from that of the element

to be inserted, one of the subtrees of this node will be set when

backtracking. Therefore, the root is the last to be set in the thread
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Figure 3: Insertions to a Vanilla PBST.

handling the =-th update. However, the thread handling the (=+1)-
th update needs to visit the root of the =-th version �rst, resulting

in the concurrent updates degrading to a serial process.

To avoid the degeneration of concurrency, we adopt a two-phase

construction as shown in Alg. 3, a thread starts processing the

=-th update by invoking Insert(T , =, �), where T is a collection

storing all versions of the tree. It �rst creates an uninitialized node

as a placeholder (Lines 9, 12, 17-18) and then initializes its contents

during the search process (Lines 2, 5, 7, 10, 13). We use the primitive

Wait (Lines 4, 15) which spins until the given boolean expression

is satis�ed, to ensure the referenced node is fully initialized.

For the instance as shown in Fig. 3, we can draw a dependency

graph as Fig. 4(a) shows, where INS(=,) , :) represents a processing

step that visits node ) to insert : for the =-th update. The notation

): ′ represents the node storing an element whose key is :′. In the

dependency graph, a directed edge ⟨E,D⟩ represents that E depends
on D, meaning E can only start after D is completed. Moreover, an

edge represented with a solid arrow, e.g., INS(1,)4,5) to INS(1,)2,5),

indicates a control dependency, meaning E is invoked by D, while

a dashed arrow, e.g., INS(3,)8,9) to INS(2,)8,7), indicates a data

dependency, meaning E uses the data provided by D. Clearly, Alg. 3

is non-blocking, as there is no cycle in the dependency graph. In any

case, the process handling the earliest un�nished update is always

guaranteed to make progress. However, this method adopts spin-

waiting with checking of shared variables, which usually becomes

a bottleneck in practice if triggered frequently.

Revisiting the concurrent insertion process, copying and updat-

ing a node, w.l.o.g., ) 8
:
, has only one data dependence, which is a

node)
9

:
where 9 < 8 is the last version visiting the node containing

key : . Therefore, if the initialization of ) 8
:
always occurs after that

of)
9

:
is complete, the updates will be order-preserved. Note that, for

an insert operation in a BST without rebalancing, the depth 3 () ) of
an existing node ) remains invariant. Additionally, for any depth ; ,

a search path contains only one node ) such that 3 () ) = ; . There-

fore, if we constrain that a node ) 8
:
can only be initialized after the

initialization of the node) 8−1
: ′ is completed, where3 () 8

:
) = 3 () 8−1

: ′ ),
we still ensure that )

9

:
is completely initialized before constructing

) 8
:
. For example, we stipulate that INS(4,)2,3) must be executed

after INS(3, )8, 9) completes, even though there is no dependency

between them. Additionally, if the previous update is �nished, it

is considered that all nodes of the version have been initialized.

This addresses the issue that di�erent updates may involve varying

depths. For example, inserting 9 into) 2 is �nished at depth 2, while

inserting 3 into ) 3 needs to reach depth 3.

With the simpli�ed constraint, we implement concurrent inser-

tion based on pipeline parallelism. A pipeline is a series of data

processing units, called pipes, and each pipe corresponds to a step

Algorithm 3: Concurrent Insertion for Vanilla PBSTs

1 Procedure CopyInsert() ′, ) , �)
2 if ) = nil then InitLeaf() ′, �)
3 else

4 Wait(IsInit()))

5 InitCopy() ′, ))
6 if key(�) = key()) then

7 val() ′) ← Update(val()), val(�))

8 else if key(�) < key()) then

9 ;2 () ′) ← NewNode()

10 CopyInsert(;2 () ′), ;2 () ), �)
11 else

12 A2 () ′) ← NewNode()

13 CopyInsert(A2 () ′), A2 () ), �)
14 Procedure Insert(T , =, �)

15 Wait(Ver(T) = = − 1)

16 ) ← GetRoot(T , = − 1)

17 ) ′ ← NewNode()

18 SetRoot(T , n, ) ′)
19 CopyInsert() ′, ) , E)

in data processing, referred to as a stage. The output of one pipe is

the input for the pipe in the next stage. The pipes are executed in a

time-sliced fashion to parallelize computation handled by di�erent

pipes. In our case, each thread corresponds to a pipe, and the 8-th

stage corresponds to updates to any node ) where 3 () ) = 8 . Alg. 4

shows the concurrent insertion of persistent vanilla BSTs using a

pipeline, the �rst pipe starts processing the =-th update by invoking

Insert(T , =, �). After completing the �rst stage of the =-th update,

it uses the primitiveNext to output a reference to a procedure along

with the current status of the =-th update as input to the second

pipe (Line 17), and the second pipe will execute the given procedure

with the current status. Similarly, when the ;-th pipe completes one

stage of the =-th update, unless the update is �nished (Line 2), it

uses the primitive Next to pass the arguments to the (;+1)-th pipe

(Lines 9, 12). Note that in a pipeline, we do not need to synchronize

by spin-waiting. Since each pipe operates serially, the 8-th pipe

starts processing node )=
:
after completely processing the previous

node )=−1
: ′ where 3 ()=−1

: ′ ) = 8 . Hence, concurrent insertions with

a pipeline are naturally guaranteed to be order-preserved.

Assuming that each stage of an update uses the same amount

of time, called a time slice, we have the space-time diagram using

a pipeline as shown in Fig. 4(b). In the space-time diagram, the

horizontal axis represents time and the vertical axis represents

stages. Processes in the same column are executed concurrently by

di�erent threads at the same time. Processes in the same row are

executed serially by the same thread, and an empty cell indicates

that the thread is idle during this time slice.

Considering a time period, where the scale of updates does not

exceed that of existing data. If the tree is not highly skewed, the

height of the tree changes insigni�cantly over extended periods.

Besides, most elements reside in the deeper parts of the tree. There-

fore, if the number of threads is equal to the height of the tree, i.e.,

ℎ() ), for a su�cient number of updates, after time ℎ() ), almost

all threads are continuously making progress. In addition, for each
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Figure 4: The Dependency Graph and Space-Time Diagram w.r.t the Instance shown in Fig. 3
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Figure 5: Error Caused by Rotation.

update, we need to copy all the nodes along the search path, which

totals O(ℎ() )) nodes. Formally, according to the properties of a

pipeline, we have the following conclusion:

Corollary 3.1. For a binary search tree ) that is not highly

skewed, a pipeline with ℎ() ) stages handles< = O (B () )) insertions
into) and constructs< immutable versions using O (ℎ() ) +<) time

and O (= +< · ℎ() )) space.

Note that as the concurrent constraint is tightened, the concur-

rency using a pipeline is theoretically not as high as having each

thread handle one update. For example, INS(1,)2,5) and INS(2,)8,7)

are executed serially in a pipeline, even though there is no data de-

pendency between them. We will discuss this trade-o� in Sec. 4. In

the remainder of this section, we focus on introducing a balancing

strategy to the concurrent persistent BST based on a pipeline.

3.2 Rotate-Free Concurrent Insertion

As we described in Sec. 2.2, balanced BSTs often perform bottom-up

rotations after update for rebalancing. This rebalancing process

may involve all nodes along the search path and their siblings. Dur-

ing rebalancing, some of these nodes may shift from their original

positions. For a single update, the nodes on the search path are all

created in the current version, so these nodes can bemodi�ed before

the update is completed rather than being copied again. However,

this can result in errors for concurrent PBSTs. Fig. 5 shows one of

the error cases. Considering the instance depicted in Fig. 3, after we

insert the element with key 5 into ) 0, we obtain an unbalanced ) 1

as shown in Fig. 5(a). We then perform a rebalancing operation to

obtain the balanced) 1, as demonstrated in Fig. 1. Note that the con-

structions of ) 1 and ) 2 are executed concurrently, so it is possible

for ) 2
6 to set its left subtree to ) 1

2 before ) 1 performs rebalancing.

As a result, we end up with an incorrect ) 2 after ) 1 is rebalanced,

as Fig. 5(b) shows. This case states that any modi�cations to these

parts can cause errors because PBSTs directly reference previous

versions for parts not on the search path.

Meanwhile, rebalancing strategies for BSTs assume that the tree

is balanced before being updated. If )= is unbalanced, there may

not necessarily be a valid rotation plan to rebalance )=+1 since the
update is applied to an unbalanced BST. This means that )=+1 may

Algorithm 4: Pipeline Insertion for Vanilla PBSTs

1 Procedure CopyInsert() ′, ) , �)
2 if ) = nil then InitLeaf() ′, �)
3 else

4 InitCopy() ′, ))
5 if key(�) = key()) then

6 val() ′) ← Update(val()), val(�))

7 else if key(�) < key()) then

8 ;2 () ′) ← NewNode()

9 Next(CopyInsert(;2 () ′), ;2 () ), �))
10 else

11 A2 () ′) ← NewNode()

12 Next(CopyInsert(A2 () ′), A2 () ), �))
13 Procedure Insert(T , =, �)

14 ) ← GetRoot(T , = − 1)

15 ) ′ ← NewNode()

16 SetRoot(T , n, ) ′)
17 Next(CopyInsert() ′, ) , E))

be ill-formed, even if we copy the rotated nodes along the search

path to avoid modifying existing nodes. Similarly, errors can occur

if a rotation on )= happens along the search path of )=+1. In this

case, )=+1 will not return to a balanced state when performing

rebalancing on)= , as it has already copied the corresponding parts.

To address these issues, we propose a novel concurrent update

strategy using treaps, more accurately, join-based treaps. As treaps

are uniquely represented, the �nal pattern of the treap being up-

dated is deterministic. Alg. 5 shows the concurrent insertionmethod

that adopts spin to satisfy data dependencies, similar to Alg. 3.

When inserting an element � into a treap, upon encountering

the �rst node ) satisfying ?A~ () )<?A~ (�) (Line 12), we can con-

�rm that the element needs to be placed in the current position

to hold the heap property. Therefore, we can directly initialize the

placeholder) ′ as a leaf containing the new element at this position

(Line 13). Next, we invoke the split process to construct the left

and right subtrees of the newly inserted node by splitting ) with

:4~ (�) (Line 14). Note that the split process may involve any node

in the subtree rooted at ) , so we should use the primitive Wait to

spin until the update of this subtree is complete (Line 13). Note that

the case where the key to be inserted already exists will necessarily

be processed during the search phase since we use the perfect hash

of the key as the priority. Therefore, there is no need to address

this situation during the split phase.

From Alg. 3, we can see that a join-based treap keeps the heap

property during the search, split, and join processes [16] without

invoking any rotations. Thus, unlike other balancing strategies,
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Algorithm 5: Concurrent Insertion for Persistent Treaps

1 Function Split() , :)

2 if ) = nil then return ⟨nil, nil⟩
3 if : < key()) then

4 )' ← Copy())

5 ⟨)!, ;2 ()')⟩ ← Split(;2 () ), :)
6 else

7 )! ← Copy())

8 ⟨A2 ()!),)'⟩ ← Split(A2 () ), :)
9 return ⟨)!,)'⟩

10 Procedure CopyInsert() ′, ) , �)
11 if ) = nil then InitLeaf() ′, �)
12 if pry()) < pry(�) then

13 InitLeaf() ′, �)
14 Wait(IsComplete()))

15 ⟨;2 () ′), A2 () ′)⟩ ← Split() , key(�))

16 else

17 · · · // recursive search as in Alg. 3
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Figure 6: Join-Based Treap Insertion.

insertions in join-based treaps are rotation-free. Fig. 6 shows a

running case of inserting a new element into a treap using a join-

based method, where the priorities of each element are the same

as those depicted in Fig. 2. When searching the treap from top to

bottom, we �rst �nd the node )2 such that ?A~ (2)<?A~ (3). Then,
we construct the new node )3 at the original position of )2. Next,

we split the subtree rooted at )2. Finally, we complete the update

by joining )3 with the two split subtrees.

The search process of Alg. 5 is similar to that of Alg. 3. They

di�er only if the position to insert the new element is found, where

Alg. 3 completes the update using the split-join scheme. In the

same way, we can implement join-based treaps using a pipeline.

As Alg. 6 shows, the search process is similar to that of Alg. 4

using a pipeline. When the position to insert the new element is

found, the current pipe blocks to wait for the referenced subtree

to be completed and then processes the split-join method to �nish

the update. This blocking strategy guarantees the correctness of

the update process. On one hand, as we described above, the split

process may involve any node in the subtree. On the other hand,

each iteration of the split process only updates either the left or the

right subtree of the current node. This does not guarantee that all

nodes at the current depth are initialized. Hence, we must prevent

subsequent updates from being processed based on the incomplete

subtree by blocking the current pipe until the update is �nished.

Fig. 7(a) presents the join-based implementation of Contreap

related to Example 1, where the priorities of each element are

the same as those depicted in Fig. 2. Assuming that each step of

the split process uses one time slice like a search step, we can

illustrate the space-time diagram of the update process, as shown

Algorithm 6: Pipeline Insertion in Contreap

1 Procedure CopyInsert() ′, ) , �)
2 if ) = nil then InitLeaf() ′, �)
3 if pry()) < pry(�) then

4 InitLeaf() ′, �)
5 Wait(IsComplete()))

6 ⟨;2 () ′), A2 () ′)⟩ ← Split() , key(�))

7 else

8 · · · // recursive search as in Alg. 4
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Figure 7: Insertions to Contreap

in Fig. 7(b), where SPL(=, ) , :) represents a processing step that

splits the subtree rooted at ) with respect to the key : for the

=-th update, and INSP(=, ) , :) is the combination of INS(=, ) , :)

and SPL(=, ) , :). From the space-time diagram, it can be seen that

the split operation causes subsequent updates to be delayed at the

current pipe. We refer to such a delay caused by each split step as a

stall.

In a pipeline, the stall will delay all the subsequent processing

steps. Formally, The pipeline has the following property:

Property 3.2. In a pipeline with ? pipes, < operations will be

completed in O (? +<3) time if the stalls caused by each operation

is 3 on average.

From Alg. 5 and Alg. 6, we can observe that the time to split a

subtree rooted at) is O(ℎ() )), and the time to complete the update

with join is O(1). Furthermore, we have the following theorem:

Theorem 3.3. In a treap, the height of the subtree rooted at the

newly inserted node is O (1) in expectation.

Due to limited space, all omitted proofs can be found in our tech-

nical report [1]. Since treaps are balanced with high probably, and

a treap with = nodes has an expected height of O(log=), according
to Corollary 3.1 and Property 3.2, we have the following result:

Corollary 3.4. For a treap containing= nodes, Alg. 5 concurrently

processes< = O(=) insertions and constructs< immutable versions

using O(log=) pipes with an expected time of O(log= +<) and a

space consumption of O (= +< log=).
Besides, for a su�cient number of updates, the running time is

bounded with high probability. Formally, we have:

Theorem 3.5. For a treap containing = > 24U nodes, where U > 42

is an arbitrary parameter, Alg. 5 concurrently processes< insertions,

where < = l (U2 log2 =) and < = O(=), using O(log=) pipes in
O(<) time with a probability of at least 1 − 2<

=U−1 .
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Algorithm 7: Pipeline Deletion in Contreap

1 Procedure Concat() ′, )! , )')
2 if )! = nil then InitCopy() ′, )')
3 else if )' = nil then InitCopy() ′, )!)
4 else if pry()!) > pry()') then

5 InitCopy() ′, )!)
6 A2 () ′) ← NewNode()

7 WaitNext()

8 Next(Concat(A2 () ′), A2 ()!), )'))
9 else

10 InitCopy() ′, )')
11 ;2 () ′) ← NewNode()

12 WaitNext()

13 Next(Concat(;2 () ′), )! , ;2 ()')))
14 Procedure CopyDelete() ′, ) , :)
15 if ) = nil then MarkAsNil() ′)
16 else if pry()) < pry(:) then InitCopy() ′, ))
17 else if : = key()) then

18 WaitNext()

19 Concat() ′, ;2 () ), A2 () ))
20 else

21 · · · // recursive search as in Alg. 4

3.3 Rotate-Free Concurrent Deletion

Alg. 7 shows the rotate-free concurrent deletion algorithm using

pipeline parallelism. Note that, the placeholder is created in ad-

vance, we cannot modify the parent node that references it, which

prevents us from releasing the placeholder. Therefore, we mark the

placeholder as equivalent to the empty tree when we �nd that the

current tree is nil (Line 15). During the searching phase, once we

encounter a node ) such that ?A~ () ) < ?A~ (:), we can con�rm

that : does not exist in ) . In this case, we set the placeholder to be

a copy of ) without making any modi�cations (Line 16).

When we �nd the node ) where :4~ () ) = : , we connect its

left and right subtrees using the concat method to create a new

version with) removed (Lines 17-19). Here, we use a new primitive

WaitNext to deal with data dependency (Line 18). When processing

the =-th update at the ;-th pipe, this primitive produces stalls in

the current pipe until the next pipe �nishes processing the (;+1)-th
step of the (=−1)-th update. The behavior of WaitNext guarantee

correctness in concurrent deletion. On one hand, it con�rms that

the left and right children of the deleted node are initialized before

being used, as they are managed by the next pipe. On the other

hand, it hangs the current pipe and prevents subsequent updates

from referencing the placeholder that has not yet been initialized.

The concat method takes three arguments: the placeholder ) ′

and two treaps )! and )' , where the keys in )! are all smaller than

the keys in )' . If one of )! or )' is empty, we set the placeholder

as a copy of the other one (Lines 2-3). We stipulate that copying nil

will mark the placeholder as nil to handle the case where both )!
and )' are empty. If both )! and )' are not empty, we select the

one with the higher priority between them as the root to initialize

the placeholder (Line 4). If the root of)! becomes the new root, we

connect the right subtree of )! with )' as the new right subtree

since all keys in )' are larger (Lines 5-8). Symmetrically, if the root
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Figure 8: Deletions to Contreap

of )' becomes the new root, we connect )! with the left subtree

of )' as the new left subtree (Lines 10-13). Note that, since the

children of )! and )' may be managed by the next pipe, we should

use WaitNext to produce stalls until they are initialized.

To demonstrate the deletion process, Fig. 8(a) presents the result

related to the following example:

Example 2. Assuming that we have a set of elements {1, 2, 4, 6, 8},
insert element 3, then delete elements 5, 3, and 7. The priorities of keys

are the same as those in Fig. 2.

Note the nodes represented by concentric circles:) 2
4 is the replica

of ) 1
4 and ) 3

4 is the replica of ) 2
4 . They are all the same due to ini-

tialization by simply copying the referenced nodes. These happend

because the placeholders were created in advance, mapped to the

cases in Line 16 and Lines 2-3, respectively. The blank node in ) 4

is the placeholder marked as nil when reaching an empty subtree

during the search process, corresponding to the case in Line 16.

Then, we can draw the space-time diagram as shown in Fig. 8(b),

where CC(=, )! , )' ) represents a processing step that concats )!
and )' to �nish the =-th update. When we attempt to delete the

element with key 5 from ) 1, we �nd that ?A~ () 1
4 ) < ?A~ (5) in the

seventh time slice at the third pipe and exit by determining that the

element with key 5 does not exist. When deleting the element with

key 3 from ) 2, we cannot immediately execute CC(3, )2, )4) upon

discovering ) 2
3 in the sixth time slice at the second pipe. Instead,

we must wait until the third pipe completes DEL(2, )4, 5) and then

perform concat in the seventh time slice. When we try to delete the

element with key 7 from ) 3 but �nd the empty tree in the ninth

time slice at the third pipe, we �nish the deletion by marking the

placeholder as nil. Generally, unlike the split process for insertion,

which must wait until the entire subtree is completely updated, a

deletion step at any pipe requires only the state processed by the

next pipe. As a result, each deletion operation incurs at most one

stall. According to Corollary 3.1 and Property 3.2, we have:

Theorem 3.6. For a treap containing= nodes, the join-basedmethod

concurrently processes < = O(=) deletions and constructs < im-

mutable versions, using O (log=) pipes in O (log= +<) time, with

a space consumption of O (= +< log=).

4 HYBRID SCHEDULING

Observations. In Sec. 3, we provide an implementation of persis-

tent treaps, Contreap, that supports concurrent updates using a

pipeline. However, as mentioned in Sec. 3.1, a pipeline tightens the
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constraints on concurrent execution, thereby reducing the potential

for concurrency. This constraint is actually required only when the

search paths of the elements to be updated are always the same.

Additionally, the number of stages in a pipeline is not always

suitable for the updates. To leverage pipeline parallelism, we divide

a treap ) into ℎ() ) layers. In each step, we allocate and initialize

a speci�c node on one layer. Ideally, the number of pipes should

match ℎ() ), allowing each pipeline stage to correspond exactly

to one processing step. However, the height of the treap and the

depth of the modi�ed elements are variable, while the number

of threads is limited by the hardware, making it less �exible in

practice. The mismatch between the number of pipeline stages

and the number of stages required for updates signi�cantly a�ects

the practical performance of pipeline parallelism. If the number of

stages is insu�cient, the last pipe must continuously processes the

remaining work until the update is �nished. Hence, the last pipe

becomes the bottleneck, as it typically handles much heavier tasks

than other pipes. In contrast, if a pipeline has too many stages, the

update will be completed at an intermediate stage. However, the

processing �ow cannot stop prematurely in a pipeline. Hence, the

surplus stages do not perform any e�ective operations but increase

the overhead of updates and amplify the stalls caused by splitting.

Compared to pipelines, the blocking-based concurrent solution,

as shown in Alg. 5, o�ers good scalability. Since each thread handles

an entire update, it launches as many threads as possible and assign

updates to them. Also, this solution has strong adaptability, as

a new update can be assigned to a thread as soon as the thread

�nishes its current task. Yet, the high overhead of synchronization

between threads still compromises the performance of blocking-

based solutions in practice.

In summary, concurrent updates based on a pipeline bene�t from

having the number of stages closely aligned with the depth of the

tree. Additionally, if the search paths of the updates rarely intersect,

resulting in minimal synchronization overhead, then a blocking-

based concurrent solution—where each thread handles an entire

update—will perform e�ectively. These observations motivated us

to adopt a hybrid scheduling strategy to enhance e�ciency.

The hybrid scheduler. The design of our scheduler is shown

in Fig. 9. The hybrid scheduler consists of three parts: a pipeline

containing (?D+2) pipes, an executor pool containing ?3 workers,

and a collector thread. To handle an update to a treap with hybrid

scheduling, we �rst divide the treap into two parts: the upper part

includes all nodes with a depth smaller than ?D , and the lower part

contains the remaining nodes.

In the pipeline side, the �rst pipe, known as the entry, receives

submitted updates and creates the placeholder for the root. Each

of the following ?D pipes performs one step as outlined in Alg. 6,

initializing the nodes at their corresponding depths. The �nal pipe

in this pipeline is called the border, which does not perform updates

but instead maintains a concurrent message queue.

The concurrent workers repeatedly fetch tasks from the message

queue maintained by the border pipe and �nish updates for the

lower part, where a worker handles the entire lower part of updates

it fetches as outlined in Alg. 5. When a task is �nished, it passes

the new version to the collector and then fetches the next task.

Finally, the collector commits the new versions in the order the

updates are submitted. Even though the pipeline parallelism and the

waiting mechanism adopted by concurrent workers have already

preserved the order of updates, this rule is necessary because the

=-th version may reference parts of previous versions that are still

in progress. Thus, we must wait until all previous =−1 updates are
fully completed to ensure the completeness of the =-th version.

The hybrid method combines the advantages of both concurrent

strategies. For the pipeline side, the upper part of a su�ciently large

balanced BST can almost be considered a full binary tree, while most

nodes are located in the lower part. It is rare that an update will be

completed in the upper part, preventing performance degradation of

the pipeline. For concurrent workers, if the elements to be updated

are not overly concentrated, the probability of the search paths for

di�erent updates intersecting decreases exponentially with increas-

ing depth. The synchronization overhead is signi�cantly reduced

for concurrent workers handling the lower part, allowing us to

e�ciently utilize more threads to increase concurrency.

Besides, with the enrolling of the collector, we can further op-

timize concurrent workers to slightly reduce the synchronization

overhead. During the update process of a PBST, it is evident that

the version of any node) will never be older than the version of its

children. Therefore, once we �nd that the version of the currently

visited node has already been committed, we no longer need to

check whether the nodes in its subtrees have been initialized.

The remaining problem is how to divide the upper and lower

parts to achieve optimal performance with a total of ? threads.

A crucial factor is the splitting operation. When it occurs in the

pipeline part, it introduces stalls that delay all subsequent updates.

If it is processed by concurrent workers, it only impacts updates

whose search paths fall into that subtree. Therefore, the number

of pipeline stages should be limited to reduce the probability of

splits occurring in the pipeline part. In the meantime, we aim for

the updates being processed by concurrent workers to be as inde-

pendent as possible. Intuitively, when the depth of the upper part

is log?3 , there are ?3 nodes at the boundary between the upper

and lower parts. In expectation, each boundary node having one

search path starting at it. However, the generic birthday paradox

suggests that for = possible values, there is a high probability of

collisions after just O(
√
=) attempts [68]. Therefore, we �nally set

?D = 2 + 2 log?3 in hybrid scheduler for better performance.

5 RELATED WORKS

Managing historical data has been a longstanding research area.

Early methods, such as storing all updates in a log for replay or

saving a version after each update, incurred signi�cant time or stor-

age costs. Driscoll et al. [29] introduced persistent data structures,

providing techniques that reduce these costs. These structures are
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commonly used in database versioning and transaction-time appli-

cations [44, 48], as well as in software version control [21].

PBSTs support historical queries and implement read-write sep-

aration by providing read-only snapshots, allowing queries during

updates [12, 20, 57, 71]. Furthermore, they serve as the founda-

tion for multiversion graph processing [28] and enhance data with

additional timestamps for graph mining [65].

Temporal indices [8, 24, 25, 43] treat time intervals as ranges

to support history queries, di�ering from our focus on e�cient

historical range statistics. Some approaches provide approximate

historical query results using persistent sketches [63, 72], whereas

we aim to deliver accurate results for arbitrary versions. Research

on compression schemes for persistent balanced trees [27, 28] is

orthogonal to our objectives.

Concurrent data structures enable multiple processes to access

and manipulate data simultaneously without con�icts, enhancing

performance in multi-threaded environments. They ensure thread

safety using mechanisms like locks [64], transactional memory

[40], or non-blocking algorithms [39], which ensure operations are

performed atomically and maintain data integrity during concur-

rent access. Common examples include concurrent priority queues

[58], stacks [38], hash maps [49], and trees [7, 45], each suited to

speci�c scenarios and performance needs. The choice and imple-

mentation of a concurrent data structure signi�cantly in�uence

system scalability and throughput, especially under high load [17].

6 EXPERIMENT

In this section.We perform several groups of experiments to demon-

strate the advantages of our proposal. All experiments are con-

ducted on a Linux machine with 2 pieces of Intel® Xeon® Gold

5320 Processor and 1TB of memory.

Our main competitor is PAM [67], which is the augmented join-

based PBST. Additionally, we implement an augmented PBST with

serial updates. These solutions, along with our proposal (named

Contreap), are implemented in C++20 and compiled with full opti-

mization using GCC.We utilize the built-in AES-NI [35] to provide a

perfect hash function and mimalloc [46] for multithreaded memory

management. Furthermore, we adopt another baseline: Google’s

open source B-Tree [2], which implements a Clone method to create

a persistent snapshot of the B-Tree (PB-Tree). For our proposal, the

number of pipes is set to 2 log % . For the other methods, we adhere

to the default parameter settings as speci�ed in their original pa-

pers or source codes. By default, in the following experiments, we

initialize the set with 108 records and then perform 107 operations.

6.1 E�ectiveness of Hybrid Scheduling

In this section, we examine the e�ectiveness of our hybrid schedul-

ing. We compare our full-�edged Contreap with hybrid scheduling

against (i) Contreap with the naive blocking-based solution (dubbed

as Contreap-wait) as Alg. 5 describes and (ii) Contreap with the

pure pipeline method (dubbed as Contreap-pipe) as Alg. 6 describes.

Fig. 10 shows the total time spent on completing the insertions.

The pipeline solution Contreap-pipe does not signi�cantly outper-

form the sequential execution. This is primarily because the last

pipe bears the bulk of the workload and thus becomes the bottle-

neck. Yet, the e�ciency markedly improves when the number of
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pipeline stages is 32, as the average depth of nodes being slightly

less than 30 in a treap with 108 nodes. When the number of threads

increases beyond this point, most of the subsequent pipes stay idle,

and the performance of the pipeline starts to decline due to the

overhead as we described in Sec. 4. In the meantime, the naive

blocking-based solution Contreap-wait also results in inferior per-

formance. In the upper part of the treap, there are only a small

number of possible search paths, so the concurrency is actually lim-

ited if naive blocking is applied. Therefore, when too many threads

are involved, the data races lead to a decline in performance.

Combining the strengths of both methods, the full-�edged Con-

treapwith the hybrid strategy shows a clear advantage and can gain

better e�ciency with more threads. Notably, our Contreap gains

approximately 10x speed-up over Contreap-wait and 20x speed-up

over Contreap-pipe when the number of threads reaches 64.

6.2 Range Query Performance

In this set of experiment, we examine the query performance of

Contreap against competitors on range statistic queries. We com-

pare our Contreap against PB-Tree, which maintains a version for

each update using a B-Tree structure, allowing direct range sta-

tistics queries on any speci�c version. Additionally, as discussed

in Sec. 2.4, existing parallel BST algorithm PAM [67] maintains

coarse-grained versions by applying batch updates, which compro-

mises query e�ciency—a fact we will verify in our experiments. For

PAM, we report its query performance with di�erent batch sizes

(ranging from 10 to 107). Each query covers 0 ∼ 10% of the elements.

We also include a naive Scan method that performs a scan over a

chunked linked list, where each chunk contains 64 elements. This

simulates the process of computing range statistics by scanning

memory storage based on a B+-Tree, without using any indexing.

Fig. 11 shows the average time of performing 105 range statistics.

First, comparing PB-Tree and our Contreap, Contreap is over 2x

faster than PB-Tree. This di�erence can be explained by the time

complexity: for BST, the range statistics query has a complexity

of O(log=), while for PB-Tree, it is O(� log� =). Furthermore, our

Contreap also outperforms PB-Tree in terms of update e�ciency

and indexing costs (as to be shown shortly), making it a more

suitable choice for historical range statistic queries.

Next, both Contreap and PB-Tree are signi�cantly faster than

PAM when the batch size for updates exceeds 103. When the batch

size is 10, PAM’s query performance is slightly slower than our

Contreap. However, as the batch size increases, coarse-grained

updates introduce signi�cant overhead in range statistic queries. For

example, consider the number of elements in the BST at timestamp

C . If we maintain this aggregation information at each node, we

can directly access the root of the BST at timestamp C to obtain the
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Figure 12: Insertion and Deletion Performance.

count. However, with a coarse-grained version, if the BST contains

some elements that have been modi�ed at a moment later than

timestamp C , we need to traverse downward to �nd the correct

version, potentially repeating this process multiple times, which

leads to high query costs. As the batch size continues to grow, the

proportion of updates modi�ed later than the queried timestamp

will also increase. The overhead from the coarse-grained index

becomes the dominant factor in query time, resulting in a nearly

linear relationship between query time and batch size. When the

batch size reaches 106, the query performance is even slower than

the naive Scan method. Therefore, we do not include results for

batch sizes of 106 and 107 in subsequent e�ciency tests.

6.3 Update Performance

In this section, we compare the update performance of Contreap

with existing solutions. Figs. 12(a) and 12(b) show the results for in-

sertions and deletions, respectively. The ~-axis represents through-

put in transactions per second (tps). Across all solutions, the perfor-

mance of insertions and deletions is comparable. Using 64 threads,

our method achieves over 20 times higher throughput compared to

sequential execution, while preserving order for updates.

PAM avoids synchronization overhead since divide-and-conquer

scheme ensures that tasks among di�erent threads are completely

independent. On the one hand, when the batch size is su�ciently

large, PAM demonstrates extremely high e�ciency. On the other

hand, since batches are executed one-by-one, serially, when the

batch size is small, PAM cannot utilize all the computing resources

inside each batch. When the batch size is 10, its throughput is

smaller than that of sequentially applying all the updates with a

single thread due to the scheduling overhead.

With 64 threads, the throughput of Contreap is close to that of

PAM with a batch size of 104, approximately 2.5x that of PAM with

a batch size of 103. Moreover, even with a batch size of 105, the

update throughput of Contreap is still 70% of that of PAM. This

demonstrates that our method still maintains competitive e�ciency

compared to the batch-based method PAM, when its batch size is

set to be su�ciently large, causing degraded query performance.

In addition, the update throughput of the PB-Tree is around

half of that of the SeqPBST. Compared to BSTs, the larger size of

B-Tree nodes requires more time during copy-on-write, and the

larger fanout of B-Tree nodes leads to longer time to compute the

node augmentation. In addition, there is currently no concurrent

update scheme for PB-Tree while our Contreap can support e�cient

concurrent update and scales linearly with the number of threads.

PAMSeqPBSTContreap PB-Tree

10
5

10
6

10
7

10 10
2

10
3

10
4

10
5

Throughput (tps)

Batch Size

10
5

10
6

10
7

10 10
2

10
3

10
4

10
5

Throughput (tps)

Batch Size

(a) Uniform (b) Zip�an

Figure 13: Performance under Di�erent Distributions.

6.4 Performance under Skewed Workloads

In this section, we use YCSB [26] to generate workloads with di�er-

ent distributions of updates. Fig. 13 shows the update throughput

under di�erent distributions using 64 threads.As shown in Fig. 13(a)

and (b), the throughput of Contreap is similar under both uniform

and Zip�an distributions. Under the Zip�an distribution, 80% of

the updates are concentrated on 20% of the elements, leading to a

signi�cant increase in the access frequency of the most frequently

accessed elements. Although a skewed distribution can result in

increased con�icts among parallel workers in hybrid scheduling,

this impact on performance is not signi�cant. Under the Zip�an

distribution, the throughput of PAM slightly 5% increases. This is

because a key is more likely to be updated multiple times within

a batch under under a skewed distribution. In this case, PAM can

merge these updates in advance to reduce the actual update cost.

From the above experiments, we found that the update through-

put of PAM with a batch size of 10 is lower than that of serial

updates, and its query e�ciency is also inferior to that of SeqPBST.

Hence, we will exclude this setting from subsequent e�ciency tests.

6.5 Space Consumption

In this section, we compare the space consumption of Contreap

against existing solutions. Fig. 15 shows the memory peak when

inserting 107 elements into the data structure that initially contains

108 elements. Aswe describe in Sec. 2.4, if all updates are executed as

a huge batch, the space consumption of PAM is O(= +< log (=/<))
to store the original version and the updated version, which corre-

sponds to the case where the batch size is 107. Accordingly, if the

batch size of PAM is set to 1, then a total of</1 batch are executed

to complete the updates, resulting in a total space consumption

of O(= + (</1) · 1 log (=/1)) = O(= +< log (=/1)) to store those

versions. As 1 decreases, the space overhead gradually increases,

ultimately becoming O(= +< log=), which is the same as that of

Contreap and SeqPBST. Note that, when the batch size is 10 or 100,

the actual space consumption of PAM exceeds that of SeqPBST.

This is because PAM keeps additional information at each node to

ensure that information is not lost when a key is updated multiple

times within a batch, which introduces additional space overhead.

The space consumption to maintain SeqPBST is approximately

2.3x that of PAM with a batch size of 107, and 1.5x that of PAM

with a batch size of 105. Additionally, although Contreap introduces

additional space to enhance concurrency e�ciency compared to

the SeqPBST, it results in only about 1% additional space overhead

in our experiments. Additionally, in this paper, we focus solely on

updating the index while retaining all versions. In practical applica-

tions, di�erent garbage collection strategies, such as discarding old
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Figure 14: Performance Under Interleaved Workloads.

versions, writing them to external storage, or compressing them,

can be employed in various scenarios.

To maintain a persistent data structure, the space overhead of

the PB-Tree is much higher than that of the SeqPBST and Contreap.

Theoretically, the space for creating a new version of a B-Tree is

O(� log� =). In practice, with the default settings of the Google

B-Tree, where �=8, the space overhead of the PB-Tree is over 2.1x

that of the PBST. So far, we �nd that when maintaining a persistent

index to support historical range statistics, the update e�ciency,

query e�ciency, and space consumption of PB-Tree are all inferior

to those of SeqPBST, and hence our Contreap, which supports

more e�cient updates with our concurrent update strategies. This

indicates that PB-Tree is not suitable for this scenario. Hence, we

will not include PB-Tree in subsequent experiments.

6.6 Performance under Interleaved Workloads

Next, we compare Contreap and PAM using YCSB under workloads

that contain interleaved updates and queries in varying proportions.

Fig. 14(a) (resp. Fig. 14(b)) shows the throughput with 16 clients and

64 background threads with keys generated with uniform distribu-

tion (resp. Zip�an distribution). Generally, under di�erent update-

query ratios and varying data distributions, Contreap consistently

achieves higher throughput than competitors. Under uniform set-

ting, we have the following observations. Firstly, compared to PAM

with a update batch size of 105 (resp. 104), our Contreap achieves up

to 550x (resp. 28x) higher throughput. The key reason is that with

a large batch size, the query e�ciency is signi�cantly degraded.

Besides, compared to PAM with a update batch size of 103, our

Contreap achieves around 4x higher throughput when the query

ratio is no smaller than 50%. In addition, compared to PAM with

update batch size of 102, the update performance becomes a key

bottleneck and our Contreap gains up to 7x higher throughput.

Finally, for SeqPBST, its key bottleneck is update. Hence, when the

query ratio increases, it gains better throughput as expected. Our

Contreap is 20x faster than SeqPBST when the query ratio is 10%

and still 4x faster than SeqPBST when the query ratio reaches 90%.

We have similar observations under Zip�an distribution.

In summary, our solution, Contreap, e�ciently maintains a ver-

sion for each update to support high speed range statistics queries.

This allows Contreap to adapt to various interleaved workloads.

6.7 Case Study

In this section, we perform a case study to illustrate potential appli-

cations of Contreap. We used our proposed Contreap as an index

for accelerating a critical query in E-commerce. In such a scenario,
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the database stores all the order information. We consider statis-

tical queries in the following form: given a historical moment C

and a price range [E<8=, E<0G ], return the gross merchandise vol-

ume (GMV) of the products whose prices fall within the range

[E<8=, E<0G ] up to time C . To speed up the query e�ciency of the

GMV queries, we construct the query index using the prices of

the products as keys. To simulate this application, we �rst create

a product list containing 10 million products. Then, we generated

prices for each product using a normal distribution to mimic the

pricing patterns in reality. Next, we generated transactions from

a Zip�an distribution to simulate the sales volume of popular and

less popular products in real life.

Fig. 16 shows the update time and the average query time using

di�erent index. It is worth noting that, under the in�uence of both

the normal distribution and the Zip�an distribution, the keys, i.e.,

the price of the sold product, become highly concentrated. Even

under such more skewed workload, it has almost no impact to our

Contreap in terms of update performance.

With the increase of the update batch size, the query e�ciency of

PAM signi�cantly declines as the range statistics need to examine

more nodes. When the update batch size is 100, the query time of

PAM is about 20x that of Contreap while the update time is 10x

that of Contreap. When the batch size reaches 105, the query time

becomes 1700x slower even though it gains slight improvement for

update e�ciency. Hence, our solution gains a tremendous balance

among update and query e�ciency. In contrast, PAM with di�erent

batch sizes will either degrade the update e�ciency or the query

e�ciency. Compared to SeqPBST, our Contreap gains much better

update e�ciency due to our proposed concurrent update strategies.

Overall, the experimental results demonstrate that our Contreap is

the preferred indices for such applications.

7 CONCLUSION

In this paper, we propose Contreap, a novel concurrent update

method for persistent BSTs. Our solution applies< updates to a

tree containing = elements in O(log= +<) time using a pipeline,

utilizing O(log=) stages. We further propose a hybrid scheduling

scheme to improve the scalability and practical performance of our

solution. Experimental results show that our proposal achieves a

good balance between update and query performance.
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