
Searching and Detecting Structurally Similar Communities in
Large Heterogeneous Information Networks

Shu Wang

The Chinese University of Hong

Kong, Shenzhen

shuwang3@link.cuhk.edu.cn

Yixiang Fang
∗

The Chinese University of Hong

Kong, Shenzhen

fangyixiang@cuhk.edu.cn

Wensheng Luo

The Chinese University of Hong

Kong, Shenzhen

luowensheng@cuhk.edu.cn

ABSTRACT
Heterogeneous information networks (HINs) are prevalent in vari-

ous domains, including bibliographic information networks, social

media, and knowledge graphs. As a fundamental topic in HIN min-

ing, community mining has found various real applications, such as

recommendation, biological data analysis, and event organization.

Most existing works often rely onmeta-paths, relational constraints,

spectral partitioning, label propagation, and network representa-

tion to define the communities. However, almost all these works do

not explicitly consider the structural similarity between vertices,

which plays a vital role in modeling communities and also ignore

the specific roles of vertices. In this paper, we propose a novel com-

munity model, called structurally similar community (SSC), which
models the HIN communities by explicitly considering the struc-

tural similarity between vertices. In particular, SSC can not only

support various structural similarity measures, but also identify

different roles of the vertices in the community, such as cores, non-

cores, hubs, and outliers. Based on the SSC, we develop fast online

and index-based algorithms that support both efficient searching

and detecting SSCs in large HINs, where the former one searches an

SSC containing a specific query vertex while the latter one detects

all the SSCs from the HIN. Extensive experiments on real-world

datasets demonstrate the effectiveness of SSC model in revealing

meaningful communities and the high efficiency of our proposed

algorithms.

PVLDB Reference Format:
Shu Wang, Yixiang Fang, and Wensheng Luo. Searching and Detecting

Structurally Similar Communities in Large Heterogeneous Information

Networks. PVLDB, 18(5): 1425 - 1438, 2025.

doi:10.14778/3718057.3718070

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/sam234990/cs-hin-scan.

1 INTRODUCTION
Heterogeneous information networks (HINs) are networks with

multiple typed objects and links denoting different relations [34, 64],

which are prevalent in bibliographic networks [63, 70], IMDBmovie

networks [66, 88], e-commence networks [26], and knowledge

∗
Yixiang Fang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.

doi:10.14778/3718057.3718070

Figure 1: An example HIN of the DBLP network.

graphs [27]. Figure 1 depicts an example HIN of the DBLP net-

work with four types of vertices, i.e., author (𝐴), paper (𝑃), topic

(𝑇), and venue (𝑉), where the directed lines denote the semantic

relationships between these objects. For example, the author 𝑎1 has

written a paper 𝑝1, which mentions the topic 𝑡1.
As a fundamental topic in graph mining, community mining

has received tremendous attention in recent years [25, 28, 29, 57].

Conceptually, a community is a group of vertices densely connected

internally and loosely associated with vertices outside the group.

Mining communities from HINs have found various real applica-

tions, including event organization, friend recommendation, and

biological data analysis [22, 58]. Generally, the existing works of

community mining over HINs can be classified into community
search (CS) [27, 41, 54, 78, 97] and community detection (CD) [69, 71–
73, 73, 95], where the former one aims to search a community con-

taining a specific query vertex, while the latter one often detects

all the communities from the HIN.

To search for and detect communities in HINs, Fang et al. [27, 41]

proposed using meta-paths to model the link relationships between

vertices, along with a minimum degree constraint to ensure cohe-

siveness. Similarly, Jian et al. [40] employed relational constraints to

search for communities consisting of vertices from multiple types.

Besides, Sun et al. [72] proposed to cluster objects of a target type

using weighted meta-paths. Nevertheless, none of these prior works

has explicitly considered the structural similarity between vertices,

which is crucial for mining communities [85]. In the literature,

many similarity measures have been developed, e.g., PathSim [70],

HeteSim [62], and StructSim [39], which are effective for measuring

the similarity between vertices in the HINs from different angles.

Besides, these works ignore the specific roles of vertices such as

cores, non-cores, hubs, and outliers. In Figure 1, for example, both

vertex pairs (𝑎1, 𝑎2) and (𝑎3, 𝑎4) can be linked via instances of the

meta-path “𝐴𝑃𝐴”, but the former one exhibits a higher structural

similarity since its two authors co-authored a paper 𝑝1 and only col-

laborated with each other, showcasing a higher closeness compared

to the latter pair. Also, the vertex 𝑎4 plays the role of hub between

two different communities 𝐶1 = {𝑎1, 𝑎2, 𝑎3} and 𝐶2 = {𝑎5, 𝑎6, 𝑎7}.

1425

https://doi.org/10.14778/3718057.3718070
https://github.com/sam234990/cs-hin-scan
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3718057.3718070
https://www.acm.org/publications/policies/artifact-review-and-badging-current

As shown in previous works of mining communities from homo-

geneous graphs, the structural similarity is effective for modeling

network communities. For example, as a classic and popular CD

method, SCAN [85] explicitly considers the structural similarity by

using neighbor sets, and requires that each core vertex of the com-

munity has at least 𝜇 𝜖-neighborhoods, where an 𝜖-neighborhood

is a neighborhood whose structural similarity with it is at least 𝜖 ,

and 𝜇 > 0 and 𝜖 > 0 are user-specific parameters. Particularly, it

is capable of identifying the four different roles of vertices in the

network [1], i.e., core, non-core, hub, and outlier vertices, where the
first two roles are used to distinguish the importance of vertices in

a community, hubs are vertices connecting different communities,

and outliers do not belong to any community. These four roles are

formulated based on the concepts of Jaccard structural similarity
and 𝜖-neighborhood in homogeneous graph. Due to the existence

of multiple vertex and edge types in the HIN, these two concepts

cannot be directly applied for the HIN, and none of existing works

has formally defined the concept of 𝜖-neighborhood for HINs.

SSC model.Motivated by the above, in this paper, we propose

a novel community model, called Structural Similar Community

(SSC), for the community with vertices of the same type. In the

HIN, the vertices and edges have different vertex types and edge

types respectively. The nature of the heterogeneity above makes

the similarity between two vertices of the same type have different

meanings when considering the different paths or subgraphs be-

tween them. For example, given two authors in a DBLP network,

their PathSim [70] similarity values could be different by using two

different meta-paths P1 = “𝐴𝑃𝐴”and P2 =“𝐴𝑃𝑉𝑃𝐴”. The hetero-

geneity in similarity motivates us to model the structural similarity

between two vertices as a multi-dimensional vector. We then for-

mulate the SSC model, in which each core vertex of the SSC has

at least 𝜇 neighbors whose multi-dimensional structural similarity

values surpass a threshold vector 𝝐 . The two main features of our

SSC model are as follows.

• A generic framework. SSC provides a generic framework to

support various similarity measures. In the literature, various HIN

vertex similarity measures have been developed [15, 39, 49, 62, 68,

70, 82, 92], and different measures have different emphases. For

example, PathSim [70] employs a symmetric meta-path to mea-

sure the semantic similarity between two vertices. Another classic

similarity measure is the Jaccard similarity, which measures the

semantic similarity between two vertices by using their shared local

𝑘-hop neighbors. For instance, in Figure 1, consider two authors

𝑎2 and 𝑎3 with 𝑘=2. They have 1 and 2 papers respectively, but

they only share 1 paper, so their Jaccard similarity on papers is

0.5. Similarly, their Jaccard similarity on topics is 1.0. As a result,

their similarity in papers and topics can be represented by a vector

𝝈 (𝑎2, 𝑎3) = [0.5, 1]⊤. Besides, such a multi-dimensional vector can

more accurately describe the similarity between vertices than a

single aggregated similarity value (e.g., average value), since di-

rectly aggregating similarities for different types of vertices can lose

semantic information. For instance, consider the pairs (𝑝1, 𝑝2) and

(𝑝2, 𝑝3) in Figure 1. Their similarity vectors on topics and venues

are 𝝈 (𝑝1, 𝑝2) = [1.0, 0.0]⊤ and 𝝈 (𝑝2, 𝑝3) = [0.0, 1.0]⊤, respectively.
However, if we aggregate the similarity values from different vertex

types by using an average value, their similarity values are the same

(i.e., 0.5), leading to no difference between these two pairs.

(a) Two SSCs, a hub, and an outlier (b) k-strata and 2-multi-strata of 𝑎1

Figure 2: Illustrating SSC and 𝑘-multi-strata.

• Identifying different roles of vertices. Existing HIN commu-

nity models, such as (𝑘,P)-core [86], HIC [97], and attribute-based

model [78], can only differentiate two roles of vertices in the net-

work, i.e., members or non-members of communities. In contrast,

our SSC model is able to identify four different roles: core, non-core,

hub, and outlier. Core and non-core vertices are part of communi-

ties, but the former ones play a more important role; hub vertices

bridge multiple communities; outlier vertices do not belong to any

community. In Figure 2(a), for example, when we use the threshold

𝝐 = [0.3, 0.7]⊤, the author 𝑎4 functions as a hub, since s/he does not
belong to any community, but is linked to the two communities that

contain 𝑎3 and 𝑎5 respectively. These roles are particularly useful

in many real applications [31, 48]. For instance, the outlier vertices

can be used for identifying anomaly [13, 33, 51, 94], while the hub

vertices are believed to play a crucial role in viral marketing and

epidemiology [18, 43, 81].

Despite the above advantages of SSC, computing SSCs from

large HINs is a very challenging task. First, computing the multi-

dimensional similarity between vertices is expensive because it

requires searching paths or multi-hop neighbors according to dif-

ferent similarity measures, and there may exist a large number of

paths or vertices between two vertices of the same type. Second, in

practice, the users may frequently explore the SSCs by varying the

values of the parameters, which leads to high costs. Thus, consid-

ering the huge sizes of real-world HINs, it is desirable to develop

efficient algorithms to retrieve SSCs.

Our technical contributions. To enable efficient retrieval of

SSCs, we propose an online CS algorithm that finds the SSC con-

taining a query vertex in a local search manner, along with some

effective pruning strategies. Our SSC model well caters to both

CS and CD, because it formulates communities by purely using

vertices’ similarity values and their related threshold. Thus, the

online CS algorithm can be easily extended as a CD algorithm by

repeating the CS process for the remaining vertices.

In real-world scenarios, users often need to frequently vary the

query parameters to find desirable communities in an HIN. There-

fore, we develop an index, called the SC-Index, to support frequent

queries. We first pre-compute the similarity values between all

the vertices, and then identify the nested property of core vertices

under different parameters, based on which we can compactly or-

ganize the core vertices under all the possible values of parameters.

We further develop an efficient index-based CS algorithm, which

searches the community by expanding from the query vertex and

core vertices. This algorithm can also be easily extended to ad-

dress the CD problem using the similar idea above. In addition, we

propose two algorithms to build the SC-index, and the advanced

one efficiently identifies the core vertices, by avoiding repeated

computation under some specific parameter values.

1426

We have performed extensive experiments on five real large HIN

datasets, and the results show that our SSC model is effective for

modeling real-world communities. Besides, the index-based CS al-

gorithm is up to three orders of magnitude faster than the online CS

algorithm. In addition, the advanced index construction algorithm

is two orders of magnitude faster than the basic algorithm.

Outline. We review the related works in Section 2 and formulate

the SSC model, and SSC search and detection problems in Section

3. In Sections 4 and 5, we introduce the online and index-based

SSC search algorithms, respectively. We present the experimental

results in Section 6, and finally conclude the paper in Section 7.

2 RELATEDWORK
In this section, we review of the related works of Community Search

(CS) and Community Detection (CD) on large graphs, respectively.

• Community Search (CS). Generally, CS aims to search for

high-quality communities containing the query vertices in an online

manner [17, 25, 27]. On homogeneous graphs, various cohesive

subgraph models are used for modeling the communities, such as

𝑘-core [2, 4, 17], 𝑘-truss [12, 23, 26, 42, 52, 93], 𝑘-clique [11, 16, 89]

and 𝑘-ecc (𝑘-edge connected component) [8, 35]. In particular, the

𝑘-core model is the most commonly used and has been extended

with methods that consider additional information [4, 24].

Recently, the topic of CS over HINs has attracted much attention

[20, 27, 30, 40, 59, 77–79, 96, 97]. There are two groups of existing

approaches for CS in HINs, according the two types of HINs: (1)

HINs in which each vertex has only one vertex type and edges

between different vertex types are uniform, and (2) HINs where ver-

tices or edges possess additional attributes, such as labeled graphs

[20, 96], attributed graphs [77, 78], and multi-layer graphs [30]. For

the first group, Fang et al. [27] introduced (𝑘,P)-core, which fo-

cuses on a specific type of vertices and requires that each vertex is

linked to at least 𝑘 other vertices with the same type via meta-paths.

Jiang et al. [41] studied CS over large star-schema HINs without

asking for specifying meta-paths. Besides, Jian et al. [40] searched

communities with vertices of multiple types by using relational

constraints and minimum degree constraint to ensure cohesiveness.

For the second group, the additional information of HINs, such as

keywords [59] and influence values [97] has also been considered

for CS. However, all these works do not explicitly consider vertex

similarity when modeling communities and also ignore the roles of

vertices in the HIN. In contrast, our SSC model well considers the

vertex similarity and different roles of vertices in the HIN.

• Community Detection (CD). On homogeneous graphs, var-

ious CD methods have been developed [3, 28, 29], such as spectral

clustering [19, 46, 84, 87], consensus clustering [32, 75], modularity

[14, 21, 56, 57], statistical inference [44, 60], and structural simi-

larity [6, 83, 85]. Among these methods, SCAN [85] differs from

others methods by explicitly considering the structural similarity

between vertices. It requires that each core vertex of the commu-

nity has at least 𝜇 𝜖-neighborhoods whose structural similarity

values with it are at least 𝜖 . Many works have further studied this

topic [9, 50, 55, 61, 67, 74, 76, 90]. For instance, GS
∗
-Index [83] im-

proves the efficiency by building an index. Although these methods

consider the similarity between vertices, they cannot be directly

applied to HINs due to the presence of multiple types of vertices

and edges.

CD methods over HINs [10, 53, 64, 65, 69–73, 86, 98, 99] can be

roughly divided into two groups according to vertex types in com-

munities. The first group aims to detect communities containing

objects with multiple types [10, 65, 69, 73], while the second group

[71, 72, 99] generates clusters of objects with a specific type. For

example, in the former group, Chen et al. [10] adopted incremental

approaches to cluster objects on star-schema HINs. In the second

group, Sun et al. proposed an algorithm to generate clusters of a

specific type of objects [71], and a user-guided algorithm [72] to

cluster objects of a target type; in [99], a social influence-based

clustering algorithm is presented. Nevertheless, these approaches

do not explicitly consider similarity when modeling the community

in the HIN, and also do not distinguish the four roles of vertices of

the community.

3 PROBLEM FORMULATION
We first formally formulate the SSC model and SSC search and

detection problems, and then present two HIN similarity measures.

3.1 Problem formulation
Definition 1 (HIN [70]). An HIN is a directed graphH = (𝑉 , 𝐸)

with a vertex type mapping function 𝜓 : 𝑉 → A and an edge type
mapping function 𝜙 : 𝐸 → R, where each vertex 𝑣 ∈ 𝑉 belongs to a
vertex type𝜓 (𝑣) ∈ A, and each edge 𝑒 ∈ 𝐸 belongs to an edge type
(also called relation) 𝜙 (𝑒) ∈ R, and |A| + |R| > 2.

AnHIN often follows a schema, which is a directed graph defined

over vertex types A and edge types R, denoted by 𝑇H = (A,R).
Before introducing the SSC model, we present the concept of

multi-dimensional structural similarity, which is pivotal in our SSC

model, as it enables the integration of various similarity measures

between vertices into a generic framework.

Definition 2 (Multi-dimensional structural similarity).

Given an HINH and two vertices 𝑢 and 𝑣 with the same type, their
multi-dimensional structural similarity is a vector

𝝈 (𝑢, 𝑣) = [𝝈1, · · · ,𝝈ℎ]⊤, (1)

reflecting their similarity from different aspects, where 𝝈𝑖 (𝑖 ∈ [1, ℎ],
ℎ ≥ 1, 𝝈𝑖 ∈ [0, 1]) is the value of the 𝑖-th dimension of similarity
vector.

Here, the value in each dimension of 𝝈 (𝑢, 𝑣) can be computed

by any existing HIN vertex similarity measure (e.g., PathSim [70],

HeteSim [62], HowSim [82]), and we will present two measures

used in this paper in Section 3.2.

For ease of comparison, given two vectors 𝒂1 and 𝒃 with same

dimensions, we use 𝒂 ≥ 𝒃 to indicate each dimension of 𝒂 is not

less than the corresponding dimension of 𝒃 ; 𝒂 > 𝒃 indicates 𝒂 ≥ 𝒃
with at least one dimension being strictly greater. Given a threshold

vector 𝝐 with |𝝐 | ∈ (0, 1], we introduce the concept of 𝝐-neighbor
to record the similar neighbors that meet the threshold constraint,

which is defined as:

Definition 3 (𝝐-neighbor). Given an HINH , a threshold vector
𝝐 , and a vertex 𝑢 ∈ H , the 𝝐-neighbor of 𝑢, denoted by 𝑁𝝐 [𝑢], is
defined as the subset of vertices with the same type as 𝑢, in which

1
In this paper, to represent a vector, we use a boldface letter or number (e.g., 𝒂 and 8).

1427

Table 1: Notations and meanings.

Notation(s) Meaning

H=(𝑉 , 𝐸) An HIN with vertex set𝑉 and edge set 𝐸

𝜓 (𝑣) , 𝜙 (𝑒) The vertex and edge type mapping functions

𝝈 (𝑢, 𝑣) The vector of multi-dimensional structural similarity be-

tween vertices 𝑢 and 𝑣

𝒂 An ℎ-dimensional vector

𝒂𝑖 The value of the 𝑖-th dimension of a vector 𝒂
𝝐, 𝜇 Parameters of SSC model

𝑁𝝐 [𝑢] A set of 𝜖-neighbors of vertex 𝑢

𝑁𝑠 [𝑢] The s-neighbors of vertex 𝑢

Γ (𝑢,𝑘) The 𝑘-multi-strata of vertex 𝑢

𝑁𝐺 [𝑢] The neighbors of vertex 𝑢 in the similarity graph

Φ[𝑢] The core threshold set (CTS) of vertex 𝑢

each vertex 𝑣 satisfies 𝝈 (𝑢, 𝑣) ≥ 𝝐 , i.e.,

𝑁𝝐 [𝑢] = {𝑣 |𝜓 (𝑣) = 𝜓 (𝑢),𝝈 (𝑢, 𝑣) ≥ 𝝐}. (2)

Note that the 𝝐-neighbor of 𝑢 includes itself. We also call a

vertex 𝑣 an s-neighbor of 𝑢 (𝑁𝑠 [𝑢]), if it has the same type with 𝑢

and 𝝈 (𝑢, 𝑣) > 0. Obviously, an 𝝐-neighbor must be an s-neighbor.

When the number of 𝝐-neighbors of a vertex is large enough, it
becomes a core vertex, defined as follows:

Definition 4 (Core vertex). Given a threshold vector 𝝐 and an
integer 𝜇 ≥ 2, a vertex 𝑢 is a core vertex if |𝑁𝝐 [𝑢] | ≥ 𝜇.

Reversely, if a vertex of an SSC is not a core vertex, then it is

called a non-core vertex. We next introduce the concept of structural

reachability and formulate our SSC model.

Definition 5 (Structural reachability). Given an HIN H ,
a threshold vector 𝝐 , and two vertices 𝑢 and 𝑣 with the target type, 𝑣
is structurally reachable from 𝑢, if there is a sequence of vertices
𝑣1, 𝑣2, . . . , 𝑣𝑙 (𝑙 ≥ 2) such that: 1) 𝑣1 = 𝑢, 𝑣𝑙 = 𝑣 ; and 2) for all
1 ≤ 𝑖 ≤ 𝑙 − 1, 𝑣𝑖 is a core vertex, and 𝑣𝑖+1 ∈ 𝑁𝝐 [𝑣𝑖].

Definition 6 (Structural Similar Community (SSC)). Given
an HINH , an integer 𝜇, and a threshold vector 𝝐 , an SSC is a set 𝐶
(|𝐶 | ≥ 2) of vertices with the same type, satisfying:

• Connectivity: For any two vertices 𝑣1, 𝑣2 ∈ 𝐶 , there is a ver-
tex 𝑢 ∈ 𝐶 such that both 𝑣1 and 𝑣2 are structurally reachable
from 𝑢.

• Maximality: If a core vertex 𝑢 ∈ 𝐶 , then all vertices that are
structurally reachable from 𝑢 also belong to 𝐶 .

For example, in Figure 2(a), given a specific 𝝐 and 𝜇 = 3, the solid

lines are used to indicate similarity between vertices exceeding

the threshold 𝝐 , whereas dashed lines represent similarity below.

We can deduce that 𝑎2’s 𝝐-neighbor 𝑁𝝐 [𝑎2] = {𝑎1, 𝑎2, 𝑎3} contains
enough vertices, making 𝑎2 be a core vertex. Since 𝑎3 and 𝑎5 are

not structurally reachable, two SSCs are formed: 𝐶1 = {𝑎1, 𝑎2, 𝑎3}
and 𝐶2 = {𝑎5, 𝑎6, 𝑎7}. After identifying all the SSCs, we can obtain

the sets of hub and outlier vertices, defined as follows.

Definition 7 (Hub and outlier vertices). Given an HINH
and a vertex 𝑢 ∈ H that does not belong to any SSC, if 𝑢 satisfies
𝝈 (𝑢, 𝑣) ≥ 0 for vertices 𝑣 in two or more different communities, then
𝑢 is a hub vertex; otherwise, it is an outlier vertex.

In the case of Figure 2(a), 𝑎4 is a hub vertex, since it connects two

different SSCs via vertices 𝑎3 and 𝑎5. Conversely, 𝑎8 is an outlier

vertex. Based on the SSC model, we now formally formulate the

problems of searching and detecting SSCs as follows.

Problem 1 (SSC search). Given an HIN H , an ℎ-dimensional
similarity measure (ℎ ≥ 1), an integer 𝜇 (𝜇 ≥ 2), an ℎ-dimensional
vector 𝝐 , and a query vertex 𝑞, return an SSC containing 𝑞.

Problem 2 (SSC detection). Given an HINH , an ℎ-dimensional
similarity measure (ℎ ≥ 1), an integer 𝜇 (𝜇 ≥ 2), an ℎ-dimensional
vector 𝝐 , and a target vertex type, return all SSCs inH and identify
the role of each vertex with the target type.

3.2 Two similarity measures for HIN vertices
We present two vertex similarity measures used in our paper. Note,

however, that other similarity measures (e.g., HeteSim [62] and

StructSim [39]) can also be used in our generic framework.

• PathSim [70]. This measure is defined based on the concept

of meta-path. A meta-path P is a path defined on an HIN schema

𝑇H = (A,R), denoted in the form 𝐴1

𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→ 𝐴𝑙+1,
where 𝑙 is the length of P, 𝐴𝑖 ∈ A, and 𝑅𝑖 ∈ R (1≤ 𝑖 ≤ 𝑙). For

example, 𝐴𝑢𝑡ℎ𝑜𝑟
𝑤𝑟𝑖𝑡𝑒−−−−−→ 𝑃𝑎𝑝𝑒𝑟

𝑤𝑟𝑖𝑡𝑒−1−−−−−−−→ 𝐴𝑢𝑡ℎ𝑜𝑟 , abbreviated as

𝐴𝑃𝐴, denotes the co-authorship between two authors.

Definition 8 (PathSim [70]). Given a symmetric meta-path P
and two vertices 𝑥 and 𝑦, the PathSim similarity between 𝑥 and 𝑦 is:

𝑆𝑖𝑚P (𝑥, 𝑦) =
2 × | {𝑝𝑥⇝𝑦 : 𝑝𝑥⇝𝑦 ∈ P} |

| {𝑝𝑥⇝𝑥 : 𝑝𝑥⇝𝑥 ∈ P} | + | {𝑝𝑦⇝𝑦 : 𝑝𝑦⇝𝑦 ∈ P} |
(3)

where 𝑝𝑥⇝𝑦 is a path instance between 𝑥 and𝑦, 𝑝𝑥⇝𝑥 is that between
𝑥 and 𝑥 , and 𝑝𝑦⇝𝑦 is that between 𝑦 and 𝑦.

Therefore, given ℎ meta-paths (ℎ ≥ 1), we can represent the

multi-dimensional similarity between two vertices as a vector:

𝝈 (𝑢, 𝑣) = [𝑆𝑖𝑚P1 (𝑢, 𝑣), 𝑆𝑖𝑚P2 (𝑢, 𝑣), · · · , 𝑆𝑖𝑚Pℎ (𝑢, 𝑣)]
⊤ . (4)

• Jaccard similarity. As shown in SCAN algorithm [85], given

two vertices 𝑢 and 𝑣 , their Jaccard similarity is defined as

𝑆𝑖𝑚 (𝑢, 𝑣) = |Γ (𝑢) ∩ Γ (𝑣) |
|Γ (𝑢) ∪ Γ (𝑣) | , (5)

where Γ(𝑢) is the neighbor set of 𝑢, including 𝑢 itself.

However, in the HIN, as vertices with the same type are often not

directly connected, we have to consider the multi-hop neighbors to

establish their relationship. Inspired by 𝑘-strata [91], we introduce
the concept of 𝑘-multi-strata to include the 𝑘-hop neighbors.

Definition 9 (𝑘-multi-strata). Given an HIN, an integer 𝑘 , and
a vertex 𝑢, 𝑢’s 𝑘-multi-strata is a multi-set of vertices,

Γ (𝑢,𝑘) = {Γ1 (𝑢,𝑘), Γ2 (𝑢,𝑘), · · · , Γℎ (𝑢,𝑘) } (6)

where each Γ𝑖 (𝑢, 𝑘) (𝑖 ∈ [1, ℎ]) contains a set of all the vertices with
the same type which are within the 𝑘-hop distances to 𝑢.

By considering the different vertex types in the𝑘-multi-strata, we

can define the multi-dimensional similarity between two vertices

as a vector:

𝝈 (𝑢, 𝑣) = [𝑆𝑖𝑚1 (𝑢, 𝑣), 𝑆𝑖𝑚2 (𝑢, 𝑣), · · · , 𝑆𝑖𝑚ℎ (𝑢, 𝑣)]⊤, (7)

where 𝑆𝑖𝑚𝑖 (𝑢, 𝑣) = |Γ𝑖 (𝑢,𝑘)∩Γ𝑖 (𝑣,𝑘) ||Γ𝑖 (𝑢,𝑘)∪Γ𝑖 (𝑣,𝑘) | .

1428

Algorithm 1: Online SSC search algorithm.

Input: An HIN H(𝑉 , 𝐸) , a core vertex 𝑞, parameters (e.g., 𝜖 and 𝜇)

Output: An SSC𝐶 containing 𝑞

1 Obtain 𝑁𝑠 [𝑞] = {𝑣 |𝜓 (𝑣) = 𝜓 (𝑞),𝝈 (𝑞, 𝑣) ≥ 0) } ;
2 𝑠𝑑 (𝑞) ← 0, 𝑒𝑑 (𝑞) ← |𝑁𝑠 [𝑞] |;
3 𝐶 ← {𝑞},𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑞) ;
4 while𝑄 ≠ ∅ do
5 𝑢 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;
6 if CheckCore(𝑢) is true then
7 for each vertex 𝑣 ∈ 𝑁𝑠 [𝑢] do
8 if 𝑣 ∉ 𝐶 and 𝝈 (𝑢, 𝑣) ≥ 𝝐 then
9 𝐶 ← 𝐶 ∪ {𝑣},𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣) ;

10 for each vertex 𝑣 ∈ 𝑁𝑠 [𝑢] do
11 if 𝑣 is not explored then
12 Obtain 𝑁𝑠 [𝑣] = {𝑤 |𝜓 (𝑤) = 𝜓 (𝑣),𝝈 (𝑣, 𝑤) ≥ 0) } ;
13 𝑠𝑑 (𝑣) ← 0, 𝑒𝑑 (𝑣) ← |𝑁𝑠 [𝑣] |;
14 if 𝝈 (𝑢, 𝑣) ≥ 𝝐 then 𝑠𝑑 (𝑣) ← 𝑠𝑑 (𝑣) + 1 ;
15 else 𝑒𝑑 (𝑣) ← 𝑒𝑑 (𝑣) − 1 ;

16 return𝐶 ;

For instance, in Figure 1, 𝑎1’s 1-stratum is {𝑎1, 𝑝1}, the 2-strata in-
cludes {𝑎1, 𝑝1, 𝑡1}, and the 2-multi-strata is Γ(𝑎1, 2) = {Γ𝐴 (𝑎1, 2) =
{𝑎1}, Γ𝑃 (𝑎1, 2) = {𝑝1}, Γ𝑇 (𝑎1, 2) = {𝑡1}}, as depicted in Figure 2(b).

Similarly, we can obtain Γ(𝑎2, 2) and calculate 𝝈 (𝑎1, 𝑎2) = [0, 1, 1]⊤,
since 𝑆𝑖𝑚𝐴 (𝑎1, 𝑎2) = 0, 𝑆𝑖𝑚𝑃 (𝑎1, 𝑎2) = 1, and 𝑆𝑖𝑚𝑇 (𝑎1, 𝑎1) = 1.

4 ONLINE SSC SEARCH ALGORITHM
Our online algorithm performs a local search starting from the

query vertex 𝑞 in an iterative procedure. Specifically, we first check

whether 𝑞 is a member of an SSC by verifying the similarity con-

straints of 𝝐 and 𝜇. If it is not a member, then we return null;

otherwise, it is either a core vertex or a non-core vertex of an SSC.

In case 𝑞 is a core vertex, we use a queue, which is initialized with

𝑞, to enlarge the SSC by expanding 𝑞’s 𝝐-neighbors iteratively, as
shown in Algorithm 1. In case 𝑞 is a non-core vertex, we can first

identify its 𝝐-neighbors who are core vertices and run Algorithm 1

for each of these core vertices.

Particularly, in line with previous works [6], to speed up the

search process, we also use the concepts of similar-degree (sd) and
effective-degree (ed) to denote the lower and upper bounds of the

numbers of 𝝐-neighbor of a vertex. More precisely, 𝑠𝑑 (𝑢) is the
number of currently determined structurally similar neighbors of

𝑢 in the search process, while 𝑒𝑑 (𝑢) is the number of currently

maximum potentially structurally similar neighbors.

Algorithm 1 works for the case that 𝑞 is a core vertex. We first

obtain the s-neighbors of 𝑞 and initialize 𝑠𝑑 (𝑞) and 𝑒𝑑 (𝑞) (lines
1-2). Then, we initialize an SSC 𝐶 by 𝑞 and a priority queue 𝑄 by 𝑞

(line 3). The priority of a vertex 𝑢 is determined by 𝑒𝑑 (𝑢), where
a higher 𝑒𝑑 (𝑢) value implies a greater likelihood of 𝑢 becoming

a core vertex. Afterward, we use a while-loop to complete the

SSC expansion process (lines 4-15). Specifically, we first dequeue a

vertex 𝑢 and check whether 𝑢 is a core vertex (lines 5-6). If yes, we

enumerate 𝑢’s s-neighbors 𝑣 and add 𝑣 to the queue if 𝝈 (𝑢, 𝑣) ≥ 𝝐 ,
for the expansion in the next iteration (lines 7-9). Besides, for each

s-neighbors 𝑣 of 𝑢, we obtain its s-neighbors 𝑁𝑠 [𝑣], initialize 𝑠𝑑 (𝑣)
and 𝑒𝑑 (𝑣), and update their values (lines 10-15). Finally, the SSC is

returned when the expansion terminates (line 16).

Algorithm 2: CheckCore(𝑣)
1 if 𝑒𝑑 (𝑣) ≥ 𝜇 or 𝑠𝑑 (𝑣) < 𝜇 then
2 𝑠𝑑 (𝑣) ← 0, 𝑒𝑑 (𝑣) ← |𝑁𝑠 [𝑣] |;
3 for each vertex 𝑤 ∈ 𝑁𝑠 [𝑣] do
4 compute 𝝈 (𝑣, 𝑤) under the similarity measure;

5 if 𝝈 (𝑣, 𝑤) ≥ 𝝐 then 𝑠𝑑 (𝑣) ← 𝑠𝑑 (𝑣) + 1 ;
6 else 𝑒𝑑 (𝑣) ← 𝑒𝑑 (𝑣) − 1 ;

7 if 𝑠𝑑 (𝑣) ≥ 𝜇 or 𝑒𝑑 (𝑣) < 𝜇 then break;
8 Mark 𝑣 as explored;

9 if 𝑠𝑑 (𝑣) ≥ 𝜇 then return true;
10 return false

Note that to check whether a vertex 𝑣 is a core vertex, we use the

function CheckCore, as described in Algorithm 2. The key idea is to

verify whether there are 𝜇 vertices in s-neighbors whose similarity

values with 𝑣 are at least 𝝐 . During this process, we use the lower
bound 𝑠𝑑 (𝑣) and upper bound 𝑒𝑑 (𝑣) to achieve early termination.

Example 1. Consider the HIN in Figure 1 and let 𝑞=𝑎2, 𝜇=3, and
𝝐 = [𝝐𝑷 = 0.5, 𝝐𝑇 = 0.7]⊤ with Jaccard similarity. The above algo-
rithm first obtains 𝑁𝑠 [𝑎2] = {𝑎1, 𝑎2, 𝑎3} and initializes 𝑠𝑑 (𝑎2) = 0

and 𝑒𝑑 (𝑎2) = 3. Subsequently, it calculates the similarity for each
vertex in𝑁𝑠 [𝑎2]. Since 𝑎1 and 𝑎3 have not been explored yet and are 𝝐-
neighbors of 𝑎2, 𝑠𝑑 (𝑎1), 𝑠𝑑 (𝑎2) and 𝑠𝑑 (𝑎3) are increased by one. Next,
it expands from 𝑎3 as 𝑒𝑑 (𝑎3) = 4 > 𝑒𝑑 (𝑎1) = 3. Similarly, it stops
after executing 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 (𝑎1) and returns the SSC 𝐶 = {𝑎1, 𝑎2, 𝑎3}.

Lemma 1. Algorithm 1 completes in 𝑂 (𝛼𝑛 + 𝛽𝑚) time, where 𝛼
represents the cost of computing the s-neighbors for a vertex, 𝑛 is the
number of vertices within SSC and their s-neighbors, 𝛽 represents the
cost of computing similarity between two vertices, and𝑚 represents
the total number of s-neighbors of all these vertices.

For lack of space, the proofs of all the lemmas in this paper are

included in the appendix of our technical report [80].

5 INDEX-BASED SSC SEARCH ALGORITHMS
In real-world scenarios, to obtain the desirable communities, users

often need to frequently vary the query parameters [83]. While the

online algorithm efficiently retrieves results for singular queries, it

is inefficient for such scenarios. In existing SCAN algorithms, the

GS
∗
-Index [83] is effective for mining communities from homoge-

neous graphs. GS
∗
-Index uses two ordered indices, Core-Order and

Neighbor-Order, to achieve rapid core vertex retrieval and trunca-

tion of similarity comparison. However, since SSC is defined on

HINs measured by an ℎ-dimensional similarity measure, making

it difficult to define a fixed order for the vertices, the GS
∗
-Index

cannot be directly extended for indexing SSCs.

In this section, we propose an index by pre-computing Similarity

and Core vertices, called SC-Index. In the following, we first give

an overview of SC-Index, then present the index-based SSC search

algorithm, and finally discuss the index construction algorithms.

5.1 Overview of SC-Index
Essentially, an SSC is a structurally reachable component with some

core vertices. To efficiently find the structurally reachable compo-

nents and core vertices in the network, we propose a novel index

structure, called SC-Index, which contains the similarity graph (SG)

and core threshold set (CTS). Particularly, the similarity graph𝐺 is a

1429

(a) SG (b) CTS (𝜇 = 3)

Figure 3: An example of SC-Index.

homogeneous graph for the vertices with the target type, enabling

the rapid expansion of 𝝐-neighbors. The CTS of a vertex 𝑢, denoted
by Φ[𝑢], is a set of vectors facilitating the rapid determination of

whether 𝑢 is a core vertex or not. We now introduce these two

components as follows.

• Similarity graph (SG). The SG is a homogeneous graph 𝐺 =

(𝑉0, 𝐸0), where 𝑉0 is the set of vertices with the target type and 𝐸0
is the set of edges between vertex pairs whose structural similarity

values are larger than zero under a specific similarity measure.

Besides, each edge in𝐺 is associated with a similarity vector 𝝈 (𝑢, 𝑣).
Denote by 𝑁𝐺 [𝑢] the set of neighbors of a vertex 𝑢 in 𝐺 , which

equals to 𝑁𝑠 [𝑢] in the HIN. We represent 𝐺 using adjacency lists,

where each vertex 𝑢 is associated with 𝑁𝐺 [𝑢] and their similarity

values. Note that for ease of similarity comparison, the neighbors

𝑁𝐺 [𝑢] are sorted in descending order according to their similarity

values.

Example 2. Figure 3(a) gives an example SG 𝐺 constructed from
a certain HIN, where the similarity between each pair of vertices
is a 2-dimensional vector. For example, 𝑁𝐺 [𝑎4] is {(𝑎4, [1.0, 1.0]⊤),
(𝑎5, [0.5, 0.5]⊤), (𝑎3, [0.4, 0.6]⊤), (𝑎1, [0.2, 0.3]⊤)}. The neighbors of
each vertex are sorted based on the similarity of the first dimension
and then the second.

• Core threshold set (CTS). A straightforward approach for

fast core vertex determination is to pre-compute all the maximum

threshold vectors 𝝐 under each 𝜇 value for each vertex. However,

when the number of similarity vector dimensions ℎ is high, the

computation of the above approach is extremely prohibitive. For

instance, let |𝑁𝐺 [𝑢] | = 20, ℎ = 4, and 𝜇 = 5, we need to enumerate(︁
4×5
5

)︁
= 15, 504 neighbor combinations, and compute the maximum

threshold values for each of them. Inspired by the notion of 𝑘-

core [2], we propose the notion of similarity-based 𝑘-core, or (𝜇, 𝝐)-
core, which enables efficient computation and provides analogous

boundaries.

Definition 10 ((𝜇, 𝝐)-core). Given a similarity graph𝐺 , a thresh-
old vector 𝝐 , and an integer 𝜇, the (𝜇, 𝝐)-core is the maximum sub-
graph of 𝐺 , such that for each vertex in it, the number of its 𝝐-
neighbors within this subgraph is at least 𝜇.

In Figure 3(a), let 𝝐 = [0.2, 0.2]⊤, {𝑎1, · · · , 𝑎5} constitutes a (3, 𝝐)-
core, while {𝑎1, · · · , 𝑎7} forms an SSC. The difference between

an SSC and (3, 𝝐)-core lies in the inclusion of the core vertex 𝑎6
and non-core vertex 𝑎7 or not. Clearly, the (𝜇, 𝝐)-core excludes

structurally reachable vertices that do have at least 𝜇 𝝐-neighbors
in the subgraph, i.e., ∀𝑣 ∈ (𝜇, 𝝐)-core, |𝑁𝝐 [𝑣] | ≥ 𝜇. Moreover, the

(𝜇, 𝝐)-core is a subset of the core vertex set in the SSC, as stated by

Property 1. We also observe that the (𝜇, 𝝐)-cores are nested within

each other, as presented in Property 2.

Property 1. Under the same pair of parameters 𝜇 and 𝝐 , the (𝜇, 𝝐)-
core is a subset of the core vertex set in an SSC. In other words, if a
vertex is in a (𝜇, 𝝐)-core, it is definitely a core vertex.

Property 2. Under the same 𝜇, (𝜇, 𝝐)-cores are nested: given two
similarity thresholds 𝝐 and 𝝐 ′, if 𝝐 < 𝝐 ′, then (𝜇, 𝝐 ′)-core ⊆ (𝜇, 𝝐)-core.

The key to mining the SSC is to determine the core vertices, and

we can utilize Property 1 to achieve this. Thus, we propose to use

core threshold set (CTS) to store the thresholds required for a vertex

to be included in a (𝜇, 𝝐)-core, defined as follows:

Definition 11 (Core threshold set (CTS)). Given an HIN,
a positive integer 𝜇, and an ℎ-dimensional similarity measure, for
any vertex 𝑢, its core threshold set (CTS) is the maximum set of
threshold vectors that make vertex 𝑢 belong to a (𝜇, 𝝐)-core, denoted
by Φ[𝑢] = {𝒆1, · · · , 𝒆𝑙 }, where 𝑙 is the number of threshold vectors.

Essentially, CTS provides the upper bounds for all 𝝐 parameters

that make vertex 𝑢 belong to a non-empty (𝜇, 𝝐)-core. In other

words, given any 𝒆 ∈ Φ[𝑢], if 𝝐 > 𝒆, 𝑢 is not in the (𝜇, 𝝐)-core.

Example 3. In the similarity graph in Figure 3(a) with 𝜇 = 3,
{𝑎3, 𝑎4, 𝑎5} forms a (3, 𝝐)-core, where 𝝐 = [0.4, 0.5]⊤, so [0.4, 0.5]⊤
belongs to Φ[𝑎3], Φ[𝑎4], and Φ[𝑎5], as shown in Figure 3(b).

Lemma 2. Given an HIN, an ℎ-dimensional similarity measure
(ℎ ≥ 1), and an integer 𝜇, SC-Index costs 𝑂 (ℎ𝑚) space, where𝑚 is
the number of edges in its similarity graph.

5.2 SC-Index-based SSC search algorithm
In this section, we discuss the SC-Index-based SSC search algorithm.

Given an SC-Index, the key idea is to iteratively expand unexplored

core vertices and identify all vertices structurally reachable from

these core vertices. Specifically, if we can determine core vertices

using CTS, we directly expand based on the similarity graph 𝐺 .

Otherwise, we first obtain 𝑁𝝐 [𝑢] for core determination and then

expand unvisited structurally reachable vertices.

Algorithm 3 implements our idea above. Similar to the online

algorithm, we also use a while-loop to complete the SSC expansion

process (lines 2-14). For each vertex 𝑢 in queue 𝑄 , if any vector

in Φ[𝑢] is not less than 𝝐 , we can determine that vertex 𝑢 is a

core vertex (line 6). In the case when vertex 𝑢 is identified as a

core vertex, we traverse and expand each unexplored vertex 𝑣 in

𝑁𝐺 [𝑢] with 𝝈 (𝑢, 𝑣) ≥ 𝝐 (lines 7-9). In another case, we filter the

𝝐-neighbors from 𝑁𝐺 [𝑢] and add these uncovered vertices to SSC if

|𝑁𝝐 [𝑢] | ≥ 𝜇 (lines 11-16). It is worth noting that we first check the

core determination using CTS before enqueuing a vertex, resulting

in the expansion of core vertices before potential core vertices.

Finally, the SSC is obtained when the expansion process terminates.

Example 4. Consider the SC-Index in Figure 3 with 𝑞 = 𝑎5, 𝜇 = 3,
and 𝝐 = [0.4, 0.3]⊤. By Algorithm 3, 𝑎5 is first identified as a core
vertex by comparing each vector in Φ[𝑎5] with threshold 𝝐 . Then, the
algorithm prioritizes 𝑎3 and 𝑎4 before 𝑎6 in𝑄 , as we can quickly deter-
mine that 𝑎3 and 𝑎4 are core vertices based on the CTS shown in Figure
3(b). Upon expanding vertex 𝑎6, it filters 𝑁𝐺 [𝑎6] and determines 𝑎6
as a non-core, ultimately obtaining the SSC 𝐶 = {𝑎1, . . . , 𝑎6}.

1430

Algorithm 3: SC-Index-based SSC search algorithm.

Input: SC-Index (𝐺,Φ), a core vertex 𝑞, parameters (e.g., 𝝐, 𝜇)
Output: An SSC𝐶 containing 𝑞

1 𝐶 ← {𝑞};
2 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑞) ;
3 while𝑄 ≠ ∅ do
4 𝑢 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;
5 mark 𝑢 as explored;

6 if Check 𝒆𝑖 ≥ 𝝐 (𝒆𝑖 ∈ Φ[𝑢]) then
7 for each vertex 𝑣 ∈ 𝑁𝐺 [𝑢] do
8 if 𝑣 is not explored and 𝑣 ∉ 𝐶 and 𝝈 (𝑢, 𝑣) ≥ 𝝐 then
9 𝐶 ← 𝐶 ∪ {𝑣};𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣)

10 else
11 for each vertex 𝑣 ∈ 𝑁𝐺 [𝑢] do
12 if 𝝈 (𝑢, 𝑣) ≥ 𝝐 then 𝑁𝝐 [𝑢] ← 𝑁𝝐 [𝑢] ∪ {𝑣} ;
13 if |𝑁𝝐 [𝑢] | ≥ 𝜇 then
14 for each vertex 𝑣 ∈ 𝑁𝝐 [𝑢] do
15 if 𝑣 is not explored and 𝑣 ∉ 𝐶 then
16 𝐶 ← 𝐶 ∪ {𝑣};𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣) ;
17 return𝐶 ;

Lemma 3. Given an SC-Index, Algorithm 3 completes in 𝑂 (𝑚)
time, where𝑚 is the number of edges between vertices of the SSC in
the similarity graph.

5.3 SC-Index construction algorithms
In this section, we present two index construction algorithms, both

working in an iterative manner, with the advanced algorithm re-

ducing redundant computation through pruning.

5.3.1 Basic SC-Index construction algorithm. Recall that the SC-
Index mainly consists of two components, i.e., similarity graph and

core threshold set. The construction of the similarity graph 𝐺 is

intuitive, which involves the computation of structural similarity

between each pair of vertices with the target type. The construction

of the CTS can be conducted by iteratively increasing the threshold

values and updating the current threshold vectors. Specifically, we

borrow the idea of 𝑘-core decomposition algorithm [2] and leverage

the nested property of (𝜇, 𝝐)-core to obtain the CTS of each vertex.

As shown in [2], the 𝑘-core decomposition algorithm computes

all the 𝑘-cores in a homogeneous graph, with a linear time complex-

ity. Specifically, it iteratively deletes vertices whose degrees are less

than 𝑘 and updates the degrees of the remaining incident vertices

until all the 𝑘-cores are obtained. By considering similarities, we

can compute all the (𝜇, 𝝐)-cores through the following two steps:

1) filtering out edges with similarity values smaller than 𝝐 in 𝐺 ,

and 2) applying 𝑘-core decomposition on the filtered𝐺 . Obviously,

if a vertex 𝑢 belongs to a (𝜇, 𝝐)-core with threshold at 𝝐 but not

beyond it, then 𝝐 becomes a threshold vector in Φ[𝑢]. Hence, we
iteratively compute all the (𝜇, 𝝐)-cores starting from the smallest 𝝐 ,
and obtain the CTS of each vertex as their deletions’ threshold 𝝐 .
Note that the nested property of the (𝜇, 𝝐)-core avoids the need for

recomputation from scratch each time.

Algorithm 4 presents the steps of the idea above. Akin to the

online algorithm, we first derive the similarity graph 𝐺 , by iden-

tifying the s-neighbors, calculating their structural similarities,

and sorting the neighbors for each vertex (lines 2-4). The subse-

quent parts involve computing the CTS (lines 5-10). Initially, we

obtain the set of similarity values 𝑐 for varying the threshold, where

Algorithm 4: Basic SC-Index construction algorithm.

Input: An HIN H(𝑉 , 𝐸) , target type𝑄 , a parameter 𝜇

Output: SC-Index of H
1 𝐺 ← ∅, Φ← ∅,𝑉𝑄 ← all the vertices with the target type;

2 for each vertex 𝑢 ∈ 𝑉𝑄 do
3 obtain 𝑁𝐺 [𝑢] = { (𝑣,𝝈 (𝑢, 𝑣)) |𝜓 (𝑣) = 𝜓 (𝑢),𝝈 (𝑢, 𝑣) ≥ 0 } ;
4 sort 𝑁𝐺 [𝑢] according to the predefined order;

5 𝑐 ← obtain similarity sets in𝐺 ;

6 𝐺 ′ ←𝐺 ;

7 𝝐 ← [𝝐𝑖 = 𝑐0
𝑖
]⊤ (𝑖 ∈ [1, ℎ]) ;

8 while 𝝐 ≠ [𝑐𝑚𝑎𝑥
𝑖
]⊤ (𝑖 ∈ [1, ℎ]) do

9 Φ← CTSMono(𝐺 ′,Φ, 𝝐, 𝜇, ∅);
10 if ℎ ≥ 2 then update 𝝐 ;

11 return𝐺 and Φ

Algorithm 5: CTSMono(𝐺 ′,Φ, 𝝐, 𝜇,𝑉𝐴)

1 𝐺 ′ ← delete all the edges smaller than 𝝐 in𝐺 ′;
2 𝑉𝑐 ← compute all the (𝜇, 𝝐)-core in𝐺 ′;
3 for 𝑐𝑡

1
∈ 𝑐1 in ascending order. do

4 𝝐 ′ ← 𝝐 ⊕ 𝑐𝑡
1
;

5 𝐺 ′ ← delete all the edges smaller than 𝝐 ′ in𝐺 ′ ;
6 𝑉 ′𝑐 ← compute all the (𝜇, 𝝐 ′)-core in𝐺 ′ ;
7 UpdateCTS(Φ,𝑉𝑐 − 𝑉 ′𝑐 , 𝝐);
8 if 𝝐 ′

𝑖
= 𝑐𝑚𝑎𝑥

𝑖
then UpdateCTS(Φ,𝑉 ′𝑐 , 𝝐

′
) ;

9 if 𝑉𝐴 ≠ ∅ then
10 𝐺 ′ ← connected component in𝐺 ′ containing𝑉𝐴 ;
11 𝑉 ′𝑐 ← vertex set in𝐺 ′

12 𝑉𝑐 ← 𝑉 ′𝑐 ; 𝝐 ← 𝝐 ′;
13 return Φ;

14 Procedure UpdateCTS(Φ,𝑉 , 𝝐);

15 for each vertex 𝑢 ∈ 𝑉 do
16 for 𝒆 ∈ Φ[𝑢] do
17 if 𝒆 < 𝝐 then delete 𝒆 from Φ[𝑢];
18 Φ[𝑢] ← Φ[𝑢] ∪ {𝝐 };

𝑐 = {𝑐𝑖 = {𝑐0𝑖 , 𝑐
1

𝑖
, · · · , 𝑐𝑚𝑎𝑥

𝑖
}}, with 𝑖 ∈ [1, ℎ] (line 5). Afterward, we

establish the minimum threshold value and employ a while-loop to

execute the threshold traverse process (lines 7-10). In each iteration,

we invoke the CTSMono algorithm, focusing solely on the variation

of the 1
𝑠𝑡

dimension; subsequently, if the number of dimensions

exceeds two, we update the threshold until reaching the maximum

value. Specifically, the threshold update is achieved by resetting the

dimension with the maximum value and incrementing the value of

the next dimension. Assuming there are three dimensions, when the

second dimension of the threshold𝝐2 reaches its maximum 𝑐𝑚𝑎𝑥
2

,

we reset 𝝐2 = 𝑐0
2
and increment 𝝐3.

By continuously increasing the threshold of the 𝑖𝑡ℎ dimension

and computing the difference set of (𝜇, 𝝐)-core, CTSMono deter-

mines the maximum threshold of the 𝑖𝑡ℎ dimension for all vertices.

Here, we use ⊕𝑐𝑡
𝑖
to denote the transformation of 𝝐𝒊 to 𝑐𝑡𝑖 (line 4).

During the iteration process, we obtain (𝜇, 𝝐)-core after increasing
the threshold, and updating the CTS for the difference set between

the new and previous one by invoking procedure UpdateCTS (lines
5-7). Here, we examine each element in Φ and eliminate those

smaller than the new threshold 𝝐 , ensuring a complete computa-

tion of Φ (lines 15-18). It is crucial to emphasize that the (𝜇, 𝝐)-core
vertices with the maximum similarity are stored in 𝑉 ′𝑐 , requiring

1431

the update of CTS (line 8). If the 𝑖𝑡ℎ dimension has not reached

its maximum value, we replace 𝑉𝑐 and 𝝐 , reusing the results of

previously computed (𝜇, 𝝐)-core, as indicated by Property 2 (line

12). The anchored vertex set𝑉𝐴 is used in the subsequent advanced

method, and we omit the discussions here.

Example 5. Assume we have derived 𝐺 as depicted in Figure 3(a).
Algorithm 4 first obtains the similarity set 𝑐 , sets threshold 𝝐 as the
minimum value, and then incrementally raises 𝝐 . When 𝝐 ′ becomes
[0.5, 0.3]⊤, 𝑎4 and 𝑎5 are removed from 𝐺 , and it temporarily stores
𝝐 = [0.4, 0.3]⊤ in Φ[𝑎4] and Φ[𝑎5]. Next, [0.5, 0.3]⊤ is added to
Φ[𝑎1] and Φ[𝑎3], since 𝝐 ′ reaches the maximum value of the first
dimension. Following this, when 𝝐 ′ = [0.4, 0.5], the Φ[𝑎3] and Φ[𝑎5]
are updated, replacing the previous threshold for 𝑎4 and 𝑎5. Figure
3(b) shows all the CTS.

Lemma 4. Given an HIN, Algorithm 4 costs 𝑂 (𝛼𝑛 + 𝛽𝑚 + 𝛾ℎ−1𝑚)
time, where 𝛾 is the maximum number of different similarity values
among ℎ dimensions.

5.3.2 Advanced SC-Index construction algorithm. Although the

basic algorithm provides a correct method to find all CTS, it in-

volves many redundant computations. Consider a vertex 𝑢 with

Φ[𝑢] = {𝒂 = [𝒂1, 𝒂2]⊤}. In the basic algorithm, for all the thresh-

olds 𝝐 satisfying 𝝐2 < 𝒂2, 𝑢 is always involved in the core decom-

position computation of these different (𝜇, 𝝐)-cores in CTSMono
and Φ[𝑢] is updated in the procedure UpdateCTS with threshold

[𝒂1, 𝝐2]⊤. To alleviate this issue, we propose an advanced SC-Index

construction algorithm, aimed at optimizing the computation of

CTS, particularly for the cases where the number of dimensions

exceeds two, i.e., ℎ ≥ 2. It adopts a reverse traversal of the threshold

𝝐 , aiming to directly obtain the maximum threshold vectors.

𝑐1

𝑐2

𝒂

0 10.4

1

0.5

(a) Before update

𝑐1

𝑐2

𝒂

𝒃

0 10.4 0.5

1

0.5

0.3

(b) After update

Figure 4: An example search area of vertex 𝑎3.
In the advanced algorithm, to avoid redundant core decomposi-

tion computations, we adopt a descending order for updating the

threshold 𝝐 with pruning strategies, as shown in Algorithm 6. To

identify unnecessary computations and leverage Property 2 for

ℎ ≥ 2, we introduce two concepts: search area and anchored vertex:
• Search area:When computing CTS for a vertex 𝑢, its search

area, denoted by 𝑠𝑎[𝑢], is a 2-dimensional space with the

1
𝑠𝑡

and 2
𝑛𝑑

dimensions formed by all similarity values

greater than the corresponding values in the current Φ[𝑢],
i.e., 𝑠𝑎[𝑢] = {(𝑐1, 𝑐2) |∀𝒆 ∈ Φ[𝑢] s.t. 𝑐1 > 𝒆1 or 𝑐2 > 𝒆2}.

• Anchored vertex: During the iterative computation, if a ver-

tex 𝑢 has not visited its neighbors 𝑣 and their 1
𝑠𝑡

and 2
𝑛𝑑

dimension similarity falls in 𝑠𝑎[𝑢], then 𝑢 is called an an-

chored vertex.

As we update the threshold 𝝐 in reverse order, the values of the

lowest two dimensions of the current CTS are always smaller than

Algorithm 6: Advanced SC-Index construction algorithm.

Input: An HIN H(𝑉 , 𝐸) , target type𝑄 , a parameter 𝜇

Output: SC-Index of H
1 Compute𝐺 and 𝑐 (same as that of Algorithm 4);

2 𝝐 ← [𝝐𝒊 = 𝑐0
𝑖
]⊤ (𝑖 ∈ [1, ℎ]);

3 𝐺 ′ ← 𝐺 ;

4 if ℎ = 1 then Φ← CTSMono(𝐺 ′,Φ, 𝝐, 𝜇, ∅); return𝐺 and Φ;

5 if ℎ = 2 then Φ← CTSDual(𝐺 ′,Φ, 𝝐, 𝜇); return𝐺 and Φ;

6 𝝐 ← [𝝐𝒊 = 𝑐𝑚𝑎𝑥
𝑖
]⊤ (𝑖 ∈ [1, ℎ]);

7 while 𝝐 ≠ [𝑐0
𝑖
]⊤ (𝑖 ∈ [1, ℎ]) do

8 Φ← CTSDual(𝐺 ′,Φ, 𝝐, 𝜇);
9 reverse update 𝝐 ;

10 return𝐺 and Φ

Algorithm 7: CTSDual(𝐺 ′,Φ, 𝝐, 𝜇)
1 𝐺 ′ ← delete all the edges smaller than 𝝐 in𝐺 ;

2 𝑉 ′
𝑆
← compute all the (𝜇, 𝝐)-core in𝐺 ′ ;

3 𝑉𝐴 ← ∅;
4 for each vertex 𝑢 ∈ 𝑉 ′

𝑆
do

5 for each vertex 𝑣 ∈ 𝑁 ′
𝐺
[𝑢] do

6 if 𝐺 ′ (𝑢, 𝑣) is not visited and 𝝈 (𝑢, 𝑣)𝑖,𝑗 in sa[𝑢] then
7 𝑉𝐴 ← 𝑉𝐴 ∪ {𝑢}; mark𝐺 ′ (𝑢, 𝑣) as visited;
8 for 𝑐𝑡

𝑗
∈ 𝑐 𝑗 in descending order. do

9 𝝐 ← 𝝐 ⊕ 𝑐𝑡
𝑗
;

10 update anchored vertex set𝑉𝐴 and search area;

11 𝐺 ′ ← connected component in𝐺 ′ containing𝑉𝐴 ;
12 Φ← CTSMono(𝐺 ′,Φ, 𝝐, 𝜇,𝑉𝐴);
13 return Φ;

the newly added threshold. Thus, the search area delineates the

region where the next threshold vector of CTS will be added during

the computation process, while anchored vertices exclude vertices

that will not undergo updates.

Example 6. In Figure 3(a),Φ[𝑎3] = {𝒂, 𝒃} with 𝒂 = [0.4, 0.5]⊤ and
𝒃 = [0.5, 0.3]⊤. As we perform a descending search of the threshold,
we encounter 𝒂 first, forming the search area shown in Figure 4(a).
As 𝝐2 becomes to 0.3, since 𝝈 (𝑎3, 𝑎1) = [0.5, 0.3]⊤ falls within the
search area, both 𝑎1 and 𝑎3 become anchored vertices. After computing
Φ[𝑎1], Φ[𝑎2], and Φ[𝑎3] with 𝒃 included, the updated search area
for 𝑎3 is depicted in Figure 4(b). Because 𝑎4 and 𝑎5 are not involved
in the computation, the redundant computation of Φ[𝑎4] and Φ[𝑎5]
is avoided.

Algorithm 7 lists the steps of the utilization and updates of the

search space. First, it computes all the (𝜇, 𝝐)-cores based on the

current threshold 𝝐 (lines 1-2), and then obtains the anchored vertex
set𝑉𝐴 according to the similarity of the𝐺 (lines 3-7). Subsequently,

it iteratively computes the CTS in descending order and updates the

anchored set 𝑉𝐴 and the search area accordingly (lines 8-12). The

key step to reduce redundant computations is to remove the (𝜇, 𝝐)-
core in𝐺 ′ that does not contain𝑉𝐴 . This is because if the similarity

of edges connected to vertex 𝑢 does not fall within the search area,

then the Φ[𝑢] will not change during the current iteration of core

decomposition on𝐺 ′. Consequently, when all anchored vertices are

removed from any (𝜇, 𝝐)-core, this (𝜇, 𝝐)-core should be excluded

from further computation, regardless of whether it is empty or not.

Hence, we continuously update the anchored vertex set𝑉𝐴 and the

1432

Algorithm 8: Online SSC detection algorithm.

Input: An HIN H(𝑉 , 𝐸) , parameters (e.g., 𝝐 and 𝜇)

Output: All SSCs C, hubs H, outliers O
1 C← ∅, H← ∅ , O← ∅;
2 𝑉𝐶 ← ∅,𝑉𝑄 ← all the vertices with the target type;

3 for each vertex 𝑢 ∈ 𝑉𝑄 do
4 if 𝑢 ∈ 𝑉𝐶 or CheckCore(𝑢) is false then continue;
5 𝐶 ← search the SSC containing 𝑢 by Algorithm 1;

6 C← C ∪ {𝐶 };
7 𝑉𝐶 ← 𝑉𝐶 ∪𝐶 ;
8 for each non-core vertex 𝑣 ∈ 𝐶 do mark 𝑣 as unexplored;

9 for each vertex 𝑢 ∈ 𝑉𝑄\𝑉𝐶 do
10 𝑋 ← ∅;
11 for each vertex 𝑣 ∈ 𝑁𝑠 [𝑢] do
12 add the SSC containing 𝑣 to 𝑋 ;

13 if |𝑋 | ≥ 2 then H← H ∪ {𝑢};
14 else O← O ∪ {𝑢};
15 return C,H,O;

connected component𝐺 ′ containing anchored vertices in lines 9-10

of Algorithm 7 and line 10 of Algorithm 5.

Lemma 5. Algorithm 6 correctly computes all the CTSs for vertices
with the target type.

Lemma 6. Given an HIN H , Algorithm 6 completes in 𝑂 (𝛼𝑛 +
𝛽𝑚 + 𝛾𝑒𝑚) time, where 𝑒 =𝑚𝑎𝑥{ℎ − 2, 0}.

Compared to the basic algorithm, the advanced index construc-

tion algorithm adopts reverse order traversal of threshold and con-

structs a search area for each vertex. Filtering the subgraphs as-

sociated with anchored vertices effectively reduces the number

of vertices involved in each core decomposition computation and

ensures that each updated threshold is always the maximum one.

• Optimizations for similarity computation. Both our online

algorithms and SC-Index construction algorithms require the com-

putation of structural similarity between vertices, which is costly.

To speed up this process, we develop three kinds of optimization for

similarity computation: (1) During the index construction, we can

parallelize the computation of similarity between vertex pairs with

similarity values larger than zero. (2) We introduce an early termi-

nation strategy: if the similarity value of a given dimension falls

below the threshold during computation, we halt the calculation

for the remaining dimensions. (3) Since the similarity calculation is

orthogonal to CS and CD, optimizations for any specific similarity

measure can be seamlessly integrated into our solution. We briefly

review existing optimization methods [5, 6, 45, 47, 76, 90] in the

appendix of our technical report [80].

5.4 Extension to SSC Detection
In this section, we show that both the online and index-based SSC

search algorithms can be easily extended to solve the SSC detection

problem. The main idea of SSC detection algorithms is to repeatedly

invoke the SSC search algorithms for each unexplored vertex, to

obtain hubs, outliers, and SSCs.

Algorithm 8 presents the online SSC detection algorithm. We use

𝑉𝐶 to collect all the vertices in the SSCs, which is empty initially,

and use 𝑉𝑄 to include all the vertices with the target type (line

2). For each core vertex, we invoke the online search algorithm to

search the SSC containing it (lines 3-8). Note that when a vertex is

already in another SSC or is not a core vertex, we will not invoke

Algorithm 1 for it to avoid duplicated search (line 4). After obtaining

an SSC, all its vertices are added to𝑉𝐶 and and all non-core vertices

are marked as unexplored because they may belong to different

SSCs (lines 7-8). For the remaining vertices that are not in any

SSC, we classify them as either outlier vertices or hub vertices by

checking the SSCs containing their s-neighbors (lines 9-15).

In addition, the SC-Index can be used to support the SSC de-

tection. Specifically, we just need to slightly modify Algorithm 8

by replacing the search process in line 5 with Algorithm 3, and

replacing 𝑁𝑠 [𝑢] in line 11 with 𝑁𝐺 [𝑢].

6 EXPERIMENTS
We now present the experimental results. Section 6.1 discusses the

setup. We discuss the experimental results in Sections 6.2 and 6.3.

6.1 Setup
Table 2: Datasets used in our experiments.

Dataset Vertices Edges Vertex types Edge types

Amazon 13,114 90,340 4 3

DBLP 682,819 3,902,418 4 3

IMDB 2,467,806 15,195,182 4 3

DBpedia 5,900,558 35,282,572 413 637

Freebase 29,119,948 108,989,856 984 2,580

Datasets. We use five real-world HIN datasets: Amazon
2
, DBLP

3
,

IMDB
4
, DBpedia

5
, and Freebase

6
. The detailed statistics are shown

in Table 2, which includes the numbers of vertices, edges, vertex

types, and edge types. Amazon is a network of product evaluations,

documenting the relationships among users, products, brands, and

views. DBLP archives publication records in computer science areas,

and the vertex types are authors, papers, topics, and venues. IMDB

includes movie rating records since 2000, and it has four types of

vertices (authors, directors, writers, and movies). DBpedia contains

the data extracted from Wikipedia infoboxes using the mapping-

based extraction (object properties only). Freebase contains all the

entities and relations under the domains of music, film, and TV.

Algorithms. In our experimental evaluation, we evaluate and

compare the following CS algorithms:

• SSCS: our online SSC search algorithm discussed in Sec. 4.

• SC-Q: our SC-Index-based SSC search algorithm in Sec. 5.2.

• CSH: a CS algorithm using (𝑘,P)-core for HINs in [27].

• CSSH: a CS algorithm for star-schema HINs [41].

• CSH-E: a CS approach using edge-disjoint (𝑘,P)-core [27].
• CSH-V: a CS approach using vertex-disjoint (𝑘,P)-core [27].

We also evaluate and compare the following CD algorithms:

• SSCD: the online SSC detection algorithm in Sec. 5.4.

• SCAN-P: we first induce the HIN to a homogeneous graph

using a symmetric meta-path P and then run SCAN algo-

rithm on it [7].

2
http://jmcauley.ucsd.edu/data/amazon/

3
http://dblp.uni-trier.de/xml/

4
https://www.imdb.com/interfaces/

5
https://wiki.dbpedia.org/Datasets

6
https://freebase-easy.cs.uni-freiburg.de/dump/

1433

• 𝑘-Btruss: a 𝑘-truss-based CD method over HINs [86].

As reviewed in Section 2, our SSCS belongs to the first group of

existing CS works that focus on HINs without additional attributes.

Apart from the above CS methods, r-com [40] also belongs to the

first group, but it finds communities involving multiple vertex types,

while CSH, CSSH, and our approach focuses on communities with a

single target vertex type, so we omit it in our experiments.

Parameter settings. For parameter settings, we drew inspiration

from the existing works on SCAN [6, 83] and CS [27, 41], opting for

a similar settings. For 𝜇 ≥ 2, we choose 3, 5, 7, 9, 11, 13, and 15, with

5 as default. For 0 < |𝝐 | ≤ 1, we set all dimensions to a uniform

value and choose 0.2, 0.4, 0.6, and 0.8, with 0.2 as the default. In

practice, we can first sample the similarity values between vertices

in HINs and use the mean as the default value, then adjust it based

on specific requirements. For the similarity measure, we implement

our SSC model using two widely used metrics: Jaccard and Path-

Sim, resulting in SSCS-Jaccard and SSCS-PathSim, respectively.
By default, SSCS-PathSim sets 𝝐 to a uniform value of 0.4. If not

specified otherwise, we use Jaccard similarity as the default. To

mitigate the risk of an extensive selection leading to null results,

we set 𝑘 = [1, 2] in 𝑘-multi-strata, with 2 being the default value if

the maximum distance is at least 2. We set all the possible vertex

types for the first three datasets as the target type. For the two

knowledge graph HINs, we use the top 10 vertex types with the

highest vertex frequencies. The default core number 𝑘 for CSH,
CSH-E, CSH-V, and CSSH is set to 5, with 𝑘 = 𝜇 used in the efficiency

experiments. In line with existing works [27, 39, 70], for baselines

using meta-paths, we focus on meta-paths with lengths up to four

and select all the possible meta-paths for the first three datasets;

for the rest two datasets, we select the top-1000 meta-paths with

the highest frequencies, ensuring that each chosen meta-path starts

and ends with the target type. To evaluate the SSC search algo-

rithms, we randomly select 1,000 query vertices, each of which is

contained by an SSC. We implement our all algorithms in C++ with

-O3 level optimization and all the experiments are conducted on a

Linux operating system running on a machine with an Intel Xeon

2.4GHz CPU and 512GB of memory. If an algorithm cannot finish

in three days, we mark its running time as INF.

6.2 Effectiveness evaluation
We analyze the quality of SSCs from the following aspects. Due to

space limitations, additional experimental results are provided in

the appendix of our technical report [80].

• Closeness of community members. To measure the close-

ness of communities, a commonly used metric is the diameter [38],

or the largest shortest distance between any pair of vertices in the

subgraph of the community. To adapt it for communities in HINs,

we follow the diameter measure in [27], which is defined on the P-
distance (the P-distance between two vertices linked by an instance
of P is 1). We report the average diameter of communities found by

different methods in Figure 5(a). We observe that the communities

of SSC model have smaller diameters. For example, on IMDB, the

average diameter for CSH is 12.6, while for SSCS it is 1.58. Hence, we
can conclude that the communities modeled by SSC tend to have

closer relationships between their vertices.

• Clustering coefficient (CC) of communities. The CC mea-

sures the tightness of connections between vertices, indicating

CSH CSH-E CSH-V CSSH

SSCS-Jaccard SSCS-PathSim

Amazon DBLP IMDB DBpedia

2

5

10

15

di
am

et
er

(a) Diameter

Amazon DBLP IMDB DBpedia

0.4

0.8
1

C
C

(b) CC

Figure 5: Diameters and CC values of communities.
the proportion of connections among the neighbors of vertices.

A higher CC value of a community implies that its vertices are

connected more tightly. We utilize P-induced homogeneous and

report the CC values for different models in Figure 5(b). We can ob-

serve that on most datasets, the communities of SSC model achieve

significantly higher CC values than communities of the other two

models. In addition, on DBpedia, communities of SSCS achieve

smaller CC values due to the lack of consideration of some long-

distance types, but SSCS-PathSim, which adopts PathSimmeasures,

obtains communities with higher CC values.

Core vertex Non-core vertex Hub vertex Outlier vertex

Amazon DBLP IMDB DBpedia Freebase

10
2

10
3

10
4

10
5

#
of

ve
rt
ic
es

(a) SSC role

Amazon DBLP IMDB DBpedia Freebase

10
2

10
3

10
4

10
5

#
of

ve
rt
ic
es

(b) SCAN-P role

Figure 6: Community roles analysis.
• SSC roles analysis. Figure 6 shows the number of verticeswith

four different roles obtained by SSCD and SCAN-P across all datasets

under default parameters. Clearly, on all datasets, the number of

core vertices is much larger than that of non-core vertices, while hub

vertices are the least numerous, with the remaining vertices being

outlier vertices. SSC vertices (comprising of core vertices and non-

core vertices) typically constitute 20% ∼ 60% of the total vertices

across different datasets. Note that by adjusting the parameters, we

can vary the proportion of SSC vertices, reducing hub vertices and

outlier vertices.

•A case study.We conduct a case study to identify the SSC con-

taining Prof. Li Fei-Fei, a prominent scholar in the fields of computer

vision and deep learning. On a small DBLP network with 467,511

vertices and 3,666,418 edges (randomly extracted from the original

DBLP network), we set 𝜇 = 5 and choose two different 𝝐 to capture

distinct semantic interpretations. Figure 7 depicts the two SSCs

1434

obtained, where the 𝝐 for 𝐶1 on the left is [0.095, 0.3, 0.15]⊤ (Paper,

Venue, Topic), and the 𝝐 for 𝐶2 on the right is [0.05, 0.3, 0.21]⊤.
The scholars with blue circles are core vertices, and the edges in

the graph denote that the similarity between them exceeds the

threshold. By examining Prof. Li’s collaborated publications, we

find that for 𝐶1, these scholars exhibit a closer collaboration, with

higher paper similarity. Conversely, in 𝐶2, although the threshold

value of paper type is not as high as that in𝐶1, there exists a higher

threshold for topic similarity, indicating a shared interest in their

research areas. From this case study, it is evident that our SSCmodel

can capture communities with semantic richness.

Figure 7: SSCs with 𝑞=“Li Fei-Fei” and 𝜇 = 5, where thresholds
𝝐 are set to [0.095, 0.3, 0.15]⊤ and [0.05, 0.3, 0.21]⊤ respectively.

SSCS-P SSCS-U

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

Pa
th
Si
m

(a) PathSim

. 0.2 0.4 0.6 0.8
1

2

3

di
am

et
er

(b) Diameter

0.2 0.4 0.6 0.8
0.7

0.8

0.9

1

1.1

cc

(c) CC

Figure 8: Threshold vector test.

• Threshold vector analysis. To evaluate the effect of differ-

ent threshold vectors, we compare the communities returned by

different query threshold vectors on the DBLP dataset. We use

two variants: SSCS-U, where all dimensions are set to a uniform

value, and SSCS-P, where the paper dimension is varied while the

other two dimensions remain uniform. The query vertex type is

set to Author, and Jaccard similarity is used for computing the SSC.

As shown in Figure 8, The results of SSCS-U remain unchanged

since the values of the three dimensions of 𝝐 are set to 0.2. We

observe that when increasing the threshold values in the paper

dimension, the communities achieve higher PathSim values which

reflect higher semantic similarity in paper dimension, and also have

smaller diameters and higher CC values which demonstrate a close

relationship between authors. This indicates that our approach,

which utilizes a threshold vector, can capture communities with

more accurate semantic relevance.

• F1-scores. To evaluate the effectiveness of our SSC model, we

compare its performance with existing CS and CD methods on a

small DBLP dataset (S-DBLP) containing ground-truth communities.

For CS methods, we use one vertex from each ground-truth commu-

nity as the query vertex to search for its corresponding community

Table 3: F1-Score values of different methods on S-DBLP.

Algorithm

𝑘 or 𝜇 values

5 6 7 8 9

CSH 0.066 0.08 0.074 0.048 0.098

CSSH 0.083 0.089 0.048 0.048 0.048

SCAN-P 0.053 0.059 0.071 0.072 0.077

𝑘-Btruss 0.05 0.058 0.056 0.054 0.053

SSCD 0.123 0.123 0.131 0.131 0.145

and compute the average F1 score across all communities. S-DBLP

includes publications from major conferences between 2019 and

2021, comprising 19,316 papers, 21,164 authors, 16 conferences, and

13,795 topics. We categorize authors into different communities

and outliers according to the following steps: First, conferences

are grouped into five categories based on research areas. Then,

authors are divided into different communities based on the cate-

gories of the conferences they published in, the topics mentioned

in their papers, and their research interests. Additionally, authors

with significantly few publications and a low h-index are identified

as outliers. On average, each community has about 150 authors.

Following previous studies [36, 37], we calculate the best F1-scores

for each method under different 𝑘 or 𝜇 values, as shown in Table

3. SSCD consistently achieves the highest F1-scores, demonstrating

that it is able to well detect the ground-truth communities.

6.3 Efficiency evaluation
In this section, we evaluate the efficiency of SSC search. We skip the

results of SSC detection as it repeatedly calls SSC search algorithms.

• Efficiency of SSC search algorithms.We compare the effi-

ciency of both online and index-based SSC search algorithms under

various parameter settings. Figure 9 depicts the efficiency of SSCS
and SC-Q by varying 𝝐 . Clearly, as 𝝐 continues to increase, the time

cost of SC-Q consistently decreases and remains significantly faster

than SSCS. For example, on DBLP, SC-Q spends 0.1 seconds while
SSCS needs 80 seconds when 𝝐 = 0.2. As 𝝐 increases to 0.8, the
runtime decreases to 27 milliseconds for SC-Q and 5.4 seconds for

SSCS. This is primarily due to the reduction in community size as

𝝐 increases, leading to an increase in cases where the SSC cannot

be found and the acceleration of SC-Q diminishes.

Besides, Figure 10 illustrates the effect of 𝜇 on performance,

with 𝑘 = 𝜇 applied for other baseline CS methods. These base-

line methods are slower or comparable to SSCS and significantly

slower than SC-Q. Their comparable runtimes to SSCS stem from

failing to identify communities for certain query vertices, which

reduces computation time. We see that SC-Q is up to three orders

of magnitude faster than SSCS. For instance, on IMDB, when 𝜇 = 9,

SC-Q takes 0.297 seconds, while SSCS costs 309 seconds. Thus, the

core determination and structural reachability expansion offered

by SC-Index are effective for improving efficiency.

• Efficiency of index construction algorithms. The efficiency

of two index construction algorithms is presented in Figure 11,

where SC-C and SC-C∗ denote the basic and advanced algorithms

respectively. The blue line represents the time cost of the compu-

tation of Similarity Graph, which constitutes only a small portion

of the overall time cost. We see that with the increase in 𝜇, the

runtime of both algorithms continuously decreases. Particularly,

1435

SSCS SC-Q

0.2 0.4 0.6 0.8

10
−1
10

0

10
1

10
2

ti
m
e
(s
)

(a) Amazon

0.2 0.4 0.6 0.8

10
−1
10

0

10
1

10
2

ti
m
e
(s
)

(b) DBLP

0.2 0.4 0.6 0.8
10
−1
10

0

10
1

10
2

10
3

ti
m
e
(s
)

(c) IMDB

0.2 0.4 0.6 0.8
10

0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(d) DBpedia

0.2 0.4 0.6 0.8
10

0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(e) Freebase

Figure 9: SSC search efficiency by varying 𝝐 (𝜇 = 5).
CSH CSSH CSH-E CSH-V SSCS SC-Q

3 5 7 9 11 13 15

10
−1
10

0

10
1

10
2

10
3

ti
m
e
(s
)

(a) Amazon

3 5 7 9 11 13 15

10
−1
10

0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(b) DBLP

3 5 7 9 11 13 15

10
0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(c) IMDB

3 5 7 9 11 13 15

10
0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(d) DBpedia

3 5 7 9 11 13 15

10
1

10
2

10
3

10
4

10
5

ti
m
e
(s
)

(e) Freebase

Figure 10: SSC search and baselines search efficiency by varying 𝜇 (𝝐 = 0.2) and the core number, respectively.
SC-C SC-C∗ SG construction

3 5 7 9 11 13 15

10
0

10
1

10
2

10
3

ti
m
e
(s
)

(a) Amazon

3 5 7 9 11 13 15

10
2

10
3

10
4

10
5

ti
m
e
(s
)

(b) DBLP

3 5 7 9 11 13 15

10
2

10
3

10
4

INF

ti
m
e
(s
)

(c) IMDB

3 5 7 9 11 13 15

10
3

10
4

INF

ti
m
e
(s
)

(d) DBpedia

3 5 7 9 11 13 15

10
3

10
4

INF

ti
m
e
(s
)

(e) Freebase

Figure 11: Index construction efficiency by varying 𝜇.

SC-C∗ is up to two orders of magnitude faster than SC-C because it

significantly reduces the computational cost of CTS by avoiding the

redundant core decomposition. For instance, on DBLP with 𝜇 = 5,

SC-C requires 88,753 seconds, whereas SC-C∗ completes in only 689

seconds. Furthermore, on the last three datasets, SC-C has exceeded
time limitations for certain vertex types.

Graph size CTS size SG size

Amazon DBLP IMDB DBpedia Freebase
10

0

10
1

10
2

10
3

in
de

x
si
ze

(M
B
)

Figure 12: Index space cost.

• Index space cost. In this experiment, we compare the space

cost of the SC-Index on all datasets, as illustrated in Figure 12. Note

that the CTS size is the sum of results under 7 different 𝜇 values.

We observe that on most datasets, the storage space cost of our

SC-Index is just slightly larger than that of the original input HIN.

For example, on Freebase, with a graph size of 2,153MB, the space

cost of SC-Index is just 2,259MB. Thus, SC-Index is space efficient.

• Scalability test. For each dataset, we randomly select 20%,

40%, 60%, 80%, and 100% vertices and obtain five sub-HINs induced

by these vertices respectively. Figure 13 reports the time cost of

our two index construction algorithms on these sub-HINs. We can

observe that the time cost of the advanced one SC-C∗ increases
linearly with the size of the dataset, demonstrating its scalability in

processing large HINs. Again, SC-C∗ is much faster than SC-C, but
SC-C times out for large sub-HINs of IMDB dataset. Note that the

blue lines represent the runtime of the computation of SG, which

constitutes only a small portion of the overall time.

SC-C SC-C∗ SG construction

20% 40% 60% 80% 100%
10

0

10
1

10
2

10
3

10
4

ti
m
e
(s
)

(a) DBLP

20% 40% 60% 80% 100%

10
1

10
2

10
3

10
4

10
5

INF

ti
m
e
(s
)

(b) IMDB

Figure 13: Scalability test.
7 CONCLUSION
Community mining is a fundamental problem in network science.

Inspired by the SCAN algorithm, in this paper, we propose a novel

community model, called structurally similar community (SSC),

which is not only generic to support various similarity measures

but also able to identify the roles of vertices such as hubs and

outliers. To efficiently search the SSC containing a query vertex,

we develop an efficient online solution and an index-based solution

to enhance the search performance. We also develop efficient index

construction algorithms. Both the online and index-based solutions

can be easily extended for detecting all the SSCs. Experimental

results on five real-large HINs demonstrate the high effectiveness

and efficiency of our proposed solutions. In the future, we will study

efficient parallel and distributed algorithms to further improve the

efficiency of SSC search and detection.

ACKNOWLEDGMENTS
This work was supported in part by NSFC under Grants 62102341

and 62202412, Guangdong Talent Program under Grant 2021QN

02X826, Shenzhen Science and Technology Program under Grants

JCYJ20220530143602006 and ZDSYS 20211021111415025, and

Shenzhen Research Institute of Big Data under grant SIF20240002.

1436

2021QN02X826
2021QN02X826
JCYJ20220530143602006

REFERENCES
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery 29

(2015), 626–688.

[2] V. Batagelj and M. Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition

of Networks. arXiv:cs/0310049

[3] Johannes Berg and Michael Lässig. 2006. Cross-Species Analysis of Biological

Networks by Bayesian Alignment. Proceedings of the National Academy of Sciences
103, 29 (July 2006), 10967–10972.

[4] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-Generalized

Core Decomposition. In Proceedings of the 2019 International Conference on Man-
agement of Data. ACM, 1006–1023.

[5] Andrei Z Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).
IEEE, 21–29.

[6] Lijun Chang, Wei Li, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. pSCAN: Fast

and Exact Structural Graph Clustering. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 253–264.

[7] Lijun Chang, Wei Li, Lu Qin, Wenjie Zhang, and Shiyu Yang. 2017. TKDE

– pSCAN: Fast and Exact Structural Graph Clustering. IEEE Transactions on
Knowledge and Data Engineering 29, 2 (Feb. 2017), 387–401.

[8] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-

Based Optimal Algorithms for Computing Steiner Components with Maximum

Connectivity. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15). ACM, 459–474.

[9] Yulin Che, Shixuan Sun, and Qiong Luo. 2018. Parallelizing Pruning-based

Graph Structural Clustering. In Proceedings of the 47th International Conference
on Parallel Processing (ICPP ’18). ACM, New York, NY, USA, 1–10.

[10] Lu Chen, Yunjun Gao, Yuanliang Zhang, Christian S. Jensen, and Bolong Zheng.

2019. Efficient and Incremental Clustering Algorithms on Star-Schema Hetero-

geneous Graphs. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 256–267.

[11] Lu Chen, Chengfei Liu, Xiaochun Yang, Bin Wang, Jianxin Li, and Rui Zhou.

2016. Efficient Batch Processing for Multiple Keyword Queries on Graph Data.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM ’16). ACM, 1261–1270.

[12] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, Jeffrey Xu Yu, and Jianxin Li. 2020.

Finding Effective Geo-social Group for Impromptu Activities with Diverse De-

mands. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, USA, 698–

708.

[13] Wenyu Chen. 2023. Relationship Prediction Based Anomaly Detection in Het-

erogeneous Information Networks. In 2023 4th International Seminar on Artificial
Intelligence, Networking and Information Technology (AINIT). 206–210.

[14] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-

nity structure in very large networks. Physical Review E—Statistical, Nonlinear,
and Soft Matter Physics 70, 6 (2004), 066111.

[15] Alessio Conte, Gaspare Ferraro, Roberto Grossi, Andrea Marino, Kunihiko

Sadakane, and Takeaki Uno. 2018. Node Similarity with q -Grams for Real-

World Labeled Networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, London United King-

dom, 1282–1291.

[16] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

Search of Overlapping Communities. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13). ACM, New York,

NY, USA, 277–288.

[17] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local Search

of Communities in Large Graphs. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’14). ACM, New York,

NY, USA, 991–1002.

[18] Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of

Customers. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, San Francisco California, 57–66.

[19] W. E. Donath and A. J. Hoffman. 1973. Lower Bounds for the Partitioning of

Graphs. IBM Journal of Research and Development 17, 5 (Sept. 1973), 420–425.
[20] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.

Butterfly-core community search over labeled graphs. Proc. VLDB Endow. 14, 11
(2021), 2006–2018.

[21] Jordi Duch and Alex Arenas. 2005. Community detection in complex networks

using extremal optimization. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics 72, 2 (2005), 027104.

[22] Joel T Dudley, Tarangini Deshpande, and Atul J Butte. 2011. Exploiting Drug-

Disease Relationships for Computational Drug Repositioning. Briefings in bioin-
formatics 12, 4 (2011), 303–311.

[23] Soroush Ebadian and Xin Huang. 2019. Fast algorithm for K-truss discovery on

public-private graphs. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence. 2258–2264.

[24] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. Proc. VLDB Endow. 9, 12 (Aug.

2016), 1233–1244.

[25] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29 (2020), 353–392.

[26] Yixiang Fang, Kai Wang, Xuemin Lin, and Wenjie Zhang. 2021. Cohesive Sub-

graph Search over Big Heterogeneous Information Networks: Applications, Chal-

lenges, and Solutions. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD ’21). ACM, 2829–2838.

[27] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and Efficient Community Search over Large Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 6 (Feb. 2020), 854–867.
[28] Santo Fortunato. 2010. Community Detection in Graphs. Physics Reports 486, 3

(Feb. 2010), 75–174.

[29] Santo Fortunato and Darko Hric. 2016. Community Detection in Networks: A

User Guide. Physics Reports 659 (Nov. 2016), 1–44.
[30] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-

position and Densest Subgraph in Multilayer Networks. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management (CIKM ’17).
ACM, 1807–1816.

[31] Zheng Gao and Xiaozhong Liu. 2017. Personalized Community Detection in

Scholarly Network. iConference 2017 Proceedings Vol. 2 (2017).
[32] Andrey Goder and Vladimir Filkov. 2008. Consensus Clustering Algorithms:

Comparison and Refinement. In 2008 Proceedings of the Workshop on Algo-
rithm Engineering and Experiments (ALENEX). Society for Industrial and Applied

Mathematics, 109–117.

[33] Malik Khizar Hayat and Ali Daud. 2017. Anomaly Detection in Heterogeneous

Bibliographic Information Networks Using Co-Evolution Pattern Mining. Scien-
tometrics 113, 1 (Oct. 2017), 149–175.

[34] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan Chang, Aravind Sankar, Yixiang

Fang, and Brian Y.H. Lam. 2019. Discovering Maximal Motif Cliques in Large

Heterogeneous Information Networks. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). 746–757.

[35] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.

Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM ’16). ACM, 1241–1250.

[36] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[37] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-driven community search.

Proc. VLDB Endow. 10, 9 (may 2017), 949–960.

[38] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. Proc. VLDB Endow. 9, 4 (Dec.
2015), 276–287.

[39] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis,

and Xiang Li. 2016. Meta Structure: Computing Relevance in Large Heteroge-

neous Information Networks. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, 1595–1604.

[40] Xun Jian, Yue Wang, and Lei Chen. 2020. Effective and Efficient Relational

Community Detection and Search in Large Dynamic Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 10 (June 2020), 1723–1736.
[41] Yangqin Jiang, Yixiang Fang, Chenhao Ma, Xin Cao, and Chunshan Li. 2022.

Effective Community Search over Large Star-SchemaHeterogeneous Information

Networks. Proc. VLDB Endow. 15, 11 (July 2022), 2307–2320.

[42] Yuli Jiang, Xin Huang, and Hong Cheng. 2021. I/O Efficient k-Truss Community

Search in Massive Graphs. The VLDB Journal 30, 5 (Sept. 2021), 713–738.
[43] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J.

ACM 46, 5 (Sept. 1999), 604–632.

[44] Johan H. Koskinen and Tom A.B. Snijders. 2007. Bayesian Inference for Dynamic

Social Network Data. Journal of Statistical Planning and Inference 137, 12 (Dec.
2007), 3930–3938.

[45] Ping Li, Art Owen, and Cun-Hui Zhang. 2012. One permutation hashing. Ad-
vances in Neural Information Processing Systems 25 (2012).

[46] Xiang Li, Ben Kao, Zhaochun Ren, and Dawei Yin. 2019. Spectral Clustering in

Heterogeneous Information Networks. Proceedings of the AAAI Conference on
Artificial Intelligence 33, 01 (July 2019), 4221–4228.

[47] Chunxu Lin, Wensheng Luo, Yixiang Fang, Chenhao Ma, Xilin Liu, and Yuchi

Ma. 2024. On Efficient Large Sparse Matrix Chain Multiplication. Proceedings of
the ACM on Management of Data 2, 3 (2024), 1–27.

[48] Xiao Lin, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Enhancing Person-

alized Recommendation by Implicit Preference Communities Modeling. ACM
Transactions on Information Systems 37, 4 (Nov. 2019), 48:1–48:32.

[49] Dandan Liu and Zhaonian Zou. 2023. gCore: Exploring Cross-Layer Cohesiveness

in Multi-Layer Graphs. Proc. VLDB Endow. 16, 11 (July 2023), 3201–3213.

[50] Kaixin Liu, Sibo Wang, Yong Zhang, and Chunxiao Xing. [n.d.]. An Efficient

Algorithm for Distance-based Structural Graph Clustering. 1, 1 ([n. d.]).

[51] Lu Liu and Shang Wang. 2020. Meta-Path-Based Outlier Detection in Hetero-

geneous Information Network. Frontiers of Computer Science 14, 2 (April 2020),
388–403.

1437

https://arxiv.org/abs/cs/0310049

[52] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

Based Community Search over Large Directed Graphs. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIGMOD ’20).
ACM, 2183–2197.

[53] Linhao Luo, Yixiang Fang, Moli Lu, Xin Cao, Xiaofeng Zhang, and Wenjie Zhang.

2023. GSim: a graph neural network based relevance measure for heterogeneous

graphs. IEEE Transactions on Knowledge and Data Engineering 35, 12 (2023),

12693–12707.

[54] Wensheng Luo, Xu Zhou, Jianye Yang, Peng Peng, Guoqing Xiao, and Yunjun

Gao. 2021. Efficient Approaches to Top-r Influential Community Search. IEEE
Internet of Things Journal 8, 16 (Aug. 2021), 12650–12657.

[55] Lingkai Meng, Long Yuan, Zi Chen, Xuemin Lin, and Shiyu Yang. 2022. Index-

Based Structural Clustering on Directed Graphs. In ICDE. IEEE, 2831–2844.
[56] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in

networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 69, 6
(2004), 066133.

[57] M. E. J. Newman and M. Girvan. 2004. Finding and Evaluating Community

Structure in Networks. Physical Review E 69, 2 (Feb. 2004), 026113.

[58] Paola Pesantez-Cabrera and Ananth Kalyanaraman. 2019. Efficient Detection

of Communities in Biological Bipartite Networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 16, 1 (Jan. 2019), 258–271.

[59] Lianpeng Qiao, Zhiwei Zhang, Ye Yuan, Chen Chen, and Guoren Wang. 2021.

Keyword-Centric Community Search over Large Heterogeneous Information

Networks. In Database Systems for Advanced Applications (Lecture Notes in Com-
puter Science). Springer International Publishing, 158–173.

[60] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community

detection. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 74, 1
(2006), 016110.

[61] Boyu Ruan, Junhao Gan, HaoWu, and AnthonyWirth. 2021. Dynamic Structural

Clustering on Graphs. In Proceedings of the 2021 International Conference on
Management of Data. ACM, 1491–1503.

[62] Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, and Bin Wu. 2014. HeteSim:

A General Framework for Relevance Measure in Heterogeneous Networks. IEEE
Transactions on Knowledge and Data Engineering 26, 10 (2014), 2479–2492.

[63] Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, and BinWu. 2012. Relevance

Search in Heterogeneous Networks. In Proceedings of the 15th International
Conference on Extending Database Technology. ACM, 180–191.

[64] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A

Survey of Heterogeneous Information Network Analysis. IEEE Transactions on
Knowledge and Data Engineering 29, 1 (Jan. 2017), 17–37.

[65] Chuan Shi, Ran Wang, Yitong Li, Philip S. Yu, and Bin Wu. 2014. Ranking-

Based Clustering on General Heterogeneous Information Networks by Network

Projection. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management (CIKM ’14). ACM, 699–708.

[66] Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S. Yu, Gang Liu, and Bai Wang.

2012. HeteRecom: A Semantic-Based Recommendation System in Heterogeneous

Networks. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’12). ACM, 1552–1555.

[67] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2015. SCAN++:

Efficient Algorithm for Finding Clusters, Hubs and Outliers on Large-Scale

Graphs. Proc. VLDB Endow. 8, 11 (July 2015), 1178–1189.

[68] G Simpson. 1960. Notes on the measurement of faunal resemblance. Amer J Sci
258 (1960), 300.

[69] Yizhou Sun, Charu C Aggarwal, and Jiawei Han. 2012. Relation Strength-Aware

Clustering of Heterogeneous Information Networks with Incomplete Attributes.

Proc. VLDB Endow. 5, 5 (2012).
[70] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. Proc. VLDB Endow. 4, 11 (Aug. 2011), 992–1003.
[71] Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, and Tianyi

Wu. 2009. RankClus: Integrating Clustering with Ranking for Heterogeneous

Information Network Analysis. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology (EDBT ’09).
ACM, 565–576.

[72] Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S. Yu, and Xiao

Yu. 2013. PathSelClus: Integrating Meta-Path Selection with User-Guided Ob-

ject Clustering in Heterogeneous Information Networks. ACM Transactions on
Knowledge Discovery from Data 7, 3 (Sept. 2013), 11:1–11:23.

[73] Yizhou Sun, Yintao Yu, and Jiawei Han. 2009. Ranking-Based Clustering of

Heterogeneous Information Networks with Star Network Schema. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’09). ACM, 797–806.

[74] Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2017. SCAN-

XP: Parallel Structural Graph Clustering Algorithm on Intel Xeon Phi Coproces-

sors. In Proceedings of the 2nd International Workshop on Network Data Analytics
(NDA’17). ACM, 1–7.

[75] A. Topchy, A.K. Jain, and W. Punch. 2005. Clustering Ensembles: Models of

Consensus and Weak Partitions. IEEE Transactions on Pattern Analysis and

Machine Intelligence 27, 12 (Dec. 2005), 1866–1881.
[76] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel index-based

structural graph clustering and its approximation. In Proceedings of the 2021
International Conference on Management of Data. 1851–1864.

[77] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2024.

Neural Attributed Community Search at Billion Scale. Proceedings of the ACM
on Management of Data 1, 4 (2024), 1–25.

[78] Jialong Wang, Lihua Zhou, Xiaoxu Wang, Lizhen Wang, and Shijin Li. 2024.

Attribute-Sensitive Community Search over Attributed Heterogeneous Informa-

tion Networks. Expert Systems with Applications 235 (Jan. 2024), 121153.
[79] Ruby W. Wang and Fred Y. Ye. 2019. Simplifying Weighted Heterogeneous

Networks by Extracting H-Structure via s-Degree. Scientific Reports 9, 1 (Dec.
2019), 18819.

[80] Shu Wang, Yixiang Fang, and Wensheng Luo. [n.d.]. Searching and Detecting

Structurally Similar Communities in Large Heterogeneous Information Networks

(technical report). https://github.com/sam234990/cs-hin-scan.

[81] Yang Wang, D. Chakrabarti, Chenxi Wang, and C. Faloutsos. 2003. Epidemic

Spreading in Real Networks: An Eigenvalue Viewpoint. In 22nd International
Symposium on Reliable Distributed Systems, 2003. Proceedings. 25–34.

[82] Yue Wang, Zhe Wang, Ziyuan Zhao, Zijian Li, Xun Jian, Hao Xin, Lei Chen,

Jianchun Song, ZhenhongChen, andMeng Zhao. 2022. Effective Similarity Search

on Heterogeneous Networks: A Meta-Path Free Approach. IEEE Transactions on
Knowledge and Data Engineering 34, 7 (July 2022), 3225–3240.

[83] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019. Efficient

Structural Graph Clustering: An Index-Based Approach. The VLDB Journal 28, 3
(June 2019), 377–399.

[84] Scott White and Padhraic Smyth. 2005. A Spectral Clustering Approach To

Finding Communities in Graphs. In Proceedings of the 2005 SIAM International
Conference on Data Mining. Society for Industrial and Applied Mathematics,

274–285.

[85] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. 2007.

SCAN: A Structural Clustering Algorithm for Networks. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 824–833.

[86] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and

Efficient Truss Computation over Large Heterogeneous Information Networks.

In ICDE. IEEE, 901–912.
[87] Hao Yin, Austin R. Benson, Jure Leskovec, andDavid F. Gleich. 2017. Local Higher-

Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, 555–564.

[88] Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan

Gu, Brandon Norick, and Jiawei Han. 2013. Recommendation in Heterogeneous

Information Networks with Implicit User Feedback. In Proceedings of the 7th
ACM Conference on Recommender Systems (RecSys ’13). ACM, 347–350.

[89] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2018. Index-

Based Densest Clique Percolation Community Search in Networks. IEEE Trans-
actions on Knowledge and Data Engineering 30, 5 (May 2018), 922–935.

[90] Fangyuan Zhang and SiboWang. 2022. Effective Indexing for Dynamic Structural

Graph Clustering. Proc. VLDB Endow. 15, 11 (July 2022), 2908–2920.

[91] Jie Zhang, Jinru Ding, Suyuan Liu, and Hongyan Wu. 2021. META-PATH-FREE

REPRESENTATION LEARNING ON HETEROGENEOUS NETWORKS. arXiv
preprint arXiv:2102.08120 (Feb. 2021). arXiv:2102.08120

[92] Mingxi Zhang, Hao Hu, Zhenying He, and Wei Wang. 2015. Top-k Similarity

Search in Heterogeneous Information Networks with x-Star Network Schema.

Expert Systems with Applications 42, 2 (Feb. 2015), 699–712.
[93] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss

Maintenance in Evolving Graphs. In Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD ’19). ACM, 1024–1041.

[94] Bei Zhao, Yuliang Shi, Kun Zhang, and Zhongmin Yan. 2019. Health Insurance

Anomaly Detection Based on Dynamic Heterogeneous Information Network.

In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
1118–1122.

[95] Huanjing Zhao, Pinde Rui, Jie Chen, Yanping Zhang, Yi Wang, Shu Zhao, and Jie

Tang. 2023. HINChip: Heterogeneous Information Network Representation with

Community Hierarchy Preserving. Knowledge-Based Systems 264 (March 2023),

110343.

[96] Alexander Zhou, Yue Wang, and Lei Chen. 2020. Finding Large Diverse Commu-

nities on Networks: The Edge Maximum K*-Partite Clique. Proc. VLDB Endow.
13, 12 (July 2020), 2576–2589.

[97] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. Influential

Community Search over Large Heterogeneous Information Networks. Proc.
VLDB Endow. 16, 8 (April 2023), 2047–2060.

[98] Yingli Zhou, Yixiang Fang, Chenhao Ma, Tianci Hou, and Xin Huang. 2024. Effi-

cient Maximal Motif-Clique Enumeration over Large Heterogeneous Information

Networks. Proc. VLDB Endow. 17, 11 (2024), 2946–2959.
[99] Yang Zhou and Ling Liu. 2013. Social Influence Based Clustering of Heteroge-

neous Information Networks. In ACM SIGKDD (KDD ’13). ACM, 338–346.

1438

https://github.com/sam234990/cs-hin-scan
https://arxiv.org/abs/2102.08120

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Problem formulation
	3.2 Two similarity measures for HIN vertices

	4 Online SSC Search Algorithm
	5 Index-based SSC Search Algorithms
	5.1 Overview of SC-Index
	5.2 SC-Index-based SSC search algorithm
	5.3 SC-Index construction algorithms
	5.4 Extension to SSC Detection

	6 Experiments
	6.1 Setup
	6.2 Effectiveness evaluation
	6.3 Efficiency evaluation

	7 Conclusion
	Acknowledgments
	References

