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ABSTRACT
Geographic Information Retrieval (GIR) systems process text queries
with geographic location to identify relevant geographic objects for
users. Although recent advancements have leveraged Pre-trained
Language Models (PLMs) for their robust semantic comprehension,
these models typically depend on extensive labeled queries and re-
quire considerable computational resources. Deviating from this
prevailing trend, we propose GeoBloom, a lightweight framework
that surpasses the effectiveness of PLMs with fewer or no labeled
queries, with remarkable efficiency in both time and space.

GeoBloom tackles critical challenges such as the lack of labeled
queries, low data (labeled) efficiency, and high computational de-
mands. At its core, it employs Bloom filters to encode text at a
fine-grained term level and uses intersecting bits to create a ro-
bust unsupervised text similarity metric. A specialized Bloom Filter
Evaluator is proposed to assess the importance of each intersect-
ing bit, focusing on those associated with ground truth, improving
effectiveness with fewer training labels. For enhanced search effi-
ciency, the evaluator exploits the inherent sparsity of Bloom filters,
achieving remarkably low time and space complexities. This effi-
ciency is further boosted by a tree-based index that partitions the
search space while preserving effectiveness. Extensive experiments
show that GeoBloom surpasses state-of-the-art baselines in both
unsupervised (up to 15.66% improvement) and supervised settings
(up to 10.94% improvement) on real datasets in terms of NDCG@5.
Furthermore, GeoBloom operates up to 80x faster and saves up to
74.72% memory and 87.64% disk space over PLM-based alternatives,
rendering it highly potent for real-world applications.
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1 INTRODUCTION
Geographic Information Retrieval (GIR) systems are essential in
location-based services, powering online maps like Google Maps,
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geo-tagged webpages, ride-hailing applications such as Uber, and
geo-tagged social media platforms like Twitter. These systems pro-
vide access to a variety of geographic objects, such as Points of
interest (POIs) on the map and geo-tagged texts or reviews. A typ-
ical GIR system processes spatial keyword queries that combine
text-based queries with geographic locations to identify relevant
geographic objects. For instance, users searching for a "coffee shop"
along with preferred locations, such as their current GPS coordi-
nates, would receive a list of nearby coffee shops.

At the core of GIR systems lies the relevance model, which com-
putes the relevance score between user queries and geographic
objects. This score integrates text similarity metrics and geographic
distances to determine the order in which results are displayed to
users. The effectiveness of GIR models can be evaluated and en-
hanced using labeled queries, where each query is labeled with one
or more user-selected geographic objects. Tremendous progress
has been made on GIR models, including (1) Classical methods [2, 8,
15, 25, 28, 37, 42] that combine unsupervised text similarity metrics
(e.g., BM25 [36]) with geographic distances. These methods are
based on word matching, ignoring the semantics of user queries
(e.g., car and automobile are considered two different words al-
though they have similar semantics). (2) Early learning-based mod-
els [44, 47] that learn relevance scores from labeled queries with
lightweight neural networks. Some text-based IR methods [17, 18]
are also adapted to GIR. Yet, empirical studies [26] show that most
of them [17, 18, 47] fail to rival classical methods in effectiveness.
(3) Models based on Pre-trained language models (PLMs) [11, 19, 26,
43], which utilize BERT [10] and ERNIE [46] to encode a profound
level of semantic knowledge, and are fine-tuned on labeled queries
to adapt to GIR tasks. PLM-based models have outperformed previ-
ous work in effectiveness by a large margin.

Despite the improvements in effectiveness, existing methods
fail to address the longstanding challenges in the GIR domain: (1)
Lack of Labeled Queries, as labeled queries often include sensitive
information such as geographic locations and personal preferences,
making them rarely publicly available. Platforms like Google Maps
and OpenStreetMap refrain from providing such data due to pri-
vacy concerns. Consequently, most learning-based methods rely
on limited private data sources (i.e., Baidu Map search logs [19, 44]
and Meituan App interactions [17, 18, 26, 43, 47]), with an excep-
tion [24] that invites experts to synthesize queries and labels, which
are city-specific and difficult to obtain. The reliance on labeled
queries often renders these models impractical to deploy when
gathering such data is unfeasible or cost-prohibitive. (2) Low Data
(labeled) Efficiency. Leading machine learning models are noto-
riously data-hungry [1]. Although GIR systems can accumulate
labeled queries over time via user interactions, a small number
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Table 1: A Qualitative Comparison of Geographic Information Retrieval Methods

Feature Traditional Methods Early Learning-based Methods Pretrained LMs GeoBloom

Effectiveness in Unsupervised Settings High N/A Medium High
Overall Effectiveness Medium Low High High
Data (labeled) Efficiency N/A Low Medium High
Time & Space Efficiency High Low Low High

of labeled queries is typically insufficient to improve the model’s
effectiveness. This insufficiency arises because labeled queries in-
corporate both general semantics and city-specific terms, such as
addresses, landmarks, and trademarks. Classical methods often fail
to leverage deep semantics, while learning-based models struggle
with city-specific terms rarely included in common pre-training
corpora. Consequently, early learning-based models [17, 18, 44, 47]
without extensive pre-training fail to rival classical methods, while
PLM-based models still require a large number of labeled queries
to be as effective as classical methods, as shown in section 5.1.2. (3)
Time and Space Efficiency. The effectiveness of PLM-based models
comes at the cost of substantial increases in both parameter count
and computation complexity, leading to higher inference time, GPU
costs, and memory and storage needs. In addition, GIR models often
rank a large number of geographic objects, presenting a non-trivial
challenge to inference scalability at query time.

Our goal is to design a model with robust effectiveness in the
absence of labeled queries while being data-efficient, i.e. signifi-
cantly improving its performance with a few labeled queries. We
propose a novel method GeoBloom, which comprises three main
components. (1) We first introduce Bloom filters [4] as fine-grained
and expressive representations for query and geographic object
texts. In contrast to dense representations used in previous models
(e.g, Word2Vec [29] in [17, 18] and PLM outputs in [11, 19, 26, 43])
that rely on pre-training corpora, Bloom filters directly encode
the existence of text terms with binary bits, effectively handling
words of low frequency such as addresses, landmarks, and trade-
marks. Bloom filters are also more space-efficient than classical
Bag-of-Words (BOW) representations (as in BM25 [36]) as they con-
vert extensive geographic vocabulary into sparse vectors with fixed
length. We further show that the pairwise intersection of the Bloom
filters between queries and objects can effectively estimate text simi-
larity without labeled queries. Combined with geographic distances
and normalization techniques, it shows better effectiveness than
strong unsupervised baselines. (2) The second component is a novel
Bloom Filter Evaluator, a lightweight neural network that utilizes
the query and object Bloom filters to compute relevance scores. Un-
like all the recent learning-based models [11, 17–19, 26, 43, 44, 47]
that compute scores based on dense representations, our evaluator
conducts bit-by-bit evaluations on the intersecting bits of the two
input Bloom filters. Our evaluator is able to be responsive to crucial
bits associated with ground truth labels, enabling significant effec-
tiveness improvements with fewer labeled queries. We adopt the
Efficiently Updatable Neural Network (NNUE) [31] to leverage the
sparsity of Bloom filters, ensuring low time and space efficiency.
(3) The last component is the Bloom Filter Tree, a hierarchical index
that aggregates the object Bloom filters by spatial proximity to

speed up the search. We adapt our proposed Bloom Filter Evaluator
to compute query-node relevance scores, which greatly reduces the
comparisons needed while maintaining the same level of effective-
ness as a brute-force search. Additionally, it also allows for a beam
search algorithm that explicitly utilizes geographic context [11] (i.e.,
objects near the ground truth) to deliver better effectiveness. Table 1
presents a qualitative comparison of various GIR models.

In summary, we make the following contributions:

• The introduction of GeoBloom, a novel method that leverages
Bloom filters to represent text terms effectively and uses the
intersecting bits for text similarity modeling, which achieves
great effectiveness without labeled queries. To the best of our
knowledge, this is the first work that successfully adopts Bloom
filters to represent queries and geographic objects as the input
and the output to a designed relevance evaluator, rather than the
bag-of-words representations [36] or dense representations [11,
17–19, 26, 43, 44, 47] used in previous work.

• A new data-efficient Bloom Filter Evaluator to evaluate each
intersecting bit within Bloom filters, which prioritizes impor-
tant bits associated with ground truth labels, enabling signifi-
cant effectiveness improvements with fewer labeled queries. We
also propose optimization techniques tailored for Bloom filters,
achieving significantly low time and space complexity.

• A Bloom Filter Tree that further enhances the search efficiency
while maintaining the same level of effectiveness as a brute-force
search. The tree also allows for an additional feature leveraging
geographic context for better effectiveness (see Section 4.4).

Our experiments on real and synthetic datasets demonstrate that
GeoBloom outperforms strong unsupervised baselines, achieving
improvements of up to 11.92% in Recall@10 and 19.39% in NDCG@1.
In supervised settings, GeoBloom’s effectiveness improves steadily
with more labeled queries, consistently surpassing state-of-the-art
PLM-based models across both small (i.e., 2%-10%) and large (i.e.,
30%-100%) training queries, with gains of up to 7% in Recall@10 and
11% in NDCG@1. Further experiments show that GeoBloom is up
to 80x faster and saves up to 74.72% in runtime memory and 87.64%
in disk space, confirming its remarkable time and space efficiency.

2 RELATEDWORK
2.1 Geographic Information Retrieval
Geographic Information Retrieval (GIR) systems handle text-based
queries with geographic proximity [35] (also known as spatial
keyword queries). Early research [6–9, 27] mainly focuses on re-
trieval efficiency, where the relevance between queries and geo-
graphic objects is defined as a linear combination of geographic
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distances [38] and unsupervised text similarities measured by TF-
IDF [40], BM25 [36], or cosine similarity [37]. Despite their robust ef-
fectiveness in unsupervised settings, these methods are constrained
by a lack of understanding of semantic similarity.

The integration of deep learningmodels into GIRmarked a signif-
icant shift, using dense representations to compute text similarities.
Early learning-based models [44, 47] encode texts with lightweight
neural networks, yet they lack inherent semantic knowledge and
rely on extensive labeled queries. Some text-based IRmodels [17, 18]
are adapted to GIR tasks, which use Word2Vec [29] embeddings
to estimate semantic relevance. However, empirical studies [26]
demonstrate that these approaches [17, 18, 32] fail to compete with
classical methods. Moreover, they face scalability issues on large
datasets due to their pairwise query-object evaluations. In contrast,
our method leverages Bloom filters to represent texts, handling low-
frequency terms without training data requirements. It is further
boosted by an index based on Bloom filters, significantly reducing
the number of necessary evaluations.

The introduction of Pre-trained Language Models (PLMs) like
BERT [10] and ERNIE [19] significantly advances GIR models by
providing deeper semantic understanding, while with the cost of
extensive parameters. Recent studies [26, 43] integrate geographic
distances with PLM-based text similarities. DrW [26] leverages
BERT word embeddings for text similarities and balances them
with geographic distances using an attention mechanism. LIST [43]
fine-tunes BERT-based text similarities by aligning them with hu-
man geographic preferences. Additionally, some efforts [11, 19] en-
hance PLMs via pre-training on city-specific data, where MGeo [11]
pre-trains BERT-based encoders on OpenStreetMap multi-modality
data, and ERNIE-GeoL [19] pre-trains ERNIE on a large-scale het-
erogeneous graph containing user mobility data and interaction
logs. In contrast, our method operates with fewer parameters and
sidesteps the need for extensive pre-training, simplifying deploy-
ment while maintaining high effectiveness.

2.2 Bloom filters
Bloom filters [4] are space-efficient probabilistic data structures de-
signed for set membership testing, ideal for managing large datasets
with small space in large information retrieval systems [16]. Exist-
ing work on Bloom filters focuses on sophisticated data structure,
including supporting count/delete operations [13], enhancing space
efficiency [34], improving spatial privacy [32], and integrating geo-
graphic indexing [41]. Recently, Learned Bloom Filter (LBF) [22]
emerges to combine vanilla Bloom filters with machine learning
models. For example, SandwichedLBF [30] introduced a sandwiched
learned bloom filter model by adding a bloom filter before the
learned oracle. PA-LBF [45] proposes a prefix-based learned Bloom
filter tailored for geographic data. All these advancements aim at
reducing the False Negative Rate (FNR), which is orthogonal to this
paper. Diverging from previous research, our work takes a novel
approach by integrating Bloom filters into relevance modeling,
extending their application beyond conventional boundaries.

2.3 Efficiently Updatable Neural Networks
The Efficiently Updatable Neural Networks (NNUE) [31] is a light-
weight yet powerful neural network applied in top-tier computer

chess engines, which efficiently processes the sparse chessboard rep-
resentations on the alpha-beta tree to estimate the game-winning
probability. This is highly similar to our scenario where the model
evaluates query-node relevance scores across the Bloom Filter Tree.
However, our model is specially designed to be data-efficient, di-
verging from a vanilla NNUE that is trained on massive game plays.
To the best of our knowledge, this is the first application of the
NNUE in the GIR domain.

3 PRELIMINARIES
We introduce the Bloom filter and give the problem statement.

Bloom filter. A Bloom filter is a space-efficient data structure
representing a set 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛} with 𝑛 elements to support
the membership test. Specifically, it allocates a vector 𝐵 of𝑚 bits,
all initialized to 0, and chooses 𝑘 hash functions 𝐻1, 𝐻2, ..., 𝐻𝑘 , each
with range 1,...,m. For each element 𝑎 ∈ 𝐴, the bits at positions
𝐻1 (𝑎), 𝐻2 (𝑎), ..., 𝐻𝑘 (𝑎) in 𝐵 are set to 1. Given a query q, we check
the bits at positions 𝐻1 (𝑞), 𝐻2 (𝑞), ..., 𝐻𝑘 (𝑞). If any of the bits is
0, then 𝑞 is definitely not in the set 𝐴; otherwise, the element is
possibly in the set with a false positive rate.

Relevance. Let 𝑜 be a geo-textual object and 𝑞 a spatial keyword
query, each with a location and a text description. The relevance is
defined as Relevance(𝑞, 𝑜) = 𝑓 (DistSim(𝑞, 𝑜),TextSim(𝑞, 𝑜)), where
DistSim(𝑞, 𝑜) measures spatial proximity, TextSim(𝑞, 𝑜) quantifies
textual relevance, and 𝑓 combines them into a single score.

Problem Statement. (Geographic Information Retrieval) Con-
sider a set of geographic objects 𝑆 . Given a user’s query 𝑞 consisting
of a textual input and a spatial location (e.g., user’s current location),
the goal of Geographic Information Retrieval is to identify the top-k
geographic objects that are most relevant to the user query.

4 METHODOLOGY
We aim to design a model that tackles the key challenges faced by
existing GIR models. We first analyze these challenges in detail:
• Lack of Labeled Queries: Labeled queries (i.e., queries with user-

selected geographic objects) are often unavailable due to privacy
or policy constraints. Early learning-based models [17, 18, 44, 47]
learn relevance scores directly from labels and cannot function
without them. PLM-based methods, while capable of evaluating
text similarity, often perform poorly without labeled data, as
they emphasize semantics over lexical details [14]. For instance,
such methods might view "Unit 1231" and "Unit 1321" as similar,
although they refer to different objects.

• LowData (labeled) Efficiency: A substantial portion of user queries
and geographic objects contain location-specific text, such as
addresses, landmarks, and trademarks. These texts often lack
deep semantic meaning and do not cluster semantically in latent
spaces. Consequently, learning-based models struggle to general-
ize from limited training queries to test queries. Our experiments
show that early learning-based models fail to compete with clas-
sical methods even with sufficient (i.e., >100k) labeled queries,
while PLM-based methods also require a significant amount (i.e.,
>10k) of labeled queries to compete with classical methods.
• Time and Space Efficiency: The superior effectiveness of PLM-

based methods stems from their hundreds of millions of parame-
ters. However, this increased computational requirement leads to
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Figure 1: Overview of the GeoBloom Framework with three core components: (1) Bloom filters, constructed by tokenizing and hashing terms,
use intersecting bits between filter pairs to form a robust unsupervised text similarity metric; (2) Bloom Filter Evaluator, a lightweight neural
network that evaluates the importance of intersecting bits, prioritizing those tied to ground truth in labeled queries; (3) Bloom Filter Tree, a
geographic index that partitions the search space and employs beam search to incorporate geographic context.

longer inference time and necessitates expensive GPU hardware,
along with substantial memory and storage costs. As the dataset
size increases, these challenges are amplified, exacerbating the
efficiency issues for answering queries.
We propose GeoBloom to address these challenges. As shown

in Figure 1, our method takes the geographic distances, the query
text, the candidate object text, and the text from a contextual ob-
ject (optional) as input. (1) First, we tokenize the texts and encode
terms into Bloom filters, where each term maps to specific bits in
a fixed-length sparse vector. This creates space-efficient, lexically
detailed representations. We use intersecting bits in query-object
Bloom filter pairs to identify matching terms, providing a robust
unsupervised text similarity metric. (2) We develop a Bloom Filter
Evaluator to assess the importance of intersecting bits. This main-
tains effectiveness in unsupervised settings while emphasizing key
bits associated with ground-truth labels, achieving substantial gains
as more labeled queries are available. Inspired by the NNUE [31]
chess engine, the evaluator leverages Bloom filter sparsity for low
time and space complexity. (3) We further introduce a Bloom Filter
Tree to reduce comparisons in pairwise Bloom filter evaluations.
Constructed like a max-heap, this index preserves evaluator effec-
tiveness comparable to brute-force search. Additionally, it allows
for a beam-search algorithm that explicitly utilizes geographic con-
text [11] for improved effectiveness in supervised settings.

4.1 Modeling Text Similarity with Bloom filters
We argue that a GIR model needs fine-grained term-matching capa-
bilities to perform well in unsupervised settings, as highlighted by
the strong performance of BM25 in our empirical analysis (see Sec-
tion 5.1.2). While the Bag-of-Words (BOW) representations in BM25
effectively capture key lexical terms (e.g., city-specific keywords)
for GIR tasks, integrating BOW into learning-based models is chal-
lenging due to the large vocabulary of geographic terms and the
resulting computational costs. Methods like Word Hashing [20, 39]
can reduce BOWdimensionality and generate dense embeddings for
learning-based models, but they still require extensive fine-tuning
with labeled queries to achieve effective term-matching.

We introduce Bloom filters [4] to overcome these limitations,
offering similar benefits to BOW but with greater space efficiency
ideal for learning-based models. Each Bloom filter is constructed
by tokenizing the texts within a query (or a geographic object) into
short terms using various text tokenizers and encoding these terms
into a sparse vector with random hash functions. Unlike existing
learning-based GIR models [11, 17–19, 26, 43, 44, 47] that compute
relevance scores based on dense representations, we maintain rep-
resentations sparse, directly computing relevance scores with Bloom
filter bits. This approach offers several significant advantages:

• Identifying Matching Terms: The non-zero bits in each Bloom
filter correspond to text terms from the query or geographic
objects. Ideally, by intersecting Bloom filters from queries and
objects, we can uniquely identify and represent matching terms
in the underlying texts without the need for training.

• Integration of Various Tokenizers: Bloom filters allow for the en-
coding of different text terms in independent dimensions without
interference. This enables the integration of various tokenizer
types, such as rule-based (e.g., n-gram letters), dictionary-based
(e.g., Jieba1), and data-driven (e.g., SentencePiece [23]). Such di-
versity enhances the effectiveness in unsupervised settings by
capturing both common and novel lexical items.

A primary concern with Bloom filters is hash collision, where
different text terms might share the same hash value, potentially
leading to evaluation inaccuracies with intersecting bits. Previous
research [20] avoids this by limiting the vocabulary size (e.g., us-
ing tri-gram English letters). However, this approach may break
apart crucial keywords like addresses, reducing retrieval accuracy.
Fortunately, Bloom filters offer a built-in solution to mitigate hash
collisions through the membership test, as explained in Section 3.
This allows us to exclude query terms absent from the object’s
Bloom filter, facilitating more accurate term-matching. The second
concern is the loss of token order, as Bloom filters do not encode the
order of the text tokens. As spatial keyword queries are generally

1For more tokenizer details, see https://github.com/fxsjy/jieba
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short and concise, we mitigate the problem by n-gram tokeniz-
ers with starting and ending marks, as proposed in DSSM [39].
For example, a 3-gram tokenizer with starting and ending marks
will turn an address "123456789" into "#123", "456", "789#", thereby
encoding the local order of digits to facilitate accurate matching.
However, when essential token order information spans longer
text sequences (e.g., “shop with coffee and ... but without food”),
n-gram tokenizers may struggle to capture such information. To
address this, we design an optional component to capture token
order. Specifically, before encoding each token into the Bloom filter,
we first project them into low-dimensional dense vectors using a
linear layer and pass through a stack of 1-D convolution layers,
following their order in the input. Since each 1-D convolution ker-
nel assigns different weights to former and latter tokens within its
receptive field, the stacked layers can capture orders across longer
sequences. The third concern is term mismatch, which occurs when
users use different words with similar meanings. To address this,
we propose learning semantic similarities from labeled queries, ex-
tending beyond simple bit intersections. Specifically, we define the
text similarity metric as follows:

𝑇𝑒𝑥𝑡𝑆𝑖𝑚(𝑞, 𝑜) =
𝑖∑︂
𝑚

𝐼 (𝐵𝑞, 𝐵𝑜 )𝑖 · 𝐹1 (𝐵𝑞, 𝐵𝑜 )𝑖 + 𝐹2 (𝐵𝑞, 𝐵𝑜 ) (1)

Here, 𝐵𝑞 and 𝐵𝑜 denote the Bloom filters with length𝑚 for the
query and the object text, respectively. 𝐼 (𝐵𝑞, 𝐵𝑜 ) represents the
intersection of 𝐵𝑞 and 𝐵𝑜 , with 𝑖 denotes the 𝑖-th bit. 𝐹 denotes
the neural networks, where 𝐹1 evaluates the importance of the 𝑖-th
bit in the Bloom filter, and 𝐹2 learns the semantic similarity from
labeled queries, both discussed in the following section.

4.2 Bloom Filter Evaluator
4.2.1 Model Architecture. The core of GeoBloom is a lightweight
neural network, which is designed to effectively learn the rele-
vance score from a few labeled queries. We use a large, shared em-
bedding layer to learn city-specific information within the Bloom
filters and encode them into dense embeddings. This is followed by
two non-linear hidden layers that further compress them into low-
dimensional space, extracting potential semantic relevance. Finally,
the embeddings are expanded back to the dimension of the input
Bloom filters, where each dimension is regarded as the importance
of intersecting bit at the corresponding position. We propose two
key techniques to facilitate the bit importance evaluation:
• Zero-Projection: The randomly initialized layer in common learning-

based models will arbitrarily distort the importance of the Bloom
filter bits, leading to poor effectiveness in unsupervised settings
and premature convergence. To address the problem,we designed
a Zero-Projection layer at the last layer of our model, which out-
puts a value of 1 when untrained, preserving the term-matching
capabilities of Bloom filters in the absence of labeled queries.

• LeakyReLU Activation: Our model’s relevance score is calculated
as the average importance of intersecting bits. During training,
the relevance scores for user-selected objects will increase, and
others will decrease. However, this approach should be asymmet-
ric, as each bit represents a potentially important text term even
for non-selected objects. Increasing bit importance for selected
objects reveals useful relevancewhile reducing it for non-selected

objects risks missing crucial terms. Therefore, we use LeakyReLU
activation, assigning small gradients to less significant bits (im-
portance < 1), thereby emphasizing critical bits.

Formally, the neural network 𝐹1 (𝐵𝑞, 𝐵𝑜 ) can be defined as:

h1 = 𝜎 (CONCAT(𝑊1𝐵𝑞,𝑊1𝐵𝑜 )), 𝑊1 ∈ Rℎ1×𝑚 (2)

h2 = 𝜎 (𝑊2h1 + 𝑏2), 𝑊2 ∈ Rℎ2×2ℎ1 (3)

h3 = 𝜎 (𝑊3h2 + 𝑏3), 𝑊3 ∈ Rℎ3×ℎ2 (4)

𝐹1 (𝐵𝑞, 𝐵𝑜 ) = LeakyReLU(𝑊4h3) + 1, 𝑊4 ∈ R𝑚×ℎ3 ← 0 (5)

Here, h𝑖 denotes the output of i-th layer with dimension ℎ𝑖 ,
weight𝑊𝑖 , and bias 𝑏𝑖 . 𝜎 denotes the non-linear activation function
2. Eq 5 specifies the Zero-Projection layer, where 𝑊4 ∈ R𝑚×ℎ3

is set to zero, ensuring each intersecting bit has an equal initial
importance of 1. Notably, this doesn’t impede the network training,
as the gradient of 𝐹1 (𝐵𝑞, 𝐵𝑜 ) with respect to𝑊4, given by 3

𝜕𝐹1
𝜕𝑊4

= LeakyReLU′ (0) · h3 ≠ 0, 𝑖 𝑓 h3 ≠ 0 (6)

In the case of term mismatch, the intersecting bits between the
query’s and the user-selected object’s Bloom filters can be relatively
few, so that 𝐹1 cannot adequately capture the relevance. However,
h2 lies in a dense semantic space, allowing us to roughly estimate
the semantic similarity beyond the limitation of intersecting bits.
We leverage h2 to evaluate a Semantic Score as follows:

𝐹2 (𝐵𝑞, 𝐵𝑜 ) =𝑊 ′4𝜎 (𝑊
′
3h3), 𝑊 ′3 ∈ R

ℎ3×ℎ2 ,𝑊 ′4 ∈ R
1×ℎ3 ← 0 (7)

We will further combine the text similarity metric with other
metrics (e.g., geographic distances), as detailed in Section 4.3.

4.2.2 Inference Optimizations. We observe that Bloom filters re-
semble the sparse board representations in computer chess, in-
spiring us to employ the Efficiently Updatable Neural Network
(NNUE) [31]. NNUE is a 4-layer MLP that computes the game-
winning probability given a chessboard. When a chess piece moves,
it efficiently updates the hidden layers by focusing only on relevant
rows in the embedding matrix. In our model, we mimic NNUE’s
design by gathering and updating only the relevant columns in
the proposed Zero-Projection layer. We also follow NNUE’s quan-
tization scheme with SIMD (Single Instruction, Multiple Data) for
acceleration. We propose key optimizations for inference efficiency:
• Offline Pre-computing: As texts of geographic objects seldom

update during the query phase, we can offload the embedding
process of object Bloom filters to the offline environment. The
pre-computed embeddings are saved and reused, eliminating the
need for encoding objects during online inference.

• Sparse Evaluation: While the Bloom filters of geographic objects
can be relatively dense (as they can contain many words), the
query Bloom filters are typically sparse as the user input is often
confined to a relatively short length. By targeting the non-zero
bits in the query Bloom filters and selecting the correspond-
ing columns in the Zero-Projection layer, we can substantially
diminish the time complexity of the importance evaluation.

2We use 𝜎 (𝑥 ) = ClippedReLU(𝑥 ) ∈ [0, 1] to prevent numerical overflow in NNUE.
3We can’t use standard ReLU or ClippedReLU in this layer as their gradient at x=0 is 0.
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Figure 2: The crucial optimization techniques in Bloom Filter Evaluator: (1) Offline Pre-computing, which encodes the Bloom filters of objects
into short dense embedding in an offline environment; (2) Sparse Evaluation, which focuses on the intersecting bits to eliminate unnecessary
computations; and (3) Chunked LeakyReLU, which splits the Zero-Projection layer output into chunks and computes LeakyReLU with SIMD.

• Chunked LeakyReLU : The LeakyReLU function is SIMD-unfriendly
due to its special handling of negative values. We propose to split
the output vector into multiple chunks and activate separately
with bitwise right-shifting. This ensures compatibility with SIMD
without compromising the activation function’s integrity.

As illustrated in Figure 2, the three optimizations address the
major bottlenecks in model inference, enabling low time complexity.

4.3 Bloom Filter Tree
Until now, our model has used pairwise query-object evaluations.
While each evaluation is computationally cheap, scalability remains
challenging for large databases. A common solution is to reduce
comparisons using a search index, but designing an efficient index
that preserves effectiveness is non-trivial. We propose organizing
geographic objects by spatial proximity through hierarchical clus-
tering (e.g., KMeans), forming a tree structure. Each node in the tree
is represented by a centroid, a radius 𝑟 defining its spatial extent,
and a Bloom filter aggregated from its child nodes. We then adapt
our Bloom Filter Evaluator to efficiently search this tree structure.

• Text Similarity with Normalization: The Bloomfilters at the higher
hierarchy of the tree contain text terms from more geographic
objects, leading to a higher hash collision rate and an overesti-
mated similarity that lacks discriminative power between nodes.
To counteract the problem, we propose to use beam-search and
normalize the text similarities within the search beam:

𝑇 (𝑞, 𝑛) = sigmoid (𝛽1 · (𝑇𝑒𝑥𝑡𝑆𝑖𝑚(𝑞, 𝑛) − 𝜇)/𝜎 + 𝛽2) (8)

𝑇 (𝑞, 𝑛) normalizes the original text similarity scores within a
search beam based on their mean 𝜇 and standard deviation 𝜎 ,
modulated by trainable parameters 𝛽1 and 𝛽2. This process uni-
fies the text similarities across the tree’s hierarchies, enabling
more consistent comparisons.

• Geographic Distance with Normalization:We integrate geographic
distances into the relevance score. We observe that individuals
are more sensitive to the distances to nearby objects, while this

sensitivity diminishes for objects further apart. Hence, we nor-
malize the distances to better align human spatial perception:

𝐷̂ (𝑞, 𝑛) = − log(1 +max(0,Dist(𝑞, 𝑛) − 𝑟𝑛)) (9)

Here, 𝐷̂ (𝑞, 𝑛) transforms the distance between the query and
a node’s boundary using a negative logarithm. This approach
models the decreasing sensitivity to increasing distance.

• Mixture-of-Experts: The search process from the root to the leaf
nodes is a transition from coarse retrieval to precise ranking,
where tree nodes at different depths carry diverse information.
Hence, we create multiple experts by duplicating the hidden
layers and the zero-projection layer, each dedicated to a distinct
tree depth, improving the model’s ability to discern relevance.
Finally, we define the relevance score as follows:

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑞, 𝑛) = 𝑇 (𝑞, 𝑛) + 𝛾1𝐷̂ (𝑞, 𝑛) + 𝛾2𝑇 (𝑞, 𝑛)𝐷̂ (𝑞, 𝑛) (10)

The trainable parameters 𝛾1 and 𝛾2 balance the influence of two
similarities and their first-order interaction, which can exclude
those very proximate nodes with little text similarities. Notably,
these parameters don’t require manual tuning. We initially set
𝛽2 = 𝛾2 = 0 and 𝛽1 = 𝛾1 = 1, and train all model parameters
together with the neural networks via LambdaRank [5] loss.

It is noteworthy that our beam search on the Bloom Filter Tree
has the same level of effectiveness as a brute-force search because
it maintains the property akin to a max-heap by satisfying two
criteria: For a given query, (1) the number of its intersecting bits
with parent nodes is always greater than or equal to that with child
nodes, and (2) its distances to parent nodes are always smaller than
or equal to that to child nodes. Assuming no normalization or model
training, a greedy search on the tree will yield the same results
as a brute-force search. While the normalization and the training
inevitably break the max-heap property, a beam search with proper
beam widths can effectively mitigate inaccuracies.

4.4 Leveraging Geographic Context
We provide an additional feature to leverage geographic context, i.e.,
geographic objects that are spatially close to the user-selected ob-
jects. This is particularly useful when users search for objects near
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specific addresses or landmarks. For instance, a query "Hotel near
New York Central Park" might aim to find "The Manhattan at Times
Square Hotel". The "New York Central Park" doesn’t share any text
terms with the hotel, but it serves as the crucial geographic context
to locate the ground truth. Existing PLM-based methods [11, 19]
generally pre-train on massive object-context pairs, which intro-
duces substantial costs in data collection and model training.

Our Bloom Filter Tree provides a novel solution to identify use-
ful geographic contexts. For a given query, we not only find the
node that best matches the query Bloom filter but also identify
a nearby node that best supplements those unmatched bits (i.e.,
contains useful context terms). We introduce a 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to estimate
the probability that a given node contains geographic context:

𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝐵𝑞, 𝐵𝑐 ) = sigmoid(
𝑖∑︂
𝑚

𝐼 ((𝐵𝑞\𝐵𝑛), 𝐵𝑐 )𝑖 ·𝐹3 (𝐵𝑞, 𝐵𝑐 )𝑖 ) (11)

Here, 𝐵𝑐 represents the Bloom filter of the geographic context. \
computes the non-zero bit elements in 𝐵𝑞 but not in 𝐵𝑛 . The neural
network 𝐹3 assesses the importance of each bit by duplicating the
last two layers in Bloom Filter Evaluator (i.e. Eq. 4 and 5). Upon
selecting an appropriate context using this probability, we further
duplicate an 𝐹4 to evaluate the bits within the context object. Our
text similarity metric in Eq. 1 is improved as follows:

𝑇𝑒𝑥𝑡𝑆𝑖𝑚(𝑞, 𝑛) =
𝑖∑︂
𝑚

𝐼 (𝐵𝑞, 𝐵𝑛)𝑖 · 𝐹1 (𝐵𝑞, 𝐵𝑛)𝑖⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Object Score

+ 𝐹2 (𝐵𝑞, 𝐵𝑛)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
Semantic Score

+
𝑖∑︂
𝑚

𝐼 (𝐵𝑞\𝐵𝑛, 𝐵𝑐 )𝑖 · 𝐹4 (𝐵𝑞, 𝐵𝑛)𝑖⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Context Score

(12)

We construct pseudo labels to optimize 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 leveraging la-
beled queries. For each user-selected object, we find the nearby
object (e.g., within 2 km) with the highest 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡−𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑 =∑︁𝑖
𝑚 𝐼 ((𝐵𝑞\𝐵𝑛), 𝐵𝑐 )𝑖 as the ground truth geographic context and

optimize 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 via BCELoss. As traversing the entire tree for
geographic context is computationally intensive, we directly select
the object with the largest 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 within the search beam. The
beam search process in our framework is detailed in Algorithm 1.

4.5 Complexity Analysis
We analyze the time and space complexities of GeoBloom. Let ℎ1,
ℎ2, ℎ3 be the output dimension of the i-th model layer, 𝑢 the count
of non-zero bits in the query, 𝑏 the beam width, and 𝑑 the tree
depth. The overall time complexity is given by 𝑂 (𝑢ℎ1 + ℎ1ℎ2 + 𝑏2 ·
𝑑 (ℎ2ℎ3+𝑢ℎ3)).𝑢ℎ1+ℎ1ℎ2 accounts for query encoding time, which
is negligible as the number of visited nodes 𝑏𝑑 ≫ 1. ℎ2ℎ3 + 𝑢ℎ3
reflects the inference time per node. As ℎ2 and ℎ3 are small (e.g., 16
or 32), the inference time is dominated by query length, tree depth,
and beamwidth. The space complexity is affected by the dataset size
|𝑆 | and the Bloom filter length𝑚. The model’s space complexity is
𝑂 (𝑚ℎ1 +𝑑 (ℎ1ℎ2 +ℎ2ℎ3 +𝑚ℎ3)), the Bloom Filter Tree’s is𝑂 (𝑚 |𝑆 |),
and the offline pre-computed embeddings’ is 𝑂 (ℎ2 |𝑆 |).

Algorithm 1 Beam Search with In-beam Context Selection
Require: Bloom Filter Tree, query 𝑞, spatial distance threshold 𝑅
Ensure: Ranked list of nodes based on relevance scores
1: Initialize 𝐵𝑒𝑎𝑚 with root node(s) of the tree
2: while not at leaf nodes do
3: Initialize 𝑁𝑒𝑤𝐵𝑒𝑎𝑚,𝑇𝑒𝑥𝑡𝑆𝑖𝑚𝑠, 𝐷𝑖𝑠𝑡𝑆𝑖𝑚𝑠 ← ∅
4: for 𝑝𝑎𝑟𝑒𝑛𝑡 in 𝐵𝑒𝑎𝑚 do
5: Get child nodes from 𝑝𝑎𝑟𝑒𝑛𝑡 to form 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐵𝑒𝑎𝑚

6: for 𝑛𝑜𝑑𝑒 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐵𝑒𝑎𝑚 do
7: Initialize 𝐵𝑒𝑠𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ← null
8: for 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in 𝐵𝑒𝑎𝑚 within 𝑅 and 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ≠ 𝑛 do
9: Compute 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 as Eq. 11 using 𝐵𝑞\𝐵𝑛
10: if 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 > 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝐵𝑒𝑠𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡) then
11: 𝐵𝑒𝑠𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ← 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

12: end if
13: end for
14: Compute 𝑇𝑒𝑥𝑡𝑆𝑖𝑚 as Eq. 12 and add to 𝑇𝑒𝑥𝑡𝑆𝑖𝑚𝑠

15: Compute 𝐷̂ as Eq. 9 and add to 𝐷𝑖𝑠𝑡𝑆𝑖𝑚𝑠

16: end for
17: end for
18: Normalize 𝑇𝑒𝑥𝑡𝑆𝑖𝑚𝑠 to get 𝑇 as Eq. 8
19: Combine 𝑇 with 𝐷𝑖𝑠𝑡𝑆𝑖𝑚𝑠 to get 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 as Eq. 10
20: Rank 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐵𝑒𝑎𝑚 by 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒
21: Select top candidates’ child nodes to form new 𝐵𝑒𝑎𝑚

22: end while
23: return 𝐵𝑒𝑎𝑚

5 EXPERIMENTS
We conduct experiments to answer the following questions:
• RQ1: How effective is the GeoBloom framework in unsuper-

vised and supervised settings with varying sizes of training data,
compared to state-of-the-art baselines?

• RQ2: How does the inference time and space efficiency of the
GeoBloom framework compare to the PLM-based method, and
how does it scale with increasing dataset sizes?

• RQ3: How do the important parameters, components, and opti-
mization techniques within the GeoBloom framework affect its
effectiveness and efficiency?

5.1 Experimental Settings
5.1.1 Datasets. We utilize two real datasets and two open-source
synthetic datasets. The real datasets Beijing and Shanghai are pro-
vided by Meituan, a leading consumer service platform in China.
These datasets are derived from user interactions, where consumers
submit keywords along with their current or intended locations to
search for products and services, selecting from the geographic ob-
jects suggested by the platform. The synthetic datasets are from the
GeoGLUE [24], which containsmillions of POIs in Hangzhou, China.
It invites human experts to synthesize query texts and locations and
select ground truth POIs. However, its POI locations are shuffled
and over 50% fake POIs are injected, largely diverging from real
datasets. To address this, we supplement the GeoGLUE𝑐𝑙𝑒𝑎𝑛 dataset,
where GeoGLUE queries are aligned with the real Hangzhou POIs
collected from the OpenStreetMap 4. Specifically, GeoGLUE queries
4https://www.openstreetmap.org/. Data accessed on Jan 12th, 2024.
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are labeled with 17,290 (noisy) POIs. We find the real counterpart
for each POI via BM25 and GPT-4-turbo and successfully match
10,278 of them to real Hangzhou POIs, forming GeoGLUE𝑐𝑙𝑒𝑎𝑛 . The
statistics of all datasets are presented in Table. 2.

Table 2: Dataset Statistics

Dataset #POIs #Queries #Train #Dev #Test

Beijing 122,420 168,998 136,890 15,209 16,899
Shanghai 116,859 127,183 103,019 11,446 12,718
GeoGLUE 2,849,754 90,000 50,000 20,000 20,000

GeoGLUE𝑐𝑙𝑒𝑎𝑛 777,295 53,891 30,048 11,686 12,157

5.1.2 Baselines. We compare with baselines including classical
methods, early learning-based methods, and PLM-based methods.

(1) Classical Methods.
• BM25 [36]: This classical information retrieval method exclu-

sively ranks geographic objects based on textual relevance.
• SIF [3]: Smooth Inverse Frequency (SIF) represents geo-textual

objects through a weighted average of GloVe [33] word em-
beddings and refine them with PCA or SVD.

(2) Early Learning-based Methods
• DRMM [17]: This model evaluates text similarities based

on pairwise local interactions at the term level. It doesn’t
account for geographic proximity.

• ARC-I [18]: This model encodes texts in both query and
objects and then measures text relevance with multi-layer
perceptrons. It doesn’t account for geographic proximity.

• PALM [47]: This model leverages both text and geographic
proximity to learn representations for queries and objects.

(3) PLM-based Methods
• BERT [10]: BERT represents a landmark in PLMs that benefit

from pre-training on extensive corpora. Its output embed-
dings are widely used to assess text similarities.

• OpenAI5: OpenAI’s text-embedding-3-small is one of its
"newest and most performant embedding models". While
its technical details remain proprietary, it is well-known for
producing high-quality embeddings for retrieval tasks.

• DrW [26]: This method utilizes a frozen BERT encoder to
capture term-level text similarities, and then integrates geo-
graphic proximity via the attention mechanism.

• MGeo [11]: This method applies multi-task pre-training on
a BERT-based encoder and fine-tunes it by user queries. 6

• DPR [21]: This method fine-tunes BERT through metric
learning, which ensures relevant query-object pairs will have
smaller distances than the irrelevant ones in the vector space.
It does not account for geographic proximity.

• LIST [43]: This method improves DPR by combining it with
geographic distances aligned with human preferences. It
further proposes a novel learned index to boost efficiency.

5https://platform.openai.com/docs/guides/embeddings. Accessed on Mar 3rd, 2024
6As we are unable to replicate the results of MGeowith their official code, we reference
the evaluation results as presented by the authors.

5.1.3 Evaluation metrics. We employ two widely-used metrics Re-
call and Normalized Discounted Cumulative Gain (NDCG) to assess
the effectiveness. For a given query, Recall@k measures the fraction
of user-selected objects retrieved within the top-k results, while
NDCG@k additionally accounts for ranking. We use the Recall@20,
Recall@10, NDCG@5, and NDCG@1 following [11, 43].

5.1.4 Implementation Details. As the vanilla BM25, SIF, BERT,
OpenAI, DRMM, ARC-I, and DPR only consider text similarity, we
supplement BM25-D, SIF-D, BERT-D, and OpenAI-D, DRMM-D,
ARC-I-D, and DPR-D to incorporate the geographic distance. The
relevance score between query 𝑞 and object 𝑜 is defined as:

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑞, 𝑜) = (1−𝛼) (1−𝐷𝑛𝑜𝑟𝑚 (𝑞, 𝑜)) +𝛼 ·𝑇𝑒𝑥𝑡𝑆𝑖𝑚𝑛𝑜𝑟𝑚 (𝑞, 𝑜)
Here, 𝐷𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑞, 𝑜) denotes the geographic distance between

query and object, 𝑇𝑒𝑥𝑡𝑆𝑖𝑚𝑛𝑜𝑟𝑚 denotes the text similarity from
the vanilla baseline, both are normalized to [0, 1]. 𝛼 is a hyper-
parameter balancing the text and the distance similarities. We run a
grid search on the dev split to get the optimal𝛼 for each baseline.We
set𝑘 = 0.3,𝑏 = 0.1 forBM25 andBM25-D for better effectiveness on
short texts. For other baselines, we adhere to the hyper-parameters
in their respective paper. For GeoBloom, we use a combination of 1-
gram, 2-gram, and Jieba tokenizers, with 𝑘 = 2 hash functions based
on SHA-256, set Bloom filter length to𝑚 = 16384 and for Beijing,
Shanghai, GeoGLUE𝑐𝑙𝑒𝑎𝑛 , and𝑚 = 32768 for GeoGLUE. We set the
depth of Bloom Filter Tree 𝑑 = 4, the anchor selection threshold
𝑅 = 1𝑘𝑚. We perform a grid search on beam widths, setting 𝑏 = 400
for Beijing and Shanghai, 𝑏 = 1000 for GeoGLUE𝑐𝑙𝑒𝑎𝑛 , and 𝑏 = 4000
for GeoGLUE unless otherwise specified.

5.2 Effectiveness Studies (RQ1)
5.2.1 Effectiveness in Unsupervised Settings. We validate the ef-
fectiveness of GeoBloom without labeled queries by comparing it
with baselines that support unsupervised settings, excluding those
reliant on labeled queries. Notably, we set beam width 𝑏 = 6000
for GeoBloom on GeoGLUE to counteract the datasets’ fake POIs.
Tables 3 reports the effectiveness of the evaluated methods with
the best results in bold and the second-best underlined, which lead
us to two key insights: (1) The classical term-matching method
BM25-D and ourGeoBloom significantly outperforms vector-based
methods SIF-D and BERT-D, showcasing a strong effectiveness that
rivals the leading commercial product,OpenAI-D. This underscores
the importance of term-matching capabilities for GIR models. (2)
On two real datasets and GeoGLUE𝑐𝑙𝑒𝑎𝑛 , GeoBloom significantly
surpasses all baselines, notably exceeding BM25-D and OpenAI-D
in NDCG@1 by a significant margin. While on GeoGLUE where
over 50% of POIs are fake, GeoBloom’s advantage narrows, it still
performs competitively, showcasing its robustness even when the
data quality of geographic objects is compromised.

5.2.2 Effectiveness in Supervised Settings. We compare the effec-
tiveness of supervised GeoBloom against baselines that support
supervised learning. For LIST, we use the proposed learned index
in their paper, while for other baselines we perform a brute-force
search over the full dataset. Notably, DRMM, DRMM-D, ARC-I,
PALM, and DrW are not tested on the synthetic dataset due to their
scalability issues, which requires more than 24 hours for evalua-
tion. Tables 4 reports the average effectiveness from 10 consecutive
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Table 3: Effectiveness in Unsupervised Settings

Method Beijing Shanghai
Recall@20 Recall@10 NDCG@5 NDCG@1 Recall@20 Recall@10 NDCG@5 NDCG@1

BM25 0.4023 0.3401 0.2199 0.1634 0.4115 0.3274 0.1913 0.1260
BM25-D 0.5904 0.5477 0.4263 0.3569 0.6873 0.6484 0.5215 0.4380
SIF 0.1792 0.1493 0.0944 0.0702 0.1967 0.1587 0.0949 0.0646
SIF-D 0.2148 0.1918 0.1375 0.1108 0.2608 0.2313 0.1626 0.1272
BERT 0.1949 0.1602 0.1169 0.0979 0.1593 0.1277 0.0853 0.0662
BERT-D 0.2801 0.2400 0.1614 0.1298 0.3123 0.2622 0.1687 0.1233
OpenAI 0.3892 0.3265 0.2157 0.1637 0.4067 0.3213 0.1875 0.1258
OpenAI-D 0.5812 0.5206 0.3803 0.3078 0.6755 0.6313 0.4852 0.3864

GeoBloom 0.6251 0.5858 0.4730 0.4073 0.7440 0.7160 0.6031 0.5230
(Gain) 5.88% 6.96% 10.95% 14.11% 8.26% 10.43% 15.66% 19.39%

GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

BM25 0.5776 0.5430 0.4368 0.3640 0.4651 0.4046 0.2800 0.2086
BM25-D 0.5895 0.5546 0.4442 0.3676 0.4751 0.4083 0.2802 0.2042
SIF 0.1355 0.1215 0.0938 0.0762 0.1047 0.0905 0.0606 0.0427
SIF-D 0.1477 0.1352 0.1021 0.0807 0.1120 0.0954 0.0622 0.0448
BERT 0.2345 0.2121 0.1647 0.1347 0.1093 0.0891 0.0558 0.0380
BERT-D 0.2843 0.2548 0.1872 0.1464 0.1865 0.1524 0.0859 0.0517
OpenAI 0.4739 0.4372 0.3468 0.2878 0.4765 0.4242 0.2922 0.2119
OpenAI-D 0.5118 0.4733 0.3759 0.3103 0.4914 0.4321 0.2934 0.2094

GeoBloom 0.5925 0.5566 0.4459 0.3704 0.5204 0.4645 0.3254 0.2367
(Gain) 0.51% 0.36% 0.39% 0.78% 5.87% 7.48% 10.94% 11.68%

Table 4: Effectiveness in Supervised Settings

Method Beijing Shanghai
Recall@20 Recall@10 NDCG@5 NDCG@1 Recall@20 Recall@10 NDCG@5 NDCG@1

DRMM 0.2387 0.1773 0.1105 0.0758 0.2702 0.1921 0.1287 0.0804
DRMM-D 0.4949 0.4357 0.2378 0.1566 0.5107 0.4380 0.2433 0.1595
ARC-I 0.2779 0.2221 0.1317 0.0774 0.3192 0.2551 0.1687 0.0895
ARC-I-D 0.5265 0.4531 0.3685 0.2577 0.5618 0.5079 0.3978 0.2660
PALM 0.3514 0.3098 0.2077 0.1343 0.4617 0.4023 0.2065 0.1223
DrW 0.6968 0.6316 0.4814 0.3791 0.7689 0.7159 0.5394 0.4114
DPR 0.4990 0.4183 0.2775 0.2121 0.4991 0.4087 0.2498 0.1746

DPR-D 0.7382 0.6688 0.4980 0.4132 0.7667 0.7281 0.5641 0.4554
(± 0.013) (± 0.011) (± 0.005) (± 0.009) (± 0.012) (± 0.010) (± 0.007) (± 0.014)

LIST 0.7711 0.7170 0.5668 0.4812 0.7721 0.7401 0.6099 0.5139
(± 0.010) (± 0.0009) (± 0.0010) (± 0.010) (± 0.012) (± 0.012) (± 0.010) (± 0.012)

GeoBloom 0.7719 0.7270 0.5839 0.5039 0.8424 0.7996 0.6629 0.5694
(±0.002) (±0.002) (±0.002) (±0.003) (±0.001) (±0.002) (±0.002) (±0.003)

(Gain) 0.10% 1.40% 3.55% 5.91% 8.49% 8.17% 9.39% 12.19%

GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

MGeo 0.7049 N/A N/A 0.5270 N/A N/A N/A N/A
DPR 0.7864 0.7450 0.6171 0.5199 0.6610 0.6052 0.4585 0.3581

DPR-D 0.7994 0.7611 0.6318 0.5350 0.6678 0.6131 0.4633 0.3601
(± 0.009) (± 0.008) (± 0.007) (± 0.009) (± 0.009) (± 0.009) (± 0.006) (± 0.007)

LIST 0.8250 0.7909 0.6747 0.5815 0.6922 0.6375 0.4729 0.3593
(± 0.009) (± 0.008) (± 0.009) (± 0.010) (± 0.010) (± 0.010) (± 0.008) (± 0.009)

GeoBloom 0.8074 0.7736 0.6369 0.5320 0.7792 0.7224 0.5518 0.4276
(±0.003) (±0.002) (±0.002) (±0.003) (±0.004) (±0.004) (±0.005) (±0.007)
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runs, with the standard deviations for GeoBloom and competitive
baselines DPR-D and LIST. (1) On real datasets, GeoBloom sig-
nificantly outperforms early learning-based methods, including
DRMM-D, ARC-I-D, and PALM, by a large margin. While all these
methods adopt lightweight neural networks, GeoBloom stands out
by harnessing the term-matching capability of Bloom filters. (2)
GeoBloom can rival or surpass the state-of-the-art PLM-based GIR
methods DrW, DPR-D, and LIST. This demonstrates the great ef-
fectiveness of our proposed strategy of evaluating Bloom filter
bits, which provides strong supervised learning capability without
relying on extensive pre-training. (3) On the synthetic datasets Ge-
oGLUE, however, GeoBloom yields similar performance as DPR-D
and LIST. This is because GeoBloom is affected by the fake POIs
in the GeoGLUE dataset, while DPR-D and LIST can exclude such
POIs via negative sampling. Nevertheless, on GeoGLUE𝑐𝑙𝑒𝑎𝑛 where
fake POIs no longer exist, GeoBloom showcases its significant su-
periority over DPR-D and LIST.
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Figure 3: NDCG@1 vs. Training Data across datasets.

5.2.3 Effectiveness vs. Training Data Size. We assess GeoBloom’s
data efficiency on Beijing and GeoGLUE𝑐𝑙𝑒𝑎𝑛 by starting with 2%
of training data and gradually expanding to 100%, simulating the
accumulation of labeled queries over time. We compare GeoBloom
with DPR-D and LIST using NDCG@1, with BM25-D as a baseline.
LIST is not evaluated on GeoGLUE𝑐𝑙𝑒𝑎𝑛 due to its high training
cost, exceeding 24 hours per data point. (1) On the real dataset
Beijing, DPR-D requires about 40% (i.e., 52,000) of training queries
to match the effectiveness of BM25-D, whereas LIST uses around
8% (i.e., 10,000). While both methods use BERT for text similar-
ities, LIST additionally learns the user preference of geographic
distances, thereby showing better data efficiency. (2)GeoBloom can
outperform BM25-D without training data, as it has the same level
of term-matching capabilities as BM25-D while better balancing
the geographic distances. It outperforms DPR-D and LIST with sig-
nificantly fewer training queries, using about 2% and 40% queries
to surpass DPR-D and LIST with 100%. This highlights its data effi-
ciency in the scarcity of labeled queries. (3) On synthetic dataset
GeoGLUE𝑐𝑙𝑒𝑎𝑛 , we observe a significant leap in effectiveness for
both GeoBloom and DPR-D with as little as 2-10% (i.e., < 5,000)
of the training data, suggesting that GeoBloom captures essential
relevance within expert-synthesized data as effectively as DPR-D.
However, DPR-D quickly converges given more training queries,
while GeoBloom continues to improve steadily, showing superior
data efficiency in handling a growing volume of training data.

5.3 Efficiency Studies (RQ2)
We compare the efficiency of GeoBloom againstDPR-DwithHNSW,
LSH, IVF, and IVFPQ from FAISS [12], and LIST with its proposed
learned index. GeoBloom is quantized following Stockfish NNUE
scheme 7, while DPR-D and LIST uses ONNX 8 for acceleration.

5.3.1 Time Efficiency. We assess the average time cost for 5,000
random queries under both GPU and CPU-only conditions on an
Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz with 128GB RAM
and an RTX 3080 with 10GB VRAM. 9 Notably, we test the single-
thread performance for CPU evaluation unless otherwise specified.
Table 5 illustrates that GeoBloom achieves unparalleled inference
efficiency on CPU, comparable to or even 4x faster than the best
GPU-accelerated method DPR-IVF. Although GeoBloom requires
more time to counteract the fake POIs in GeoGLUE, its runtime in
CPU-only scenarios remains superior. Moreover, GeoBloom only
uses 1 of the 20 CPU threads, while GPU-based DPR fully utilizes
the GPU (via batch encoding). When all 20 CPU threads are used,
GeoBloom speeds up linearly and becomes up to 80x faster than the
GPU-based DPR-IVF on real datasets. We also evaluate the training
efficiency with the time to reach the best effectiveness. As shown
in Table 6, while DPR-D benefits from the pre-trained BERT for fast
convergence, training GeoBloom is still faster as it has significantly
fewer parameters and lower time complexity.

Table 5: Query Runtime (ms) across Datasets.

Method Beijing Shanghai GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

Device: GPU
DPR-D-HNSW 7.2 6.4 14.5 9.3
DPR-D-IVF 2.9 2.9 4.0 3.2
DPR-D-LSH 5.2 5.1 31.1 14.3
DPR-D-IVFPQ 3.6 3.7 5.2 4.5
LIST 3.0 3.0 5.1 6.0

Device: CPU
DPR-D-HNSW 294.4 293.2 302.4 296.2
DPR-D-IVF 320.0 328.4 340.8 332.8
DPR-D-LSH 303.7 296.3 304.5 300.9
DPR-D-IVFPQ 334.8 323.7 346.2 339.5

GeoBloom (CPU) 0.694 0.662 29.532 5.501
+ with 20 threads 0.037 0.036 1.563 0.277

Table 6: Training Time in Supervised Settings across Datasets

Method Beijing Shanghai GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

GeoBloom 1h 59m 1h 20m 1h 35m 26m
DPR-D 7h 28m 4h 42m 2h 11m 1h 48m

7https://github.com/official-stockfish/nnue-pytorch
8https://github.com/onnx/onnx
9It is not rigorous to directly compare GPU with CPU, but we select the two devices
with similar prices. An i9-10900X CPU @ 3.70GHz is priced at around $530 USD
(https://www.cpubenchmark.net/) while an RTX 3080 GPU 10GB is priced at $490 USD
(https://www.videocardbenchmark.net/gpu_value.html) on June 1st, 2024.
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5.3.2 Space Efficiency. We compare the CPU memory and disk
usage of GeoBloom with DPR-D and LIST, measured with Linux
VmHWM. To efficiently derive relevance scores with text similari-
ties and geospatial distances, DPR-D and LIST load all POI embed-
dings in memory, following the settings in LIST[43]. As in Table 7,
GeoBloom saves up to 74.72% of the runtime memory. Its supe-
rior space efficiency stems from the use of Bloom filters. Table 8
presents a comparison of the file sizes. Notably, GeoBloom saves
up to 87.63% disk space compared to DPR, making it a practical
option for applications where disk space is at a premium.

Table 7: Runtime Memory (MB) across Datasets

Method Beijing Shanghai GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

DPR-D-HNSW 556 537 9586 2733
DPR-D-LSH 511 495 8543 2440
DPR-D-IVF 512 496 8518 2437
DPR-D-IVFPQ 516 500 8585 2456
LIST 508 505 8515 2421
GeoBloom 132 125 2907 692
(Save) 74.02% 74.72% 65.86% 71.42%

DPR-D Components
ONNX 149.2 149.2 149.2 149.2
POI Embed. 358.6 342.4 8348.8 2277.2
- Index HNSW 47.7 45.2 1087.5 306.3
- Index LSH 3.1 2.9 44.5 13.2
- Index IVF 4.4 4.3 20.2 10.7
- Index IVFPQ 8.4 8.1 87.1 29.8

GeoBloom Components
NNUE 21.9 21.9 38.5 21.9
Bloom Filters 24.4 22.9 706.0 149.7
Node Embed. 17.0 16.2 397.5 108.5
Bloom Filter Tree 60.8 58.5 2255.9 399.9

Table 8: Disk Usage (MB) across Datasets

DPR Beijing Shanghai GeoGLUE GeoGLUE𝑐𝑙𝑒𝑎𝑛

Model 193.97 193.97 193.97 193.97
Embeddings 179.33 171.18 4174.44 1138.62
Total 373.29 365.15 4368.41 1332.58

GeoBloom
Model 20.10 20.10 40.10 20.10
Embeddings 8.90 8.45 198.78 56.12
Bloom Filters 17.98 16.60 319.41 117.74
Total 46.98 45.15 558.29 193.96
(Save) 87.41% 87.63% 87.22% 85.45%

5.3.3 Scalability. We explore the scalability of GeoBloom in both
the training and inference phases. Figure 4 illustrates that the train-
ing time of GeoBloom increases linearly with the volume of training
queries. We also examine the effect of dataset size on the inference
effectiveness and efficiency of GeoBloom by collecting publicly
available POIs in Hangzhou, China, and merging them with the
GeoGLUE𝑐𝑙𝑒𝑎𝑛 POIs. We observe a sub-linear increase in query
time, a benefit derived from our tree-based indexing strategy.
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Figure 4: Scalability Analysis on Hangzhou Data

5.4 Ablation Studies (RQ3)
5.4.1 Effect of Model Components. We remove various compo-
nents from the Bloom Filter Evaluator to analyze their effectiveness
and efficiency impact, measured by NDCG@5 and Query Per Sec-
ond (QPS). As shown in Table 9, in unsupervised settings, removing
Zero Projection breaks the model as the initial relevance scores
are randomized. The Text Norm. and Dist Norm. significantly af-
fect the effectiveness as they ensure a fair balance between text
similarities and geographic distances. In supervised settings, how-
ever, such utility diminishes where the model inherently learns
this balance from data. Replacing LeakyReLU with Sigmoid (where
𝜎′ (𝑥) = 𝜎 (−𝑥)) or removing it reduces effectiveness, as LeakyReLU
introduces non-linearity and mitigates negative impacts from unse-
lected objects with its asymmetric gradient about x=0. Removing
Semantic and Context Score both markedly impact the effectiveness
on GeoGLUE𝑐𝑙𝑒𝑎𝑛 but not on Beijing, as GeoGLUE queries are rich
in geographic context. Table 10 shows that Sparse Evaluation and
Offline Pre-computing are crucial for high efficiency, and Chunked
LeakyReLU brings up to 19% acceleration. Removing the Context
Score enhances speed but compromises effectiveness. In summary,
Zero-Projection, Offline Pre-computing, Sparse Evaluation are crucial
for GeoBloom to work efficiently.

Table 9: Impact on Effectiveness by Model Components

Component Beijing GeoGLUE𝑐𝑙𝑒𝑎𝑛

NDCG@5 Impact NDCG@5 Impact

GeoBloom-unsupervised 0.4730 0.3254
w/o Zero Projection 0.0211 -95.54% 0.0254 -92.19%
w/o Text. Norm. 0.4591 -2.94% 0.2709 -16.75%
w/o Dist. Norm. 0.4231 -10.55% 0.1618 -50.28%

GeoBloom-supervised 0.5873 0.5518
w/o Zero Projection 0.5815 -0.98% 0.4920 -10.83%
w/o Text. Norm. 0.5872 -0.02% 0.5139 -6.86%
w/o Dist. Norm. 0.5874 0.02% 0.5144 -6.77%
w/o LeakyReLU 0.5357 -8.79% 0.4641 -15.88%
- replace with Sigmoid 0.5668 -3.49% 0.5049 -8.49%
w/o Semantic Score 0.5821 -0.88% 0.5034 -8.76%
w/o Context Score 0.5772 -1.73% 0.5133 -6.98%

5.4.2 Effect of the Token Order Component. We further evaluate the
effectiveness of the optional token order component in Section 4.1.
We perform a grid search over the number of stacked 1-D convolu-
tion layers and kernel sizes, setting them to 3 and 5, respectively.
Since long texts with critical token orders rarely appear in our eval-
uation datasets, we use GPT-4o to synthesize 1,000 long queries,
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Table 10: Impact on Efficiency by Model Components

Component Beijing GeoGLUE𝑐𝑙𝑒𝑎𝑛

QPS Impact QPS Impact

GeoBloom 1418.75 0.00% 191.46 0.00%
w/o Offline Pre-computing 43.64 -96.92% 4.42 -97.69%
w/o Sparse Evaluation 8.24 -99.42% 1.14 -99.41%
w/o Chunked LeakyReLU 1145.42 -19.27% 177.33 -7.38%
w/o Context Score 1538.43 8.44% 225.53 17.79%

each paired with 1 matching and 4 non-matching POIs, using the
following prompt: “Generate examples for testing the model’s ability
to capture token orders. Each example should include: (1) Query: A
description of an entity with a specific attribute order (e.g., ’Cafe with
food but without Wi-Fi’). (2) 1 Match: A description of the same entity
with attributes in the same order but rephrased (e.g., ’Cafe without
Wi-Fi and ... but with food’). (3) 4 Non-Matches: Descriptions of the
same entity where attributes appear in reversed or incorrect orders
(e.g., ’Cafe with Wi-Fi ... but without food’).” The synthetic data is
split into a 700/100/200 train/dev/test set. For a fair comparison,
we also randomly select 1,000 labeled queries from the Beijing and
GeoGLUE𝑐𝑙𝑒𝑎𝑛 datasets (each has already labeled with 1 matching
POI) and use BM25-D to select 4 non-matching POIs. Intuitively,
GeoBloom with the proposed component should capture the token
order in long text sequences (which BM25-D cannot capture), and
perform better on all datasets. However, as shown in Table 11, while
the proposed component effectively captures useful token order
information in synthetic data, it fails to improve the effectiveness
on Beijing and GeoGLUE𝑐𝑙𝑒𝑎𝑛 queries, suggesting that the token
order in long sequences is not important for these two datasets.

Table 11: NDCG@5 with the Token Order Component

Dataset Synthetic Beijing queries GeoGLUE𝑐𝑙𝑒𝑎𝑛 queries

GeoBloom 0.5353 0.4624 0.4350
+ Token Order 0.9408 0.4533 0.4332

Table 12: Effect of the Bloom Filter Tree

Search strategy Beijing GeoGLUE𝑐𝑙𝑒𝑎𝑛

NDCG@5 QPS NDCG@5 QPS

Brute-force 0.4671 16.53 0.3010 1.98
Bloom Filter Tree 0.4730 1418.75 0.3254 191.46

5.4.3 Effect of the Bloom Filter Tree. We investigate the effect of
Bloom Filter Tree effectiveness and efficiency in unsupervised set-
tings. Table 12 shows that the Bloom Filter Tree is up to 97 times
faster than a brute-force search with similar or even better effec-
tiveness, as the in-beam normalization more accurately identifies
relevant POI clusters in remote areas and excludes nearby areas
without relevant texts, leading to marginal gains in effectiveness.

5.4.4 Effect of Tokenizers. We analyze how the choice of tokenizers
affects the effectiveness of GeoBloom in unsupervised settings. Ta-
ble 9 shows that the combination of 1-gram, 2-gram, and dictionary-
based tokenizers achieves the best Recall@20 and NDCG@5, en-
hancing the term-matching capability of Bloom filters.

Table 13: Effect of Tokenizers

Tokenizer Beijing GeoGLUE𝑐𝑙𝑒𝑎𝑛

Recall@20 NDCG@5 Recall@20 NDCG@5

1-gram 0.5835 0.4404 0.3831 0.2114
2-gram 0.6180 0.4675 0.4898 0.3046
3-gram 0.4542 0.3689 0.4116 0.2540
Dict. (Jieba) 0.6164 0.4646 0.4463 0.2627
1,2,3-gram 0.6064 0.4594 0.4601 0.2880
1,2-gram+Dict. 0.6251 0.4730 0.5204 0.3254

5.4.5 Effect of Beam-widths. We examine how varying the beam
width impacts the balance between effectiveness and efficiency.
Figure 5 demonstrates that upon reaching a specific threshold (200
for Beijing and 400 for GeoGLUE𝑐𝑙𝑒𝑎𝑛), any further increase in
beam width only marginally improves effectiveness. Consequently,
we can choose a faster speed with a slight decrease in effectiveness.
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Figure 5: Effect of Beam-widths on Beijing and GeoGLUE𝑐𝑙𝑒𝑎𝑛

6 CONCLUSIONS
In conclusion, this paper introduces GeoBloom, a novel framework
tailored for the challenges of Geographic Information Retrieval,
which equips the unsupervised strengths and the space efficiency
of Bloom filters with the power of deep learning. Extensive ex-
periments demonstrate that GeoBloom not only achieves superior
effectiveness in both supervised and unsupervised settings but
also showcases remarkable time and space efficiency. Future work
directions include the adoption of learnable hash functions, ad-
vanced Bloom filter variants, sophisticated index structures, and
multi-modality data to facilitate all-in-one retrieval platforms.
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