
Evaluating Continuous!eries with Inconsistency Annotations
Samuele Langhi

samuele.langhi@univ-lyon1.fr
Lyon 1 University

Lyon, France

Angela Bonifati
angela.bonifati@univ-lyon1.fr

Lyon 1 University
Lyon, France

Riccardo Tommasini
riccardo.tommasini@insa-lyon.fr

INSA Lyon
Lyon, France

ABSTRACT
Continuous Queries (CQs) run inde!nitely, processing in!nite data
streams and producing continuous outputs. They commonly use
window functions to segment streams into !nite chunks for compu-
tation. Ensuring data integrity in CQs is challenging, involving, for
example, streaming joins for binary constraints. Current methods,
like dropping or repairing inconsistent data, can harm throughput
and increase latency. This paper proposes a novel approach using
provenance-based techniques to map violations in input streams
to CQ results with minimal overhead. This ensures continuous
data "ow and maintains the analytical integrity of CQs. Our study
explores the feasibility and e#ciency of this method, addressing
a signi!cant gap in applying provenance techniques to streaming
data. While provenance-based techniques have proven e$ective
for static data, their application in streaming contexts remains
unexplored. Our solution addresses this gap, achieving a stable
throughput across increasingly demanding memory loads wrt to
the baselines, spacing between a 10% increase for medium-sized
bu$ers (i.e., the windows), up to 80% for heavier loads. Moreover,
results show the minimal impact of annotation (up to 25%) in the
total execution runtime, demonstrating the e$ectiveness of our
graph-based approach.

PVLDB Reference Format:
Samuele Langhi, Angela Bonifati, and Riccardo Tommasini. Evaluating
Continuous Queries with Inconsistency Annotations. PVLDB, 18(5): 1321 -
1334, 2025.
doi:10.14778/3718057.3718062

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/semlanghi/cosqa.

1 INTRODUCTION
Continuous Queries (CQ) di$er from classical DBMS queries be-
cause they are issued once and run until explicitly terminated [8].
CQs consume one or more in!nite data streams and produce an-
other as output. Thus, they are evaluated under Continuous Seman-
tics [46]. There are many ways to achieve continuous semantics [8],
the most common is using window functions [48], i.e., specialized
operators that chunk the input streams into !nite portions where
it is possible to compute. As part of the query de!nition, windows
are user-de!ned to capture phenomena occurring on the stream.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718062

In DBMS, integrity checks are performed before the query evalu-
ation by excluding or repairing tuples. On the other hand, CQs are
issued once and evaluated periodically according to their window
function [31]. Thus, enforcing data integrity while answering CQs
requires determining what records violate a given IC over in!nite
data during the query execution. Intuitively, the mise-en-place of a
versatile approach for detecting and handling constraint violations
on the "y impacts the query performance and the results. If the
constraint concerns a single tuple, e.g., Schema Constraint [19],
violations can be detected using stateless queries. Conversely, bi-
nary constraints, like Primary Keys [23], require a self-join over
the streaming data, i.e., an expensive operation.

Detection is not the only issue. Dropping inconsistent records,
as done in DBMS, negatively impacts throughput. Conversely, re-
pairing records using data mining techniques [44] is time-sensitive
and, thus, has an impact on latency [44]. Moreover, neither of the
approaches takes into account the standing nature of continuous
queries. Indeed, they are applied before the (windowed) query exe-
cution permanently changes the input stream and, thus, they lose
the mapping between input and output, with the risk of missing
answers [39] or inaccurate analysis.

This paper advocates for a third way that requires deriving a
mapping between the violations in the input stream and the contin-
uous query results. In particular, we propose to map the integrity
violations detected in the input streams to the continuous query re-
sults using how-provenance annotations. Although the approach is
particularly suitable for streaming applications as it keeps data "ow-
ing [45], it was only applied to static data [26]. The main challenge
for streaming lies in the detection process, which, if unoptimized,
can severely harm the performance.

Our investigation builds on the work of Issa et al. [26] in the
static context, representing streaming constraint violations as prove-
nance annotations and integrating them within a novel provenance
framework for window-based continuous queries. We show the
correctness of the approach by drawing a commuting diagram, as
it is done for similar streaming properties such as snapshot re-
ducibility [30]. To evaluate the generality of our framework and
empirically validate the performance of our prototype, we focus
on three families of unary and binary constraints that have been
applied over streams: (i) Primary keys (PK) enforce uniqueness in
relational data, theyhave been used to optimised streaming joins
in continuous queries [23] and for deduplication [18]. (ii) Schema
Constraints (SH) [19] ensure the structural and domain integrity of
streams’ records, e.g., that attributes are present or types/thresholds
are respected. (iii) Speed Constraints (SC) [44] are denial constraints
used in domains like tra#c or electric grid monitoring that limit
the variation speed of a given value between two instants. Such
constraints prevent abrupt, unrealistic changes that could indicate
sensor failures or domain-speci!c anomalies.

1321

https://doi.org/10.14778/3718057.3718062
https://github.com/semlanghi/cosqa
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3718057.3718062
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Scenarios that violate constraints IC1 and IC2 when
they hint at a given behaviour of the electric system.

In summary, the paper provides the following contributions:
• A novel provenance framework based on semirings [24], in par-

ticular the polynomial semirings (the most general), that lifts
windowing at the semiring level. Moreover, we de!ne a stream
positive algebra of operators for consistency-aware continuous
query answering, which allows annotation manipulation.

• A method for e#ciently detecting and propagating constraint
violations in CQs. We show that a naïve solution using clas-
sic streaming operators impacts the query complexity that is
quadratic in the window size. Our approach, InkStream, uses a
list-based annotating solution that outperforms the naive one for
any type of constraint. Also, we propose a graph-based approach
that leverages constraint transitivity to optimize the annotation
process, achieving linear-time complexity in the number of vio-
lations in a window.

• We implemented the naive solution, Inkstream, and its optimi-
sation in Kafka Streams [43]. Moreover, we include an addi-
tional baseline based on Inca [26] to show the inadequacy of
non-streaming solutions. Our evaluation considers !ve datasets,
six continuous queries, and a qualitative study. We measure
throughput, total runtime duration, and scalability, varying the
stream inconsistencies percentage. Our experiments show mini-
mal overhead in throughput wrt processing without violation
mapping and better performance than the baseline [26]. More-
over, we prove the versatility of our inconsistency management
mechanism wrt to other techniques, e.g., repair [44].

Outline. Section 2 presents the paper’s running example. Section 3
formalizes the problem and introduces the preliminary concepts.
Section 4 explains the formal framework based on provenance
semirings for mapping stream inconsistencies to the continuous
query results. Section 5 shows how these concepts are integrated
with modern streaming solutions. Section 6 discusses the results of
our experimental evaluation. Section 7 contains the related work on
provenance, integrity over streams, and consistent query answering.
Finally, Section 8 presents the conclusion and future work.

2 MOTIVATING EXAMPLE
FEG, a !ctional electricity provider, wants to monitor the cumula-
tive usage cost of two grids, denoted A and B, while correctlymanag-
ing possible malfunctions. The data comes as a relational stream, i.e.,

an in!nite sequence of time-ordered records. In particular, the Con-
sumption stream’s schema is →UUID, area, consA, consB, ts↑, with
area being the geographical area, e.g., US, consA and consB being
instantaneous consumption, UUID is a unique identi!er generated
by the monitoring system, and ts the timestamp.
SELECT area ,sum(consA)*1.2+ sum(consB)*1.5,ts
FROM Consumption [RANGE 5 minutes SLIDE 2 minutes]
WHERE consA >= 0 AND consB >= 0
GROUP BY area;

Listing 1: Consumption stream Monitoring: the cumulative
costs by area within 5 min every 2 min.

Table 1 shows an example of the stream. Listing 1 shows the
monitoring query, which processes the Consumption stream; it
groups records by area and computes the total price of electricity
consumption over the last 5 minutes. The total price is calculated
by summing up all instantaneous consumption for the two grids
and multiplying each sum with the respective consumption/dollars
ratio, i.e., 1.2 for grid A and 1.5 for grid B.

FEG strives to reactively back up malfunctions in both power
grids. More speci!cally, Figure 1 presents three possible malfunc-
tions scenarios, where the system must be able to discern between
cases where the malfunction is correctly backed up (blue rectan-
gle), to the one where the backup system is faulted (red rectan-
gle). To achieve this goal, they adopt Speed Constraints [44], like
those outlined in rules IC1 and IC2, on data records. These con-
straints help identify irregular "spikes" (positive or negative) in
consumption [44]. Moreover, IC3 avoids the even unlikely UUID col-
lisions [27]. For the following de!nition, we reference records with
letters 𝐿 and 𝑀 within a sample stream 𝑁 , represented in Table 1.

↓𝐿,𝑀 ↔ 𝑁 ↗ 2 ↘ 𝐿 .𝑂𝑃𝑄𝑅𝑆 ↗ 𝑀 .𝑂𝑃𝑄𝑅𝑆

𝐿 .𝑇𝑅 ↗ 𝑀 .𝑇𝑅
↘ 2 (IC1)

↓𝐿,𝑀 ↔ 𝑁 ↗ 2 ↘ 𝐿 .𝑂𝑃𝑄𝑅𝑈 ↗ 𝑀 .𝑂𝑃𝑄𝑅𝑈

𝐿 .𝑇𝑅 ↗ 𝑀 .𝑇𝑅
↘ 2 (IC2)

↓𝐿,𝑀 ↔ 𝑁 𝐿 .𝑉𝑉 𝑊𝑋 ω 𝑀 .𝑉𝑉 𝑊𝑋 (IC3)

As shown in Figure 1, the three scenarios correspond to three
violation patterns. Notably, repairing the related integrity violations
like in [44] is not advisable, since data would be modi!ed to respect
the constraint, thus neglecting a more comprehensive analysis of
the violations. Indeed, simultaneous violations of IC1 and IC2 hint
at desired behaviors of the system (cf. Figure 1). Therefore, it is
essential to encode integrity violations in provenance metadata and
provide end users with access.

Such integrity violations and the respective violating records
should be clearly identi!able in order to determine where to encode
the provenance metadata. This guarantee is not always provided
for ternary constraints such as the following:

𝑊𝑌≃ : ¬⇐𝐿,𝑀, 𝑍 (𝐿 .𝑉𝑉 𝑊𝑋 = 𝑀 .𝑉𝑉 𝑊𝑋) ⇒ (𝑀 .𝑉𝑉 𝑊𝑋 = 𝑍 .𝑉𝑉 𝑊𝑋)
When validated over sample stream 𝑁 from Table 1, the constraint
will consider all triples that contain records 𝑎7 and 𝑎8 as inconsistent.
Moreover, all records in the streamwould be considered in the set of
violating triples, thus leading to ambiguity in the violation detection.
In such cases, determining how to encode violation metadata is
indeed not uniquely determined, and falls beyond the scope of this
work (see Section 8). Consequently, in the rest of the paper we focus
on the classes of unary and binary constraints, e.g., IC3 and IC1.

1322

Table 1: Sample stream 𝑁 . In red the sudden changes (IC1/IC2)
and in orange UUID collisions (IC3).

UUID area ts consA consB id
74fcf75a... Europe 0 8 2 𝑎1
...
51361676... US 2 8 2 𝑎6
d8f490c1... Europe 3 8 2 𝑎7
d8f490c1... US 3 8 2 𝑎8
05d6efc8... Europe 4 5 2 𝑎9
c0a93dda... US 4 5 5 𝑎10
d1183d9b... Europe 5 2 2 𝑎11
edfaed34... US 5 3 7 𝑎12
f4e29872... Europe 6 0 2 𝑎13
e3c97cc3... US 6 0 10 𝑎14
f4e29872... Europe 7 0 2 𝑎15
...

3 PROBLEM FORMULATION
This section formalizes the problem that we address in this work,
i.e., constraint violation mapping from input streams to continu-
ous query answers. The section introduces various notations used
throughout the paper.
Window-Based Continuous Queries. As common for modern
streaming systems, we assume continuous queries can be repre-
sented as Direct Acyclic Graphs (DAG) of operators, e.g., in Kafka
Stream (our engine of choice) [43]. In particular, we consider CQs
expressed over relational streams (cf De!nition 3.1) as a combina-
tion of the Selection, Projection, Union and Join with a time-based
window function to limit the query scope. Due to the lack of space,
we refer to [30] for a formal de!nition of such operators for rela-
tional streams, while we describe window functions below.

De!nition 3.1. A data stream is an in!nite sequence of records
𝑎 = (𝑏, 𝑐), where𝑏 is a tuple in ω, and 𝑐 is a timestamp in T. Events
in the stream are ordered by their timestamps, denoted as 𝑎 .𝑇𝑅 .

T!"#$B%&#’W!(’)* F+(,-!)(&.Given a time domain T, windows
are de!ned as functions that, given a timestamp, return an interval,
i.e.,𝑑 : T ⇑ T ⇓ T where T is a set of timestamps. We denote
the set of all possible intervals asW and Q𝐿 a continuous query
that adopts a given window function𝑑 , and with Q𝐿 (𝑁) the result
stream of that query evaluated on input stream 𝑁 . Operationally,
time-based sliding windows are de!ned as a tuple (𝑒, 𝑓) where 𝑒
represents the size and 𝑓 the slide [16], e.g., respectively 5 and 2
minutes in Listing 1. Applying a window function𝑑 to a stream 𝑁
assigns each record of 𝑁 to an intervalW, and 𝑁 [W] de!nes a !nite
portion of 𝑁 records within an intervalW.

De!nition 3.2. Given a stream 𝑁 , its evaluation against aWindow-
based Continuous QueryQ𝐿 is de!ned as the same query evaluated
over all intervalsW returned by𝑑 (W ⇔𝑑). More formally,

Q𝐿 (𝑁) =
)︄

W⇔𝐿

Q(𝑁 [W])

Integrity constraints (IC) are logical rules that ensure data con-
sistency within a database. In this work, we will cover three types
of ICs, i.e., Speed Constraints (SC) [44], e.g., IC1 and IC2, Primary
Keys (PK), e.g., IC3, and Schema Constraints (SH) [19].

𝑁𝑀𝑁 𝑁𝑂𝑃𝑄

𝑔𝑀𝑁 𝑔𝑂𝑃𝑄

Q𝐿

𝑅 𝑆

𝑇

Figure 2: Commuting Diagram for Problem 1: S𝑀𝑁/𝑂𝑃𝑄 are the
input and output streams, 𝑔𝑀𝑁/𝑂𝑃𝑄 are the constraint viola-
tions associated to S𝑀𝑁/𝑂𝑃𝑄 respectively using a and b (to be
determined), and c from 𝑔𝑀𝑁 to 𝑔𝑂𝑃𝑄 is also to be determined .

For all kinds of IC, their evaluation is conceptually rooted in
query answering. In practice, the evaluation of a given constraint
𝑊𝑌 can be reduced to a query Q𝑈𝑉 that returns the set of violating
records [41]. Q𝑈𝑉 is typically expressed using a language like SQL.
SELECT C1.*, C2.*
FROM Consumption AS C1, Consumption AS C2

[RANGE 5 minutes SLIDE 2 minutes]
WHERE (C1.consA -C2.consA)/(C1.ts-C2.ts)<-2 OR

(C1.consA -C2.consA)/(C1.ts-C2.ts) >2;

Listing 2: Query evaluating IC1, window from Listing 1.

Listing 2 shows the window-based CQ derived from IC1 evalu-
ated over the Consumption stream. The query self-joins the stream,
detecting and searching for records that concur in the violation of
constraint IC1 (highlighted in red in Table 1).

De!nition 3.3. Given n-ary constraint 𝑊𝑌 and a stream 𝑁 , the
violation set of 𝑊𝑌 wrt to 𝑁 , denoted as 𝑔 (𝑊𝑌, 𝑁), is the set of all
combinations of records 𝑎1, ..., 𝑎𝑁 ↔ 𝑁 such that (𝑎1, ..., 𝑎𝑁) ↔ Q𝑈𝑉 (𝑁).

This paper advocates for consistency-awareness [26], i.e., given
a (set of) constraint(s) de!ned on the input, we aim at providing a
mapping between the violations in the input stream and the CQ re-
sults. Below, we formalise the problem using a commuting diagram
shown in Figure 2. The intuition is that constraint violations in the
input impact the query result, and thus, there should be a function
applicable to the query result that can map its consistency back to
the consistency of the input. Figure 3 shows why the DBMS-like
approach and data repair do not commute. The former !lters out
the inconsistent records through a preliminary query ¬Q𝑈𝑉 that
takes the consistent records. In addition to negatively impacting
throughput, this solution renders impossible violation detection
directly on the output, i.e., the set 𝑔𝑂𝑃𝑄 , as the violation set 𝑔𝑀𝑁
is emptied before the user-de!ned query processing. Conversely,
the latter, data repair [44], makes also impossible 𝑔𝑂𝑃𝑄 . The repair
strategy 𝑈𝑉 leads to irreversible data modi!cations, which empties
𝑔𝑀𝑁 by construction. Indeed, a function 𝑂 that makes the diagram
commit does not exist (an empty domain makes it not a function).
Constraint-speci!c repairs are usually window-based and may lead
to irreversible data modi!cations based on a !nite data portion.

P.)/0#". 1 (C)(-!(+)+& V!)0%-!)(M%11!(2). Let 𝑁𝑀𝑁 be a
stream, Q𝐿 be a window-based continuous query with output stream
𝑁𝑂𝑃𝑄 , and 𝑊𝑌 be an integrity constraint. We call𝑔𝑀𝑁 the set of violations
of a constraint 𝑊𝑌 generated in stream 𝑁𝑀𝑁 . The problem of continuous
violation mapping is to map the inconsistency of the query results wrt
𝑊𝑌 , represented by the violation set𝑔𝑂𝑃𝑄 , with the violations generated
by records in 𝑁 , which translates into identifying the transformation
𝑖, 𝑗, and 𝑂 in the commuting diagram in Figure 2.

1323

𝑁𝑀𝑁 𝑁 ≃𝑀𝑁 𝑁𝑂𝑃𝑄

𝑔𝑀𝑁 ↖ 𝑔𝑂𝑃𝑄

𝑊𝐿
𝑀𝑁

¬𝑊𝐿
𝑀𝑁 𝑂𝑋 𝑌𝑀𝑁 𝑊𝐿

𝑆

/𝑍𝑂𝑃 𝑇

Figure 3: The commuting diagram for the !lter-out (¬𝑘𝐿
𝑈𝑉)

and repair (𝑈𝑉) approaches.

4 CONTINUOUS VIOLATIONS MAPPING
This section introduces our solution to Problem 1 based on query
provenance [24]. First, the section recaps the essential notions on
query provenance and semirings. Then, it presents our extension to
the provenance semiring framework for window-based continuous
queries and the operators of the Streaming Positive Algebra. Finally,
it draws a commuting diagram that speci!es Diagram 2.

4.1 Query Provenance and Semirings
Query provenance takes the form of annotations on the output
records based on source ones. That can be as simple as enriching the
output with the set of all the contributing records IDs, like is done
in data warehousing [14], or complex as in why-provenance [9],
where results are annotated with sets of sets of IDs.

Provenance Semirings are used in data management to ab-
stract di$erent provenance models [24]. Formally, a semiring is
an algebraic structure of the form (𝑙, +,⇓, 0, 1), where + and ⇓
are addition and multiplication over 𝑙 , e.g., + = ↙,↗ = ∝ when
𝑙 = P(ω); Element 0 and 1 are respectively the neutral element of
+ and ⇓, e.g., 0 = ↖, 1 = ω when 𝑙 = P(ω). Notably, (𝑙, +, 0) and
(𝑙,⇓, 1) are commutative monoids and + is distributive over ⇓, i.e.,
, 0 is the annihilating element for ⇓, i.e., ↓𝑖 ↔ 𝑙,𝑖 + 0 = 𝑖, 𝑖⇓ 1 = 𝑖,
and 𝑖⇓0 = 0. When used for provenance over databases, each tuples
is assciated with an element of the semiring, e.g., A : ω ⇑ P(ω).
Moreover, Green et al. de!ned the Positive Relational Algebra [24]
over K-relations, where each relational operator modi!es the K-
Relation applied on its result tuples, seamlessly integrating prove-
nance semirings within relational queries. This paper focuses on
polynomial semirings, as they are the most informative form of
provenance. The semiring is de!ned as (N[X], +, ·, 0, 1), which in-
cludes the set of bounded-degree, !nite polynomials with natural
coe#cients and in!nite variables [24].

4.2 Provenance for Streaming Integrity
In principle, the representation of constraint violations can be ex-
pressed through nested lists, which can be de!ned within the prove-
nance framework through a multi-set semiring, which is rather

Figure 4: The relationship behind the set of possible windows
W, AW and the annotation polynomial.

complex. For a more intuitive approach, we rely on the polynomial
semiring [24]. Thus, the set of polynomial variables X is an in!-
nite yet countable set of violation variables 𝑔𝑎 built from stream 𝑁
records. More speci!cally, a variable𝑔𝑎 in the polynomial annotated
on record 𝑎 , indicates a violation related with 𝑎𝑎 , i.e., ¬𝑊𝑌 (𝑎 , 𝑎𝑎).

Nevertheless, a straightforward extension of the polynomial
semiring to data streams is not feasible since it does not respect
two requirements of semirings [24], i.e., (a) The support of the K-
relationmust be !nite, and a stream 𝑁 is in!nite as per De!nition 3.1.
(b) Each element in the co-domain of a K-relation is !nite, and a
record 𝑎 might violate a constraint with in!nite other records. To
adjust both problems, we limited the support to each !nite subset
identi!ed by the window function, introducing an exponent in the
polynomial that nulli!es variables outside a window scope [32].

These extensions led to the de!nition of a novel semiring based
on the set N[W(X)], i.e., the polynomials based on a !nite subset
of X de!ned over records in 𝑁 [W], and an alternative to K-relation
that we nameW-relation (cf De!nition 4.1). An essential di$erence
with the non-streaming scenario is that a W-relation is de!ned for
each !nite subset of 𝑁 identi!ed by a given window function𝑑 .
Such di$erence a$ects the algebra as we discuss in Section 4.3.

De!nition 4.1. Let (N[W(X)], +, ·, 0, 1) be the semiring of poly-
nomials with natural coe#cients and a !nite set of variables. Given
a stream 𝑁 and a time intervalW, theW-relation, denoted as AW,
maps each record in 𝑁 [W] to a polynomial in N[W(X)].

E3%"10#. 1. We can further describe the semiring N[W(X)] in
the context of our running example. In particular, we will consider the
variable set X as the ensemble of all variables of the form ε𝑀 , ϑ𝑀 and
𝑚𝑀 , where each symbol is associated with a speci!c constraint, IC1,
IC2 or IC3, while each index references a given record 𝑎𝑀 . The interval
W, preliminary identi!ed by the window from Listing 1, limits those
indexes to records with timestamps within W. Given W = [0, 5],
valid polynomials are the following, where exponents are used as
constraint-dependent violation degrees (see De!nition 4.2):

The main idea is annotating each record 𝑎 with monomials con-
taining constraint-speci!c labels of the form 𝑔𝑎 , with 𝑛 being the
index of the record with which the constraint is violated. The win-
dow limits the size of the annotation as it approximates any in!nite
polynomial to a !nite one. This approximation is done in two steps
through a function 𝑜 , that goes to zero when the passed record 𝑎𝑎
timestamp is not in W (i.e., ¬(𝑎𝑎 .𝑇𝑅 ↔ W)). More formally,

De!nition 4.2. AW is a function de!ned on the set of records in
a stream 𝑁 , such that:

AW (𝑋) = 𝑏 (𝑋) ·
[︄
𝑄𝑅 ↔𝑆

𝑍
𝑇 (𝑄𝑅) ·𝑈 (𝑄 ,𝑄𝑅)
𝑅 with 𝑏 (𝑋) =

]︄
1 𝑋 .𝑄𝑐 ↔ W

0 𝑂𝑄𝑑𝑒𝑋𝑓𝑀𝑐𝑒

where W is an interval de!ned by a window function 𝑑 (see
Section 3), and 𝑓 is constraint-speci!c, de!ned in Table 2.

Moreover, 𝑓 is constraint-speci!c and de!ned in Table 2. SHs
and PK have the simplest W-relation, which evaluates the viola-
tion as either present or not, i.e., each violation has a maximum

1324

Table 2: TheW-relations for each of the analysed constraints.

Constraint W-Relation (𝑓)
Primary Keys (𝑝𝑙) 𝑓 (𝑎 , 𝑎𝑎) = 1 if (𝑎 , 𝑎𝑎) ↔ 𝑔 (𝑝𝑙, 𝑁)
Schema Constraints (𝑁𝑞) 𝑓 (𝑎 , 𝑎𝑎) = 1 if (𝑎) ↔ 𝑔 (𝑁𝑞 , 𝑁)
Speed Constraints (𝑁𝑌) 𝑓 (𝑎 , 𝑎𝑎) = 𝑟𝑎 (𝑎) if (𝑎 , 𝑎𝑎) ↔ 𝑔 (𝑁𝑌, 𝑁)

degree of 1 and a minimum of 0. Conversely, one can include a
!ne-grain violation degree for SCs as exponents, e.g., the di$erence
𝑟𝑎 between the annotated record value and its minimum change
repair [44]. Example 2 shows such calculus for the example from
Section 2. Notably, the degree encoding is domain-speci!c, e.g., one
can alternatively use the time distance between the two violating
records can be used as a decay parameter of the violation as in [12].
Constraint Symmetry. The binary constraints considered are all
based on symmetric relations, e.g., i$ 𝑎1 violates a PK in combina-
tion with 𝑎2, the inverse is also true. Symmetry, in combination with
the order of arrival of the violating records [4, 16], allows avoiding
to annotate both records involved in a violation. In practice, when
two records generate a violation, we annotate the most recent one. To
determine the violations generated by each new record we validate
it with past records, i.e., the Backward Context (BC) [32]. Such inter-
pretation is motivated for PKs, where the earliest violating element
remains consistent at the time of its arrival, while the latest one trig-
gers the violation. Alternatively, one can annotate with respect to
future records, i.e., the Forward Context (FC). Table 3 shows both
annotations, i.e., BC (A) and FC (A𝑔𝑉) for the considered stream
portion. The amount of information captured by both methods is
equal, with each violation label having a counterpart with the same
exponent. Moreover, one can reconstruct AW

𝑔𝑉 from AW through
the record indexing, e.g., i$ ε27 ↔ AW (𝑎13) then ε213 ↔ AW

𝑔𝑉 (𝑎7).
Despite the methods being equivalent, FC-annotation is not com-

patible with some state-of-the-art stream processing engines, e.g.,
Kafka Streams [43], since it would require to wait all necessary
future records before annotating, ultimately requiring custom wa-
termarking and possibly cause unintended delays [6]. Moreover,
BC-annotation allows each record to be annotated immediately

Table 3: Records from stream 𝑁 with their annotations. Vio-
lations of IC1, IC2 and IC3 are respectively denoted ε, ϑ, 𝑚.

UUID area ts cA cB id AW AW
𝑔𝑉

d8f49.. Europe 3 8 2 𝑎7 1
𝑚8 ⇓ ε7 ⇓ ε211 ⇓

ε213

d8f49.. US 3 8 2 𝑎8 𝑚7
ε10⇓ϑ10⇓ε12⇓
ϑ12 ⇓ ε214 ⇓ ϑ214

05d6e.. Europe 4 5 2 𝑎9 ε7 ε11 ⇓ ε13
c0a93.. US 4 5 5 𝑎10 ε8 ⇓ ϑ8 ε14 ⇓ ϑ14
d1183.. Europe 5 2 2 𝑎11 ε27 ⇓ ε9 1
edfae.. US 5 3 7 𝑎12 ε8 ⇓ ϑ8 ε14 ⇓ ϑ14
f4e29.. Europe 6 0 2 𝑎13 ε27 ⇓ ε9 1

e3c97.. US 6 0 10 𝑎14
ε28 ⇓ ε10 ⇓ ε12 ⇓
ϑ28 ⇓ ϑ10 ⇓ ϑ12

1

upon consumption and passed down the pipeline without retract-
ing the annotation later, o$ering latency gain. For these reasons,
we leave the FC annotation investigation for future works.

E3%"10#. 2. Table 3 shows how a !nite portion of a stream can be
annotated wrt the violation of constraints IC1, IC2, and IC3. Record
𝑎7 is consistent within intervalW = [0, 3], and thus annotated with 1
(cf. De!nition 4.2). Additionally, constraint IC3 is violated by 𝑎7 and
𝑎8 since they have the same UUID. Such violation is detected at the
arrival of 𝑎8, which is annotated with 𝑚7. Record 𝑎10 violates both IC1
and IC2 when combined with record 𝑎8. Record 𝑎11, on the other hand,
violates IC1, but in combination with two distinct records, i.e., 𝑎7 (ε27)
and 𝑎9 (ε9). Thus, given an interval W = [0, 4], 𝑎10 and 𝑎11 will be
respectively annotated with the polynomials from Example 1, i.e.,
ε8 ⇓ ϑ8 and ε27 ⇓ ε9. As seen in the annotation, 𝑎11 and 𝑎7 present
a degree of violation of 2, which corresponds to a higher exponent,
calculated through the following formula

7 (𝑋11) = 𝑋11 .𝑇𝑂𝑁𝑐𝑖⌊︄⨌⨌⨌⨌⨌⨌⌋︄⌈︄⨌⨌⨌⨌⨌⨌⌉︄
actual 𝑄11

↗ 𝑋7 .𝑇𝑂𝑁𝑐𝑖 + 2(𝑋11 .𝑄𝑐 ↗ 𝑋7 .𝑄𝑐)⌊︄⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⌋︄⌈︄⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⌉︄
minimum repair of 𝑄11 wrt 𝑄7

= 2 ⇑ ε27

4.3 Streaming Positive Algebra
In the following, we provide the operator de!nitions for the Stream-
ing Positive Algebra (SA+), which describes the rules for combining
annotations. The algebra operators must be closed under a speci!c
set, that we identify the set ofW-relations, over all possibleW.
�#,-!)(. Given a predicate 𝑝 : (ω, T) ⇑ {0, 1}, selection is the
application of theW-relations multiplied by the selection predicate.

(𝑠+𝑗A
W) (𝑎) = AW (𝑎) · 𝑝 (𝑎)

1.)4#,-!)(. Let 𝑆 and 𝑉 be sets of attributes such that 𝑆 ′ 𝑉 .
Given a W-relation 𝑡𝑘AW de!ned over a stream schema 𝑆, and
AW de!ned over record tuples with schema𝑉 is

(𝑡+𝑘A
W) (𝑎) =

{︄
𝑋=𝑙𝑉𝑋 ≃⇒AW (𝑋 ≃)ω0

AW (𝑎 ≃)

Under set semantics, projection may cause records to collapse. In
such cases, we shall sum of all annotations of the collapsed records.
J)!(. Given two annotation policies AW

1 ,AW
2 , and records 𝑎1 =

(𝑏1, 𝑐1), 𝑎2 = (𝑏2, 𝑐2), 𝑎 = 𝑎1 𝐿𝑀 𝑎2, the annotation is

(AW1
1 𝐿𝑀+ AW2

2) (𝑎) = AW3
𝑋𝑒𝑐 (𝑎) = AW1

1 (𝑎1) · AW2
2 (𝑎2)

with W3 = [𝑢𝑣𝑄(W1 .𝑃,W2 .𝑃),𝑢𝑖𝐿 (W1 .𝑂,W2 .𝑂)]
As a derivative of the Cartesian product, the !nal annotation is

the product of the two input annotations when performing a join.

E3%"10#. 3. Projecting over attribute consB causes the collapse
of di"erent records with the same value, e.g., records 𝑎7 and 𝑎8 have
both value 2 and the same timestamp. Conversely, joining two records
with the same area, e.g., 𝑎8 and 𝑎9, the resulting annotation is the
multiplication of the joined ones. Thus, givenW = [1, 3]

𝑡+consBA
W (→2↑) = 1 + 𝑚7 (AW 𝐿𝑀+ AW) (𝑎8 𝐿𝑀 𝑎9) = 𝑚7 ⇓ ε7

Both functions (AW 𝐿𝑀+ AW) and 𝑡+consBAW, are derived from the
operators applied on the data, respectively a projection and a join.

1325

𝑁𝑀𝑁 𝑁𝑂𝑃𝑄

N[W[X]] N[W[X]]

Q𝐿

𝑅 = AW⇔𝐿 𝑆 = AQ
W⇔𝐿

𝑇 = Q𝐿
+,⇓

Figure 5: Commuting Diagram for Problem 1 solution (green
path): transformation 𝑖 is a W↗relation, 𝑗 is the same
W↗relation transformed through SA+, and 𝑂 is an operation
on polynomials derived from SA+.

4.4 Mapping Correctness
Figure 5 re-elaborate the diagram from Figure 2 assigning the trans-
formation and interpreting the violation sets 𝑔𝑀𝑁 and 𝑔𝑂𝑃𝑄 as poly-
nomials (N[W]). In green we highlight the path followed by our
solution to map the input stream violations and the query results.

As explained in Section 3, 𝑘𝐿 is the user-provided window-
based continuous query, with window function𝑑 that produces
S𝑂𝑃𝑄 from one or more input streams. Moreover, AW⇔𝐿 is the
W↗relation as de!ned in De!nition 4.2, applied directly over each
element of each input stream. We use the notation W ⇔ 𝑑 to
indicate that intervals W determine the polynomial expression
derived from the window function𝑑 . Please note that the window
function is the same as the user query.

The commutativity of the diagram depends on the de!nition of
the reminder 𝑗 and 𝑂 transformations. The former is AW

𝑊 , which
corresponds to the W↗relation derived by applying the stream
positive algebra to the user query operators, as shown in Example 3.
The latter is 𝑘𝐿

(+,⇓) , representing the enriched query execution on
the semiring operations, which combines the polynomials into one.

Figure 6 illustrates how the two commuting paths from the dia-
gram can be implemented in a streaming pipeline. In practice, im-
plementing the output annotator functionAW⇔𝐿

𝑊 , derived through
SA+ operators, requires access to the contributing input tuples. To
obtain the output, the query needs to be !rst executed. Then, each
result in 𝑁𝑃𝑤𝑇 is joined with the contributing input records in 𝑁𝑀𝑁
(based on custom tuple ids). Finally, we apply the output annotator
function AW⇔𝐿

𝑊 . However, this process is rather impractical, as it
introduces considerable complexity to the operation (𝑥 (𝑢 ⇓ 𝑄)).

Our approach still calls for more optimization. Indeed, the anno-
tation function AW has a complexity up to 𝑥 (𝑄2) for binary con-
straints due to the need of a self-join. This operation adds relevant
overhead regarding runtime, as we later show in the experiments (cf.
Section 6). In the following, we describe a graph-based annotation
method (Section 5.1) and the implementation of positive algebra
operators through data"ow ones (Section 5.2).

5 CONSISTENCY-AWARE QUERYING
This section presents how to integrate consistency annotations
into an SPE. The processing work"ow (cf Figure 7) requires a set of
constraints 𝑊𝑌 and a CQQ𝐿 . The window function inQ𝐿 combines
with 𝑊𝑌 into the annotation module that transforms an input stream
into an annotated stream. Conversely, the propagation module
processes Q𝐿 using consistency-aware query operators.

5.1 Annotation
A naive approach for annotating records with integrity violations
consists of converting constraints into data"ow topologies, com-
pleted with a window operator inherited from the query Q𝐿 from
the user. For unary constraints this approach is valid, as they can
be validated through stateless data"ow operators. On the other
hand, binary constraints require stateful processing, i.e., join and
aggregation, which can introduce overheads, as shown in Section 6.

A more tailored approach is designing an ad-hoc stateful op-
erator for e#cient annotation wrt binary (and unary) constraints.
A straightforward but resource-intensive method is to keep a list
of the elements in the annotation window. When a new record
arrives, the system iterates through the list. All binary combina-
tions of the newly arrived record and iterated records are validated
wrt a given constraint. If a violation is detected, the new record
is annotated accordingly. Although this method is able to !nd all
violations, it may be computationally intensive, especially when
the percentage of violations is low, as it requires to exhaustively
check all combinations of possibly consistent records.
Graph-Based Data Annotation. Alternatively, we can use an
evaluation query to build a provenance graph as compact storage
schemes in provenance annotation [28]. However, while prove-
nance graphs are successfully used in static contexts, they are not
natively designed for streaming scenarios. For this reason, we pro-
vide a novel graph summary for e#ciently tracking data inconsis-
tencies, i.e., Consistency Graph Summary (CGS).

De!nition 5.1. A Consistency Graph Summary is de!ned as a
graph where each node corresponds to a record, and each edge
(𝑎𝑀 , 𝑎𝑎) represents 𝑎𝑀 consistent with 𝑎𝑎 and that 𝑎𝑀 .𝑇𝑅 > 𝑎𝑎 .𝑇𝑅 .

The graph’s acyclicity and topological order concerning the time
are guaranteed by in-order insertion [40]. Notably, the graph can
contain disconnected nodes representing records inconsistent with
all the others. Moreover, since the annotation process relies on a
W window, we associate a CGS for each annotation window.
Exploration. For every record, a Breadth-First Search (BFS) naviga-
tion is done (cf. Figure 8) following Algorithm 2: a 𝑦𝑤𝑧𝑤𝑧 tracks the
nodes to navigate at each iteration. Initially, the𝑦𝑤𝑧𝑤𝑧 contains only
the roots (Line 14), i.e., nodes without any incoming edges. The algo-
rithm recursively explores the graph: at each step, the top element
of the queue (𝑌𝛥𝑃𝛩𝑧) is removed, and the corresponding constraint
is evaluated. If the constraint is respected, the new node and𝑌𝛥𝑃𝛩𝑧
are linked, optionally removed from 𝑎𝑃𝑃𝑇𝑅 (Line 6-9). Additionally,
the CGS allows us to optimize the traversal if the constraint we are
validating is binary and satis!es consistency transitivity de!ned as.

Figure 6: Commuting approaches for InconsistencyMapping.

1326

Figure 7: Consistency-Aware Continuous Querying.

De!nition 5.2. A binary constraint 𝑊𝑌 is (in)consistency transi-
tive i$: given three ordered records 𝑎𝑚 , 𝑎𝑛, 𝑎𝑜 , if 𝑎𝑚 , 𝑎𝑛 and 𝑎𝑛, 𝑎𝑜 are
(in)consistent wrt 𝑊𝑌 , then also 𝑎𝑚 , 𝑎𝑜 are (in)consistent wrt 𝑊𝑌 .

Transitivity guarantees that if a path exists between two nodes
𝑎𝑚 and 𝑎𝑜 in the CGS, then 𝑎𝑚 is consistent with 𝑎𝑜 . By exploiting this
property, we can optimize the traversal without losing correctness.
Indeed, when traversing the transitive reduction of a CGS, if a
node is consistent, the traversal can stop since we can assume that
all successive nodes will be consistent. This property is satis!ed
by the binary constraints used in this work. Conversely, if the
constraint is not satis!ed, the added record is annotated, and the
nodes targeted by𝑌𝛥𝑃𝛩𝑧 (𝑆𝛩 𝛬𝛯𝑣𝑅𝑇) are added to the queue (Line 13-
15). The algorithm terminates when the 𝑦𝑤𝑧𝑤𝑧 is empty and returns
the annotated node after adding it to 𝑎𝑃𝑃𝑇𝑅 (Line 2-4).
Maintenance. Algorithm 1 shows the 1.),#&& method: upon the
arrival of a new record, it !rst clears the multi-bu$er (𝛱𝑈) from
expired windows (Line 2-4). Then, it extracts the time-ordered list of
windows that contain the processed record (Line 5) according to a
𝛴𝑣𝑄𝛩𝑃𝛴𝑝𝑃𝛶𝑣𝑂𝑀. The annotation is based only on the earliest window
bu$er, (Line 6), but the record is inserted in all the bu$ers without
considering the annotation (Line 7-9). The !(&#.- performs the
annotation through a function that navigates all the connected com-
ponents in the graph. It follows a breadth-!rst search (BFS), rather
than a depth-!rst one, because we verify consistency following the
time-induced topological order.

Algorithm 1: 1.),#&& method and !(&#.- function.
Data: MB Map with entries (window,cgraph), windowPolicy window function

1 Procedure 1.),#&&(r):
2 foreach window in MB.5#6& do
3 if window.#(’ < r .𝑄𝑀𝑝𝑒𝑐𝑄𝑅𝑝𝑞 then
4 MB..#")7#(window);

5 𝑅𝐿𝑀𝑁𝑐 ⇔ �#,-W!((windowPolicy, r);
6 annotNode ⇔ MB.2#-(𝑅𝐿𝑀𝑁𝑐 .8!.&-).!(&#.-(r);
7 𝑅𝐿𝑀𝑁𝑐 ..#")7#F!.&-;
8 foreach window in 𝑅𝐿𝑀𝑁𝑐 do
9 MB.2#-(𝑅𝐿𝑀𝑁𝑐 .8!.&-).!(&#.-(r)

10 8).*%.’(annotNode);

11 Function !(&#.-(r):
12 queue ⇔ !(!-!%0!9#();
13 RNode ⇔ (#*N)’#(r);
14 queue.%11#(’(roots);
15 annotNode ⇔ CG.%1:S#%.,:(RNode, queue);
16 return annotNode;

Complexity. In the list-based approach, the bu$er should be scanned
entirely for each arriving record resulting in a complexity of 𝑥 (𝑄).
For the graph-based approach, !(&#.- has also a worst-case com-
plexity of𝑥 (𝑄), with 𝑄 being the number of nodes in the graph, i.e.,
the record within the window. The worst case is when a record is
inconsistent with all the other records, resulting in a BFS over the
whole graph. If consistency transitivity holds, the complexity be-
comes𝑥 (𝑣), where 𝑣 is the number of inconsistent records within the
CGS. An Inconsistent Graph Summary (IGS) can used for streams
with many inconsistent records: edges now represent the inconsis-
tency between two nodes. In such cases, for those constraints that
satisfy inconsistent transitivity, i.e., the property described above
but for inconsistencies, the complexity becomes 𝑥 (𝑂), where 𝑂 is
the number of records consistent with the inserted one.

Algorithm 1 implements a multi-bu$er state maintenance, also
called bucketing in other works [49], which is used by many state-
of-the-art SPEs [10, 50]. Windows are stored and manipulated as
the entries of a map-like structure. Each entry is described as the
interval identifying the window (key) and a list of elements (value),
allowing the system to neglect a speci!c routine for deletions. In
this context, the !(&#.- is performed 𝑢 times, i.e., the number
of overlapping windows that contain the input record. Thus, the
algorithm has a total time complexity of𝑥 (𝑢⇓𝑄) in worst-case and
𝑥 (𝑢 ⇓ (𝑣 + 𝑎)) when we assume a lower number of inconsistencies.

5.2 Propagation
The propagation module integrates the Streaming Positive Algebra
(cfr. Section 4.3) in data"ow operation, enabling consistency-aware
continuous querying. Each operator is instrumented to process two
distinct information "ows, i.e., data and annotations.

Since data"ow operators are not just relational, we explain
our mapping to SA+ to the corresponding data"ow operator: A-
1.)4#,- performs a projection on the record tuples over a set of
attributes𝑆, through a Map operator. Their annotation is de!ned by
a projectedW-relation (𝑡+𝑘), which consists of summing all annota-
tions of collapsed records. To do so, it adopts a time window of size 1
after the projection since the equality of two records implies contem-
poraneity. A-+(!)(combines two input streams with the Merge.
Similar to A-P.)4#,-, we use a window to sum their annotations

Algorithm 2: The CG.%1:S#%.,: function.
1 Function CG.%1:S#%.,:(RNode, queue):
2 if queue is empty then
3 roots.!(&#.-(RNode);
4 return RNode;

5 CNode ⇔ queue.’#;#+#() ;
6 if ,:#,5(CNode.constraint, RNode) then
7 ,)((#,- (RNode, CNode);
8 if roots.,)(-%!(& (CNode) then
9 roots..#")7# (CNode);

10 if CNode.!&N)-T.%(&!-!7# then
11 queue.%11#(’ (CNode.AdjList);

12 else
13 A(()-%-#W!-: (RNode, CNode);
14 if CNode.AdjList is not empty then
15 queue.%11#(’ (CNode.AdjList);

16 return CG.%1:S#%.,: (RNode, queue);

1327

Figure 8: Exploration of a provenance graph upon the arrival of a record.

(↙+). A-�#,- is implemented through a Filter operator that dis-
cards records not satisfying the given predicate, consequently anni-
hilating its annotation. A-4)!(maps to the homonymous data"ow
operation. Notably, join uses a user-de!ned window that is in-
herited from the annotation operator. Due to the incompatibilities
of aggregates with both set and bag semantics [3] within the rela-
tional context, we do not include them in SA+ For demonstrative
purposes, however, we added a !nal A-%22.#2%-# operator, which
simply sums up all annotations of the windowed records.
Applicability Consideration. To understand the value of prove-
nance annotations, we discuss their applicability. As mentioned ear-
lier, annotations, particularly polynomial ones, have been applied to
several tasks [21, 29]. In tracking inconsistency over streams, prove-
nance polynomials o$er several opportunities: Roots Analysis high-
lights instances satisfying certain conditions. For example, the poly-
nomial discriminant can indicate unique inconsistencies (discrimi-
nant <> zero) or suggest redundant ones (discriminant=0). This ap-
proach can enable streaming data cleaning operations like [44], but
without altering the input. Quantifying the Degree of Inconsistency
is useful for anomaly detection [26], for instance, in !nancial anal-
ysis. Indeed, polynomials with a higher degree encode more severe
inconsistencies, e.g., for SCs, the variables’ exponents indicate how
much the constraint has been violated. The applicability of more
complex degrees [33] can be further investigated in the future.
Simplifying Annotations through factorization can reveal inconsis-
tency patterns, e.g., the co-violation of IC1 and IC2 in our example
is a signal of healthy system. Annotations lift data violations to a
symbolic level that could be leveraged for event recognition [13].

E3%"10#. 4. Table 4 shows the results from Listing 1 and the anno-
tations resulting from SA+ operators. As already shown in Figure 1, a
simultaneous violation of both IC1 and IC2 hints at a correct backup
management, as the consumption from grid A decreases suddenly
due to a malfunction (violation of IC1), while grid B instantly backs
it up increasing the consumption (violation of IC2). To detect such
situations, we apply the following function to the annotation, and
simplify the annotations in Table 4 wrt the simultaneous presence of
ε (IC1 Viol.) and ϑ (IC2 Viol.) in each monomial𝑢 within AW (𝑎)

𝑅𝑣𝑢𝛷𝛶𝑣 𝛹 𝑀 (AW (𝑎)) =
{︄

𝑝↔AW (𝑋)
(𝑢}︄

ε𝑅ϑ𝑅 ↔𝑝 ε𝑎ϑ𝑎
)

6 EVALUATION
This section studies the performance of our framework on di$er-
ent datasets and with di$erent sets of constraints. After introduc-
ing the experimental setup, we analyze the qualitative impact of
our solution (distance wrt ground-truth), the scalability (average

Table 4: Subset of results fromListing 1. Violations of IC1, IC2
and IC3 are ε, ϑ, 𝑚, respectively. We highlight the simpli!-
cations (𝑅𝑣𝑢𝛷𝛶𝑣 𝛹 𝑀) of two violations of IC1 and IC2, which
translates to the presence of both ε𝑀 and ϑ𝑀 , for a generic 𝑣.

z cost ts AW (𝑋) 𝑐𝑀𝑝𝑞𝑟𝑀 𝑠 𝑛
Eu 59. 4 5 1⌊︄⌋︄⌈︄⌉︄

𝑄7

+ ε7⌊︄⌋︄⌈︄⌉︄
𝑄9

1 + ε7

US 63.9 5 𝑡7⌊︄⌋︄⌈︄⌉︄
𝑄8

+ ε8 ⇓ ϑ8⌊︄⨌⨌⌋︄⌈︄⨌⨌⌉︄
𝑄10

𝑡7

Eu 42.6 7 1⌊︄⌋︄⌈︄⌉︄
𝑄7

+ ε7⌊︄⌋︄⌈︄⌉︄
𝑄9

+ 2(ε27 ⇓ ε9)⌊︄⨌⨌⨌⨌⨌⨌⨌⌋︄⌈︄⨌⨌⨌⨌⨌⨌⨌⌉︄
𝑄11+𝑄13

1 + ε7 +
2(ε27 ⇓ ε9)

US 63.6 7 𝑡7⌊︄⌋︄⌈︄⌉︄
𝑄8

+ 2(ε8 ⇓ ϑ8)⌊︄⨌⨌⨌⨌⨌⨌⌋︄⌈︄⨌⨌⨌⨌⨌⨌⌉︄
𝑄10+𝑄12

+ ε28 ⇓ ε10 ⇓ ε12 ⇓ ϑ28 ⇓ ϑ10 ⇓ ϑ12⌊︄⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⌋︄⌈︄⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⌉︄
𝑄14

𝑡7

throughput) and overhead (runtime) for annotation and processing,
varying window sizes and violation density.
Setup. All the experiments were executed on a Macbook Pro 2021,
running MacOS (version 13.4.1) and Java (v 17.0.2), with a RAM
of 64GB LPDDR5 and a 10-core M1 Max Processor. Our system
runs on top of Kafka Streams [43] (v 3.2.2). To simulate a streaming
ecosystem, experiments are executed consuming data from Apache
Kafka topics (v 3.1.0). Finally, inca-sc uses PostgreSQL (v 15.3).
Datasets. We evaluate our solutions over six di$erent datasets:
three are real-world datasets, and three are synthetic. The Electric
Grid Dataset is a synthetic dataset based on the running example
from Section 1. We use it for the qualitative and ablation analysis.
The Stock Dataset [35] is a collection of observations of price up-
dates across the years. Updates arrive daily as →𝑄𝑖𝑢𝑧, 𝛷𝑎𝑣𝑂𝑧,𝛩𝑖𝑇𝑧↑.
We shrank the arrival frequency to 1 second for compatibility with
the Kafka retention time of the internal topics used in the queries
while preserving the dataset’s regular nature. The GPS dataset col-
lects position observations detected through a GPS signal inside a
campus. Positions are 2-dimensional coordinates (𝐿,𝑀), each with
its timestamp. The dataset contains several wrongfully registered
position observations, which can be detected through SCs, as al-
ready done in [44]. The Review dataset [17] is a real-world dataset
of reviews coming from Metacritic and Rotten Tomatoes. Each re-
view includes a user ID, the title of the reviewed movie/videogame,
the number of stars (1 to 10), and the timestamp. Finally, the Linear-
Road is a synthetic dataset [5]. Records contain the vehicles speeds
and ids (vid) on a highway (xWay) divided into segments.
Queries.We run six di$erent queries, one for the qualitative and
ablation studies, and the other !ve for the performance study. For
each query, we consider Primary Keys (PK), Speed Constraints (SC)
and Schema Constraints (SH). (I) StockPearson calculates the corre-
lation between multiple !nancial assets. In this context, SCs, PKs

1328

and SH.s monitor asset volatility, key integrity, and schema adher-
ence. (II) StockCombo joins assets according to their timestamps,
creating real-time asset combinations. It uses the same operators
as StockPearson, except the aggregate, and also inherits the same
uses for each class of constraints considered. (III) LinearRoad is a
query that joins vehicle positions wrt their location. SCs detect
potential incidents, while PKs and SHs are adopted to verify timely
data generation from every vehicle. (IV) Review directly monitor
a stream of reviews. It uses SCs and polynomial Root Analysis to
identify "review bombing", i.e., a high number of reviews with low
scores produced to lower the average score of a movie/videogame.
Instead, PKs and SHs verify the uniqueness of user reviews for each
movie/videogame. (V) GPS detects absurd position variations with
SCs. PKs are not used due to the absence of a proper key in the
dataset tuples. (VI) ElectricGrid is the example query (cf. Listing 1).
Implementation Variants. In the performance study, all the
queries are evaluated on three variants of our solution [36], imple-
mented on top of single-thread Kafka Streams pipelines. ink-schema
is a native implementation that annotates tuples according to SHs
using Kafka Streams APIs. Both ink-optim-sc and ink-sc are native
implementations that adopt SCs. While ink-optim-sc uses the graph
from Section 5.1, ink-sc uses a list-based data structure. ink-optim-pk
and ink-pk are native implementations adopting PK on graphs, ex-
ploiting the property of inconsistent transitivity (cf. De!nition 5.2)
and lists, respectively. Naive-sc and naive-pk perform consistency
annotation and propagation wrt SCs and PKs with Kafka Streams.
Baselines. Our experiments include two baselines: (I) a Kafka
Streams (noinc) implementation of the queries without consistency
awareness, serving as the upper-bound performance target for
our solution. (II) a DBMS-oriented (inca-sc) implementation of the
consistency-aware framework based on [26]. Without a comparable
streaming contribution from the state of the art, we adapted this
solution to a continuous scenario by processing each annotation
window as a table, managed incrementally for performance reasons.
Rather than providing Inca with an entirely new dataset each time,
we update it by adding and removing records based on the window’s
movement. We evaluate the inca-sc only on four of the !ve queries
as it does not support aggregates.

6.1 Qualitative study
To highlight the value of our approach, we designed an experiment
to show how our solution can identify inconsistencies and related
underlining patterns to get closer to the groundtruth.
Scenario. The experiments are conducted on a synthetic dataset
based on our running example (cf. data in Table 1 and query in
Listing 1). In the !rst part, there is a malfunction in the monitoring
service, as grid A stops working. This should be addressed by re-
ducing the impact of this stoppage on the !nal price. The second
half of the experiment consists of a stoppage of grid A and a backup
from grid B. This behaviour is correct and needs no repair.

Figure 9 shows the query results executed with four di$erent
consistency management policies and the groundtruth. The !lter
indicates a database-like consistency enforcement, where inconsis-
tent records are removed. This policy underestimates the electricity
consumption price, as too many records are excluded. The repair
adjust the consumption following the technique from [44], wrt

IC1 and IC2. Finally, noinc indices no inconsistency management.
Our solution, i.e., inkstream, is the nearest to the groundtruth. By
annotating the data with the related violations, we can reason for
inconsistencies at a higher level of abstraction. In such cases, we
choose to ignore simultaneous violations of IC1 and IC2 by sim-
plifying them, as shown in Table 4, and then using them to repair.
Such preliminary simpli!cation produces a cumulative cost more
adherent to the groundtruth than the one produced by the repair.

6.2 Performance Study
Our second group of experiments measures the scalability of anno-
tation and propagation, varying the window size and the number
of inconsistencies in it. We operate under the assumption that every
record can generate a new violation. This assumption is worst-case
and is stricter than real-world scenarios. The second group of ex-
periments measure the scalability wrt the number of violations
considered, i.e., the violation density. Finally, a third group calcu-
lates the overheads of annotation and propagation.
Scalability wrt Window Size. Figure 11 shows all variants and
baselines’ average ingestion throughput. We calculate the through-
put by measuring the total time needed to consume a !xed number
of records. The !gure is twofold: while moving horizontally varies
the datasets, it also distinguishes the experiments for two di$erent
window size-slide ratios, i.e., 2 for the plots above (a) and 5 for
those below (b). Such a measure highlights the impact of overlap-
ping windows. We repeated the experiment for di$erent annotation
windows, i.e., 𝑋𝛺𝑑 =10/100/1000/10000 seconds.

The ink-schema implementation (in gray) shows the best perfor-
mance, near the one of the noinc baseline, with a 5% to 2% di$erence.
This is thanks to the nature of SHs, which can be implemented as
native Kafka Streams !lters, which guarantee minimum latency, ex-
cept for LinearRoad. Conversely, systems requiring window-based
constraint monitoring excel with a small size/slide ratio, coherently
with our complexity analysis (see Section 16). More speci!cally, ink-
optim-sc (in blue) is the best among variants that implement SCs
and PKs, i.e., ink-optim-pk (in brown), ink-sc (in orange), ink-pk
(in lightblue), naive-sc (in red) and naive-pk (in purple).

In particular, for the simplest GPS and Review ink-optim-sc’s
throughput decreases by 5% wrt noinc baseline (in black). Thanks
to the CGS, the window size has far less impact in ink-optim-sc
than all the other solutions compared to noinc. Indeed, for ink-
optim-sc, the complexity depends on the number of inconsistencies
and not the size of the windows. The same property is valid for
ink-optim-pk, which is applied on all datasets except GPS, since
it is not a key-based dataset. However, PKs are opposite to SCs
because they satisfy inconsistent transitivity (cf. De!nition 5.2).
As the experiments are based on or inspired by real-world scenar-
ios, the number of violations is small compared to the amount of
records in the window. Consequently, the CGS for PK, whose edges
represent inconsistencies between records, presents many isolated
nodes. This hinders the performance of ink-optim-pk, since the
graph navigation over those nodes is comparable to a list iteration.
For small windows, ink-optim-pk behaves similarly to ink-optim-sc.
But as the size of the window increases, there is a linear decrease
in throughput (the scale is logarithmic in Figure 11), which is com-
parable to ink-pk. Both ink-optim-pk and ink-pk go a 5% decrease

1329

Figure 9: Gapwrt Groundtruth. Figure 10: Scalability by Records Number: avg throughput varying validated records (%).

Figure 11: Scalability by Window Size: avg throughput and memory usage, varying annotation window size.

for small windows up to 90% decrease for very large windows.
Conversely, ink-sc performance starts decreasing by 5% wrt noinc
for small windows, to 20% decrease (50% in Review) for medium
window sizes, to a 30% (up to 90% in Review) for large windows. For
naive-sc and naive-pk, the decrease wrt noinc performance starts
from 50% and goes down to 90% for GPS query.

For StockCombo, ink-optim-sc performs similarly to GPS and
Review, although the decrease is more signi!cant (15-20%). Again,
the window size signi!cantly impacts the rest of the system’s per-
formance, with a 50% to 65% decrease for ink-sc, ink-optim-pk, and
ink-pk for middle-sized windows. For very large windows, as ex-
pected, we obtain a 90% decrease, which is similar to naive-sc and
naive-pk. In StockPearson, all consistency-aware solutions show
the highest overhead, with ink-optim-sc remaining the overall best
with a 45% decrease in performance against noinc. Among all the
PK-based solutions, ink-optim-pk is the best. However, like other
queries, the window size signi!cantly impacts throughput, leading
to a decrease of up to 95% if compared with noinc.

LinearRoad shows the worst performance for all solutions. In-
deed, the dataset contains registrations from almost 5000 vehicles in
a very short period. Since annotation windows are maintained per
vehicle, each retains a small number of records, thus not impacting
the performance as in other queries. Moreover, the high density
of records makes propagation performance heavy, even for ink-
schema. Notably, ink-optim-sc and ink-optim-pk perform better than
ink-sc and ink-pk. Finally, non-optimized solutions based on SCs,
i.e., ink-sc and naive-sc, are better than those adopting PKs, i.e., ink-
pk and naive-pk, by 5 to 10% as the window grows. This di$erence
highlights how di$erent constraints impact the performances, since
SCs produce fewer violations as the time distance between records
grows. On the other hand, PK violations are not time-dependent
and can grow inde!nitely as the window size grows.

The two rightmost graphs illustrate memory usage across vari-
ous annotation window sizes. For space reasons, we only included
the StockPearson, being the most complex query out of the !ve. Due
to the inherent "uctuations in Java’s garbage collection process,
there are memory usage variances. However, focusing on broader
trends, the plot reveals an overall increase in memory usage as
the window size expands (up to 35-40%). The optimized solutions,
i.e., ink-optim-sc and ink-optim-pk, consistently ranks among the
least memory-consuming approaches, particularly when compared
to the Kafka Streams baseline, i.e., naive-sc and naive-pk. These
baselines require substantial inter-operator caching to execute the
annotations, contributing to higher memory consumption.
Scalability wrt number of Validated Records. Figure 10 reports
the average throughput for ink-optim-sc and ink-sc with varying
percentages of considered records in the constraint validation. We
used a Gaussian randomizer, con!gured with di$erent percentage
thresholds, to decide whether a record is included in the valida-
tion. As a probabilistic approach, we !xed the window size to be
large enough (1000 seconds) to have enough samples. While the
throughput of ink-optim-sc is robust wrt the number of validated
records (decrement at most 5% in all the cases), ink-sc shows an
evident decrement in the performance (up to 70%). Indeed, when
low percentages of the records are considered in the validation
process, the performance of ink-optim-sc and ink-sc are almost the
same, as ink-sc has to iterate over few records. The more the records
are considered in the validation, the more elements are added to
the list, resulting in a decrease in the performances.
Scalability wrt Number of Violations. Figure 12 shows the aver-
age throughput di$erence between ink-optim-sc and ink-sc for the
number of total violations detected within multiple experiments. To
calculate this di$erence, we picked two real-world datasets and the

1330

Figure 12: Scalability by Number of Violations: ink-optim-sc vs ink-sc for Review and StockPearson.

Figure 13: Overhead: Runtime Occupation (%) . Legend: [S]tock[C]ombo, [R]review, [S]tock[P]earson, [L]inear[R]oad, GPS.

Figure 14: Ablation Study: the impact of SC, PK, SH on aver-
age throughput for the ElectricGrid query; NI: no constraints.

respective queries, i.e., Review and StockPearson, while the number
of inconsistencies is increased by considering stricter SCs.

The results show a decreasing trend of the throughput di$erence
as we increase the number of violations. The system can consider
fewer inconsistencies for smaller windows, resulting in a less evi-
dent decrease. Indeed, the decrease is more noticeable for bigger
windows (size 1000 seconds), reaching up to a 90% decrease for
StockPearson and a 50% decrease for Review. This is compatible
with our analysis from Section 16, since the complexity of graph-
based annotation is proportional to the number of inconsistencies,
behaving as a list-based annotation for a totally inconsistent stream.
Ablation Study. Figure 14 shows how each constraint impacts
throughput for ELectricGrid query. We chose it as it includes multi-
ple constraints, i.e., SC and PK, to which we add SH. We include
the constrain-less execution (NI) as reference for max-throughput.

Evaluating many constraints show a performance degradation
while increasing the window size. SHs evaluation concerns a single
record, hence their impact on throughput is stable across window
sizes. For SC the overhead in throughput is higher, i.e., about 55%
lower then NI. However, PKs exhibit alone the highest reduction in
throughput, about 15%. The experiment con!rms the independence
of constraint evaluation. Indeed, their e$ects on performance can be

summed up.When evaluated together, SC and SHs (SC-SH) lead to a
more signi!cant drop, with performance declining by about 30% SC
and PK are handled through separate execution graphs, while SH
uses a dedicated operator, minimizing their overhead. The combined
validation of SC and PK leads to a performance drop as window
size grows, largely driven by PKs. SHs have minimal additional
impact when combined with SC or PK, as their processing overhead
remains low. Thus, SC and PK primarily drive the performance drop,
while SH contributes only slightly.
Analysis of Overheads. Figure 13 shows the analysis of the an-
notation and processing overheads in terms of the percentage be-
tween the execution time of the whole query (in ink-optim-sc and
ink-sc) and the execution time of a consistency-aware streaming
pipeline that only performs annotation. On top of this, to evaluate
the consumption overhead introduced by Kafka, we measured the
execution time of a Kafka Streams pipeline that simply consumes
records. For instance, for an annotation window equal to 10000, the
Stock Pearson takes 5461 seconds to execute. Executing the sole
annotation phase takes only 5300 seconds, and considering the con-
sumption overhead of roughly 30 seconds, we obtain the !nal plot
column, where most of the time spent (98-99%) is on the annotation.
The annotation time represents 10 to 30% for ink-optim-sc and 10
to 99% for ink-sc of the entire time to perform the queries. In par-
ticular, while ink-optim-sc stays steady wrt the window size, ink-sc
annotation time percentage grows up to 99% for high window sizes,
representing the real bottleneck of the system. For GPS, Review, and
StockCombo, the annotation of ink-optim-sc takes roughly 5-10%
of the query’s runtime, while it takes 30% of the running time in
Stock Pearson. On the other hand, ink-sc annotation reaches 99%
in Combo, Review, and Pearson and 50% of the runtime in GPS.

Finally, the provenance graph introduces an overhead for small
windows. Indeed, ink-sc behaves mostly as than ink-optim-sc in

1331

Figure 15: Comparative Study: avg throughput of InkStream annotation over SC, and SCREEN repair technique.

Pearson until the size of the window exceeds 103 (104) with size/s-
lide ratio 5 (2). Moreover, Figure 13 con!rms our hypothesis that
the low performance of LinearRoad were due to the dataset nature.

6.3 Comparative Study
This section compares InkStream and SCREEN [44], an SC-based
streaming repair technique. To evaluate throughput in similar con-
ditions, we have ported SCREEN [20] into a Kafka Streams operator.

Figure 15 shows that the annotation-based provenance technique
outperforms the repair method for the GPS and Stock datasets1. As
window sizes increase, e.g., from 10 to 1000 seconds and greater,
while InkStream maintained a constant throughput, SCREEN per-
formances decrease, from a 10% (for Stock 5% for GPS) up to a 60%
(for Stock 20% for GPS) lower than InkStream. Indeed, the annota-
tion approach scales better wrt window size. In contrast, SCREEN
performs better for small windows (10 and 100 seconds), with a 1%
to 10% greater throughput than InkStream in both Stock and GPS
queries. SCREEN’s performance degradation for big windows is due
to its iterative approach: SCREEN calculates the set of local opti-
mum repairs, whose median becomes the global optimal repair [44].
As window grows, the number of considered elements increases,
reducing the throughput. Instead, the graph-based approach of
InkStream is more scalable as it avoids unnecessary comparisons.

7 RELATEDWORK
This section positions our work in the state-of-the-art. Our work is
related to streaming data quality and provenance. We also discuss
the work on consistent query answering and consistency measures.
Provenance [9, 11, 24]. Recent works applying provenance to
streaming data:Ariadne [22] is a provenance-aware extension of [2].
It uses operator instrumentation, i.e., modifying the behaviour of
operators, to generate and propagate lineage 𝛯𝑣𝑄(𝛻) through op-
erators of CQs. Conversely, its processing is based on relational
algebra, making it harder to compare with modern SPEs based on
data"ow operations. Our propagation approach follows the same
principles for operator instrumentation but in data"ow settings.
Instead, Ananke [38] adds users with why-provenance (𝑑𝛼𝑀 (𝛻))
to data"ow operators, specifying whether each source tuple can
contribute to future results. It is based on the authors’ prior work
GeneaLog [37]. Finally, Erebus investigates the aspect of complete-
ness [15, 42, 51], relying on why-provenance [38] for explaining
the mismatch between actual and expected CQs results.
Consistent Query Answering. Existing works start from the no-
tion of repair, i.e., a database instance !xing constraint violations.
Multiple repairs are possible wrt the formal de!nition of repair, the
family of queries, and the type of integrity constraints. Thus, con-
sistent query answering refers to the notion of certain answers, i.e.,
1We excluded other datasets due to space limits, but results are similar.

the intersection of the query answers on all possible repairs of the
initial database instance. As an alternative approach to data clean-
ing, consistent query answering could be prohibitive as the number
of repairs can be exponentially signi!cant. Moreover, the dynamic
aspects of CQA have been largely neglected [7], and theoretical
and empirical results are limited [34].
Transactional Stream Processing (TSP)[52] enables continuous
computations over streaming data with ACID-compliant transac-
tional correctness while preserving temporal order and low laten-
cy/high throughput. A$etti et al.[1] designed TSpoon to ensure
consistency in the SPE’s transactional subgraph (t-graph) by en-
forcing integrity constraints on individual keys and preventing
invalid tuples. Thus, a t-graph remains consistent outside fully
committed transactions. This provenance tracking su#ces for B
semirings. Ververica’s Streaming Ledger is a similar TSP engine.
Consistency-Aware Query Answering focuses on quantifying
the inconsistency. In particular, Inca [26] uses polynomial prove-
nance to propagate the constraint violations to query results. In
these regards, Inca is similar to our work. However, the work does
not apply to window-based continuous querying. Designed for
static, it quanti!es the inconsistency wrt a set of denial constraints
over the whole database. We identify Inca as the ideal baseline for
measuring the suitability of our approach. Thus, we extend follow-
ing a similar approach for SPE prototyping as speci!ed in [47]. Our
experimental study shows that an adapted solution is unsuitable
for streaming, and a native system is required.

8 CONCLUSION
This paper introduced the problem of continuously mapping input
stream integrity violations to continuous query results. We design
a framework based on provenance semirings that address the prob-
lem by enriching the input stream with polynomial annotations.
Then, we extended the semiring positive algebra to propagate anno-
tations across CQs operators, i.e., projection and joins. We show the
suitability of our approach by deriving constraint violations in the
output. We also designed a graph-based optimization for annotation
and extended data"ow operators to integrate the algebra.

In the future, we will explore how complex windowing func-
tions, e.g., data-driven windows [25] can impact the annotation and
propagation phases. Moreover, we plan to investigate how these
policies can be used to provide integrity guarantees over the scoped
records. We will extend the covered constraints regarding de!nition
and arity, e.g., denial constraints, and investigate how alternative
annotation methods can impact performances.

ACKNOWLEDGMENTS
R. Tommasini and S. Langhi are supported by the French Research
Agency under grant agreement nr. ANR-22-CE23-0001 Poly"ow.

1332

REFERENCES
[1] Lorenzo A$etti, Alessandro Margara, and Gianpaolo Cugola. 2020. TSpoon:

Transactions on a stream processor. J. Parallel Distributed Comput. 140 (2020),
65–79. https://doi.org/10.1016/J.JPDC.2020.03.003

[2] Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alex Rasin,
Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B. Zdonik. 2005. Dis-
tributed operation in the Borealis stream processing engine. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Bal-
timore, Maryland, USA, June 14-16, 2005, Fatma Özcan (Ed.). ACM, 882–884.
https://doi.org/10.1145/1066157.1066274

[3] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for
aggregate queries. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011,
Athens, Greece, Maurizio Lenzerini and Thomas Schwentick (Eds.). ACM, 153–164.
https://doi.org/10.1145/1989284.1989302

[4] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous
query language: semantic foundations and query execution. VLDB J. 15, 2 (2006),
121–142. https://doi.org/10.1007/S00778-004-0147-Z

[5] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road:
A Stream Data Management Benchmark. In (e)Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,
August 31 - September 3 2004, Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer (Eds.).
Morgan Kaufmann, 480–491. https://doi.org/10.1016/B978-012088469-8.50044-9

[6] Edmon Begoli, Tyler Akidau, Slava Chernyak, Fabian Hueske, Kathryn Knight,
Kenneth L. Knowles, Daniel Mills, and Dan Sotolongo. 2021. Watermarks in
Stream Processing Systems: Semantics and Comparative Analysis of Apache
Flink and Google Cloud Data"ow. Proc. VLDB Endow. 14, 12 (2021), 3135–3147.
https://doi.org/10.14778/3476311.3476389

[7] Leopoldo E. Bertossi. 2021. Second-Order Speci!cations and Quanti!er Elimina-
tion for Consistent Query Answering in Databases (Abstract). In Proceedings of
the Second Workshop on Second-Order Quanti!er Elimination and Related Topics
(SOQE 2021) associated with the 18th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2021), Online Event, November 4,
2021 (CEUR Workshop Proceedings), Renate A. Schmidt, Christoph Wernhard, and
Yizheng Zhao (Eds.), Vol. 3009. CEUR-WS.org, 28–36. https://ceur-ws.org/Vol-
3009/abstract1.pdf

[8] Angela Bonifati and Riccardo Tommasini. 2024. An Overview of Continuous
Querying in (Modern) Data Systems. In Companion of the 2024 International
Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, June
9-15, 2024, Pablo Barceló, Nayat Sánchez Pi, Alexandra Meliou, and S. Sudarshan
(Eds.). ACM, 605–612. https://doi.org/10.1145/3626246.3654679

[9] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. 2001. Why and Where:
A Characterization of Data Provenance. In Database Theory - ICDT 2001, 8th
International Conference, London, UK, January 4-6, 2001, Proceedings (Lecture Notes
in Computer Science), Jan Van den Bussche and Victor Vianu (Eds.), Vol. 1973.
Springer, 316–330. https://doi.org/10.1007/3-540-44503-X_20

[10] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38. http://sites.computer.
org/debull/A15dec/p28.pdf

[11] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Found. Trends Databases 1, 4 (2009), 379–474.
https://doi.org/10.1561/1900000006

[12] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.
2009. Forward Decay: A Practical Time Decay Model for Streaming Systems. In
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009,
March 29 2009 - April 2 2009, Shanghai, China, Yannis E. Ioannidis, Dik Lun Lee,
and Raymond T. Ng (Eds.). IEEE Computer Society, 138–149. https://doi.org/10.
1109/ICDE.2009.65

[13] Gianpaolo Cugola and Alessandro Margara. 2012. Processing "ows of informa-
tion: From data stream to complex event processing. ACM Comput. Surv. 44, 3
(2012), 15:1–15:62. https://doi.org/10.1145/2187671.2187677

[14] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage
of view data in a warehousing environment. ACM Trans. Database Syst. 25, 2
(2000), 179–227. https://doi.org/10.1145/357775.357777

[15] Tamraparni Dasu, Rong Duan, and Divesh Srivastava. 2016. Data Quality for
Temporal Streams. IEEE Data Eng. Bull. 39, 2 (2016), 78–92. http://sites.computer.
org/debull/A16june/p78.pdf

[16] Nihal Dindar, Nesime Tatbul, Renée J. Miller, LauraM. Haas, and Irina Botan. 2013.
Modeling the execution semantics of stream processing engines with SECRET.
VLDB J. 22, 4 (2013), 421–446. https://doi.org/10.1007/S00778-012-0297-3

[17] EllieLockhart. [n.d.]. Metacritic—Rotten-Tomatoes-Controversial-Reviews-
Dataset: A dataset of both controversial and non-controversial video game and

!lm reviews, created with the intention of studying "review bombing" algorith-
mically. — github.com. https://github.com/EllieLockhart/Metacritic---Rotten-
Tomatoes-Controversial-Reviews-Dataset. [Accessed 12-11-2024].

[18] João Esteves, Rosa Maria Costa, Yongluan Zhou, and Ana Almeida. 2023. An
exploratory analysis of methods for real-time data deduplication in streaming
processes. In Proceedings of the 17th ACM International Conference on Distributed
and Event-based Systems, DEBS 2023, Neuchatel, Switzerland, June 27-30, 2023,
Valerio Schiavoni, Marcelo Pasin, Bettina Kemme, and Etienne Rivière (Eds.).
ACM, 91–102. https://doi.org/10.1145/3583678.3596898

[19] Peter M. Fischer, Kyumars Sheykh Esmaili, and Renée J. Miller. 2010. Stream
schema: providing and exploiting static metadata for data stream processing. In
EDBT 2010, 13th International Conference on Extending Database Technology, Lau-
sanne, Switzerland, March 22-26, 2010, Proceedings (ACM International Conference
Proceeding Series), Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru
Kitsuregawa, Alain Léger, Felix Naumann, Anastasia Ailamaki, and Fatma Özcan
(Eds.), Vol. 426. ACM, 207–218. https://doi.org/10.1145/1739041.1739068

[20] Apache Foundation. 2023. IoTDB. https://github.com/apache/iotdb/blob/master/
library-udf/src/main/java/org/apache/iotdb/library/drepair/util/Screen.java.
[Accessed 12-11-2024].

[21] Garima Gaur, Srikanta J. Bedathur, and Arnab Bhattacharya. 2017. Tracking
the Impact of Fact Deletions on Knowledge Graph Queries using Provenance
Polynomials. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017, Ee-Peng
Lim, MarianneWinslett, Mark Sanderson, AdaWai-Chee Fu, Jimeng Sun, J. Shane
Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng,
Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li (Eds.). ACM,
2079–2082. https://doi.org/10.1145/3132847.3133118

[22] Boris Glavic, Kyumars Sheykh Esmaili, Peter Michael Fischer, and Nesime Tatbul.
2013. Ariadne: managing !ne-grained provenance on data streams. In The 7th
ACM International Conference on Distributed Event-Based Systems, DEBS ’13,
Arlington, TX, USA - June 29 - July 03, 2013, Sharma Chakravarthy, Susan Darling
Urban, Peter R. Pietzuch, and Elke A. Rundensteiner (Eds.). ACM, 39–50. https:
//doi.org/10.1145/2488222.2488256

[23] Lukasz Golab, Theodore Johnson, Nick Koudas, Divesh Srivastava, and David
Toman. 2008. Optimizing away joins on data streams. In Proceedings of the
2008 International Workshop on Scalable Stream Processing System, SSPS 2008,
Nantes, France, March 29, 2008 (ACM International Conference Proceeding Series),
Byung Suk Lee (Ed.). ACM, 48–57. https://doi.org/10.1145/1379272.1379282

[24] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China,
Leonid Libkin (Ed.). ACM, 31–40. https://doi.org/10.1145/1265530.1265535

[25] Michael Grossniklaus, David Maier, James Miller, Sharmadha Moorthy, and
Kristin Tufte. 2016. Frames: data-driven windows. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, DEBS ’16, Irvine,
CA, USA, June 20 - 24, 2016, Avigdor Gal, MatthiasWeidlich, Vana Kalogeraki, and
Nalini Venkasubramanian (Eds.). ACM, 13–24. https://doi.org/10.1145/2933267.
2933304

[26] Ousmane Issa, Angela Bonifati, and Farouk Toumani. 2020. Evaluating Top-k
Queries with Inconsistency Degrees. Proc. VLDB Endow. 13, 11 (2020), 2146–2158.
http://www.vldb.org/pvldb/vol13/p2146-issa.pdf

[27] Paulo Jesus, Carlos Baquero, and Paulo Almeida. 2006. ID generation in mo-
bile environments. In CSMU 2006: Proceedings of the Conference on Mobile and
Ubiquitous Systems, Vol. 6.

[28] Grigoris Karvounarakis and Todd J. Green. 2012. Semiring-annotated data:
queries and provenance? SIGMOD Rec. 41, 3 (2012), 5–14. https://doi.org/10.
1145/2380776.2380778

[29] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2010. Querying
data provenance. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010, Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.). ACM, 951–962.
https://doi.org/10.1145/1807167.1807269

[30] Jürgen Krämer and Bernhard Seeger. 2009. Semantics and implementation of
continuous sliding window queries over data streams. ACM Trans. Database Syst.
34, 1 (2009), 4:1–4:49. https://doi.org/10.1145/1508857.1508861

[31] Samuele Langhi, Angela Bonifati, and Riccardo Tommasini. 2024. Towards
Streaming Consistency Management. In 40th IEEE International Conference on
Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024. IEEE,
5663. https://doi.org/10.1109/ICDE60146.2024.00462

[32] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
Semantics and Evaluation Techniques for Window Aggregates in Data Streams.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, Fatma Özcan (Ed.). ACM,
311–322. https://doi.org/10.1145/1066157.1066193

[33] Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, and
Sudeepa Roy. 2021. Properties of Inconsistency Measures for Databases. In
SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh

1333

https://doi.org/10.1016/J.JPDC.2020.03.003
https://doi.org/10.1145/1066157.1066274
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1007/S00778-004-0147-Z
https://doi.org/10.1016/B978-012088469-8.50044-9
https://doi.org/10.14778/3476311.3476389
https://ceur-ws.org/Vol-3009/abstract1.pdf
https://ceur-ws.org/Vol-3009/abstract1.pdf
https://doi.org/10.1145/3626246.3654679
https://doi.org/10.1007/3-540-44503-X_20
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1561/1900000006
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/357775.357777
http://sites.computer.org/debull/A16june/p78.pdf
http://sites.computer.org/debull/A16june/p78.pdf
https://doi.org/10.1007/S00778-012-0297-3
https://github.com/EllieLockhart/Metacritic---Rotten-Tomatoes-Controversial-Reviews-Dataset
https://github.com/EllieLockhart/Metacritic---Rotten-Tomatoes-Controversial-Reviews-Dataset
https://doi.org/10.1145/3583678.3596898
https://doi.org/10.1145/1739041.1739068
https://github.com/apache/iotdb/blob/master/library-udf/src/main/java/org/apache/iotdb/library/drepair/util/Screen.java
https://github.com/apache/iotdb/blob/master/library-udf/src/main/java/org/apache/iotdb/library/drepair/util/Screen.java
https://doi.org/10.1145/3132847.3133118
https://doi.org/10.1145/2488222.2488256
https://doi.org/10.1145/2488222.2488256
https://doi.org/10.1145/1379272.1379282
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/2933267.2933304
https://doi.org/10.1145/2933267.2933304
http://www.vldb.org/pvldb/vol13/p2146-issa.pdf
https://doi.org/10.1145/2380776.2380778
https://doi.org/10.1145/2380776.2380778
https://doi.org/10.1145/1807167.1807269
https://doi.org/10.1145/1508857.1508861
https://doi.org/10.1109/ICDE60146.2024.00462
https://doi.org/10.1145/1066157.1066193

Srivastava (Eds.). ACM, 1182–1194. https://doi.org/10.1145/3448016.3457310
[34] Andrei Lopatenko and Leopoldo E. Bertossi. 2016. Complexity of Consistent

Query Answering in Databases under Cardinality-Based and Incremental Repair
Semantics (extended version). CoRR abs/1605.07159 (2016). arXiv:1605.07159
http://arxiv.org/abs/1605.07159

[35] Oleh Onyshchak. [n.d.]. StockMarket Dataset. https://www.kaggle.com/datasets/
jacksoncrow/stock-market-dataset. [Accessed 12-11-2024].

[36] Issa Ousmane. 2021. INCA. https://github.com/semlanghi/coinca-sc. [Accessed
12-11-2024].

[37] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatrianta!lou. 2019.
GeneaLog: Fine-grained data streaming provenance in cyber-physical systems.
Parallel Comput. 89 (2019). https://doi.org/10.1016/J.PARCO.2019.102552

[38] Dimitris Palyvos-Giannas, Bastian Havers, Marina Papatrianta!lou, and Vin-
cenzo Gulisano. 2020. Ananke: A Streaming Framework for Live Forward Prove-
nance. Proc. VLDB Endow. 14, 3 (2020), 391–403. https://doi.org/10.5555/3430915.
3442437

[39] Dimitris Palyvos-Giannas, Katerina Tzompanaki, Marina Papatrianta!lou, and
Vincenzo Gulisano. 2022. Erebus: Explaining the Outputs of Data Streaming
Queries. Proc. VLDB Endow. 16, 2 (2022), 230–242. https://doi.org/10.14778/
3565816.3565825

[40] Chaoyi Pang, Junhu Wang, Yu Cheng, Hao Lan Zhang, and Tongliang Li. 2015.
Topological sorts on DAGs. Inf. Process. Lett. 115, 2 (2015), 298–301. https:
//doi.org/10.1016/J.IPL.2014.09.031

[41] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2021.
Fast Detection of Denial Constraint Violations. Proc. VLDB Endow. 15, 4 (2021),
859–871. https://doi.org/10.14778/3503585.3503595

[42] Barna Saha and Divesh Srivastava. 2014. Data quality: The other face of Big
Data. In IEEE 30th International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao,
Elisa Bertino, and Goce Trajcevski (Eds.). IEEE Computer Society, 1294–1297.
https://doi.org/10.1109/ICDE.2014.6816764

[43] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In Proceedings
of the International Workshop on Real-Time Business Intelligence and Analytics,
BIRTE 2018, Rio de Janeiro, Brazil, August 27, 2018, Malú Castellanos, Panos K.
Chrysanthis, Badrish Chandramouli, and Shimin Chen (Eds.). ACM, 1:1–1:10.
https://doi.org/10.1145/3242153.3242155

[44] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2015. SCREEN:
Stream Data Cleaning under Speed Constraints. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G.
Ives (Eds.). ACM, 827–841. https://doi.org/10.1145/2723372.2723730

[45] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. 2005. The 8
requirements of real-time stream processing. SIGMOD Rec. 34, 4 (2005), 42–47.
https://doi.org/10.1145/1107499.1107504

[46] Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. 1992.
Continuous Queries over Append-Only Databases. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
USA, June 2-5, 1992, Michael Stonebraker (Ed.). ACM Press, 321–330. https:
//doi.org/10.1145/130283.130333

[47] Riccardo Tommasini, Pieter Bonte, Femke Ongenae, and Emanuele Della Valle.
2021. RSP4J: An API for RDF Stream Processing. In The Semantic Web - 18th
International Conference, ESWC 2021, Virtual Event, June 6-10, 2021, Proceedings
(Lecture Notes in Computer Science), Ruben Verborgh, Katja Hose, Heiko Paulheim,
Pierre-Antoine Champin, Maria Maleshkova, Óscar Corcho, Petar Ristoski, and
Mehwish Alam (Eds.), Vol. 12731. Springer, 565–581. https://doi.org/10.1007/978-
3-030-77385-4_34

[48] Juliane Verwiebe, PhilippM. Grulich, Jonas Traub, and VolkerMarkl. 2023. Survey
of window types for aggregation in stream processing systems. VLDB J. 32, 5
(2023), 985–1011. https://doi.org/10.1007/S00778-022-00778-6

[49] Juliane Verwiebe, PhilippM. Grulich, Jonas Traub, and VolkerMarkl. 2023. Survey
of window types for aggregation in stream processing systems. VLDB J. 32, 5
(2023), 985–1011. https://doi.org/10.1007/S00778-022-00778-6

[50] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mam-
mad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. 2015. Building a
Replicated Logging System with Apache Kafka. Proc. VLDB Endow. 8, 12 (2015),
1654–1655. https://doi.org/10.14778/2824032.2824063

[51] Wenyuan Yu. 2013. Improving data quality : data consistency, deduplication,
currency and accuracy. Ph.D. Dissertation. University of Edinburgh, UK. https:
//hdl.handle.net/1842/8899

[52] Shuhao Zhang, Juan Soto, and Volker Markl. 2024. A survey on transactional
stream processing. VLDB J. 33, 2 (2024), 451–479. https://doi.org/10.1007/S00778-
023-00814-Z

1334

https://doi.org/10.1145/3448016.3457310
http://arxiv.org/abs/1605.07159
https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset
https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset
https://github.com/semlanghi/coinca-sc
https://doi.org/10.1016/J.PARCO.2019.102552
https://doi.org/10.5555/3430915.3442437
https://doi.org/10.5555/3430915.3442437
https://doi.org/10.14778/3565816.3565825
https://doi.org/10.14778/3565816.3565825
https://doi.org/10.1016/J.IPL.2014.09.031
https://doi.org/10.1016/J.IPL.2014.09.031
https://doi.org/10.14778/3503585.3503595
https://doi.org/10.1109/ICDE.2014.6816764
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/2723372.2723730
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/130283.130333
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/S00778-022-00778-6
https://doi.org/10.1007/S00778-022-00778-6
https://doi.org/10.14778/2824032.2824063
https://hdl.handle.net/1842/8899
https://hdl.handle.net/1842/8899
https://doi.org/10.1007/S00778-023-00814-Z
https://doi.org/10.1007/S00778-023-00814-Z

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	4 Continuous Violations Mapping
	4.1 Query Provenance and Semirings
	4.2 Provenance for Streaming Integrity
	4.3 Streaming Positive Algebra
	4.4 Mapping Correctness

	5 Consistency-Aware Querying
	5.1 Annotation
	5.2 Propagation

	6 Evaluation
	6.1 Qualitative study
	6.2 Performance Study
	6.3 Comparative Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

