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ABSTRACT
Optimising queries with many joins is known to be a hard problem.
The explosion of intermediate results as opposed to a much smaller
final result poses a serious challenge to modern database man-
agement systems (DBMSs). This is particularly glaring in case of
analytical queries that join many tables but ultimately only output
comparatively small aggregate information. Analogous problems
are faced by graph database systems when processing analytical
queries with aggregates on top of complex path queries.

In this work, we propose novel optimisation techniques, both on
the logical, and physical level, that allow us to avoid the material-
isation of join results for certain types of aggregate queries. The
key to these optimisations is the notion of guardedness, by which
we impose restrictions on the occurrence of attributes in GROUP BY
clauses and in aggregate expressions. The efficacy of our optimisa-
tions is validated through their implementation in Spark SQL and
extensive empirical evaluation on various standard benchmarks.
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1 INTRODUCTION
As the amounts of data to be processed increase, the limitations
of established query evaluation methods become apparent. While
modern DBMSs, such as Spark SQL, provide powerful frameworks
for processing massive datasets, they may still struggle with many
different types of complex queries. A key issue is the potential
explosion of intermediate results, even if the final output is much
smaller. This is particularly glaring in the context of analytical
queries that combine data from many tables but ultimately produce
comparatively small aggregate results. Analogous problems are
faced by graph database systemswhen processing analytical queries
with aggregates on top of complex path queries.

Traditionally, database engines try to avoid expensive interme-
diate blow-up by optimising the order in which joins are processed.
More recently, worst-case optimal join techniques, which limit the
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blow-up to the theoretical worst-case, have gained popularity as
an alternative approach for reducing intermediate materialisation.
However, while these techniques may help to alleviate the problem
of (unnecessarily) big intermediate results in certain cases, they
do not eliminate the problem [6]. Furthermore, the problem of big
intermediate results holds all the same even if joins are made only
along foreign-key relationships [38].

For queries that exhibit certain favourable structural properties,
Yannakakis [58] showed that it is possible to avoid the materiali-
sation of unnecessary intermediate results. More specifically, if a
query is acyclic – that is, if it has a join tree (formal definitions of
acyclicity and join trees will be provided in Section 2) – then one
can eliminate all dangling tuples (i.e., tuples not contributing to the
final join result) via semi-joins before the actual join computation
starts. However, even if dangling tuples have been eliminated and
joins are evaluated in an optimal order, the intermediate results
thus produced may still become prohibitively big. Especially in
aggregate queries, where only a restricted amount of information is
ultimately output, it would be highly desirable to reduce or, ideally,
avoid altogether the materialisation of intermediate join results.

Actually, it is well known that, in case of Boolean acyclic queries
(e.g., if we are only interested whether the result of a join query is
non-empty), the final answer can be determined by carrying out
only semi-joins and skipping the entire join step. So-called 0MA (=
zero-materialisation aggregate) queries have recently been identi-
fied as a special class of queries with MIN or MAX aggregates over
acyclic join queries, which can be evaluated without materialising
any (intermediate or final) join results [14, 15] (a formal definition
of 0MA queries is given in Section 2). Several works [13, 47] inves-
tigated how variations of the same algorithmic idea also apply to
join queries with COUNT aggregates. Subsequently, these ideas were
extended to more general aggregate queries in the FAQ-framework
(Functional Aggregate Queries) [32] and, similarly, under the name
AJAR (Aggregations and Joins over Annotated Relations) [31]. We
offer a more detailed account of related work in Section 3.

However, previous works in this area have left a gap: Most ap-
proaches (such as FAQ and AJAR mentioned above) aim at reducing
(not eliminating) the number of joins and/or the cost of computing
them by applying sophisticated join techniques. But the computa-
tion and materialisation of joins remains the dominating cost factor.
On the other hand, approaches that avoid the computation or mate-
rialisation of intermediate join results depend on severe restrictions
of the class of queries, such as Boolean queries or 0MA queries.
Indeed, as we will show in our empirical evaluation in Section 6,
only a small fraction of the queries in the standard benchmarks
considered here satisfies these restrictions.

The goal of this work is to identify a class of aggregate queries
which can be evaluated without the need to compute or materi-
alise any joins and which, nevertheless, cover many practical cases.
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SELECT MEDIAN(s_acctbal)
FROM part, partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >
(SELECT avg (p_price) FROM part)

AND r_name IN ('Europe', 'Asia')

supplier

nation

region

partsupp

part

Figure 1: Query over the TPC-H schema and its correspond-
ing join tree

The key to this class of queries is the notion of guardedness. More
specifically, we call a query with aggregates on top of an acyclic
join query guarded if all attributes involved in a GROUP BY clause
and in any aggregate expression are contained in a single relation,
referred to as the “guard”. Here we allow any aggregate function
from the ANSI SQL standard – including statistical functions such
as MEDIAN, VARIANCE, STDDEV, CORR, etc.

Example 1.1. We illustrate the basic ideas with the simple query
given in Figure 1 over the well-known TPC-H schema. The query asks
for the median of the account balance of suppliers from one of the
regions ’Europe’ or ’Asia’ for parts with above average price. The
join-structure of the query is clearly acyclic as is witnessed by the join
tree displayed in Figure 1. Moreover the query is trivially guarded,
since it has no grouping and the aggregation is over a single attribute.

Note that the subquery is only used to realise a selection (locally)
on the relation part. After applying this selection on the part re-
lation and also the selection on the region relation, the query can
be evaluated by propagating frequencies of attribute value combi-
nations rather than intermediate join results up the join tree. The
MEDIAN-aggregate can then be evaluated on the resulting relation
at the root node. Indeed, suppose that we have computed all tuples
𝑡1, . . . , 𝑡𝑛 of relation supplier together with the corresponding fre-
quencies 𝑐1, . . . , 𝑐𝑛 of these tuples in the full join result of the five
relations. Then we can order the values 𝑣1, . . . , 𝑣𝑛 of these tuples in
ascending order and, by taking the frequencies 𝑐1, . . . , 𝑐𝑛 into account,
it is an easy task to read off the median value. This is in sharp contrast
to traditional query evaluation, which would first compute the join of
the five relations and evaluate the aggregate on the full join result. ⋄

As we will see in Section 6, all of the queries in the STATS-CEB
and SNAP benchmarks are thus covered and so is a small number of
queries in the other benchmarks studied here. However, for themost
commonly used aggregate functions MIN, MAX, COUNT, SUM, and AVG,
the guardedness restriction can be significantly relaxed. We thus
define piecewise-guarded queries as queries with aggregates on top
of an acyclic join query, where the attributes in a GROUP BY clause
and the attributes jointly occurring in an aggregate expression each
are contained in a single relation. That is, the GROUP BY clause and
also each aggregate expression has a guard, but all these guards
may be different. It will turn out that, with this relaxed restriction,
we can cover all JOB queries and a significant number of queries in
the TPC-H and TPC-DS benchmarks.

We will show how to realise Yannakakis-style evaluation for
guarded and piecewise-guarded queries by rewriting subtrees in the

logical query plan. In this process, joins are either replaced by semi-
joins or they are immediately followed by aggregation. Importantly,
in the latter case, the number of tuples to be propagated up the
join tree is the same as in case of semi-joins. The only extension
needed is to add columns for the total frequencies (corresponding
to COUNT(*)) and for the various aggregate expressions contained
in the query. All of this can, in a very natural way, be implemented
as part of the logical optimisation step. This approach thus applies
also to subqueries and automatically works in conjunction with
other optimisation techniques such as subquery decorrelation. An
additional benefit of this optimisation is that it requires no cost-
based optimisation, making it particularly attractive for systems
with a limited or no cost model such as Spark SQL.

As a further optimisation, we introduce a new physical oper-
ator that intuitively implements a semi-join that keeps track of
frequencies and other aggregate values, and which can be imple-
mented through minimal changes to standard join algorithms (see
Section 5). It thus integrates smoothly in any typical SQL execution
engine. We have implemented both, the logical optimisation and
the new physical operator in Spark SQL, which was specifically
designed to cope with complex analytical queries. The performance
gain observed in our experimental evaluation on several standard
benchmarks can reach up to one or two orders of magnitude for
analytical queries involving aggregates on top of non-trivial join or
path queries. Notably, our method incurs no performance degrada-
tion even for simple queries where the size of intermediate results
never gets too big anyway.

In summary, our main contributions are as follows:
• We introduce the class of guarded aggregate queries and

show that they allow for an evaluation without materi-
alising any intermediate join result for queries involving
GROUP BY and any of the aggregate functions contained
in the ANSI SQL standard. We then relax the restrictions
imposed by guardedness and introduce the class of piece-
wise-guarded aggregate queries. For these queries, we show
that the favourable property of avoiding the propagation
of any join results applies to the most commonly used ag-
gregate functions, namely MIN, MAX, COUNT, SUM, and AVG.

• We achieve an additional optimisation of guarded and piece-
wise-guarded aggregate queries by introducing a novel phys-
ical operator that allows us to evaluate aggregate expres-
sions and to compute frequencies of attribute combinations
by an appropriate extension of the semi-join operator.

• We have implemented our logical and physical optimisa-
tions into Spark SQL and we have carried out an extensive
empirical evaluation based on several standard benchmarks.
It turns out that these benchmarks contain a significant
number of queries or subqueries from our newly defined
query classes. Our experimental results clearly prove the
efficacy of our optimisation techniques.

The rest of the paper is organised as follows. We start with
preliminaries in Section 2. In Section 3, we recall several paths of
related work. Our novel query optimisation techniques on logical
query plans are presented in Section 4, and we discuss the new
physical operator in Section 5. In Section 6, we report on our exper-
imental evaluation, and we conclude with Section 7. Further details
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(both on our optimisations and the experimental evaluation) are
provided in the full paper [35].

2 PRELIMINARIES
The basic form of queries considered here are Conjunctive Queries
(CQs), which correspond to select-project-join queries in the Rela-
tional Algebra. Consider a CQ of the form 𝑄 = 𝜋𝑈 (𝑅1 ⊲⊳ . . . ⊲⊳ 𝑅𝑛).
Here we assume that equi-joins are replaced by natural joins via
appropriate renaming of attributes. Moreover, we assume that selec-
tions applying to a single relation have been pushed immediately in
front of this relation and the 𝑅𝑖 ’s are the result of these selections.
The 𝑅𝑖 ’s are not necessarily distinct and our results are not affected
by self-joins.

Such a CQ is called acyclic (an ACQ, for short), if it has a join tree,
i.e., a rooted, labelled tree ⟨𝑇, 𝑟, 𝜆⟩ with root 𝑟 and node-labelling
function 𝜆 such that (1) for every relation 𝑅𝑖 there exists exactly
one node 𝑢 of 𝑇 with 𝜆(𝑢) = 𝑅𝑖 and (2) 𝜆 satisfies the so-called
connectedness condition, i.e., if some attribute 𝐴 occurs in both
relations 𝜆(𝑢) and 𝜆(𝑣) for two nodes 𝑢, 𝑣 of 𝑇 , then 𝐴 occurs in
the relation 𝜆(𝑤) for every node 𝑤 on the path between 𝑢 and 𝑣 .
Checking if a CQ is acyclic and, if so, constructing a join tree, can
be done in linear time w.r.t. the size of the query by the so-called
“GYO reduction” algorithm [19][59].

Yannakakis [58] has shown that ACQs can be efficiently eval-
uated (that is, essentially, linear w.r.t. the input+output data and
linear w.r.t. the size of the query) via 3 traversals of the join tree:
(1) a bottom-up traversal of semi-joins, (2) a top-down traversal of
semi-joins, and (3) a bottom-up traversal of joins. Formally, let 𝑢
be a node in 𝑇 with child nodes 𝑢1, . . . , 𝑢𝑘 of 𝑢 and let relations 𝑅,
𝑅𝑖1 , . . . , 𝑅𝑖𝑘 be associated with the nodes 𝑢, 𝑢1, . . . , 𝑢𝑘 at some stage
of the computation. Then we set

(1) 𝑅 = (((𝑅 ⋉ 𝑅𝑖1 ) ⋉ 𝑅𝑖2 ) · · · ) ⋉ 𝑅𝑖𝑘 ,
(2) 𝑅𝑖 𝑗 = 𝑅𝑖 𝑗 ⋉ 𝑅 for every 𝑗 ∈ {1, . . . , 𝑘}, and
(3) 𝑅 = (((𝑅 ⊲⊳ 𝑅𝑖1 ) ⊲⊳ 𝑅𝑖2 ) · · · ) ⊲⊳ 𝑅𝑖𝑘

in the 3 traversals (1), (2), and (3). The final result of the query is
the resulting relation associated with the root 𝑟 of 𝑇 . Following
the SQL-standard, we are assuming bag semantics for the queries.
Note however that Yannakakis’ algorithm can be applied to both,
set semantics and bag semantics.

In this work, we are mainly interested in queries that apply aggre-
gates on top of ACQs and that may contain “arbitrary” selections
applied to single relations (that is, not only equality conditions,
as is usually assumed for CQs [2]). Moreover, we allow grouping,
which can also take care of the projection. In other words, we are
interested in queries of the form

𝑄 = 𝛾 [𝑔1, . . . , 𝑔ℓ , 𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚)]
(︁
𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛

)︁
(1)

where 𝛾𝑔1,...,𝑔ℓ , 𝐴1 (𝑎1 ),...,𝐴𝑚 (𝑎𝑚 ) denotes the grouping operation for
attributes𝑔1, . . . , 𝑔ℓ and aggregate expressions𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚)
for some (standard SQL) aggregate functions 𝐴1, . . . , 𝐴𝑚 applied
to expressions 𝑎1, . . . , 𝑎𝑚 . The grouping attributes 𝑔1, . . . , 𝑔ℓ are
attributes occurring in the relations 𝑅1, . . . , 𝑅𝑛 and 𝑎1, . . . , 𝑎𝑚 are
expressions formed over the attributes from 𝑅1, . . . , 𝑅𝑛 . A simple
query of the form shown in Equation (1) is given in Figure 1 (in
SQL-syntax), together with a possible join tree of this query.

In the sequel, it will be convenient to use the following nota-
tion: suppose that we want to assign the result of a query 𝑄 of
the form according to Equation (1) to a relation 𝑆 with attributes
𝑔1, . . . , 𝑔ℓ ,𝐶1, . . . ,𝐶𝑚), such that the values of each aggregate ex-
pression 𝐴𝑖 (𝑎𝑖 ) is assigned to the attribute 𝐶𝑖 , then we will write

𝑆 := 𝛾 [𝑔1, . . . , 𝑔ℓ , 𝐶1 ← 𝐴1 (𝑎1), . . . ,𝐶𝑚 ← 𝐴𝑚 (𝑎𝑚)](︁
𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛

)︁
(2)

Recently [15], a particularly favourable class of ACQs with ag-
gregates has been presented: the class of 0MA (short for “zero-
materialisation answerable”) queries. These are acyclic queries that
can be evaluated by executing only the first bottom-up traversal of
Yannakakis’ algorithm. That is, we only need to perform the com-
paratively cheap semi-joins and can completely skip the typically
significantly more expensive join phase. A query of the form given
in Equation (1) is 0MA if it satisfies the following conditions:

• Guardedness, meaning that there exists a relation 𝑅𝑖 that
contains all grouping attributes 𝑔1, . . . , 𝑔ℓ and all attributes
occurring in the aggregate expressions𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚).
Then 𝑅𝑖 is called the guard of the query. If several relations
satisfy this property, we arbitrarily choose one guard.

• Set-safety: we call an aggregate function set-safe, if its value
over any set 𝑆 of tuples remains unchanged if duplicates are
eliminated from 𝑆 . A query satisfies the set-safety condition,
if all its aggregate functions 𝐴1 . . . , 𝐴𝑚 are set-safe.

The root of the join tree can be arbitrarily chosen. Hence, we
may assume that the root is labelled by the guard and, therefore,
all relevant attributes are contained in the root node. Note that
the bottom-up semi-join traversal makes sure that all value com-
binations of the attributes in the root node indeed occur in the
answer tuples of the inner part 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛 of the query. Set-
safety of an aggregate function 𝐴𝑖 means that multiplicities do
not matter for the evaluation of 𝐴𝑖 . Hence, if all aggregate func-
tions are set-safe, then we can apply the grouping and aggregation
𝛾 [𝑔1, . . . , 𝑔ℓ , 𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚)] right after the first bottom-up
traversal. In SQL, the MIN and MAX aggregates are inherently set-
safe. Moreover, an aggregate becomes set-safe when combined with
the DISTINCT keyword. For instance, COUNT DISTINCT is clearly a
set-safe aggregate function. Note that the query in Figure 1 is triv-
ially guarded (i.e., there is no grouping and the only aggregate
expression is over the single attribute s_acctbal) but not set-safe,
since multiplicities clearly matter for the evaluation of the MEDIAN
function.

3 RELATEDWORK
Acyclic queries. The algorithm for evaluating acyclic queries, pre-
sented by Yannakakis over 40 years ago [58], has long been central
to the theory of query processing. In recent years, this approach
to query evaluation has gained renewed momentum in practice as
evidenced by several extensions and applications. Multiple recent
works [26, 27, 55], propose extensions of Yannakakis’ algorithm
for dynamic query evaluation. Further research extends and ap-
plies Yannakakis’ algorithm to comparisons spanning several re-
lations [56], queries with theta-joins [27], and privacy preserving
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query processing [57]. An important feature of Yannakakis’ algo-
rithm is the elimination of dangling tuples (i.e., tuples that do not
contribute to the final result) via semi-joins. In a recent paper [25],
a new join method was introduced that integrates the detection
and elimination of dangling tuples into the join computation.
Decompositions. An important line of research has extended the ap-
plicability of Yannakakis-style query evaluation to “almost acyclic”
queries. Here, “almost acyclic” is formalised through various no-
tions of decompositions such as (normal, generalised, or fractional)
hypertree decompositions [3, 17, 22]. Each of these decompositions
is associated with a notion of “width” that measures the distance
from acyclicity, with acyclic queries having a width of 1. Several
works [1, 12, 46, 54], combine Yannakakis-style query evaluation
based on various types of decompositions with multiway joins and
worst-case optimal join techniques.
Aggregate queries. Aggregates are commonly used on top of join
queries – especially in data analytics. Green et al. [21] gave a new
perspective on aggregate queries by by considering 𝐾-relations, i.e.,
relations annotated with values from some semi-ring𝐾 . Join queries
over𝐾-relations then come down to evaluating sum-product expres-
sions over the underlying semi-ring. The combination of aggregate
queries with Yannakakis-style query evaluation was studied in the
FAQ-framework (Functional Aggregate Queries) [32] and, similarly,
under the name AJAR (Aggregations and Joins over Annotated
Relations) [31]. A crucial problem studied in both papers is the
interplay between the ordering of a sequence of aggregate func-
tions and (generalised or fractional) hypertree decompositions. In
both papers, the ultimate goal is an efficient, Yannankakis-style
evaluation algorithm for aggregate queries based on finding a good
variable order. Similar ideas to FAQs and AJAR queries also appear
in earlier works on joins and aggregates over factorised databases
[7, 45] and on quantified conjunctive queries (QCQs) [11]. A general
framework for hybrid database and linear algebra workloads (as
are typical for machine learning applications) has recently been
proposed by Shaikhha et al. [50]. It provides a performant, unified
framework for data science pipelines by introducing the purely
functional language SDQL and combining optimisation techniques
from databases (e.g., pushing aggregates past joins) and linear alge-
bra (e.g., matrix chain ordering).
Distributed query processing. The potential of applying Yannakakis-
style query evaluation to distributed processing comes from the
fact that the evaluation of ACQs lies in the highly parallelisable
class LogCFL [16]. This favourable property was later extended to
“almost acyclic” queries by establishing the LogCFL-membership
also for queries with bounded hypertree width [17]. A realisation
of Yannakakis’ algorithm in MapReduce [4] further emphasised the
parallelisability of Yannakakis-style query evaluation.
Spark and Spark SQL. Spark, a top-level Apache project since 2014,
is often regarded as a further development of the MapReduce pro-
cessing model. Spark SQL [5] provides relational query capability
within the Spark framework. Query optimisation is a primary fo-
cus of Spark SQL, with the powerful Catalyst optimiser being an
integral component since its inception [5]. Several later works
[8, 28, 40, 51, 60]) have proposed further measures to speed up
query processing in Spark SQL. The recently presented SparkSQL+
system [12] combines decompositions and worst-case optimal join

techniques as well as the optimisations for CQs with comparisons
spanning several relations [56] and allows users to experiment
with different query plans. Zhang et al. [61] recently implemented
specific worst-case optimal join algorithms in combination with
decomposition-based methods on top of Spark SQL as part of a
system focused specifically on subgraph counting.

Reducing the number of join computations. Several works have ad-
dressed the need to compute a high number of joins in different con-
texts and have aimed at reducing this number. The work by Schleich
et al. [48] on LMFAO (Layered Multiple Functional Aggregate Op-
timization) specifically targets machine learning applications that
require the computation of large batches of aggregate queries over
the same join query. A dramatic speed-up is achieved by decompos-
ing aggregates into views and arranging them at nodes in a join tree
to avoid the re-computation of the same intermediate joins time and
again. In principle, the need to re-compute similar joins time and
again also arises in the area of IVM (incremental viewmaintenance).
A revolutionary approach to IVM was proposed by Koch et al. [34]
with the DBToaster system, that avoids the re-computation of joins
in case of updates to the database by maintaining “higher-order”
delta views, i.e., delta queries (= first-order deltas), delta queries
to the deltas (= second-order deltas), etc.. A further performance
gain is achieved with F-IVM (factorised IVM) [43], that groups var-
ious aggregates together and thus reduces the number of views to
be maintained. Moreover, factorisation is applied, for instance, to
avoid the materialisation of Cartesian products in views. Of course,
independently of IVM, factorisation [44] is a generally applicable
method to keep the query result in a compressed form and avoid
its complete materialisation.

In summary, a lot of work has been done on optimising aggregate
queries – including worst-case optimal join techniques (primarily
targeting cyclic queries) and Yannakakis-style query evaluation
(for acyclic or almost acyclic queries). There also have been very
successful approaches to reduce the number of joins that have to
be computed when processing batches of related aggregate queries.
Higher-order incremental view maintenance aims at completely
avoiding the need to (re-) compute joins in case of updates to the
database. Our goal in this work is also to avoid the need to compute
joins – applicable to ad hoc query answering rather than IVM. To
this end, we identify a class of queries with aggregates on top of
joins that can be evaluated without actually computing the result
of any joins and that covers many relevant cases. To the best of our
knowledge, apart from some severely restricted cases (specifically,
Boolean queries and 0MA queries), this has not been the focus of
previous work.

4 RULE-BASED OPTIMISATIONS
In Section 2, we have recalled the definition of 0MA (zero-materia-
lisation answerable) queries from Gottlob et al. [15]. Queries in this
class, which have to satisfy the set-safety and guardedness condi-
tions, can be evaluated by rooting the join tree at the node labelled
by the guard and then executing the first bottom-up traversal of
Yannakakis’ algorithm. This means, that all joins are replaced by
semi-joins. The grouping and aggregation can then be evaluated
by considering only the resulting relation at the root node.
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However, the set-safety condition is quite restrictive in that it is
only satisfied by a small number of aggregate functions – primarily
MIN, MAX, and COUNT DISTINCT. The vast majority of aggregate
functions – in particular, COUNT (without DISTINCT), SUM, AVG, and
the entire collection of statistical aggregate functions provided by
the ANSI SQL standard are thus disallowed. For instance, the query
in Figure 1 involving the MEDIAN aggregate is not 0MA.

In this section, we significantly extend the class of queries with
aggregates on top of join queries that can be evaluated without
actually materialising any joins. To this end, we will first drop the
set-safety condition in Section 4.1 and then also introduce a relax-
ation of guardedness in Section 4.2. To emphasise the smooth inte-
gration of our optimisations into standard SQL execution technol-
ogy, we will describe our optimisations in the form of equivalence-
preserving transformations of Relational Algebra subexpressions,
which can be applied anywhere in the logical query plan.

4.1 Guarded Aggregate Queries
In order to cover all aggregate functions of the ANSI SQL standard,
we now drop the safety condition and define the class of guarded
aggregate queries as follows:

Definition 4.1. Let𝑄 be a query of the form given in Equation (1),
i.e., 𝑄 = 𝛾 [𝑔1, . . . , 𝑔ℓ , 𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚)]

(︁
𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛

)︁
. We

call 𝑄 a guarded aggregate query (or simply, “guarded query”), if
(𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛) is acyclic and there exists a relation𝑅𝑖 (= the guard)
that contains all attributes that are either part of the grouping or
occur in one of the aggregate expressions. If several relations have
this property, we arbitrarily choose one as the guard.

Note that we consider an aggregate expression COUNT(*) as trivially
guarded, since it contains no attributes at all. We will now show
that, for any aggregate functions of the ANSI SQL standard, guarded
queries can be evaluated without propagating any join results up
the join tree. To this end, we revisit an extension of Yannakakis’
algorithm by Pichler and Skritek [47] to acyclic queries with a
COUNT(*) aggregate on top. We adapt this approach to integrate it
into the logical query plan of relational query processing and we
further extend it to all other aggregate functions.

The crucial idea for evaluating a query 𝑄 of the form given in
Equation (1) is to propagate frequencies up the join tree rather
than duplicating tuples. It is convenient to introduce the following
notation: let 𝑢 denote a node in the join tree𝑇 and let𝑇𝑢 denote the
set of all nodes in the subtree rooted at 𝑢. Moreover, for any node
𝑢 in 𝑇 , we write 𝑅(𝑢) to denote the relation labelling node 𝑢 and
we write Att (𝑢) to denote the list of attributes of 𝑅(𝑢). The goal of
the bottom-up propagation of frequencies is to compute, for every
node 𝑢 in 𝑇 , the result of the following query:

𝛾 [Att (𝑢), COUNT(*)]
(︃
⊲⊳
𝑣∈𝑇𝑢

𝑅(𝑣)
)︃

(3)

This propagation is realised by recursively constructing extended
Relational Algebra expressions Freq(𝑢) for every node 𝑢 of the
join tree, such that Freq(𝑢) gives the same result as the query in
Equation (3). Hence, Freq(𝑢) has as attributes all attributes of 𝑅(𝑢)
plus one additional attribute (which we will denote as 𝑐𝑢 ), where
we store frequency information for each tuple of 𝑅(𝑢). If 𝑢 is a

leaf node of the join tree, then we initialise the attribute 𝑐𝑢 to 1.
Formally, we thus have Freq(𝑢) = 𝑅(𝑢) × {(1)}.

Now consider an internal node𝑢 of the join tree with child nodes
𝑢1, . . . , 𝑢𝑘 . The extended Relational Algebra expression Freq(𝑢) is
constructed iteratively by defining subexpressions Freq𝑖 (𝑢) with
𝑖 ∈ {0, . . . , 𝑘}. To avoid confusion, we refer to the frequency at-
tribute of such a subexpression Freq𝑖 (𝑢) as 𝑐𝑖𝑢 . That is, each relation
Freq𝑖 (𝑢) consists of the same attributes Att (𝑢) as 𝑅(𝑢) plus the ad-
ditional frequency attribute 𝑐𝑖𝑢 . Then we define Freq𝑖 (𝑢) for every
𝑖 ∈ {0, . . . , 𝑘} and, ultimately, Freq(𝑢) as follows:
Freq0 (𝑢) := 𝑅(𝑢) × {(1)}
Freq𝑖 (𝑢) := 𝛾 [Att (𝑢), 𝑐𝑖𝑢 ← SUM(𝑐𝑖−1

𝑢 · 𝑐𝑢𝑖 )] (Freq𝑖−1 (𝑢) ⊲⊳ Freq(𝑢𝑖 ))
Freq(𝑢) := 𝜌

𝑐𝑢←𝑐𝑘𝑢
(Freq𝑘 (𝑢))

Intuitively, after initialising 𝑐0
𝑢 to 1 in Freq0 (𝑢), the frequency values

𝑐1
𝑢 , . . . , 𝑐

𝑘
𝑢 are obtained by grouping over the attributes Att (𝑢) of

𝑅(𝑢) and computing the number of possible extensions of each tuple
𝑡 ∈ 𝑅(𝑢) to the relations labelling the nodes in the subtrees rooted
at 𝑢1, . . . , 𝑢𝑘 . By the connectedness condition of join trees, these ex-
tensions are independent of each other, i.e., they share no attributes
outside Att (𝑢). Moreover, the frequency attributes 𝑐1

𝑢 , . . . , 𝑐
𝑘
𝑢 are

functionally dependent on the attributes Att (𝑢). Hence, by distribu-
tivity, the value of 𝑐𝑘𝑢 obtained by iterated summation and multi-
plication for given tuple 𝑡 of 𝑅(𝑢) is equal to computing, for every
𝑖 ∈ {1, . . . , 𝑘} the sum 𝑠𝑖 of the frequencies of all join partners of 𝑡 in
Freq(𝑢𝑖 ) and then computing their product, i.e., 𝑐𝑢 = 𝑐𝑘𝑢 = Π𝑘

𝑖=1𝑠𝑖 .
In the logical query plan of query𝑄 , we replace the subexpression

corresponding to the join query 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛 by Freq(𝑟 ), where 𝑟
is the root node of the join tree. This root node was chosen in such
a way that 𝑅(𝑟 ) contains all grouping attributes 𝑔1, . . . , 𝑔ℓ . Hence,
the grouping can be applied to Freq(𝑟 ) in the same way as to the
original join query. Also the set-safe aggregates (such as MIN, MAX,
COUNT DISTINCT) can be applied to Freq(𝑟 ) “as usual” by simply
ignoring the additional attribute 𝑐𝑟 . However, all other (i.e., not set-
safe) aggregate functions have to be replaced by variants that take
the special frequency attribute 𝑐𝑟 into account. We thus modify
the aggregate functions in expressions like COUNT(∗), COUNT(𝐵),
SUM(𝐵), and AVG(𝐵) so that they directly operate on tuples with
frequencies. For instance, let 𝐵 be an attribute of the guard 𝑅(𝑟 )
(and, hence, also of Freq(𝑟 )). Then, in SQL-notation, we can rewrite
common aggregate expressions as follows:

• COUNT(∗) → SUM(𝑐𝑟 )
• COUNT(𝐵) → SUM(IF(ISNULL(𝐵), 0, 𝑐𝑟 ))
• SUM(𝐵) → SUM(𝐵 · 𝑐𝑟 )
• AVG(𝐵) → SUM(𝐵 · 𝑐𝑟 )/COUNT(𝐵)

Recall from Example 1.1 that the MEDIAN aggregate (like any
other statistical function) can be evaluated by considering Freq(𝑟 )
as a compressed form of the list of all values of attribute 𝐵 in
each group, where the value of the additional attribute 𝑐𝑟 indicates
the number of copies of the corresponding value of attribute 𝐵 in
the result of the join query 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛 . Evaluating an aggre-
gate expression MEDIAN(B) or any other statistical function such as
STDDEV(B) can be easily realised for this compressed form of value
list. Similarly, the evaluation of aggregate functions on 2 attributes
such as CORR(B1, B2) or aggregate expressions involving functions
on several attributes such as SUM(f(B1, . . . , B𝑘 )) is straightforward by
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considering Freq(𝑟 ) as a compressed form of the list of all values of
the attribute combinations 𝐵1, . . . , 𝐵𝑘 . Again, this crucially depends
on the guardedness property, which guarantees that all attributes
used in aggregate expressions are contained in 𝑅(𝑟 ).

Actually, in Spark SQL, the MEDIAN aggregate has a convenient
rewriting via the PERCENTILE function. The latter is not part of the
ANSI SQL standard, but can be found in Spark SQL. This function
allows one to provide a frequency attribute, which Spark uses to
build a map of values and frequencies, sort them, and finally find
the desired percentile value by an efficient search on the sorted
map. The rewriting of the MEDIAN aggregate looks as follows:

• MEDIAN(𝐴) → PERCENTILE(0.5, 𝐴, 𝑐𝑟 )

Example 4.1. Consider again the query of Figure 1. The logical
query plan generated by Spark SQL is shown in Figure 2a. There,
we write 𝜎𝜓 and 𝜎𝜙 to denote the selections applied to the relations
region and part, respectively. That is,𝜓 checks the condition r_name
IN (’Europe’, ’Asia’) and 𝜙 checks the condition p_price >

(SELECT avg (p_price) FROM part). The plan produced by Spark
SQL including our optimisation is shown in Figure 2b.

We observe that, in the unoptimised query plan, the entire join
of all relations is computed before the MEDIAN aggregate is applied.
In contrast, in the optimised plan, only the additional frequency at-
tribute has to be propagated upwards in the plan. This propagation
of frequencies for each join is realised by 2 nodes in the plan directly
above the node realising the join: first, as part of the projection to
the attributes which are used further up in the plan, the frequency
attributes of the two join operands are multiplied with each other.
Here we use the notation 𝑐𝑥𝑦 when frequency attributes 𝑐𝑥 and 𝑐𝑦 are
combined. In the second step, these frequency values 𝑐𝑥𝑦 are summed
up or, in case of the final result, their median is computed, which can
be further optimised by making use of the PERCENTILE function. ⋄

We conclude this section with an example where we display the
information that has to be propagated in the optimised evaluation
of the query from Figure 1. Actually, it is illustrative to first observe
how the tree structure of the join tree is transformed into the tree
structure of the optimised plan. Of course, in the latter, the relations
must be at the leaf nodes, whereas, in the former, they also occur at
inner nodes. Nevertheless, the bushy optimised plan clearly reflects
the join order from the join tree. That is, first, region and nation
are joined to get intermediate result-1, and part and part_supp are
joined to get intermediate result-2. The join of these two intermedi-
ate results with the relation supplier is then split into two 2-way
joins, i.e.: first joining supplier with result-1, which is then joined
with result-2. Hence, for the sake of simplicity, we will discuss the
evaluation of this query by looking at the relations at each node of
the join tree. It is then clear, what the intermediate results at the
nodes of the logical plan in Figure 2b look like.

Example 4.2. Consider again the query from Figure 1. Note that
all joins in this query are along foreign-key/primary-key relationship.
This allows us additional optimisations, which we discuss in the full
paper [35]. For the sake of illustration, let us ignore the primary
keys for a while and allow multiple occurrences of values in these
attributes. In Figure 3, we illustrate the evaluation of the query on a
small sample database. The tables (with attribute names of the join
attributes abbreviated to single characters) are arranged in the form

of the join tree. Attributes not relevant to our discussion are captured
by “. . . ”. The original contents of the tables is shown to the left of
the “. . . ” column. In the right-most column, we display the frequency
attribute 𝑐 for each tuple at the end of the entire bottom-up traversal.
For instance, the Region table has 3 tuples with attribute value 𝑅 = 𝑟1.
Hence, all tuples in Nation with 𝑅 = 𝑟1 have 𝑐 = 3, i.e., the number of
possible extensions to the subtree below. The tuple with value 𝑅 = 𝑟4 is
deleted since it has no join partner below. In the root node, the sums of
the frequency attributes of all join partners to the left and to the right
are multiplied. For instance, the tuple with attribute values 𝑁 = 𝑛1
and 𝑆 = 𝑠1 has 5 possible extensions to the subtree on the left and 6
on the right. Hence, for this tuple, we get 𝑐 = 30.

For the evaluation of MEDIAN(A) we see at the root node, that
the first tuple has attribute value 𝐴 = 20 and its frequency in the
overall join result is 𝑐 = 30. Likewise, the values 𝐴 = 40, 10, 30
occur 20, 36, and 24 times, respectively in the join result. We thus get
MEDIAN(A) = 20. ⋄

4.2 Piecewise-guarded Aggregate Queries
As we will see in our experimental evaluation in Section 6, the class
of guarded queries covers significantly more cases from common
benchmarks than 0MA. However, the requirement of a single guard
for all attributes occurring in the GROUP BY clause or in any of the
aggregate expressions is still quite restrictive. In this section, we
show that for the most commonly used aggregate functions MIN,
MAX, SUM, COUNT, and AVG, we can further extend the class of queries
that can be evaluated without materialising any joins. We thus
introduce the class of piecewise-guarded aggregate queries:

Definition 4.2. Let𝑄 be a query of the form given in Equation (1),
i.e., 𝑄 = 𝛾 [𝑔1, . . . , 𝑔ℓ , 𝐴1 (𝑎1), . . . , 𝐴𝑚 (𝑎𝑚)]

(︁
𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛

)︁
. We

call 𝑄 a piecewise-guarded aggregate query (or simply, “piecewise-
guarded query”), if (𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑛) is acyclic and there exists
a relation 𝑅𝑖0 that contains all grouping attributes and, for every
𝑗 ∈ {1, . . . ,𝑚}, the following conditions hold:

• If 𝐴 𝑗 ∈ {MIN, MAX, SUM, COUNT, AVG}, then there exists a
relation 𝑅𝑖 𝑗 that contains all attributes occurring in 𝐴 𝑗 (𝑎 𝑗 ).

• Otherwise, i.e., 𝐴 𝑗 ∉ {MIN, MAX, SUM, COUNT, AVG}, then 𝑅𝑖0
contains all attributes occurring in 𝐴 𝑗 (𝑎 𝑗 ).

Each of these relations 𝑅𝑖0 and 𝑅𝑖 𝑗 is called the “guard” of the
corresponding set of attributes. We refer to 𝑅𝑖0 as the root guard.
By slight abuse of notation, we also refer to the nodes labelled by
𝑅𝑖0 and 𝑅𝑖 𝑗 as guards. If several relations could be chosen as guard
for a group of attributes, we arbitrarily choose one.

For the evaluation of piecewise-guarded queries, we choose the
node of the join tree 𝑇 corresponding to the root guard as the root
node of 𝑇 . The bottom-up propagation of the frequency attribute
works exactly as for guarded queries. Hence, also the evaluation
of all aggregate expressions that are guarded by the root guard is
realised exactly as in case of guarded queries. In the rest of this
section, we concentrate on the evaluation of aggregate expressions
that are not guarded by the root node of the join tree and whose
aggregate function is one of MIN, MAX, SUM, COUNT, and AVG. Clearly,
the evaluation of AVG is based on SUM and COUNT. Hence, it suffices to
describe the evaluation of the remaining four aggregate functions.
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𝛾MEDIAN(s_acctbal)

𝜋s_acctbal

⊲⊳n_regionkey = r_regionkey

𝜋s_acctbal, n_regionkey

⊲⊳s_nationkey = n_nationkey

𝜋s_nationkey, s_acctbal

⊲⊳s_suppkey = ps_suppkey

𝜋ps_suppkey

⊲⊳p_partkey = ps_partkey

𝜋p_partkey

𝜎𝜙 (part)

𝜋ps_partkey, ps_suppkey

partsupp

𝜋s_suppkey, s_nationkey, s_acctbal

supplier

𝜋n_nationkey, n_regionkey

nation

𝜋r_regionkey

𝜎𝜓 (region)

(a) Query plan generated by Spark SQL

𝛾PERCENTILE(s_acctbal,𝑐 𝑓 𝑖𝑛𝑎𝑙 ,0.5)

𝜋s_acctbal,𝑐 𝑓 𝑖𝑛𝑎𝑙←𝑐𝑝𝑠𝑝 ·𝑐𝑠𝑛𝑟

⊲⊳s_suppkey = ps_suppkey

𝛾s_suppkey, s_acctbal,SUM(𝑐𝑠𝑛𝑟 )

𝜋s_suppkey, s_acctbal,𝑐𝑠𝑛𝑟←𝑐𝑠 ·𝑐𝑛𝑟

⊲⊳s_nationkey = n_nationkey

𝜋s_suppkey, s_nationkey, s_acctbal,𝑐𝑠←1

supplier

𝛾n_nationkey,SUM(𝑐𝑛𝑟 )

𝜋n_nationkey,𝑐𝑛𝑟←𝑐𝑛 ·𝑐𝑟

⊲⊳n_regionkey = r_regionkey

𝜋n_nationkey, n_regionkey,𝑐𝑛←1

nation

𝜋r_regionkey,𝑐𝑟←1

𝜎𝜓 (region)

𝛾ps_suppkey,SUM(𝑐𝑝𝑠𝑝 )

𝜋ps_suppkey,𝑐𝑝𝑠𝑝←𝑐𝑝𝑠 ·𝑐𝑝

⊲⊳ps_partkey = p_partkey

𝜋ps_partkey, ps_suppkey,𝑐𝑝𝑠←1

partsupp

𝜋p_partkey,𝑐𝑝←1

𝜎𝜙 (part)

(b) Query plan generated by Spark SQL with rewritten aggregation

Figure 2: Query plans for Example 4.1

supplier

N S A · · · c
𝑛1 𝑠1 20 · · · 30
𝑛1 𝑠2 40 · · · 20
𝑛1 𝑠4 30 · · · 1
𝑛2 𝑠1 10 · · · 36
𝑛2 𝑠2 30 · · · 24
𝑛4 𝑠2 20 · · · 1

nation

N R · · · c
𝑛1 𝑟1 · · · 3
𝑛1 𝑟2 · · · 2
𝑛1 𝑟4 · · · 1
𝑛2 𝑟1 · · · 3
𝑛2 𝑟2 · · · 2
𝑛2 𝑟3 · · · 1

partsupplier

S P · · · c
𝑠1 𝑝1 · · · 3
𝑠1 𝑝2 · · · 2
𝑠1 𝑝3 · · · 1
𝑠2 𝑝1 · · · 3
𝑠2 𝑝3 · · · 1
𝑠3 𝑝1 · · · 3

region

R · · · c
𝑟1 · · · 1
𝑟1 · · · 1
𝑟1 · · · 1
𝑟2 · · · 1
𝑟2 · · · 1
𝑟3 · · · 1

part

P · · · c
𝑝1 · · · 1
𝑝1 · · · 1
𝑝1 · · · 1
𝑝2 · · · 1
𝑝2 · · · 1
𝑝3 · · · 1

Figure 3: Evaluation of the query from Figure 1

Similarly to Koch et al. [34], we extend the relations by additional
attributes to carry information on aggregate expressions. Below,
we describe which information has to be propagated up the join

tree in order to evaluate a single aggregate expression 𝐴 𝑗 (𝑎 𝑗 ). For
the evaluation of 𝑄 , we add the frequency attribute plus all these
additional attributes to the corresponding nodes in the join tree.

Suppose that 𝐴 𝑗 (𝑎 𝑗 ) is of the form 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 ) with 𝐴 𝑗 ∈ {MIN,
MAX, SUM, COUNT} and 𝑓𝑗 is an arbitrary function on attributes �̄� 𝑗

jointly occurring in one of the relations 𝑅1, . . . , 𝑅𝑛 . We choose as
guard of the aggregate expression 𝐴 𝑗 (𝑎 𝑗 ) the node𝑤 that contains
all attributes �̄� 𝑗 and that is highest up in the join tree 𝑇 with this
property. Since we are assuming that 𝐴 𝑗 (𝑎 𝑗 ) is not guarded by the
root node 𝑟 of𝑇 , this means that𝑤 is different from 𝑟 . Then we add
to all relations along the path from𝑤 to 𝑟 an additional attribute
Agg 𝑗 . Analogously to Equation (3), the intended meaning of Agg 𝑗
for every node 𝑢 on the path between𝑤 and 𝑟 is as follows:

𝛾 [Att (𝑢),Agg 𝑗 ← 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 )]
(︁
⊲⊳𝑣∈𝑇𝑢 (𝑅(𝑣))

)︁
, (4)

For the initialisation of Agg 𝑗 , suppose that the frequency at-
tribute of relation 𝑅(𝑤) at node𝑤 has already been computed as
described in Section 4.1. Hence, in particular, 𝑅(𝑤) is restricted
to the tuples 𝑡 with positive frequency. For an arbitrary tuple 𝑡 in
𝑅(𝑤), we write 𝑡 .𝑐 , 𝑡 .Agg 𝑗 , and 𝑡 .�̄� 𝑗 to denote the values of 𝑡 at the
frequency attribute 𝑐 , at the aggregate attribute Agg 𝑗 , and at the
attributes �̄� 𝑗 , respectively. Then we define 𝑡 .Agg 𝑗 as follows:

• If 𝐴 𝑗 ∈ {MIN, MAX}, then we set 𝑡 .Agg 𝑗 := 𝑓𝑗 (𝑡 .�̄� 𝑗 ).
• If 𝐴 𝑗 = COUNT, then we distinguish two cases: If 𝑓𝑗 (𝑡 .�̄� 𝑗 ) =

NULL, then we set 𝑡 .Agg 𝑗 := 0; otherwise 𝑡 .Agg 𝑗 := 𝑡 .𝑐 .
• If 𝐴 𝑗 = SUM, then we set 𝑡 .Agg 𝑗 := 𝑓𝑗 (𝑡 .�̄� 𝑗 ) ∗ 𝑡 .𝑐 .

To verify that Agg 𝑗 is equal to the additional attribute according
to Equation (4), we note that all tuples in a group defined by a
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value combination of the original attributes Att (𝑤) of 𝑅(𝑤) (thus,
corresponding to a single tuple 𝑡 ∈ 𝑅(𝑤)) coincide on the attributes
�̄� 𝑗 . Hence, the MAX and MIN of 𝑓𝑗 (�̄� 𝑗 ) over the tuples in such a group
is simply the value of 𝑓𝑗 (𝑡 .�̄� 𝑗 ). For 𝐴 𝑗 ∈ {COUNT, SUM}, we have to
take the number of tuples in each such group into account, which
corresponds to the frequency value 𝑡 .𝑐 . For the COUNT aggregate,
we also have to consider the special case that 𝑓𝑗 (�̄� 𝑗 ) = NULL, which
means that COUNT(𝑓𝑗 (�̄� 𝑗 )) for the entire group is 0.

For the propagation of the additional attribute Agg 𝑗 along the
path from𝑤 to the root 𝑟 , consider an ancestor node 𝑢 of𝑤 and let
𝑢1, . . . , 𝑢𝑘 denote the child nodes of 𝑢. W.l.o.g., we assume that the
child node𝑢1 is on the path from𝑤 to 𝑟 . Suppose that the frequency
attribute at every child node𝑢𝑖 of𝑢 and the attributeAgg 𝑗 at node𝑢1
have already been computed. We are assuming that𝑤 is the highest
node in the join tree that contains all attributes �̄� 𝑗 . Hence, 𝑢 does
not contain all attributes �̄� 𝑗 , and, by the connectedness conditions,
neither does any of the nodes 𝑢2, . . . , 𝑢𝑘 . For an arbitrary tuple
𝑡 ∈ 𝑅(𝑢), let {𝑡1, . . . , 𝑡𝛼 } denote the set of all tuples in 𝑅(𝑢1) that
join with 𝑡 . We compute the value 𝑡 .Agg 𝑗 as follows:

• First suppose that 𝐴 𝑗 ∈ {MIN, MAX}. Then we set 𝑡 .Agg 𝑗 :=
𝐴 𝑗 ({𝑡1 .Agg 𝑗 , . . . , 𝑡𝛼 .Agg 𝑗 }).
• Now let 𝐴 𝑗 ∈ {SUM, COUNT}. For every 𝑖 ∈ {2, . . . , 𝑘}, let 𝑠𝑖

denote the sum of the frequencies of all join partners of 𝑡 in
𝑅(𝑢𝑖 ). Then we set 𝑡 .Agg 𝑗 :=

(︁ ∑︁𝛼
𝜆=1 𝑡𝜆 .Agg 𝑗 [𝑢1]

)︁
∗ Π𝑘

𝑖=2𝑠𝑖 .
For the correctness of this propagation of attribute Agg 𝑗 , recall

that we are assuming that the attributes �̄� 𝑗 are not fully contained
in the relation 𝑅(𝑢) and, hence, by the connectedness condition,
they cannot be fully contained in any of the child nodes {𝑢2, . . . , 𝑢𝑘 }
either. Hence, the value combinations of �̄� 𝑗 in

(︁
⊲⊳𝑣∈𝑇𝑢 (𝑅(𝑣)

)︁
must

already occur in
(︁
⊲⊳𝑣∈𝑇𝑢1

(𝑅(𝑣)
)︁
. The MIN or MAX of 𝑓𝑗 (�̄� 𝑗 ) of a tuple

𝑡 when grouping over the attributes of 𝑅(𝑢) is, therefore, simply
obtained by grouping over the attributes of 𝑅(𝑢1) and aggregating
over the join partners of 𝑡 in 𝑅(𝑢1). Similar considerations apply
to the computation of Agg 𝑗 in case of COUNT and SUM. The aggre-
gation of Agg 𝑗 over the join partners of 𝑡 in 𝑢1 yields the value(︁ ∑︁𝛼

𝜆=1 𝑡𝜆 .Agg 𝑗
)︁
. In contrast to MIN and MAX, we now also have to

take the possible extensions of 𝑡 to the relations in the subtrees
of 𝑇 rooted at the nodes 𝑢2, . . . , 𝑢𝑘 into account. The number of
possible extensions of 𝑡 to

(︁
⊲⊳𝑣∈𝑇𝑢𝑖 (𝑅(𝑣)

)︁
corresponds to the sum

𝑠𝑖 of the frequencies of all join partners of 𝑡 in 𝑅(𝑢𝑖 ). Hence, by
the connectedness conditions, the number of extensions of 𝑡 to the
relations at all subtrees of 𝑇𝑢2 , . . . ,𝑇𝑢𝑘 is obtained as Π𝑘

𝑖=2𝑠𝑖 .
We conclude this section by an important observation concern-

ing the size of the relations that we propagate up the join tree 𝑇 :
for every node 𝑢 of 𝑇 , the relation Freq(𝑢) contains precisely the
tuples of 𝑅(𝑢) that one would get by the first bottom-up traversal of
Yannakakis’ algorithm via semi-joins, extended by the frequency at-
tribute 𝑐𝑢 . That is, we never add tuples, we only add one attribute to
each relation. Similarly, for every aggregate expression 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 ))
that is not guarded by the root 𝑟 of 𝑇 , we add an attribute Agg 𝑗 to
all nodes along the path between the guard of 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 )) and the
root. In other words, the data structures that we have to materialise
and propagate in the course of our evaluation of piecewise-guarded
queries is linearly bounded in the size of the data.

We note that this propertywould no longer be guaranteed for one
of the following two extensions of the piecewise-guarded fragment:

either allowing aggregates other than MIN, MAX, SUM, COUNT, AVG to
be guarded by a relation different from the root guard or allowing
aggregate expressions𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 )) whose attributes are not guarded
by a single relation. In both cases, one would have to propagate
(all possible) individual values of attributes rather than aggregated
values up the join tree, which would destroy this linear bound. A
more detailed discussion is given in the full paper [35].

5 OPTIMISED PHYSICAL OPERATORS
The optimisations presented in Section 4 avoid a good deal of ma-
terialisation of intermediate results. But there are still joins needed,
namely, between the relations at a parent node and its child nodes.
Only after these joins, we apply the grouping and aggregation and
thus bring the intermediate relations back to linear size (data com-
plexity). Similarly to Schleich et al. [48], we now combine the join
computation with aggregation into a single operation. We thus
introduce a new physical operator (referred to as AggJoin) that
computes and propagates the frequency attribute 𝑐 from Section 4.1
and the additional aggregate attributes Agg 𝑗 from Section 4.2 in
a semi-join-like style. Below, we describe a possible join-less re-
alisation of this operator. As a preprocessing step (yet before the
AggJoin is called), the following operations are carried out:

Every relation is extended by a frequency attribute 𝑐 , and, for
every tuple 𝑡 in every relation𝑅, we initialise 𝑡 .𝑐 as 𝑡 .𝑐 := 1. Moreover,
for every aggregate expression 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 )) that is not guarded by
the root guard, we determine the node 𝑤 highest up in the join
tree that contains all attributes in 𝑓𝑗 (�̄� 𝑗 ). Then we add an attribute
Agg 𝑗 to every relation along the path from𝑤 to 𝑟 . For every tuple
𝑡 ∈ 𝑅(𝑤), we initialise this attribute as follows:

• If 𝐴 𝑗 ∈ {MIN, MAX, SUM}, then we set 𝑡 .Agg 𝑗 := 𝑓𝑗 (𝑡 .�̄� 𝑗 ), i.e.,
we apply 𝑓𝑗 to the values of the attributes �̄� 𝑗 in tuple 𝑡 .
• If𝐴 𝑗 ∈ {COUNT}, then we set 𝑡 .Agg 𝑗 := 1 if 𝑓𝑗 (𝑡 .�̄� 𝑗 ) ≠ NULL,

and 𝑡 .Agg 𝑗 := 0 if 𝑓𝑗 (𝑡 .�̄� 𝑗 ) = NULL.

For 𝐴 𝑗 ∈ {SUM, COUNT}, we thus deviate from the initialisation of
𝑡 .Agg 𝑗 at node𝑤 described in Section 4.2 by leaving out the multi-
plication of 𝑡 .Agg 𝑗 with the frequency value 𝑡 .𝑐 . This multiplication
by 𝑡 .𝑐 has to be integrated into the AggJoin operator, which will
take care of this multiplication when it determines 𝑡 .𝑐 .

Finally, if 𝐴 𝑗 ∈ {SUM, COUNT}, then we set 𝑡 .Agg 𝑗 := 1 for every
tuple 𝑡 in a relation labelling an ancestor node 𝑢 of𝑤 . The reason
for this is that it will allow us to uniformly propagate the Agg 𝑗
value from one child of 𝑢 and the frequency values from the other
children of 𝑢 in a uniform way via multiplication.

From now on, let 𝑅 and 𝑆 denote relations labelling nodes 𝑢𝑅
and 𝑢𝑆 in the join tree, such that 𝑢𝑆 is a child node of 𝑢𝑅 . We first
describe the propagation of the frequency attribute by the AggJoin
for a tuple 𝑟 ∈ 𝑅.

• check that 𝑟 ∈ 𝑅 ⋉ 𝑆 holds;
• define 𝑆 ′ := 𝑆 ⋉ {𝑟 }, i.e., the tuples in 𝑆 that join with 𝑟 ;
• define 𝑠𝑐 :=

∑︁
𝑠∈𝑆 ′ 𝑠 .𝑐 , i.e., the sum of the frequencies of all

tuples in 𝑆 that join with 𝑟 ;
• Finally, we set 𝑟 .𝑐 := 𝑟 .𝑐 · 𝑠𝑐 , i.e., the frequency of 𝑟 is mul-

tiplied by the sum of the frequencies of the join partners
in 𝑆 . Here, it makes no difference, if 𝑟 .𝑐 still had its initial
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value 1 or if 𝑅 had already gone through calls of AggJoin
with relations at other child nodes of 𝑢𝑅 .

It is easy to verify that this new AggJoin operator does precisely
the work needed to get from Freq𝑖−1 (𝑢𝑅) to Freq𝑖 (𝑢𝑅) according to
Section 4.1. After the initialisation, we have 𝑟 .𝑐 = 1 for all tuples in
𝑅. This corresponds to Freq0 (𝑢𝑅). Then we successively execute the
AggJoin operator, where 𝑅 = Freq𝑖−1 (𝑢𝑅) and 𝑆 is the relation at
the 𝑖-th child node of 𝑢𝑅 . Hence, in each such call, we either delete
𝑟 (if it has no join partner in 𝑆) or we multiply the current value of
𝑟 .𝑐 by the sum of the frequencies of its join partners in 𝑆 .

Let us now consider the aggregate expressions 𝐴 𝑗 (𝑓𝑗 (�̄� 𝑗 )) that
are not guarded by the root guard. For the initialisation of the
attribute Agg 𝑗 in case of 𝐴 𝑗 ∈ {SUM, COUNT}, we proceed as with
the frequency attribute: Suppose that relation 𝑅 is the one, where
Agg 𝑗 has to be initialised. Now, for every tuple 𝑟 ∈ 𝑅, the value
initially assigned to 𝑟 .Agg 𝑗 ultimately has to be multiplied by 𝑟 .𝑐
to arrive at the initialisation according to Section 4.2. Hence, for
every relation 𝑆 at a child node of 𝑢𝑅 , we multiply 𝑟 .Agg 𝑗 with 𝑠𝑐
= the sum of the frequencies of all tuples in 𝑆 that join with 𝑟 .

For the propagation of the attribute Agg 𝑗 in case of 𝐴 𝑗 ∈ {MIN,
MAX, SUM, COUNT}, we distinguish two cases: First suppose that 𝑆
does not contain the attribute Agg 𝑗 . Then, for every tuple 𝑟 ∈ 𝑅
that has at least one join partner in 𝑆 , we proceed as follows: For
𝐴 𝑗 ∈ {MIN, MAX}, we simply leave the value of 𝑟 .Agg 𝑗 unchanged,
i.e., the Agg 𝑗 attribute is propagated to 𝑅 from the relation at a
different child node. For 𝐴 𝑗 ∈ {SUM, COUNT}, we again proceed
analogously to the frequency propagation, i.e., we multiply 𝑟 .Agg 𝑗
with the sum of the frequencies of all tuples in 𝑆 that join with 𝑟 .
Now suppose that 𝑆 contains the attribute Agg 𝑗 . Then, for every
tuple 𝑟 ∈ 𝑅 that has at least one join partner in 𝑆 , we proceed as
follows: For 𝐴 𝑗 ∈ {MIN, MAX}, we assign to 𝑟 .Agg 𝑗 the minimum
resp. maximum value of 𝑠 .Agg 𝑗 over all tuples 𝑠 ∈ 𝑆 that join with 𝑟 .
For 𝐴 𝑗 ∈ {SUM, COUNT}, we determine the sum of the values 𝑠 .Agg 𝑗
over all tuples 𝑠 ∈ 𝑆 that join with 𝑟 and multiply the current value
of 𝑟 .Agg 𝑗 with this sum.

The rewriting from Section 4 allows for a smooth integration
of the AggJoin operator into the physical query plan. For instance,
we have extended Spark SQL by three different implementations
of the AggJoin operator, corresponding to the existing three join
implementations shuffled-hash join, sort-merge join, and broadcast-
hash join. In Algorithm 1, we sketch the realisation of the AggJoin
operator based on the shuffled-hash join. We use pseudo-code no-
tation to leave out the technical details so as not to obscure the
simplicity of the extension from join computation to semi-join-like
aggregation. As in the explanations above, we write 𝑅 and 𝑆 to
denote pairs of relations whose nodes in the join tree are in parent-
child relationship. Moreover, the AggJoin operator is only called
after all the initialisations of additional attributes 𝑡 .𝑐 and 𝑡 .Agg 𝑗
have been carried out as described above. Clearly, the hash-phase
(including the partitioning by Spark SQL) is left unchanged. Only
the join-phase is affected, which we briefly discuss next:

The AggHashJoin takes as input a set of tuples from 𝑅 and of
tuples from 𝑆 that join. Additionally, the indices of the aggregate
attributes 𝐼𝑆 (which have to be propagated from 𝑆 to 𝑅) and 𝐼𝑅
(which are only contained in 𝑅) are taken as input. In the first
step, we initialise 𝑠𝑐 (that is used to sum up the frequency values

Algorithm 1: Hash Join with aggregate propagation
Input: Two lists 𝑅, 𝑆 of tuples with the same values of the

join attributes;
List 𝐼𝑆 = {𝑠1, . . . , 𝑠𝑚} of indices of aggregate
attributes Agg𝑠𝑖 present in both 𝑆 and 𝑅;
List 𝐼𝑅 = {𝑟1, . . . , 𝑟𝑛} of indices of aggregate
attributes Agg𝑟𝑖 present only in 𝑅;

Function AggHashJoin(𝑅, 𝑆, 𝐼𝑆 , 𝐼𝑅)
𝑠𝑐 ← 0;
foreach 𝑠 ∈ 𝐼𝑆 do

if 𝐴𝑠 ∈ {MIN, MAX} then 𝑣𝑎𝑙𝑠 ← 𝑖𝑛𝑖𝑡 [𝑠];
if 𝐴𝑠 ∈ {SUM, COUNT} then 𝑣𝑎𝑙𝑠 ← 0;

foreach 𝑡 ∈ 𝑆 do
𝑠𝑐 ← 𝑠𝑐 + 𝑡 .𝑐;
foreach 𝑠 ∈ 𝐼𝑆 do

if 𝐴𝑠 ∈ {MIN, MAX} then
𝑣𝑎𝑙𝑠 ← 𝐴𝑠 (𝑣𝑎𝑙𝑠 , 𝑡 .Agg𝑠 );
if 𝐴𝑠 ∈ {SUM, COUNT} then 𝑣𝑎𝑙𝑠 ← 𝑣𝑎𝑙𝑠 + 𝑡 .Agg𝑠 ;

foreach 𝑡 ∈ 𝑅 do
𝑡 .𝑐 ← 𝑡 .𝑐 · 𝑠𝑐;
foreach 𝑠 ∈ 𝐼𝑆 do

if 𝐴𝑠 ∈ {MIN, MAX} then 𝑡 .Agg𝑠 ← 𝑣𝑎𝑙𝑠 ;
if 𝐴𝑠 ∈ {SUM, COUNT} then
𝑡 .Agg𝑠 ← 𝑡 .Agg𝑠 · 𝑣𝑎𝑙𝑠 ;

foreach 𝑟 ∈ 𝐼𝑅 do
if 𝐴𝑟 ∈ {SUM, COUNT} then 𝑡 .Agg𝑟 ← 𝑡 .Agg𝑟 · 𝑠𝑐 ;

emit 𝑡 ;

over the tuples in 𝑆) and 𝑣𝑎𝑙𝑠 for every 𝑠 ∈ 𝐼𝑠 (that is used for
aggregating the attributeAgg𝑠 ). An aggregate attributeAgg𝑠 is used
to propagate values for the aggregate expression 𝐴𝑠 (𝑓𝑠 (�̄�𝑠 )). For
𝐴𝑠 ∈ {MIN, MAX} we assume that the (system-dependent) maximal
element for this data type in case of MIN and theminimal one in case
of MAX, respectively, is stored in the variable 𝑖𝑛𝑖𝑡 [𝑠]. The foreach-
loop over the tuples of 𝑆 aggregates the frequency attribute and all
the other additional attributes. The foreach-loop over the tuples of
𝑅 uses these aggregated values from the tuples of 𝑆 to update the
corresponding attributes of the tuples in 𝑅. The latter foreach-loop
also has to multiply the initial value of aggregate attributes in case
of SUM and COUNT by the sum 𝑠𝑐 of the frequency attributes.

In the full paper [35], we also discuss the realisation of the Agg-
Join in case of the sort-merge join, and broadcast-hash join. It is then
straightforward to extend these ideas to join types not supported
by Spark SQL such as the block-nested loops join.

Clearly, replacing a physical join operation by the respective
AggJoin variant does not introduce any overhead (apart from the
computationally cheap management of the additional frequency
and aggregate attributes). Moreover, if none of the additional at-
tributes is needed (e.g., if the query is 0MA), then our AggJoin
operator actually degenerates to a simple semi-join.
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6 EXPERIMENTAL EVALUATION
Experimental Setup. In order to evaluate our approach for mate-

rialisation-free query evaluation, we have implemented the meth-
ods presented in Sections 4 and 5 in Spark SQL. We perform experi-
ments using a wide range of standard benchmarks, namely the Join
Order Benchmark (JOB) [36], STATS-CEB [23], TPC-H [53], TPC-
DS [52], and the Large-Scale Subgraph Query Benchmark (LSQB)
[39]. In addition, we evaluate performance on simple graph queries
evaluated on two real-world graphs from the SNAP (Stanford Net-
work Analysis Project [37]) dataset. In particular, we experiment on
the following two datasets which are commonly used in analyses
of graph queries (e.g., by Hu and Wang [24]):

Graph Nodes Edges (un)directed

web-Google 875,713 5,105,039 directed
com-DBLP 317,080 1,049,866 undirected

We evaluate the performance of basic graph queries, namely path
queries requiring between 3 and 8 joins (i.e., between 4 and 9 edges)
and three tree queries of depth between 3-4 joins and 4-7 joins
in total. These queries can be viewed as counting the number of
homomorphisms from certain patterns (i.e., paths and trees in this
case); a task that has recently gained popularity in graph learning
where the results of the queries are injected into machine learning
models (e.g., [9, 10, 29, 42]).

The overall performance of our proposed optimisations on the
applicable queries is summarised in Table 3. We refer to the ref-
erence performance of Spark SQL without any alterations as Ref.
Our experiments on the SNAP graphs specifically are summarised
in Table 2. The fastest execution time achieved for each case is
printed in boldface. The results obtained by applications of the
logical optimisations described in Section 4.1 for guarded queries
are referred to as Guarded Aggregate Optimisation (GuAO). We use
GuAO+ to refer to the further extension of our logical optimisations
to piecewise-guarded queries described in Section 4.2 plus the en-
hancement of the physical query plan using the AggJoin operator
described in Section 5. The speed-up achieved byGuAO+ over Ref is
explicitly stated in Table 3 in the column GuAO+ Speedup. For most
benchmarks, we report end-to-end (e2e) times for subsequently ex-
ecuting all queries of a given benchmark where our optimisations
are applicable (to the full query, or at least one subquery).

In all experiments, we execute each query 6 times, with the first
run being a warm-up run to ensure that our measurements are not
affected by initial reads of tables into memory. We report statistics
gathered from the last 5 runs and report mean query execution
time as well as the standard deviation over these runs. Finally, note
that we execute the full query, even if our optimisation applies
only to a subquery. In such a case, the plan for the subquery is
optimised according to Section 4, and the rest of the query plan
remains unchanged.

Full experimental details are provided in the full paper [35].

Applicability.

To enable Yannakakis-style query evaluation in the context of stan-
dard query execution engines, we have focused on specific queries,
namely guarded and piecewise-guarded acyclic aggregate queries
(cf., Section 4). As a first step, we therefore provide a more detailed
analysis as to how many of the queries in the studied benchmarks

fit into this class, and what factors limit further applicability. The
analysis is summarised in Table 1.

Despite the variety of considered benchmarks, we find that our
optimisations for piecewise-guarded queries are widely applicable
through all of them. In JOB and STATS-CEB, all queries fall into
the schema of piecewise guarded-aggregation, and our method
thus applies to these benchmarks as a whole. In contrast, the 0MA
fragment covers only 19 of the 259 queries in total in these two
benchmarks. Our methods also apply to all the tested basic graph
queries (path or tree queries) that were tested on the SNAP dataset.

In LSQB, our approach applies to 2 of the 9 queries. But as re-
ported in Table 1, only 4 of the queries are equi-join queries with
aggregation, the others contain joins on inequalities, which requires
entirely different techniques (e.g., [33]). Of the 4 equi-join queries,
2 are not acyclic.

Our method applies to half of the equi-join aggregate queries
in the TPC-DS benchmark. The queries in the benchmark are typ-
ically highly complex, often combining multiple subqueries and
employing more elaborate SQL features. We observe that in some
instances, GuAO+ even applies to multiple subqueries in the same
query. In TPC-H, our optimisations apply to 7 out of the 15 acyclic
equi-join aggregate queries in the benchmark. Notably, TPC-H Q2
contains a 0MA subquery (with MIN aggregation) and TPC-H Q11
contains a guarded sum aggregate subquery.

TPC-H Q2 is particularly illustrative as the subquery is corre-
lated: the attribute p_partkey from the outer query is used in the
aggregation subquery as follows:

SELECT MIN(ps_supplycost)
... WHERE p_partkey = ps_partkey ...

The Spark SQL query planner decorrelates this subquery via typical
magic decorrelation (see [49]) – resulting in the following select
statement for the decorrelated subquery. This query is still guarded
and thus 0MA. Our rewriting rules then apply naturally after decor-
relation, with no need for any special handling of these cases.

SELECT ps_partkey, MIN(ps_supplycost)
... GROUP BY ps_partkey

We recall that our method is fully integrated into the query opti-
misation phase. Hence, when our optimisations are not applicable
to a query, its execution is not affected. Recognising whether the
rewriting rules are applicable is trivial and requires, in our obser-
vations, negligible additional time in the query planning phase to
perform our rewriting (about 2ms in all of our experiments). Going
forward, it is additionally possible to pre-process queries to make
them fit into the fragments where our methods are applicable. A
brief discussion of such approaches is given in the outlook to future
work in Section 7.

Performance impact of GuAO/GuAO+.

Our main results over standard benchmarks are summarised in
Table 3. We additionally report the mean number of joins of the
(sub)queries affected by our optimisation. We make two key obser-
vations with respect to the performance of our methods.

When queries are challenging – e.g., they have many joins or
the joins are not along PK/FK pairs – then our method provides
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Table 1: Summary of the applicability of our
method on benchmarks. We report the number
of queries in benchmark (#), equi-join aggre-
gate queries (⊲⊳-agg), acyclic queries (acyc),
piecewise-guarded queries (pwg), guarded
queries (g), and 0MA queries. Fragments
proposed in this work are highlighted in blue.

Benchmark # ⊲⊳-agg acyc pwg g 0MA
JOB 113 113 113 113 19 19

STATS-CEB 146 146 146 146 146 0
TPC-H 22 15 14 7 3 1
LSQB 9 4 2 2 2 0
SNAP 18 18 18 18 18 0
TPC-DS 99 64 63 30 15 0

Table 2: Performance on SNAP graphs (t.o. marks timeouts, o.o.m marks
out of memory errors).

web-Google com-DBLP
Query Spark GuAO GuAO+ Spark GuAO GuAO+

path-03 27.97±1.5 6.90±0.6 6.08±0.65 6.32±1.1 2.35±0.5 1.59±0.12

path-04 449.14±26.9 7.58±0.6 6.89±0.30 50.97±9.8 2.24±0.4 1.76±0.16

path-05 o.o.m. 8.95±1.0 7.53±0.48 400.87±15.2 2.74±0.2 2.03±0.25

path-06 o.o.m. 9.37±1.0 8.80±0.25 o.o.m. 2.98±0.2 2.18±0.14

path-07 o.o.m. 11.32±0.9 9.76±1.21 o.o.m. 3.64±0.2 2.38±0.26

path-08 o.o.m. 11.30±2.1 10.05±1.49 o.o.m. 3.75±0.4 2.53±0.30

tree-01 539.11±22.4 7.73±1.0 6.53±1.11 25.96±4.5 1.95±0.1 1.47±0.28

tree-02 o.o.m. 12.43±3.2 7.29±0.73 328.88±11.5 3.02±0.7 1.69±0.16

tree-03 o.o.m. 12.21±5.6 8.16±0.66 o.o.m. 3.17±0.2 1.99±0.16

Table 3: Summary of the impact of aggregate optimisation on execution times (seconds). Reported numbers are mean times
over 5 runs of the same query with standard deviations given after ±. “–” indicates that the query is piecewise-guarded and,
therefore, the optimisation from Section 4.1 for guarded queries is not applicable.

Query # joins (mean) Ref GuAO GuAO+ GuAO+ Speedup
STATS-CEB e2e 3.33 1558±7.3 97.9±6.1 64.8±7.9 24.04 x

JOB e2e 7.65 3217.84±106 - 2189.46±76 1.47 x
TPC-H e2e SF200 1.57 3757.2 - 3491.06 1.08 x
TPC-H Ex.1 SF200 4 168.4 107.5 105.11 1.60 x
LSQB Q1 SF300 9 3096±232 677±23 688±23 4.57 x
LSQB Q4 SF300 3 602±37 593±15 592±9 1.02x

TPC-DS e2e SF100 2.52 5154.5 - 5047.5 1.02 x

enormous potential for speed-up. In JOB, a benchmark where sub-
optimal join orderings in large queries cause intermediate blow-up,
we achieve almost 50% speed-up. STATS-CEB purposefully intro-
duces joins along FK/FK relationships to challenge query evaluation
systems with the resulting large number of intermediate tuples. Our
method automatically avoids all of these difficulties and we see an
immense 24-fold speed-up. Similarly, for the more difficult of the
two LSQB queries (Q1), we see that the large number of joins creates
significant intermediate blow-up with standard relational query
evaluation. Again our method achieves a very large improvement of
about 450%. Even in the simple query from Example 1.1 we observe
60% speed-up over unoptimised Spark SQL.

On the other hand, we observe that especially the two TPC
benchmarks contain primarily queries where the join evaluation
itself is very straightforward. In TPC-H, 4 of the 7 tested queries
contain only a single join. In TPC-DS we observe similar patterns.
As a result, there is little to no unnecessary materialisation in many
of these queries. Our key insight here is that the experiments con-
firm that our method (and in particular GuAO+) does not introduce
any overhead in these cases. By not causing performance decrease
in those cases where there is no unnecessary materialisation, com-
bined with some gains in the few harder queries, we still see modest
overall speed-ups for these benchmarks.

With respect to basic graph queries, we see in Table 2 that even
with significant resources, counting short paths and small trees
is effectively impossible on large graphs with current methods.

This holds for both, Spark SQL and for specialised graph database
systems. In stark contrast, GuAO and GuAO+ effectively trivialise
these types of queries even with significantly less resources than are
available on our test system (the highest observed memory usage
for GuAO+ in our SNAP experiments was roughly 5GB). Since these
experiments focus on graph data, we additionally compared with
specialised graph database systems (Neo4j [41], KÙZU system [30],
and GraphDB [20]). The results of these experiments are equally
sobering as with standard Spark SQL, in that almost all queries
failed with timeout (set to 30 min). This is in sharp contrast to
GuAO and GuAO+, which answer these queries in a matter of a
few seconds. We refer to the full paper [35] for detailed results.

In summary, our experiments paint a clear picture. In more chal-
lenging queries, our approach offers very significant improvements.
At the same time, in cases where little unnecessary materialisation
is performed, GuAO+ introduces no additional overhead and thus
exhibits no performance degradation on simpler queries.

How much materialisation can be avoided?

Throughout the paper, we have been motivated by the premise
that easy to implement logical optimisation rules for query plans
can avoid a significant amount of intermediate materialisation in
aggregate queries. Moreover, with the addition of natural physi-
cal operators, we can avoid any such materialisation altogether.
However, this raises the question of how much unnecessary ma-
terialisation actually occurs when using standard query planning
methods.
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Figure 4: Comparison of the maximal number of materialised tuples in a table during query execution for 20 queries of
STATS-CEB. Y-axis in logarithmic scale (base 10).

To study this question, we compare the maximum number of
tuples that occur in an intermediate table during query execution
for the STATS-CEB queries. Again, we report the mean over 5 runs
(we omit error bars as the variation between runs is mostly 0 and
negligible in other cases).We note that these intermediate table sizes
are naturally closely correlated to overall memory consumption, as
well as communication cost in a distributed setting. Figure 4 reports
the peak number of materialised tuples during query execution for
the 20 queries where standard Spark SQL materialises the most
intermediate tuples. The data clearly shows that an improvement in
the order of magnitudes of materialised tuples is often possible. In
particular, we see the well documented effect of classical relational
query processing techniques leading to substantial intermediate
blow-up. The largest relations in the dataset have in the order of
3 · 105 tuples, an enormous difference to the observed sizes of up
to 1010 intermediate tuples for Ref. The data shows that already
by rewriting the logical query plans according to Section 4, we
regularly see a reduction in peak intermediate table size of over 2
orders of magnitude.

However, the optimised logical query plan still requires some
mild materialisation between aggregation steps, which we manage
to eliminate with the physical operators described in Section 5.
The resulting GuAO+ system consistently reduces the number of
materialised tuples by at least 3 orders of magnitude on the
reported queries in Figure 4. In fact, the reported numbers for
GuAO+ are always precisely the cardinality of the largest relation in
the query, as the execution using our method never introduces any
new tuples (cf. Section 5). That is, this number can also inherently
not be improved upon. Over the whole benchmark, we observe
that the peak number of materialised tuples by GuAO+ is at least
10 times less than that of standard Spark SQL query execution in
118 out of the 146 queries. In all other cases, the peak number of
materialised tuples by Ref and GuAO+ is exactly the same, i.e., Ref
is never better.

7 CONCLUSION
In this work, we have introduced several optimisations for guarded
aggregate queries, enabling significant reductions of the need to
materialise intermediate results when evaluating analytical queries
with aggregates over join or path queries. Our approach emphasises

seamless integration into standard database systems, requiring only
localised modifications to logical query plans. Additionally, we
propose the use of new physical operators that extend semi-joins to
manage frequencies and other aggregate information with the aim
to completely eliminate the computation of intermediate joins and
to facilitate straightforward integration into physical query plans.

We have implemented our optimisations into Spark SQL, which
has been specifically designed as a powerful tool to deal with com-
plex analytical queries. Our experimental evaluation confirms that
the proposed techniques can provide significant performance im-
provements by avoiding costly materialisation, especially in larger
queries. Furthermore, the integration of our optimisations into
Spark SQL serves not only as a proof of concept but is already
a practical enhancement of an important tool in data analytics
– which is even more valuable given the limited applicability of
advanced query optimisation techniques in Spark SQL due to its
limited cost-model.

So far, we have applied our optimisation techniques to acyclic
queries with piecewise-guarded aggregation. In principle, both
acyclicity and piecewise-guardedness can be enforced by apply-
ing appropriate joins upfront. More specifically, if a query uses
unguarded aggregation, we can create a guard by joining relations
that cover all attributes involved in grouping and/or aggregation.
Similarly, a cyclic query can be transformed into an acyclic one
via (generalised or fractional) hypertree decompositions [3, 18, 22].
Again, this requires the computation of some joins upfront. Of
course, carrying out such joins upfront to ensure guardedness
and/or acyclicity comes at a cost – both in terms of space and
time. We leave it as an interesting open question for future research
to analyse when extending our approach to cyclic and/or unguarded
queries actually pays off.
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