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ABSTRACT
Deterministic and non-deterministic concurrency control algorith-
ms have shown respective advantages under diverse workloads.
Thus, a natural idea is to blend them together. However, because
deterministic algorithmsworkwith stringent assumptions, e.g., bat-
ched execution and non-interactive transactions, they hardly work
together with non-deterministic algorithms. To address this issue,
we propose HDCC, a hybrid approach that adaptively employs
Calvin and OCC, which have distinct concurrency control and log-
ging schemes, in the same database system. To ensure serializabil-
ity and recovery correctness, we introduce lock-sharing, global val-
idation, and two-log-interleavingmechanisms. Additionally, we in-
troduce a rule-based assignment mechanism to dynamically select
Calvin or OCC based onworkload characteristics. Experimental re-
sults using TPC-C and YCSB benchmarks demonstrate that HDCC
surpasses existing hybrid approaches by up to 3.1×.
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1 INTRODUCTION
Concurrency control algorithms play a pivotal role in ensuring
consistency and isolation in database systems. These algorithms
fall into two categories: deterministic and non-deterministic. De-
terministic algorithms process transactions in batches, where trans-
actions within each batch are ordered, often based on criteria such
as arrival time. A transaction, denoted as 𝑇 , is scheduled for exe-
cution only if all conflict transactions that are ordered prior to 𝑇

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718066

have been completed. Notably, if multiple such transactions exist,
they can be executed in parallel, thereby improving concurrency.
In contrast, non-deterministic algorithms schedule each transac-
tion individually. The order of concurrent transactions in an equiv-
alent serializable schedule [1] is predetermined at the beginning of
a transaction or dynamically determined during execution.

There is no single concurrency control algorithm that is univer-
sally optimal for all workloads [2, 18, 51, 55]. Deterministic algo-
rithms [11, 12, 43] excel in processing either high contention work-
loads or distributed transactions or both, due to their determinis-
tic schedule and without a need for a two-phase commit protocol
(2PC). However, deterministic algorithms work under stringent as-
sumptions, like batched execution and predeclared read/write sets,
limiting their applicability in reality. Although a fewworks explore
eliminating some of the assumptions, extra overheads are intro-
duced, making them be sub-optimal. For example, Calvin [43] in-
troduces a reconnaissancemechanism by pre-executing the batched
transactions, but its performance suffers, especially in the work-
load with long-running transactions [37]. Aria [29] proposes a de-
terministic optimistic concurrency control, but at a cost of intro-
ducing a 2PC-like protocol as well as a higher abort rate under
high contention workload [23, 48]. Worse still, deterministic algo-
rithms cannot support interactive transactions. On the contrary,
non-deterministic algorithms such as optimistic concurrency con-
trol (OCC) and its variants ([27, 45]), two-phase locking (2PL) and
its variants ([3, 17]) work without the aforementioned assump-
tions. They excel in low or medium contention workloads. How-
ever, their performance suffers when processing high contention
workloads or distributed transactions [18, 51].

To maximize the respective advantages, we are motivated to
develop a hybrid approach that integrates deterministic and non-
deterministic algorithms into the same database system. Thus far,
although a wide array of hybrid approaches exist, they primar-
ily focus on a combination of non-deterministic algorithms only.
Many notable works aim to merge multiple concurrency control
algorithms into a singular, innovative algorithm. Examples include
MVOCC [8, 26], MV2PL [6, 49] and MVTO [35, 36] that integrate
multi-version concurrency control (MVCC) with OCC, 2PL, and
TO, respectively. In contrast, other studies [38–41, 46, 50] seek to
incorporate multiple concurrency control algorithms within a sin-
gle database system, with each operating independently and cap-
italizing on its particular strengths. These algorithms work either
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at the data item or transaction granularity level. At the data item
granularity [41, 42], certain data items, such as frequently accessed
(hot) items, are scheduled by one algorithm, while others are han-
dled by different algorithms. At the transaction granularity [38–
40, 46], each transaction is scheduled exclusively by a single algo-
rithm. The key design challenge is to ensure serializability among
conflict transactions that are scheduled by different concurrency
control algorithms. To the best of our knowledge, Snapper [28] is
the only work that mixes deterministic and non-deterministic algo-
rithms. In Snapper, transactions with pre-declared read/write sets
are scheduled and executed in batches by Calvin, while other trans-
actions are individually scheduled by 2PL. Snapper introduces an
extra validation phase for each transaction𝑇 scheduled by 2PL, to
checkwhether𝑇 can commit or not by comparing it with a batch of
transactions scheduled by Calvin. Snapper is sub-optimal because,
its concurrency control algorithms do not fully leverage their indi-
vidual superiority (e.g., Calvin should be used for high contention
workloads), and it leads to a higher abort rate due to the coarse-
grained validation that takes a batch of transactions as a whole.

In this paper, we propose HDCC, a hybrid approach that in-
corporates Calvin and OCC into the same database system. We
choose Calvin as the deterministic algorithm because of its popu-
larity and adoption in real database systems, like FaunaDB [14].
The reason why we choose OCC as the non-deterministic algo-
rithm is three-fold. First, it is widely used in many real database
systems, like Azure Cosmos DB [31, 32, 54]. Second, it excels in low
and medium contention workloads [51] and complements Calvin
perfectly.Third, if a transaction scheduled by OCC aborts, it can be
rescheduled by Calvin due to its known read/write set. In HDCC,
each transaction is exclusively scheduled by either Calvin or OCC
during its entire execution. The assignment of Calvin and OCC is
rule-based, tailoring its optimal choice to different workloads. For
example, Calvin is used to process distributed transactions with
pre-declared read/write sets, as well as local transactions with pre-
declared read/write sets over hot data items.

Because Calvin andOCC adopt completely different concurrency
control and logging schemes, integrating them within the same
system is not straightforward. The key challenge is to ensure both
serializability and correct failure recovery. (1) Serializability. Al-
though transactions scheduled by Calvin or OCC individually are
serializable, conflict transactions, with some scheduled by Calvin
and others by OCC, may not be serializable. Consider transactions
𝑇1 and 𝑇2, scheduled by Calvin and OCC, respectively, involving
operations 𝑊1 (𝑥)𝑊1 (𝑦) and 𝑅2 (𝑥)𝑅2 (𝑦). Assuming that node 1
hosts 𝑥 and node 2 hosts 𝑦, both transactions are decomposed into
two sub-transactions each. Conflict arises between 𝑇1 and 𝑇2 in
both node 1 and node 2, creating a scenario where 𝑇1 may be
ordered before 𝑇2 on node 1 but after on node 2. This conflict-
ing schedule lacks serializability. To solve this problem, we pro-
pose two mechanisms, namely lock-sharing and global validation,
which are integrated into OCC. Given a transaction 𝑇 scheduled
by OCC, the lock-sharing mechanism in each node helps check
which conflict transactions scheduled by Calvin are ordered be-
fore𝑇 . If𝑇 is a distributed transaction, the global validation mech-
anism further verifies whether 𝑇 and its conflicting transactions
scheduled by Calvin form a cycle across nodes. If a cycle exists, 𝑇

aborts; otherwise, 𝑇 is able to commit. Furthermore, by integrat-
ing HDCC into the B+-tree index to manage conflicts arising from
insert and delete operations alongside range queries, HDCC suc-
cessfully circumvents phantom anomalies. We theoretically prove
that transactions scheduled by HDCC are serializable. Compared
to Snapper, HDCC achieves a finer-grained schedule, which leads
to a lower abort rate. (2) Recovery. Logging is the key technol-
ogy to ensure failure recovery. However, simply applying the log-
ging mechanisms of Calvin and OCC separately cannot correctly
restore the database upon failure. Note that Calvin processes trans-
actions in batches and writes all the logs of batched transactions
before scheduling them to execute. In contrast, OCC processes each
transaction individually and writes the logs after scheduling it to
execute but before scheduling it to commit. Consequently, the se-
rializable order among transactions scheduled by Calvin and OCC,
respectively, cannot be captured based on the logs. When a fail-
ure occurs, the committed OCC and Calvin transactions may not
be correctly recovered by replaying the redo logs. Intuitively, a
baseline approach is to use an additional log file to maintain and
record the order once a transaction commits. However, this ap-
proach could incur extra maintenance and logging overhead. To
address this problem, we design a two-log-interleavingmechanism
with a new checkpoint creation process derived from a variant of
Zigzag originally introduced in Calvin. In this mechanism, upon
the commit of an OCC transaction, we explicitly maintain and log
the committed Calvin transactions that are ordered before it. By do-
ing this, we not only capture the order between Calvin and OCC
transactions but also record this order in a lightweight manner.
Upon a failure, we follow the order recorded in the OCC log and
interleave the replay of OCC and Calvin logs to recover the com-
mitted Calvin and OCC transactions.

Based on the framework provided by Deneva [18], we integrate
HDCC along with state-of-art concurrency control algorithms, in-
cluding Aria and Snapper, for fair evaluation. Additionally, we en-
hanceDeneva’s B+-tree implementation tomitigate phantom anom-
alies. LeveragingDeneva as the foundation, we conduct a thorough
experiment to showcase the performance advantages of HDCC.

To summarize, we make the following contributions.
• We propose HDCC, a hybrid concurrent control algorithm that

adaptively employs OCC and Calvin. HDCC is equipped with
two mechanisms, lock-sharing and global validation, to ensure
the serializable schedule of transactions.

• Wedesign a two-log-interleavingmechanism that helps correctly
recover the committed Calvin and OCC transactions once a fail-
ure occurs. We provide the theoretical proof to demonstrate its
correctness.

• We propose a rule-based assignment mechanism, tailoring its
optimal choice to different workloads. Two optimizations are
further carefully designed to boost HDCC.

• We conduct extensive experiments over TPC-C and YCSB bench-
marks.The results demonstrate thatHDCC achieves significantly
higher performance compared to the state-of-the-art hybrid ap-
proach, with a factor of up to 3.1× improvement.
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Figure 1: Distributed transaction processing using Calvin

2 PRELIMINARY
In this section, we review the concurrency control and logging
schemes in Calvin and OCC which are the foundation of HDCC.

2.1 Calvin
In Calvin, each node consists of the Sequencer, Scheduler, and
Worker components.The Sequencer collects and packs client trans-
actions into batches, determines their order, and stores them as
logical logs on disk in case of failures. For example, consider two
transactions, 𝑇1 and 𝑇2, shown in Figure 1. Transaction 𝑇1 writes
data item 𝑥 located in node 𝑁1 and data item 𝑦 in node 𝑁2, while
transaction 𝑇2 writes 𝑥 . The Sequencer on 𝑁1 (resp. 𝑁2) receives
𝑇1 (resp.𝑇2), packing it into batches 𝐵 (resp. 𝐵). Each transaction is
allocated a globally unique, monotonically increasing transaction
ID. The Sequencers then flush the batched transactions as logical
logs on disk and decompose each transaction into sub-transactions
based on the nodes involved, sending these sub-transactions to the
respective Schedulers. Upon receiving sub-transactions within the
same batch, the Scheduler requests locks for them in ascending or-
der of transaction IDs. For instance, the Scheduler on 𝑁1 requests
locks for transactions in batches 𝐵 and 𝐵. After completing the
reads/writes, the Worker releases the locks and sends a commit
response to its originating Sequencer.

Calvin utilizes a variant of Zigzag [5] to periodically create check-
points. Data items are flushed to disk only during the checkpoint.
Initially, Calvin selects a transaction ID 𝑐𝑘𝑝𝐼𝐷 as a pivot. Upon
committing all transactions with IDs less than or equal to 𝑐𝑘𝑝𝐼𝐷 ,
the database reaches consistency, and Calvin flushes data items
to disk. Transactions with IDs greater than 𝑐𝑘𝑝𝐼𝐷 maintain their
data as separate copies until the checkpoint is complete. Upon the
checkpoint completion, Calvin overwritten data items by the copies.
In case of node failure, transactions with IDs greater than 𝑐𝑘𝑝𝐼𝐷
are replayed from logical logs for recovery, while those with IDs
less than or equal to 𝑐𝑘𝑝𝐼𝐷 are already persisted.

2.2 OCC
We adopt Silo [45], a variant of OCC, and extend it to a distributed
version. In Silo, a transaction 𝑇 goes through three phases: execu-
tion, prepare, and commit. In the execution phase, Silo performs
reads/writes without acquiring locks, and puts the data items that
it reads/writes in the read/write set, respectively. In the prepare
phase, Silo acquires the locks for its write set and validates whether
the data items in its read set have been modified. If no data items
have been modified, it enters the commit phase and applies the
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Worker
(Coordinator)

Worker
(Participant) Worker

Logging

Execution phase Prepare phase

Read
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Figure 2: Distributed transaction processing using OCC

changes to the database. Note, read-only transactions skip the com-
mit phase.

The coordinator coordinates the execution of a distributed trans-
action 𝑇 . 𝑇 is decomposed into multiple sub-transactions, which
are executed locally in the involved nodes using Silo. Consequently,
𝑇 goes through three phases as well. Take transaction𝑇3 shown in
Figure 2 for example. 𝑇3 is decomposed into two sub-transactions,
which are executed on 𝑁1 and 𝑁2, respectively. In the execution
phase, the coordinator coordinates 𝑁1 (often in terms of a Worker
thread) as one participant in which 𝑇1 reads and writes 𝑥 without
acquiring the lock, and puts 𝑥 in the read set and write set. Besides,
the coordinator coordinates 𝑁2 as the other participant in which
𝑇3 reads/writes 𝑦 in the same way. After collecting all responses
from the participants, the coordinator coordinates 𝑇3 to enter the
prepare phase. In the prepare phase, the coordinator notifies 𝑁1

and 𝑁2 to validate. To be specific, the coordinator first enters the
locking round and requires 𝑁1 and 𝑁2 to lock all the data items in
the write set, i.e., 𝑥 for 𝑁1 and 𝑦 for 𝑁2. After acquiring the locks,
𝑁1 and𝑁2 flush the logs to disk locally. Afterward, the coordinator
enters the validation round and sends the validation messages to
𝑁1 and𝑁2 to checkwhether the data items in the read set, i.e., 𝑥 for
𝑁1 and 𝑦 for 𝑁2, have been modified. Because 𝑥 and 𝑦 have never
been modified, the coordinator passes the validation. In the com-
mit phase, the coordinator flushes the commit log and notifies 𝑁1

and 𝑁2 to do local commit. 𝑁1 and 𝑁2 write commit logs to disk,
release the lock on 𝑥 and 𝑦, and apply the changes to the database.

3 OVERVIEW
HDCC works in a shared-nothing system architecture. Each node
is equipped with an in-memory database instance, and logically
disaggregated into two layers: the storage layer and the compute
layer. An overview of HDCC is given in Figure 3.

Storage layer. The storage layer in our design uses a hash parti-
tioning method [18] to horizontally split data into partitions. Each
partition is assigned exclusively to a single node within the clus-
ter, and the storage layer of each node is accountable for manag-
ing access to its assigned partitions and writing logs on disk. To
support concurrency control, we maintain additional metadata in
memory, including lock tables, and statistics on the conflict of data
items. This information aids in determining the most suitable con-
currency control algorithms for a given transaction.

Compute layer. The compute layer within each node is respon-
sible for selecting either OCC or Calvin to execute transactions,
making its optimal choice adaptable to various workload scenar-
ios. For this purpose, it employs four key components:
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Figure 3: An overview of HDCC

(1) Analyzer.The Analyzer is responsible for receiving and an-
alyzing transactions from clients or users. It analyzes the charac-
teristics of these transactions and assigns the most appropriate al-
gorithms. In our design, this assignment is rule-based, tailoring its
optimal choice to different workloads. Transactions scheduled by
OCC, referred to as OCC transactions, are directly routed by the
Analyzer to Workers that implement OCC for concurrency con-
trol. Similarly, transactions scheduled by Calvin, known as Calvin
transactions, are directly forwarded by the Analyzer to Sequencer
which employs Calvin for concurrency control. For brevity, a trans-
action𝑇 is represented as𝑇𝑐 (resp.𝑇𝑜 ) if𝑇 is scheduled by Calvin
(resp. OCC). Note, each transaction has a unique 𝐼𝐷 , which is a
pair ⟨𝐵𝐼𝐷,𝑇 𝐼𝐷⟩.𝑇 𝐼𝐷 is a monotonically increasing transaction ID
assigned by the Analyzer. 𝐵𝐼𝐷 signifies the batch ID of the trans-
action. For Calvin transactions, 𝐵𝐼𝐷 will be assigned by the Se-
quencer later. For OCC transactions, 𝐵𝐼𝐷 is set to 𝑁𝑈𝐿𝐿. Given
any two𝑇𝑖 .𝐼𝐷 and𝑇𝑗 .𝐼𝐷 , we consider𝑇𝑖 .𝐼𝐷 > 𝑇𝑗 .𝐼𝐷 , if𝑇𝑖 .𝐼𝐷.𝑇 𝐼𝐷 >
𝑇𝑗 .𝐼𝐷.𝑇 𝐼𝐷 .

(2) Sequencer.TheSequencer is responsible for gatheringCalvin
transactions sent by Analyzers, determining their orders, batching
them, and assigning 𝐵𝐼𝐷 into their IDs. Then, it writes the logs of
these transactions following the same logic as described in Section
2.1. Subsequently, the Sequencer decomposes each transaction in
the batch into sub-transactions (if any), and distributes them to the
corresponding local or remote schedulers.

(3) Scheduler. The Scheduler is responsible for coordinating
the execution of transactions, described in Section 2.1. After ac-
quiring all necessary locks for a sub-transaction 𝑇 , 𝑇 is assigned
to a single worker for execution. Notably, if there are multiple sub-
transactions similar to 𝑇 that have acquired their locks, they can
be executed in parallel. Because conflict transactions in each Sched-
uler are executed one by one, and they follow the same ascending
order of transaction IDs across Schedulers, the schedule of Calvin
transactions is serializable.

Figure 4: A running example of incorrect local schedule

(4) Multiple workers. A Worker can act as an executor that
executes sub-transactions or a coordinator that coordinates the ex-
ecution of distributed OCC transactions.When aWorker acts as an
executor and receives a Calvin sub-transaction from a Scheduler,
it follows the same logic as described in Section 2.1 to perform lo-
cal read and write operations, commits the sub-transaction, and
subsequently releases the locks. If the Worker receives an OCC
transaction from the Analyzer, it acts as a coordinator and deter-
mines whether the transaction is distributed. If the transaction
is, it decomposes the transaction into multiple sub-transactions,
which are then disseminated to both local and remote Workers
for processing; otherwise, it processes the transaction locally. If
the Worker receives an OCC sub-transaction from a coordinator,
it adopts the role of a participant in distributed transaction process-
ing, as described in Section 2.2. In our design, OCC does not flush
dirty pages to disk after commit but relies on checkpoints to per-
sist data as Calvin does. Note, we do not abort Calvin transactions.
Instead, we abort OCC transactions as long as we cannot find an
equivalent serializable schedule by committing them.

4 HYBRID CONCURRENCY CONTROL
To start, we provide some necessary symbols used throughout the
remainder of the paper. Given a transaction 𝑇𝑜

𝑖 (resp. 𝑇𝑐
𝑖 ), let 𝑇

𝑜
𝑖−𝑘

(resp. 𝑇𝑐
𝑖−𝑘 ) be the sub-transaction located in node 𝑁𝑘 . Note, in

the real execution, for any OCC transaction𝑇𝑜
𝑖 , operations on data

items located in 𝑁𝑘 could be progressively sent to 𝑁𝑘 as the sub-
transaction 𝑇𝑜

𝑖−𝑘 . Given two transactions 𝑇𝑖 ,𝑇𝑗 , if 𝑇𝑖 first, and 𝑇𝑗
next operate the same data item 𝑥 , and one of the two operations
is write, we say 𝑇𝑗 depends on 𝑇𝑖 . This dependency is denoted as
𝑇𝑖 → 𝑇𝑗 . For illustration purposes, when the context is clear, symbols
𝑇𝑐
𝑖−𝑘 and 𝑇𝑐

𝑖 (resp. 𝑇𝑜
𝑖−𝑘 and 𝑇𝑜

𝑖 ) are used interchangeably.

4.1 The lock-sharing mechanism
In a single node, there are multiple workers concurrently receiving
and executing different sub-transactions. Due to the different exe-
cution mechanisms of Calvin and OCC, the conflict cannot directly
be detected by each other, leading to inconsistent conflict orders
between two sub-transactions.

Example 1. In Figure 4. There are three sub-transactions in 𝑁1.
𝑇𝑐
1−1: 𝑊1 (𝑥, 1), 𝑇𝑐

2−1: 𝑊2 (𝑥, 2), and 𝑇𝑜
3 : 𝑅3 (𝑥)𝑊3 (𝑥). First, 𝑇𝑐

1−1
writes 1 to 𝑥 , followed by a read (𝑥 = 1) of𝑇𝑜

3−1. Second,𝑇
𝑜
3−1 writes

𝑥 (𝑥 = 3) and adds 𝑥 to its write set. Third, it enters the prepare
phase where 𝑇𝑜

3−1 acquires a lock on 𝑥 , passes the validation since
𝑥 has never been modified since its first read, and decides to com-
mit. Fourth, sub-transaction 𝑇𝑐

2−1 updates 𝑥 to 2, and commits. This
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Figure 5: A running example of lock-sharing mechanism

could happen because𝑇𝑐
2−1 cannot detect the conflict on 𝑥 with𝑇𝑜

3−1.
Finally, 𝑇𝑜

3−1 commits and applies its writes to the database. Con-
sequently, the above schedule is not serializable because of the lost
update of 𝑇𝑐

2−1. □

To address this issue, we introduce the lock-sharing mechanism
to unify the metadata between Calvin and OCC so that conflicts
among Calvin and OCC transactions can be detected. Specifically,
we introduce two elements 𝑙𝑜𝑐𝑘 and𝑤𝑖𝑑 for each data item in the
lock table, operated by both Calvin and OCC. Element 𝑙𝑜𝑐𝑘 can
be either an exclusive lock (EX) or a shared lock (SH). In HDCC,
if a Calvin sub-transaction cannot acquire the lock on 𝑥 , it waits
until the lock is released. For an OCC sub-transaction, it requests
EX locks in the prepare phase. If any of the locks is held by other
sub-transactions, it aborts the whole transaction. And it releases
𝑙𝑜𝑐𝑘 only after commits. 𝑥 .𝑤𝑖𝑑 maintains the 𝐼𝐷.𝑇 𝐼𝐷 of the most
recent sub-transaction that modifies 𝑥 . A Calvin sub-transaction
updates 𝑥 .𝑤𝑖𝑑 to its transaction 𝐼𝐷.𝑇 𝐼𝐷 after it writes 𝑥 . An OCC
sub-transaction updates 𝑥 .𝑤𝑖𝑑 during its commit phase. In the ex-
ecution phase, it stores 𝑥 .𝑤𝑖𝑑 into its read set when it reads 𝑥 . In
the prepare phase, it checks whether 𝑥 .𝑤𝑖𝑑 has been modified by
any other sub-transactions after its first read operation on 𝑥 . If
𝑥 .𝑤𝑖𝑑 has been modified, it aborts; otherwise, it checks whether
the lock on 𝑥 is held by any Calvin sub-transaction. If it is, the
sub-transaction aborts the whole transaction. For detailed imple-
mentation information, please refer to our technical report [10].

Example 2. Figure 5 illustrates how the lock-sharing mechanism
addresses the issue raised in Example 1. 𝑇𝑐

1−1 first writes 𝑥 and up-
dates 𝑥 .𝑤𝑖𝑑 to 1, which is 𝑇𝑐

1−1 .𝐼𝐷.𝑇 𝐼𝐷 (step 1⃝). Then, 𝑇𝑜
3−1 reads

𝑥 with the value written by 𝑇𝑐
1−1 (step 2⃝), writes the new value 3

of 𝑥 in its write set. Next, 𝑇𝑐
1−1 commits and releases the lock on 𝑥 .

Subsequently,𝑇𝑜
3−1 enters the prepare phase, in which it acquires the

lock on 𝑥 , and passes the validation (step 3⃝) because 𝑥 has not been
modified by any other transaction since its first read on 𝑥 . During the
validation,𝑇𝑐

2−1 requests the lock on 𝑥 , and waits for𝑇𝑜
3−1 to release

the lock (step 4⃝). After 𝑇𝑜
3−1 commits, 𝑇𝑐

2−1 acquires the lock on 𝑥
and writes 2 to 𝑥 . The above schedule is serializable and the equiva-
lent serializable order is 𝑇𝑐

1−1 → 𝑇𝑜
3−1 → 𝑇𝑐

2−1. □

Since a separate schedule of transactions by either Calvin or
OCC satisfies conflict serializability, we now prove that a schedule
of any two concurrent sub-transactions on the same node using
HDCC, with one Calvin transaction, and the other OCC transac-
tion, also ensures conflict serializability. Let C(𝑇𝑖 ) be the point in
time at which transaction 𝑇𝑖 commits. A transaction 𝑇𝑖 is said to
commit before another transaction 𝑇𝑗 if C(𝑇𝑖 ) < C(𝑇𝑗 ). In HDCC,

Figure 6: A running example of incorrect global schedule

if 𝑇𝑖−𝑘 is a Calvin sub-transaction, then the commit time C(𝑇𝑖−𝑘 )
of 𝑇𝑖−𝑘 is set to the point in time at which 𝑇𝑖−𝑘 starts to release
its locks. If 𝑇𝑖−𝑘 is an OCC sub-transaction, C(𝑇𝑖−𝑘 ) is set to the
point in time at which 𝑇𝑖−𝑘 enters the commit phase. Thus, each
sub-transaction has one and only one commit time.

TheoRem 1. In HDCC, given two concurrent sub-transactions𝑇𝑐
𝑖−𝑘

and 𝑇𝑜
𝑗−𝑘 executed on the same node, if 𝑇𝑐

𝑖−𝑘 → 𝑇𝑜
𝑗−𝑘 (resp. 𝑇𝑜

𝑗−𝑘 →
𝑇𝑐
𝑖−𝑘 ), C(𝑇

𝑐
𝑖−𝑘 ) < C(𝑇𝑜

𝑗−𝑘 ) (resp. C(𝑇
𝑜
𝑗−𝑘 ) < C(𝑇𝑐

𝑖−𝑘 )). □

TheoRem 2. In HDCC, given two concurrent sub-transactions𝑇𝑐
𝑖−𝑘

and 𝑇𝑜
𝑗−𝑘 executed on the same node, the schedule of these two sub-

transactions satisfies conflict serializability. □

Proof sketch. To prove Theorem 1, we list all the six cases
where dependencies exist between 𝑇𝑐

𝑖−𝑘 and 𝑇𝑜
𝑗−𝑘 in technical re-

port [10]. In each case, we demonstrate that the commitment order
aligns with the dependency order of transactions. Given that each
sub-transaction only has a singular commit time, Theorem 2 holds
true. The formal proof can be found in [10]. □

4.2 The global validation mechanism
Given a set of transactions, the lock-sharing mechanism in HDCC
guarantees a serializable schedule of their sub-transactions on each
node. However, as shown in Example 3, it cannot ensure that the
serializable order of transactions is consistent across nodes.

Example 3. In Figure 6, 𝑇𝑐
1 updates 𝑥 on 𝑁1, and 𝑧 on 𝑁3; 𝑇𝑜

3
updates 𝑥 on 𝑁1 and 𝑦 on 𝑁2;𝑇𝑜

4 reads 𝑦 on 𝑁2 and 𝑧 on 𝑁3. On 𝑁1,
𝑇𝑐
1−1 updates 𝑥 before 𝑇𝑜

3−1 does, forming the dependency 𝑇1 → 𝑇3.
On 𝑁2,𝑇𝑜

3−2 updates 𝑦 before𝑇𝑜
4−2 reads it, forming the dependency

𝑇3 → 𝑇4. Additionally, on 𝑁3, 𝑇𝑜
4−3 reads 𝑧 before 𝑇𝑐

1−3 updates it,
forming the dependency 𝑇4 → 𝑇1. Consequently, the dependencies
among𝑇1,𝑇3, and𝑇4 form a cycle:𝑇1 → 𝑇3 → 𝑇4 → 𝑇1, indicating
that the schedule of these transactions is not conflict-serializable. □

To prevent forming dependency cycles betweenCalvin andOCC
transactions, we propose the global validation mechanism. This
mechanism attempts to obtain𝑇𝑜

𝑗 .𝐷𝑆
𝑐 , defined in Definition 1, for
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each OCC transaction 𝑇𝑜
𝑗 , and do the global validation over trans-

actions of 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 upon the commit of 𝑇𝑜
𝑗 . If there exists a trans-

action 𝑇𝑐
𝑖 ∈ 𝑇𝑜

𝑗 .𝐷𝑆
𝑐 that has not yet committed, meaning that the

committed order between 𝑇𝑐
𝑖 and 𝑇𝑜

𝑗 is not consistent with the de-
pendency order between them, according to Theorem 1, 𝑇𝑜

𝑗 needs
to abort; otherwise, 𝑇𝑜

𝑗 is able to commit.

Definition 1 (Dependent Set). Given an OCC transaction 𝑇𝑜
𝑗 ,

the dependent set of 𝑇𝑜
𝑗 , denoted as 𝑇𝑜

𝑗 .𝐷𝑆 , is defined as the set of
transactions that 𝑇𝑜

𝑗 depends on. Among them, the dependent OCC
transactions set 𝑇𝑜

𝑗 .𝐷𝑆
𝑜 is defined as {𝑇𝑜

𝑖 |𝑇
𝑜
𝑖 ∈ 𝑇𝑜

𝑗 .𝐷𝑆}, and the
dependent Calvin transactions set 𝑇𝑜

𝑗 .𝐷𝑆
𝑐 is defined as {𝑇𝑐

𝑖 |𝑇
𝑐
𝑖 ∈

𝑇𝑜
𝑗 .𝐷𝑆}. □

Definition 2 (DiRect Dependent Set). The direct dependent
set of𝑇𝑜

𝑗 , denoted as𝑇
𝑜
𝑗 .𝐷𝐷𝑆 , is defined as the transactions of𝑇

𝑜
𝑗 .𝐷𝑆 ,

each 𝑇 of which takes conflicting access to the same data items with
𝑇𝑜
𝑗 , and 𝑇 → 𝑇𝑜

𝑗 . Among them, the dependent OCC transactions
set 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑜 is defined as {𝑇𝑜

𝑖 |𝑇
𝑜
𝑖 ∈ 𝑇𝑜

𝑗 .𝐷𝐷𝑆}, and the dependent
Calvin transactions set 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 is defined as {𝑇𝑐

𝑖 |𝑇
𝑐
𝑖 ∈ 𝑇𝑜

𝑗 .𝐷𝐷𝑆}.
□

Definition 3 (IndiRect Dependent Set). The indirect depen-
dent set of 𝑇𝑜

𝑗 , denoted as 𝑇𝑜
𝑗 .𝐼𝐷𝑆 , is defined as the difference be-

tween 𝑇𝑜
𝑗 .𝐷𝑆 and 𝑇𝑜

𝑗 .𝐷𝐷𝑆 , i.e., 𝑇
𝑜
𝑗 .𝐷𝑆 −𝑇𝑜

𝑗 .𝐷𝐷𝑆 . Among them, the
OCC transaction set 𝑇𝑜

𝑗 .𝐼𝐷𝑆
𝑜 is {𝑇𝑜

𝑖 |𝑇
𝑜
𝑖 ∈ 𝑇𝑜

𝑗 .𝐼𝐷𝑆}, and the Calvin
transaction set𝑇𝑜

𝑗 .𝐼𝐷𝑆
𝑐 is {𝑇𝑐

𝑖 |𝑇
𝑐
𝑖 ∈ 𝑇𝑜

𝑗 .𝐼𝐷𝑆}. According to transitive
closure, we can have: 𝑇𝑜

𝑗 .𝐼𝐷𝑆 =
∪
𝑇𝑖 ∈𝑇𝑜

𝑗 .𝐷𝐷𝑆 {𝑇𝑖 .𝐷𝑆}. □

According to Definition 2 and Definition 3,𝑇𝑜
𝑗 .𝐷𝑆

𝑐 is the union
of set𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 and set𝑇𝑜

𝑗 .𝐼𝐷𝑆
𝑐 . Acquiring𝑇𝑜

𝑗 .𝐼𝐷𝑆
𝑐 requires com-

puting the transitive closure of the indirect dependent set of each
transaction in𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 . When the set𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 is relatively large,

this computation becomes prohibitively expensive.

Definition 4 (Maximal Calvin TRansaction ID). Given a tra-
nsaction set 𝑆 , the maximal Calvin transaction ID of 𝑆 , denoted as
𝑆.𝑀𝑎𝑥𝐶𝑖𝑑 , is defined as the maximal ID of Calvin transactions in 𝑆 ,
i.e., 𝑆.𝑀𝑎𝑥𝐶𝑖𝑑 = max{𝑇𝑐

𝑖 .𝐼𝐷 |𝑇𝑐
𝑖 ∈ 𝑆}. □

Definition 5 (MaximalDependentTRansaction ID). Thema-
ximal dependent transaction ID of an OCC transaction 𝑇𝑜

𝑗 , denoted
as 𝑇𝑜

𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 , is defined as the maximal Calvin transaction ID of
𝑇𝑜
𝑗 .𝐷𝑆

𝑐 , which is 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 . □

Definition 6 (ExtendedDependent Set). The extended depen-
dent set of 𝑇𝑜

𝑗 , denoted as 𝑇
𝑜
𝑗 .𝐸𝐷𝑆

𝑐 , is defined as:
{𝑇𝑐

𝑖 |𝑇
𝑐
𝑖 .𝐼𝐷 ≤ 𝑇𝑜

𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑}. □

As previously mentioned, computing 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 for 𝑇𝑜
𝑗 is expen-

sive. Instead, we attempt to compute a superset of 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 , which
is relatively lightweight. Upon the commit of𝑇𝑜

𝑗 , if all transactions
in𝑇𝑜

𝑗 .𝐷𝑆
𝑐 have committed, then𝑇𝑜

𝑗 is ready to commit; otherwise,
𝑇𝑜
𝑗 aborts. To this end, we propose the concept of the maximal

dependent transaction ID 𝑇𝑜
𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 for 𝑇𝑜

𝑗 , as defined in Defi-
nition 5, and use 𝑇𝑜

𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 to define the superset 𝑇𝑜
𝑗 .𝐸𝐷𝑆

𝑐 of
𝑇𝑜
𝑗 .𝐷𝑆

𝑐 in Definition 6. Recall that, given two Calvin transactions

𝑇𝑐
𝑘
and𝑇𝑐

𝑙
with𝑇𝑐

𝑘
.𝐼𝐷 < 𝑇𝑐

𝑙
.𝐼𝐷 ,𝑇𝑐

𝑘
always acquires the locks on the

co-accessed data items earlier than 𝑇𝑐
𝑙
, and 𝑇𝑐

𝑙
commits after 𝑇𝑐

𝑘
.

Since 𝑇𝑜
𝑗 .𝐸𝐷𝑆

𝑐 includes the Calvin transaction 𝑇 with the largest
ID in 𝑇𝑜

𝑗 .𝐷𝑆
𝑐 , and all other Calvin transactions with IDs less than

or equal to 𝑇 .𝐼𝐷 , obviously, 𝑇𝑜
𝑗 .𝐸𝐷𝑆

𝑐 is a superset of 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 .

TheoRem 3. ∀𝑇𝑜
𝑗 , 𝑇

𝑜
𝑗 .𝐸𝐷𝑆

𝑐 is a superset of 𝑇𝑜
𝑗 .𝐷𝑆

𝑐 . □

Formula 1 shows how to compute 𝑇𝑜
𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 . We omit the

discussion of Equation 1–2, which are self-explanatory. We now
discuss how to transform Equation 3 to 4. Recall in Calvin, for any
transaction 𝑇𝑐

𝑚 , transactions in 𝑇𝑐
𝑚 .𝐷𝑆𝑐 must be scheduled to ex-

ecute before 𝑇𝑐
𝑚 . Thus, we have 𝑇𝑐

𝑚 .𝐷𝑆𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 < 𝑇𝑐
𝑚 .𝐼𝐷 . Since

𝑇𝑐
𝑚 ∈ 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 , we have 𝑇𝑐

𝑚 .𝐼𝐷 < 𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 . Therefore,
{𝑇𝑐

𝑚 .𝐷𝑆𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 | 𝑇𝑐
𝑚 ∈ 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 } in Equation 3 can be omitted.

FoRmula 1 (Eivalence tRansfoRmation foRmula).
𝑇𝑜
𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 = 𝑇𝑜

𝑗 .𝐷𝑆
𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 (1)

=max(𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑, {𝑇𝑚 .𝐷𝑆𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑚 ∈ 𝑇𝑜
𝑗 .𝐷𝐷𝑆} (2)

=max(𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑, {𝑇𝑐
𝑚 .𝐷𝑆𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑐

𝑚 ∈ 𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑐 },
{𝑇𝑜

𝑛 .𝐷𝑆
𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑜

𝑛 ∈ 𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑜 }) (3)
=max(𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑, {𝑇𝑜

𝑛 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑜
𝑛 ∈ 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑜 }) (4)

For the implementation, we add two elements 𝑐𝑖𝑑 and 𝑐𝑖𝑑′ asso-
ciated with each data item 𝑥 in the lock table. 𝑥 .𝑐𝑖𝑑 and 𝑥 .𝑐𝑖𝑑′ are
used to compute 𝑇𝑜

𝑗 .𝐷𝐷𝑆
𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 and max({𝑇𝑜

𝑛 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑜
𝑛 ∈

𝑇𝑜
𝑗 .𝐷𝐷𝑆

𝑜 }) in Equation 4 of Formula 1, respectively. Upon any
read/write of a Calvin transaction𝑇𝑐

𝑖 ,𝑇
𝑐
𝑖 would update 𝑥 .𝑐𝑖𝑑 prop-

erly if 𝑇𝑐
𝑖 .𝐼𝐷 > 𝑥 .𝑐𝑖𝑑 . Thus, 𝑥 .𝑐𝑖𝑑 always maintains the current

maximal Calvin transaction ID on 𝑥 . In the locking round of the
prepare phase in any OCC transaction 𝑇𝑜

𝑘
, 𝑇𝑜

𝑘
collects the 𝑐𝑖𝑑 and

𝑐𝑖𝑑′ of each data item that it has ever accessed, and calculates its
𝑔𝑀𝑎𝑥𝐶𝑖𝑑 by computing the maximum value of these 𝑐𝑖𝑑 and 𝑐𝑖𝑑′.
Upon the commit of 𝑇𝑜

𝑘
, for each data item 𝑥 that it has ever ac-

cessed, 𝑇𝑜
𝑘

sets 𝑥 .𝑐𝑖𝑑′ to max{𝑥 .𝑐𝑖𝑑′,𝑇𝑜
𝑘
.𝑔𝑀𝑎𝑥𝐶𝑖𝑑}. In the valida-

tion round of the prepare phase, 𝑇𝑜
𝑗 conducts global validation,

which checks whether all the Calvin sub-transactions with IDs
smaller or equal to𝑇𝑜

𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 have been committed at each node
accessed by𝑇𝑜

𝑗 . If successful,𝑇
𝑜
𝑗 commits; otherwise, it aborts. Due

to space limitations, we leave the discussion of the implementa-
tions in our technical report [10].

Example 4. Continuing Example 3, Figure 7 shows how the global
validation mechanism prevents the dependency cycles. In step 1⃝,
when 𝑇𝑐

1−1 writes 𝑥 , it sets 𝑥 .𝑐𝑖𝑑 to 𝑇𝑐
1 .𝐼𝐷 , which is ⟨1, 1⟩. In step

2⃝, 𝑇𝑜
3 conducts the prepare phase, in which it collects 𝑥 .𝑐𝑖𝑑 , 𝑥 .𝑐𝑖𝑑′,

𝑦.𝑐𝑖𝑑 , and 𝑦.𝑐𝑖𝑑′. Next, 𝑇𝑜
3 computes 𝑇𝑜

3 .𝐷𝐷𝑆
𝑐 .𝑀𝑎𝑥𝐶𝑖𝑑 , which is

⟨1, 1⟩, and𝑚𝑎𝑥{𝑇𝑜
𝑛 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 |𝑇𝑜

𝑛 ∈ 𝑇𝑜
3 .𝐷𝐷𝑆

𝑜 }, which is ⟨0, 0⟩. Ac-
cording to Equation 4, 𝑇𝑜

3 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 is set to ⟨1, 1⟩. In step 3⃝, upon
𝑇𝑜
3 commits, it updates 𝑥 .𝑐𝑖𝑑′ and 𝑦.𝑐𝑖𝑑′ to 𝑇𝑜

3 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 , which is
⟨1, 1⟩. In step 4⃝, following the same procedure as 𝑇𝑜

3 , 𝑇
𝑜
4 calculates

its 𝑔𝑀𝑎𝑥𝐶𝑖𝑑 , which is ⟨1, 1⟩. Then, 𝑇𝑜
4 detects that transaction 𝑇𝑐

1
with its 𝐼𝐷 equal to𝑇𝑜

4 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 on 𝑁3 has not committed, and then
𝑇𝑜
4 aborts, breaking the dependency cycle 𝑇1 → 𝑇3 → 𝑇4 → 𝑇1. □

Now we prove that the schedule of transactions using HDCC is
conflict serializable in Theorem 4, and Theorem 5.
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Figure 7: A running example of global validation

TheoRem 4. In HDCC, given any two committed transactions𝑇𝑐
𝑖

and 𝑇𝑜
𝑗 , on each node 𝑁𝑘 where there exists a dependency between

𝑇𝑐
𝑖−𝑘 and 𝑇𝑜

𝑗−𝑘 , 𝑇
𝑐
𝑖−𝑘 and 𝑇𝑜

𝑗−𝑘 must have a consistent order of either
C(𝑇𝑐

𝑖−𝑘 ) < C(𝑇𝑜
𝑗−𝑘 ) or C(𝑇

𝑜
𝑗−𝑘 ) < C(𝑇𝑐

𝑖−𝑘 ). □

TheoRem 5. In HDCC, the schedule of any two concurrent trans-
actions 𝑇𝑐

𝑖 and 𝑇𝑜
𝑗 is conflict serializable. □

Proof sketch. we prove both theorems by contradiction. If the
conclusion of Theorem 4 does not hold, according to Theorem 1,
there would exist two distinct dependencies between 𝑇𝑐

𝑖 and 𝑇𝑜
𝑗 ,

which conflicts with the global validation mechanism. If the con-
clusion ofTheorem 5 does not hold, the sub-transactions of𝑇𝑐

𝑖 and
𝑇𝑜
𝑗 form a cycle, contradicting Theorem 4. The formal proof can be

found in [10]. □

4.3 Optimizations
To further enhance HDCC’s performance, we propose a rule-based
assignment mechanism along with two additional optimizations.

4.3.1 The rule-based assignment. InHDCC, the scheduling of trans-
actions by either Calvin or OCC depends on their specific charac-
teristics. Since Calvin assumes that a transaction must predeclare
its read/write set, the first rule dictates that any transaction𝑇 with-
out a predeclared read/write set is scheduled using OCC.

Rule 1. A transaction without pre-declaring its read/write set is
scheduled by OCC. □

As discussed, Calvin excels at handling distributed transactions,
while OCC struggles. To address this, we propose Rule 2.

Rule 2. A distributed transaction that has declared its read/write
set is scheduled by Calvin. □

Calvin excels in handling high-contention workloads, whereas
OCC is more effective in low- to medium-contention scenarios. In

HDCC, the contention level of a workload is measured by count-
ing the number of conflicts in each partition P𝑥 . A conflict occurs
when any transaction in P𝑥 interferes with others, increasing its
conflict count. P𝑥 is marked as hot if its conflict count exceeds a
predefined threshold within a specified period. Based on this def-
inition of partition ”temperature,” we propose two heuristic rules,
Rule 3 and Rule 4, to assign concurrency control algorithms.

Rule 3. A transaction with a declared read/write set is scheduled
by Calvin if it accesses hot partition(s). □

Rule 4. A transaction that does not satisfy the requirements of
Rule 1–3 is scheduled by OCC. □

4.3.2 Re-schedule of aborted OCC transactions. An OCC transac-
tion typically aborts during its validation phase. At this point, we
can collect its complete read/write set, which meets the require-
ments for Calvin. This allows the analyzer to reassign the schedul-
ing algorithm as described in Section 4.3.1. Note that after restart-
ing an aborted OCC transaction and rescheduling it with Calvin,
the read/write set may change due to concurrent transactions, po-
tentially causing another abort. However, as pointed out in [43],
such issues aremore commonwhen transactions rely on secondary
indexes for read/write set access. Since secondary indexes are rarely
used in frequently updated fields, continuous transaction aborts
are uncommon.

4.3.3 Immediate read and deferred commit. Consider anOCC trans-
action𝑇𝑜

𝑗 reads data item 𝑥 written by a Calvin transaction𝑇𝑐
𝑖 .This

case can lead to two schedules. The first schedule is that 𝑇𝑐
𝑖 com-

mits before𝑇𝑜
𝑗 . In this case,𝑇𝑜

𝑗 can commit as discussed in Section
4.1. In the second schedule, 𝑇𝑜

𝑗 enters the prepare phase before 𝑇𝑐
𝑖

commits. In the original design, 𝑇𝑜
𝑗 would detect that 𝑥 is locked

by 𝑇𝑐
𝑖 and aborts. However, in HDCC, Calvin transactions do not

abort due to conflicts. Thus, we defer the decision instead of imme-
diate abort to reduce false positive aborts. In the prepare phase,𝑇𝑜

𝑗
is deferred if all these conditions are met: (1) at least one data item
𝑥 in the read set is locked by a𝑇𝑐

𝑖 ; (2) 𝑥 .𝑤𝑖𝑑 remains unmodified af-
ter𝑇𝑜

𝑗 ’s first read of 𝑥 ; and (3) 𝑥 .𝑤𝑖𝑑 equals to𝑇𝑐
𝑖 .𝐼𝐷 . If deferred,𝑇𝑜

𝑗
records the ID of𝑇𝑐

𝑖 and waits for𝑇𝑐
𝑖 commits. If𝑇𝑐

𝑖 aborts,𝑇𝑜
𝑗 cas-

cading aborts; otherwise,𝑇𝑜
𝑗 commits. Note, although HDCC does

not introduce additional aborts for Calvin transactions, according
to [43], a Calvin transaction may abort in two cases: (1) If there is a
mismatch between the actual and planned read/write sets, and (2)
If the transaction logic explicitly requires an abort after reading.

5 FAILURE RECOVERY
In this section, we first give the general idea, then present the two-
log-interleaving mechanism, and finally discuss its correctness.

5.1 General idea
Upon any system failure, we need to perform redo and undo oper-
ations to ensure data consistency. The redo operation follows the
serializable orders of committed transactions to recover the writes
of them. The undo operation rolls back the modification of trans-
actions that had not yet committed before the failure.
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Figure 8: Two-log-interleaving mechanism

In HDCC, no undo operations are needed because only data
from committed transactions is flushed to disk; uncommitted trans-
actions’ data is never flushed. In our design, HDCC periodically
creates checkpoints. During each checkpointing, for Calvin trans-
actions, we select a transaction 𝑇𝑐

𝑐𝑘𝑝𝐼𝐷
and flush the data items

written by transactions with IDs less than or equal to 𝑇𝑐
𝑐𝑘𝑝𝐼𝐷

.𝐼𝐷 .
Note that Calvin does not write dirty pages, but flushes data items
to disk. We do not flush writes from transactions with IDs greater
than 𝑇𝑐

𝑐𝑘𝑝𝐼𝐷
.𝐼𝐷 . Instead, we maintain these writes as copies. De-

tails of checkpointing Calvin transactions are discussed in Section
2.1. When all the Calvin transactions with IDs less than or equal
to𝑇𝑐

𝑐𝑘𝑝𝐼𝐷
.𝐼𝐷 commit, the database reaches a consistency point. For

OCC transactions, those committed before this point are included
in the checkpoint, while those committed afterward must store
their data in separate copies. The last committed OCC transaction
included in the checkpoint is recorded as 𝑇𝑜

𝑙𝑎𝑠𝑡
for failure recov-

ery. Note that during checkpointing, an OCC transaction with its
𝑔𝑀𝑎𝑥𝐶𝑖𝑑 smaller than𝑇𝑐

𝑐𝑘𝑝𝐼𝐷
.𝐼𝐷 can execute normally, while one

with its 𝑔𝑀𝑎𝑥𝐶𝑖𝑑 larger than𝑇𝑐
𝑐𝑘𝑝𝐼𝐷

.𝐼𝐷 must wait to commit until
the database reaches the consistency point. This wait is necessary
because these OCC transactions rely on a Calvin transaction not
included in the checkpoint. Since the commit time of these OCC
transactions closely aligns with the consistency point, this delay
is not expected to impact overall throughput, as supported by the
experiment in Section 7.2.3.

In HDCC, we need to perform redo operations. Unlike tradi-
tional databases that have only a single category of logs, HDCC
maintains both OCC logs and Calvin logs. Because OCC logs and
Calvin logs are separate, the commit order between OCC transac-
tions and Calvin transactions is lost.Therefore, to perform redo op-
erations, we first need to recover the commit order between OCC
transactions and Calvin transactions, and then replay the logs ac-
cording to the ascending commit order of transactions.

5.2 Two-log-interleaving mechanism
HDCC has two types of logs, Calvin logs and OCC logs, as shown
in Figure 8. Calvin logs record transactions’ logical logs, including
their IDs and procedures. For example, transaction 𝑇𝑐

1 records its
procedure like “UPDATE tab SET value = 1 WHERE key = x”. OCC
logs contain redo logs and commit logs for OCC transactions. Redo

logs record the new value of modified data items from committed
OCC transactions, while commit logs confirm that OCC transac-
tions have successfully committed. We maintain 𝑇𝑜 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 in
the commit log of𝑇𝑜 . Since𝑇𝑜 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 represents the maximum
ID of dependent Calvin transactions that commit before 𝑇𝑜 , by
maintaining𝑔𝑀𝑎𝑥𝐶𝑖𝑑 , we capture the commit order between OCC
and Calvin transactions. As shown in Figure 8,𝑇𝑜

3 records its redo
log as ⟨𝑇𝑜

3 : 𝑥 = 3⟩, and its commit log as ⟨𝑇𝑜
3 : 𝐶𝑜𝑚𝑚𝑖𝑡, 𝑔𝑀𝑎𝑥𝐶𝑖𝑑 =

𝑇𝑐
1 ⟩, indicating that 𝑇𝑜

3 needs to be recovered after 𝑇𝑐
1 .

On any node 𝑁 , upon a system failure, after 𝑁 restarts, our
two-log-interleaving mechanism follows an interleaved manner
to replay the logs of committed transactions. (1) We sequentially
scan the OCC logs to identify the first OCC transaction 𝑇𝑜

𝑗 or-
dered after 𝑇𝑜

𝑙𝑎𝑠𝑡
that needs to be recovered. (2) We sequentially

scan Calvin logs and replay the logs of all Calvin transactions with
their IDs smaller than or equal to 𝑇𝑜

𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 , but greater than
𝑇𝑐𝑘𝑝𝐼𝐷 .𝐼𝐷 . (3) We replay the OCC logs of transaction 𝑇𝑜

𝑗 , and find
the next OCC transaction𝑇𝑜

𝑗+1 in OCC logs. (4)We continue to scan
Calvin logs and replay each Calvin transaction 𝑇𝑐

𝑖 where 𝑇𝑐
𝑖 .𝐼𝐷

falls within the range 𝑇𝑜
𝑗 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 < 𝑇𝑐

𝑖 .𝐼𝐷 ≤ 𝑇𝑜
𝑗+1 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 . (5)

We repeat step 3 to 4 until all OCC transactions involved in the
OCC logs have been recovered. (6) We restore the other Calvin
transactions by replaying the rest of Calvin logs.

Example 5. As depicted in Figure 8, the solid red lines indicate the
recovery sequence of logs in HDCC upon a failure. Due to a check-
point created beforehand, HDCC can recover from the two transac-
tions 𝑇𝑐

𝑐𝑘𝑝𝐼𝐷
(𝑇𝑐
1 ), and 𝑇

𝑜
𝑙𝑎𝑠𝑡

(𝑇𝑜
3 ). HDCC first sequentially scans the

OCC logs to find the first OCC transaction 𝑇𝑜
8 that needs to be re-

covered (step ¶). Since the 𝑇𝑜
8 .𝑔𝑀𝑎𝑥𝐶𝑖𝑑 is 𝑇𝑐

7 , meaning that HDCC
needs to recover 𝑇𝑐

7 before recovering 𝑇𝑜
8 . Thus, HDCC sequentially

scans Calvin logs and replays the Calvin transactions from 𝑇𝑐
5 to 𝑇𝑐

7
(step·). Subsequently, HDCC recovers the transaction𝑇𝑜

8 . Upon com-
pletion, HDCC finds all OCC transactions involved in OCC logs have
been recovered (step¸). At this stage, HDCC restores the other Calvin
transaction 𝑇𝑐

9 by replaying its Calvin log (step ¹).

Note that in the original Calvin logging mechanism, the logs
recorded by nodes are incomplete because they only capture trans-
actions received, not those executed, meaning if a node fails, it
may lack the logs for transactions it needs to execute. To address
this, HDCC modifies Calvin’s logging mechanism. Upon receiving
a sub-transaction, the node will persist that sub-transaction, ensur-
ing that each nodemaintains a complete set of sub-transactions for
execution. Furthermore, during the redo of a local Calvin trans-
action 𝑇𝑐

𝑖 , its writes may rely on the data read from other nodes
that might have changed due to subsequent transactions.Thus, the
remote nodes are required to replay transactions to retrieve the
previous data, disrupting execution on those nodes. To tackle this,
HDCC introduces Calvin partial redo logs. When a Calvin transac-
tion’s writes depend on a remote read, the outcome of that write is
logged in the Calvin redo logs. Remote nodes keep their read data
until the write is saved to handle potential failures. Note that main-
taining all the writes of Calvin transactions in the redo logs is in-
sufficient for failure recovery since Calvin requires the recovery of
all transactions within a batch to ensure determinism. Uncommit-
ted transactions cannot record their redo logs when failure occurs,
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making failure recovery impossible only using redo logs. There-
fore, these uncommitted transactions must rely on logical logs for
failure recovery. Since Calvin requires logical logs for failure re-
covery, we do not recommend maintaining a global redo log, as it
would further increase log overhead.

5.3 Correctness
We prove the correctness of our failure recovery in Theorem 6 and
provide its TLA+ specification [25] in our technical report [10].

TheoRem 6. In HDCC, the transaction schedule for failure recov-
ery is conflict equivalent to that of the original execution. □

Proof sketch. Since 𝑔𝑀𝑎𝑥𝐶𝑖𝑑 shows the order between Calvin
and OCC transactions, the recorded order of conflicting transac-
tions in the log matches their original execution order. For trans-
actions without conflicts, their log order is always equivalent to
their original order. Thus, all transaction orders in the log are con-
flict equivalent to the original execution order. Since the two-log-
interleaving mechanism replays transactions based on log order,
the theorem holds. □

6 IMPLEMENTATION
This section explains how we build HDCC. We implement HDCC
based on Deneva[18]. As a unified testbed for distributed concur-
rency control algorithms, Deneva already has algorithms includ-
ing OCC and Calvin. It horizontally splits data across nodes and
supports both hash/B+-tree indexes. We improve Deneva by: 1) En-
hancing the B+-tree indexes to avoid phantom by applying concur-
rency control to the leaf nodes, following [45, 56]. 2) Introducing
a new thread to monitor the contention level of workloads. 3) Im-
plementing Aria and Snapper into Deneva for fair comparisons.

We implement HDCC by integrating OCC and Calvin. Since the
lock-sharing mechanism unifies the metadata of OCC and Calvin,
and the global validation mechanism is designed to integrate into
the prepare phase of OCC. The implementation of HDCC follows
two steps: 1) defining unified metadata and creating an interface
for interacting with it, including locking, unlocking, changing data
versions, and validation; 2) building the specific logic for HDCC
using these interfaces, including two critical tasks: locking Calvin
transactions within the Scheduler and handling the prepare phase
of OCC. Note that we choose single-transaction granularity for
logging in HDCC, as batch granularity is primarily designed to
enhance thread scalability on a single machine, which is not the
focus of HDCC.

We employ B+-tree indexes to support range queries in HDCC.
To address phantom reads, transactions use the lock-sharing mech-
anism to lock the leaf nodes of the B+-tree during insertions or
deletions. During range queries, transactions adhere to the lock-
sharing mechanism by locking or validating the leaf nodes in the
range. If conflicts arise, the transaction may be blocked or fail val-
idation, thus avoiding phantom reads.

7 EVALUATION
In this section, we conduct a comprehensive experimental evalua-
tion of HDCC and the following research questions are addressed:
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Figure 9: Optimization analysis

(1) How effective are the optimizations, the performance under
dynamic workloads, and the scalability, including the logging over-
head and checkpoint creation overhead, in HDCC? (Section 7.2)

(2) How does HDCC perform compared with its constituent al-
gorithms (i.e., Calvin and OCC) and the state-of-the-art algorithms
(e.g., Aria and Snapper)? (Section 7.3)

7.1 Experimental setup
Test platform. We deploy a share-nothing in-memory database
system with 2 servers, each equipped with an 18-core (36-thread)
2.20 GHz Intel Xeon Gold 5220 processor and 156 GB memory.
Each server runs on 64-bit CentOS Stream 9 with Linux kernel
5.14.0 and GCC 11.5.0. They are located in the same rack and con-
nected via a 1000Mbps switch, with an average network latency of
0.12 ms. Each server installs a client and a database. The database
uses 16 worker threads, 1 sequencer thread, 1 scheduler thread, 1
analyzer thread, and other threads for inter-node communication
and transaction management. The client has four worker threads
for generating transactions and other threads for communication.
For the scalability experiments in Section 7.2.3, we use Tencent
Cloud with 12 S5.6XLARGE48 servers. Each node has 24 vCPUs
and 48 GB memory, with latencies between servers ranging from
0.1 to 0.5 ms.
Workloads.Our experiments are conductedwith two benchmarks,
namely YCSB [7] and TPC-C [44]. For YCSB, we generate about 8
million records for each database node and each transaction ex-
ecutes 10 read/write operations that access data items following
the Zipfian distribution, with a default skew factor of 0.9 and a
write-read rate of 0.2 (i.e., 20% writes and 80% reads). For TPC-
C, unless stated otherwise, we generate 32 warehouses for each
database node and only use NewOrder and Payment transactions.
The other transaction types are single-node transactions that are
not suitable for our evaluation and represent a smaller proportion.
When certain transaction types of TPC-C are excluded, the ratio
between the remaining transactions increases proportionally.
Configurations. In addition, we introduced two metrics: the dis-
tributed transaction rate, and the undeclared transaction rate. The
distributed transaction rate quantifies the proportion of transac-
tions accessing data across multiple nodes, while the undeclared
transaction rate measures the proportion of transactions that are
unaware of their read/write sets. By default, we set the distributed
transaction rate to 20% for the YCSB workload. For the TPC-C
workload, we use the default values, setting the distributed trans-
action rate to 10% for NewOrder transactions and 15% for Payment
transactions. Unless otherwise stated, we set the undeclared trans-
action rate to 0.
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Figure 11: The analysis of 𝑂3

7.2 The effeciency of HDCC
7.2.1 Effect of optimizations. We assess the effectiveness of the
proposed optimizations described in Section 4.3: Half-O1 (rule 1,
3),O1 (rules 1–4), O2 (re-scheduling of aborted OCC transactions),
and O3 (immediate read and deferred commit). By default, we set
the undeclared transaction rate to 10% for both YCSB and TPC-C.

Figure 9a shows the throughput (TPS) of various optimizations
on the YCSB. Half-O1, O1, O1+O2, and All (O1+O2+O3) improve
the throughput by 0.1×, 0.4×, 3.0×, and 3.3×, respectively, com-
pared to the basic assignment utilized in Snapper (labeled Base-
line). The enhancement from Half-O1 stems from directing trans-
actions accessing hot partitions to Calvin, suitable for high-conflict
scenarios, while assigning other transactions to OCC, suitable for
low-conflict scenarios. O1 boosts performance by assigning all dis-
tributed transactions to Calvin, leveraging its strengths. The effec-
tiveness ofO2 helpsmaintain read/write sets of aborted OCC trans-
actions, allowing HDCC to potentially assign these transactions to
Calvin for optimization. O3 allows OCC transactions to read un-
committed data from Calvin, reducing abort rates. Figure 9b shows
similar trends for TPC-C, consistent with the results from YCSB.

We evaluate the O2 optimization, which contributes the most
to the throughput improvement, to assess its overhead. Figure 10
shows results in a high-conflict scenario (skew factor = 1.3) as the
undeclared transaction rate varies from 0 to 100%. When the un-
declared transaction rate is 0%, the transaction latency is minimal,
around 50 ms at the median percentile. As the undeclared transac-
tion rate increases, throughput declines but stabilizes around 40 K
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Figure 12: Effect of dynamic workload (YCSB)

transactions per second, with median and 90th percentile latencies
rising to 2.2× compared to the 0%.We consider this additional over-
head acceptable since O2 maintains relatively high performance
even with a higher undeclared transaction rate. Notably, when the
undeclared transaction rate exceeds 60%, both the median and 90th
percentile latencies decrease. Figure 10b shows that many single-
node OCC transactions are committed in these cases, leading to
lower overall latency.

As described in Section 4.3.3, OCC transactions may face cas-
cading aborts with O3. We specifically evaluated scenarios where
Calvin transactions might abort, as shown in Figure 11. By vary-
ing the user aborted transaction rate from 0% to 20%, we found
a 37% decrease in throughput for O1+O2. In contrast, O1+O2+O3
exhibited a 29% decrease. This suggests that the throughput gains
from O3 outweigh the overhead from cascading aborts. Figure 11b
supports this, showing a lower abort rate for O1 + O2 + O3 com-
pared to O1 + O2. For the following evaluations, HDCC adopts all
optimizations.

7.2.2 Dynamic workload. To evaluate HDCC’s adaptability to on-
line dynamic workloads, we use YCSB for a 60-second experiment
under dynamic conditions. We switch the YCSB workload configu-
rations every 6 seconds, randomly selecting a write-read rate from
0.1, 0.5, and 0.9, and a skew factor from 0.3, 0.9, and 1.5. Figure 12
shows the results, where switches occur at timestamps 7, 13, and
25, etc. HDCC responds promptly and dynamically adjusts the al-
gorithm assignment based on the changing workload. After each
switch, the throughput of HDCC rapidly aligns to be better than
or comparable to OCC or Calvin.

7.2.3 Scalability, overhead of logging, and checkpoint creation. We
evaluate the scalability of HDCC using YCSB and TPC-C work-
loads by varying the number of nodes from 2 to 12. We report
results for three undeclared transaction rates, that is: 0 (HDCC-
0), 0.5 (HDCC-0.5), and 1 (HDCC-1). We only report YCSB results
due to similar findings. Figure 13a shows that HDCC-0, HDCC-0.5,
and HDCC-1 exhibit linear scalability. From 2 to 12 nodes, HDCC-
0 increased by 5.57X, HDCC-0.5 by 5.3X, and HDCC-1 by 5.72X,
demonstrating excellent scalability.

Figure 13b illustrates that the logging mechanisms we imple-
mented for durability incurred minor and comparable overhead.
The throughput reduction with logging was negligible for OCC,
Calvin, and HDCC, at 2.4%, 2.7%, and 2.7%, respectively. For fair-
ness, we do not compare throughput with logging in Section 7.3 as
Aria and Snapper have not specified logging mechanisms.

Figure 13c shows the overhead of creating a checkpoint, which
occurs between the two black dotted lines from 30 to 38 seconds.
The minimum throughput during this period is only about 10%
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Figure 13: Scalability, overhead of logging, and checkpoint
creation (YCSB)
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Figure 14: Effect of distributed transaction rate (YCSB)
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Figure 15: Effect of distributed transaction rate (TPC-C)

lower than the average, indicating that saving the checkpoint to
disk has little impact on throughput. This is due to the asynchro-
nous nature of the checkpoint process.The decrease in throughput
is primarily due to resource contention for the CPU and disk.

7.3 Compared with mainstream algorithms
7.3.1 Effect of distributed transaction rate. As shown in Figure 14a,
when the distributed transaction rate is 0, HDCC, OCC, and Aria
exhibit similar high throughput, surpassing Calvin and Snapper. In
this case, HDCC, Aria, and OCC can execute single-node transac-
tions without needing the 2PC protocol, , while Calvin and Snap-
per are limited by a single Scheduler. As the distributed transac-
tion rate increases, Calvin and Snapper maintain stable through-
put, while Aria, OCC, and HDCC see a decrease. Calvin and Snap-
per perform similarly because when the undeclared transaction
rate is set to 0, Snapper assigns all transactions to Calvin. HDCC,
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Figure 16: Effect of the contention level (YCSB)
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Figure 17: Effect of the contention level (TPC-C)
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Figure 18: Effect of the contention level (Full TPC-C)

using Calvin for distributed transactions through O1, exhibits a
smaller drop in throughput. In contrast, OCC and Aria decline
significantly due to the 2PC protocol, which lengthens execution
times for distributed transactions. Note, both Calvin and Aria are
deterministic concurrency control, and Snapper assigns all trans-
actions to Calvin in this experiment, hence they do not have any
abort rates in Figure 14b. When the distributed transaction rate ap-
proaches 100%, the throughput of HDCC becomes comparable to
that of Calvin, and is about 6.8× higher than that of OCC and Aria.
At this stage, most transactions in HDCC are Calvin transactions.
The results of the TPC-C benchmark share a similar trend to that
of YCSB, as presented in Figure 15.

7.3.2 Effect of the contention level. Figure 16 shows the through-
put and abort rate as the skew factor (SF) varies from 0.1 to 1.5.
At low contention levels (SF <= 0.5), the performance of all five
algorithms remains relatively stable. HDCC outperforms other al-
gorithms due to the optimizations. At moderate contention levels
(0.5 < SF < 1.1), OCC and Aria experience a decline in throughput,
while HDCC maintains stable throughput mainly due to optimiza-
tion O2. At high contention levels (SF >= 1.1), most transactions
in HDCC are scheduled by Calvin, leading to a similar throughput
to Calvin. The performance of Snapper remains similar to that of
Calvin. We also tested the TPC-C workload by varying the num-
ber of warehouses to simulate different contention levels (fewer
warehouses indicate higher contention). As shown in Figure 17, the
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Figure 19: Effect of undeclared transaction rate
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Figure 20: Effect of range queries

throughput trend of HDCC is similar to that of YCSB. Moreover,
we experiment with a full TPC-C workload, as shown in Figure 18,
the throughput trend is also similar, and the throughput of OCC
and HDCC algorithms are higher than when only NewOrder and
Payment transactions are used. This increase is due to the lower
contention levels in the full TPC-C workload.

7.3.3 Effect of undeclared transaction rate. This part compares the
performance of HDCC with Snapper by varying the undeclared
transaction rate from 0 to 1. Figure 19a shows that when all trans-
actions pre-declare their read/write sets, HDCC outperforms Snap-
per, achieving up to 3.1× higher throughput. This is because O1
assigns OCC to execute all local transactions even when they are
feasible for Calvin (refer to Figure 19c for throughput breakdown).
In contrast, Snapper executes Calvin as long as all read/write sets
are pre-declared. As the undeclared transaction rate increases, the
throughput of HDCC slightly declines, but due to the O2 and O3
optimization, still superior to Snapper. Figures 19b and 19d show
similar results on the TPC-C dataset, with HDCC achieving up to
2.3 times higher throughput. The exceptions are when the unde-
clared transaction rate exceeds 0.8, Snapper performs better than
HDCC. This is primarily due to the Wait-Die algorithm used in
Snapper, which performs better than OCC in this scenario [18].
The Wait-Die algorithm’s superior conflict handling leads to Snap-
per’s overall better performance in this case.

7.3.4 Effect of range queries. In this section, we assess the im-
pact of range queries and insert operations. We use a workload of
92% NewOrder and 8% StockLevel transactions from TPC-C, with
NewOrder involving insert operations and StockLevel including
range queries on the same table. Figure 20 shows that the through-
put trends under varying contention levels align with those in Sec-
tion 7.3.2, indicating that range queries does not change the previ-
ous results.

8 RELATEDWORK
This section studies the related work of concurrency control algo-
rithms and hybrid concurrency control algorithms.
Concurrency control. Concurrency control algorithms can be
divided into two categories: (1) deterministic algorithms and (2)
non-deterministic algorithms. The first category executes transac-
tions in a scheduled deterministic order. The classical algorithms
like Calvin [43] make stringent assumptions that read/write sets of
transactions must be pre-declared. Recent works, such as Aria [29],
BCDB [33], Harmony [24] and DOCC [9], designs optimistic de-
terministic concurrency control to execute transactions first and
then determine the order. These methods eliminate the stringent
assumption but introduce 2PC-like communication. The second
category is non-deterministic algorithms, including 2PL [3, 4, 15,
17], OCC [16, 21, 22, 27, 30, 45, 52, 53], timestamp ordering [4],
MVCC [13, 34–36, 49]. However, these algorithms inevitably re-
quire the 2PC protocol to address the serializability of distributed
transactions, introducing significant network communication over-
head. Furthermore, these algorithms also suffer from a substantial
number of aborts in high contention scenarios [18, 19].
Hybrid concurrency control. Hybrid approaches aim to merge
multiple algorithms into a singular one or incorporate multiple al-
gorithms within a single database system. The examples of the for-
mer include MOCC [47], MVOCC [26], which integrate 2PL and
MVCC with OCC, respectively. The latter mostly focuses on in-
corporating non-deterministic algorithms. HSync [38] and C3 [40]
hybrid 2PL and OCC by dividing transactions into different cate-
gories. CormCC [41] mixes PartCC [20], 2PL, and OCC by dividing
data partitions into different categories. Tebaldi [39] constructs hi-
erarchical concurrency control by analyzing the stored procedures.
Polyjuice [46] introduces reinforcement learning to design specific
concurrency control for each stored procedure. Snapper [28] is
the only work that mixed deterministic and non-deterministic (i.e.,
2PL) algorithms.

9 CONCLUSION
In this paper, we present HDCC, a novel distributed hybrid ap-
proach that integrates Calvin and OCC. We propose lock-sharing
and global validation mechanisms to guarantee the serializability
of HDCC. Then we design a two-log-interleaving mechanism to
ensure correct recovery upon failure. Besides, we propose a rule-
based assignment mechanism, tailoring its optimal choice to differ-
ent workload scenarios. Through comprehensive experimentation
on YCSB and TPC-C benchmarks, HDCC is proven to excel over
the state-of-the-art hybrid approach by providing up to 3.1× better
throughput.
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