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ABSTRACT
Federated graph learning (FGL) is a promising distributed training
paradigm for graph neural networks across multiple local systems
without direct data sharing. This approach inherently involves
large-scale distributed graph processing, which closely aligns with
the challenges and research focuses of graph-based data systems.
Despite the proliferation of FGL, the diverse motivations from real-
world applications, spanning various research backgrounds and
settings, pose a signi!cant challenge to fair evaluation. To !ll this
gap, we propose OpenFGL, a uni!ed benchmark designed for the
primary FGL scenarios: Graph-FL and Subgraph-FL. Speci!cally,
OpenFGL includes 42 graph datasets from 18 application domains, 8
federated data simulation strategies that emphasize di"erent graph
properties, and 5 graph-based downstream tasks. Additionally, it
o"ers 18 recently proposed SOTA FGL algorithms through a user-
friendly API, enabling a thorough comparison and comprehensive
evaluation of their e"ectiveness, robustness, and e#ciency. Our
empirical results demonstrate the capabilities of FGL while also
highlighting its potential limitations, providing valuable insights for
future research in this growing !eld, particularly in fostering greater
interdisciplinary collaboration between FGL and data systems.
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1 INTRODUCTION
Recently, graphs have emerged as e"ective tools for capturing
intricate interactions among real-world entities, leading to their
widespread applications. Based on this, we can translate various
business applications from industrial scenarios into di"erent graph-
based downstream tasks from the machine learning perspective. To
generate e"ective graph entity embeddings, graph neural networks
(GNNs) utilize relational data stored from databases, encoding both
node features and structural information for various data systems
applications [9, 107, 146]. This paradigm has been widely validated,
including node-level !nancial fraud detection [45, 94], link-level
recommendation [65, 127], and graph-level bioinformatics [28, 96].

Despite their e"ectiveness, privacy regulations and scalability
issues pose challenges to direct data sharing, complicating cen-
tralized model training [56, 134, 136]. To address this challenge,
federated graph learning (FGL) has been proposed to enable collab-
orative training across multiple local systems [32, 90, 120, 132, 143],
providing a novel distributed approach to graph-based data manage-
ment [5, 78, 101, 128, 147]. Existing FGL benchmarks, such as FS-G
[115] (Year: 2022) and FedGraphNN [38] (Year: 2021), o"er valu-
able insights but still have the following limitations: (1) Datasets:
Limited to few application domains (e.g., citation networks and rec-
ommendation). (2)Algorithms: Missing recent SOTA FGLmethods
(e.g., 8 methods in 2023, 10+ methods in 2024). (3) Experiments:
Lack of graph-oriented federated data simulation strategies, inad-
equate support for various graph-based downstream tasks, and
limited evaluation perspectives. While the research prospects and
enthusiasm for FGL are prominent and growing [46, 74, 113, 118],
the absence of a comprehensive benchmark for fair comparison
impedes its development. Speci!cally, the diversity of downstream
tasks (i.e., node, link, and graph), the unique graph properties (i.e.,
feature, label, and topology), and the complexity of FGL evaluation
(i.e., e"ectiveness, robustness, and e#ciency) collectively pose sig-
ni!cant obstacles to achieving a comprehensive understanding of
the current FGL landscape. Consequently, there is an emergency
need to develop a standardized benchmark.
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In this paper, we propose OpenFGL, which integrates 2 com-
monly used FGL scenarios, 42 datasets in 18 application domains,
8 graph-speci!c distributed data simulation strategies, 18 recently
proposed SOTA algorithms, and 5 graph-based downstream tasks.
These components are implemented with a uni!ed API to facilitate
fair comparisons and future development in a user-friendly manner.
Based on this foundation, we provide a comprehensive evaluation
of existing FGL algorithms, drawing the following valuable insights.
For E!ectiveness we advocate for quantifying the statistics in dis-
tributed graphs to de!ne the graph-based federated heterogeneity
formally. For Robustness, to facilitate the practical deployment
of existing FGL algorithms, we emphasize the signi!cant potential
of personalized, multi-client collaboration, and privacy-preserving
techniques in addressing challenges such as data noise, data sparsity,
low client participation, and generalization in complex applications.
For E"ciency, considering the industry-scale datasets, we encour-
age FGL developers to prioritize algorithmic scalability and propose
innovative federated collaborative paradigms that bring substantial
bene!ts in improving e#ciency. To further illustrate the advantages
of our proposed OpenFGL compared to existing FGL benchmarks,
we provide a clear description in Table 1.

Our contributions. (1) Comprehensive Benchmark. We propose
OpenFGL, which integrates 2 scenarios with 42 publicly datasets.
Based on this, we propose 8 practical distributed settings from the
perspective of data heterogeneity. Meanwhile, we integrate 18 FGL
algorithms and advocate 3 orthogonal evaluation perspectives to es-
tablish comprehensive baselines (See Table 1). We believe that FGL
can inspire new research directions within the data systems com-
munity, particularly in scalable, privacy-preserving, and distributed
data processing. (2) Valuable Insights. Leveraging the user-friendly
API integrated into OpenFGL, we conducted extensive empirical
studies and derived 10 valuable conclusions (See Sec. 4.1-Sec. 4.4).
Building upon these !ndings, we provide 6 key insights from the
perspectives of e"ectiveness, robustness, and e#ciency, outlin-
ing promising research directions for the future FGL community
(See Sec. 5). (3) Open-sourced Library and Detailed Repository. We
develop an easy-to-use and open-source library to support ongoing
FGL studies, allowing users to evaluate their algorithms or datasets
with ease. Additionally, we conduct a comprehensive review of
existing FGL studies and release a beginner-friendly repository to
facilitate the growth of the FGL community. The code and related
tutorial are available at https://github.com/xkLi-Allen/OpenFGL.

2 PROBLEM STATEMENT
In this section, we brie$y review the FGL training pipeline in the
following 2 most representative scenarios. To begin with, from a
data perspective, each client regards graphs (Graph-FL) and nodes
in a subgraph (Subgraph-FL) as data samples. Subsequently, FGL
aims to achieve collaborative training based on these clients and a
trusted server. Formally, we consider a FGL system consisting of 𝐿
clients, where the 𝑀-th client manages a private dataset denoted as
D(𝐿 ) = {G(𝐿 )

𝑀 }𝑁𝐿
𝑀=1. Here, 𝑁𝑂 is the task-speci!c description, where

𝑁𝑂 denotes the number of graph samples under Graph-FL, while
𝑁𝑂 = 1 exists under Subgraph-FL. To provide a detailed description,
we take FedAvg [85] as an example. Its training process within the
𝑂 communication round is outlined in four key steps:

1. Receive Message. Each client initializes its local model with the
uni!ed parameters from the server at the 𝑃-th round W𝑂

𝐿 → Ŵ𝑂 ;
2. Local Update. Each client performs local training using its pri-
vate data, i.e., minW𝐿

𝑀
L𝑃𝑄𝑅𝐿 (D(𝐿 ) ) to obtainW𝑂+1

𝐿 , where L𝑃𝑄𝑅𝐿

denotes the task-speci!c optimization objectives.
3. UploadMessage. Each client uploads their local updated models
W𝑂+1

𝐿 and the number of data samples 𝑄𝑀 (i.e., graphs, nodes, or
edges, depending on the downstream task) to the server.
4. Global Aggregation. The server aggregates the updated mod-
els to obtain Ŵ𝑂+1 for the next communication, i.e., Ŵ𝑂+1 →
1
𝑆
∑𝑇
𝐿=1 𝑄𝐿W𝑂+1

𝐿 , where 𝑄 is the total number of data samples.

3 BENCHMARK DESIGN
3.1 Data-level FGL Scenarios
In this section, we distinguish FGL scenarios based on the types
of downstream tasks and the storage forms of local data at each
client, categorizing them as Graph-FL, Subgraph-FL, and Node-FL.
This serves as the guideline for proposing the concept of data-level
FGL scenarios, emphasizing the data-centric description of real-
world FGL applications. Notably, this section focuses on the pre-
experiment preparation from a data perspective, whereas Sec. 3.3
emphasizes a more in-depth empirical analysis through a compre-
hensive evaluation across 3 orthogonal perspectives. In OpenFGL,
we focus on the two prevalent FGL scenarios: (1) Graph-FL. The
growing integration with graph-based techniques and AI4Science
applications, such as drug discovery, has motivated this scenario,
in which clients consider graphs as the data samples and pursue
collaborative training between clients to acquire powerful models
while preserving data privacy. (2) Subgraph-FL. Realistic applica-
tions in this scenario include node-level fraud detection for !nancial
security and link-level user-item interactions for recommendation,
with data stored in a distributed manner. Clients treat their data as
subgraphs of a larger and more comprehensive global graph and
focus on utilizing nodes and edges as data samples for training.
Due to regulatory constraints, clients seek a collaborative training
scheme to develop well-trained models without direct data sharing.

Notably, Node-FL is also a signi!cant paradigm of FGL, which is
widely used in graph-based spatial-temporal analysis, such as sen-
sor networks [102] and tra#c $ow prediction [135], where nodes
are only aware of their local context within the broader network.
Although Node-FL has been widely mentioned, we have not inte-
grated it into OpenFGL. This is because most Node-FL studies are
tailored to speci!c scenarios and involve experimental setups that
are highly diverse and closely aligned with particular application
contexts. These characteristics make Node-FL less suitable for be-
ing included in a uni!ed benchmark evaluation, where consistency
across scenarios is essential for comprehensive comparisons.

Datasets. To comprehensively evaluate existing FGL algorithms,
we have compiled a substantial collection of public datasets from
various domains. Speci!cally, Regarding Graph-FL scenario, we
conduct experiments on the compounds networks (MUTAG, BZR,
COX2, DHFR, PTC-MR, AIDS, NCI1, hERG, ogbg-molhiv, ogbg-
molpcba) [18, 29, 40, 42, 97, 104, 109], protein networks (ENZYMES,
DD, PROTEINS, ogbg-ppa) [12, 20, 40, 42], collaboration network
(COLLAB) [53], movie network (IMDB-B/M) [126], super-pixel
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Table 1: FGL benchmark comparison, where D.D. denotes dataset domain. E!e. and E". represent e!ectiveness and e"ciency.

FGL Benchmarks D.D. FGL Algorithms Federated Data Simulation Tasks Evaluations Conclusions

FS-G [115] 7 3 (Year: 2021) Label, Topology 3 E"e. and E#. 5 (E"e.+Hyperparameter)
FedGraphNN [38] 6 0 (FL+GNNs) LDA-based Feature, Label 3 E"e. and E#. 5 (E"e.+E#.+Security)

OpenFGL (Ours) 18 18 (Year: 2021-2024) Cross-domain and Graph-based
Feature, Label, Topology 5 Table 2 10 (E"e. + Robustness + E#.)

and 6 Promising Directions

Table 2: An overview of OpenFGL.

Data Graph-FL Scenario Subgraph-FL Scenario
Datasets Protein, Collaboration, Movie Network... Citation, Purchase, Wiki, Syntax Network...
Simulation Feature, Label, Topology, Cross-domain Feature, Label, Community, Cross-domain

Tasks Graph Regression, Graph Classi!cation Node Classi!cation, Link Prediction, Node Clustering

Method Algorithms
GNN GCN, GAT, GraphSAGE, SGC, GCNII, GIN, TopKPooling, SAGPooling, EdgePooling, PANPooling
FL FedAvg, FedProx, Sca"old, FedDC, MOON, FedProto, FedNH, FedTGP
FGL GCFL+, FedStar, FedSage+, Fed-PUB, FedGTA, FGSSL, FedGL, AdaFGL, FGGP, FedDEP, FedTAD

Experiment Evaluations
Data Analysis Feature KL Divergence, Label Distribution, Topology Statics
E"ectiveness MSE, RMSE, Accuracy, Precision, Recall, F1, AUC-ROC, AP, Clustering-accuracy, NMI, ARI
Robustness Noise, Sparsity, Client Active Fraction, Federated Scenario Generalization, DP-based Privacy Preserve
E#ciency Convergence, Scalability, Communication, FLOPS, Time&Space Complexity

networks (MNISTSuperPixels) [87], point cloud (ShapeNet) [133],
and syntax trees (ogbg-code2) [42]. As for Subgraph-FL scenario,
we perform experiments on the citation networks (Cora, Citeseer,
PubMed, FedDBLP, ogbn-arxiv) [42, 115, 131], co-purchase net-
works (Amazon-Computers, Amazon-Photo, ogbn-products) [42,
100], and co-author networks (CS, Physics) [100], wiki-page net-
works (Chameleon, Squirrel) [91, 93], actor network (Actor) [91],
game synthetic network (Minesweeper) [93], crowd-sourcing net-
work (Tolokers) [93], syntax network (Roman-empire) [93], rating
network (Amazon-rating) [93], social network (Questions) [93], and
point cloud networks (PCPNet, S3DIS) [6, 34].

Remarkably, besides these datasets being collected across vari-
ous application domains, they exhibit diverse graph characteristics,
encompassing rich or poor node attributes at the feature level, ho-
mophily or heterophily, and sparsity or density at the topology
level. These graph properties facilitate the evaluation of the adapt-
ability and robustness of existing FGL algorithms across various
and intricate experimental settings, highlighting their strengths
and revealing potential limitations from a data-centric perspective.
More details can be found in Tables. 3, 4 and [1] (A.1).

Simulation Strategies. In response to policy constraints on
acquiring distributed graphs, we draw inspiration from federated
learning in computer vision to simulate generalized federated sce-
narios by partitioning existing datasets into distributed subsets. This
strategy is similar to recent FGL benchmarks [38, 115]. In our pro-
posed OpenFGL, we integrate 8 federated data simulation strategies
driven by practical applications, in which we ensure the graph data
distributed to each client exhibits similar patterns in feature, label,

or topology while maintaining a controllable heterogeneity across
clients. Speci!cally, for both Graph-FL and Subgraph-FL, we im-
plement 3 simulation strategies widely used in graph-independent
FL. In the context of Graph-FL, we introduce a topology-oriented
simulation strategy called Topology Shift, which distributes graphs
based on degree distribution. The inspiration for this approach
stems from key insights o"ered by recent FGL studies [105, 122]:
in Graph-FL, the structure Non-iid resulting from topology shift is
the primary challenge in collaborative optimization, where node
features and labels appear less signi!cant by comparison. As for
Subgraph-FL, existing strategies predominantly utilize community
detection algorithms such as Louvain [11] and Metis [49] to identify
clusters with dense intra-community connections. Then, these clus-
ters’ nodes are subsequently allocated to local clients to construct
corresponding induced subgraphs for partitioning. These strategies
all operate under a common assumption: that the private data col-
lected by each local agent in the real world contains dense internal
connections but is loosely connected across clients [41, 47, 58, 62].
Despite their e"ectiveness, limitations persist in their application.
This is because Subgraph-FL primarily focuses on node-level and
link-level tasks, where node pro!les (i.e., node features and labels)
are crucial. However, these strategies do not consider label distri-
bution for federated data simulation. Hence, we introduce Metis-
based Label Imbalance Split and Louvain-based Label Imbalance
Split. These methods, re!ning the aforementioned strategies, care-
fully consider label distribution during cluster allocation to better
simulate realistic and generalized distributed scenarios. We outline
these strategies in Table 5, with descriptions provided below:
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Table 3: The statistical information of Graph-FL datasets.

Graph-FL Graphs Nodes Edges Features Classes Train/Val/Test Description

MUTAG 188 17.93 19.79 7 2 80%/10%/10% Compounds Network
BZR 405 35.75 38.36 56 2 80%/10%/10% Compounds Network
COX2 467 41.22 43.45 38 2 80%/10%/10% Compounds Network
DHFR 467 42.43 44.54 56 2 80%/10%/10% Compounds Network

PTC-MR 344 14.29 14.69 18 2 80%/10%/10% Compounds Network
AIDS 2,000 15.69 16.20 42 2 80%/10%/10% Compounds Network
NCI1 4,110 29.87 32.30 37 2 80%/10%/10% Compounds Network
hERG 10,572 29.39 94.09 8 - 80%/10%/10% Compounds Network

ogbg-molhiv 41,127 25.50 27.50 9 2 80%/10%/10% Compounds Network
ogbg-molpcba 437,929 26.00 28.10 9 2 80%/10%/10% Compounds Network

ENZYMES 600 32.63 62.14 21 6 80%/10%/10% Protein Network
DD 1,178 284.32 715.66 89 2 80%/10%/10% Protein Network

PROTEINS 1,113 39.06 72.82 4 2 80%/10%/10% Protein Network
ogbg-ppa 158,100 243.40 2,266.10 4 37 49%/29%/22% Protein Network

COLLAB 5,000 74.49 2,457.78 degree 3 80%/10%/10% Collaboration Network
IMDB-BINARY 1,000 19.77 96.53 degree 2 80%/10%/10% Movie Network
IMDB-MULTI 1,500 13.00 65.94 degree 3 80%/10%/10% Movie Network

ShapeNet 16,881 2616.20 KNN 3 50 40%/40%/40% Point Cloud Network
MNISTSuperPixels 70,000 75.00 1393.03 1 10 43%/43%/14% Super-pixel Network

ogbg-code2 452,741 125.20 124.20 4 275 90%/5%/5% Abstract Syntax Trees

Table 4: The statistical information of Subgraph-FL datasets.

Subgraph-FL Nodes Edges Features Classes Train/Val/Test Description

Cora 2,708 5,429 1,433 7 20%/40%/40% Citation Network
CiteSeer 3,327 4,732 3,703 6 20%/40%/40% Citation Network
PubMed 19,717 44,338 500 3 20%/40%/40% Citation Network
FedDBLP 52,202 271,054 1,639 4 50%/20%/30% Citation Network
ogb-arxiv 169,343 231,559 128 40 60%/20%/20% Citation Network

Amazon-Photo 7,487 119,043 745 8 20%/40%/40% Co-purchase Network
Amazon-Computers 13,381 245,778 767 10 20%/40%/40% Co-purchase Network

ogb-products 2,449,029 61,859,140 100 47 10%/5%/85% Co-purchase Network

Co-author CS 18,333 81,894 6,805 15 20%/40%/40% Co-author Network
Co-author Physics 34,493 247,962 8,415 5 20%/40%/40% Co-author Network

Chameleon 2,277 36,101 2,325 5 48%/32%/20% Wiki-page Network
Chameleon Filter 890 13,584 2,325 5 48%/32%/20% Wiki-page Network

Squirrel 5,201 216,933 2,089 5 48%/32%/20% Wiki-page Network
Squirrel Filter 2,223 65,718 2,089 5 48%/32%/20% Wiki-page Network

Actor 7,600 29,926 931 5 50%/25%/25% Actor Network
Minesweeper 10,000 39,402 7 2 50%/25%/25% Game Synthetic Network
Tolokers 11,758 519,000 10 2 50%/25%/25% Crowd-sourcing Network

Roman-empire 22,662 32,927 300 18 50%/25%/25% Article Syntax Network
Amazon-ratings 24,492 93,050 300 5 50%/25%/25% Rating Network

Questions 48,921 153,540 301 2 50%/25%/25% Social Network

PCPNet 100,000 KNN 5 - 26%/10%/64% Point Cloud Network
S3DIS 4,096 KNN 6 3 45%/45%/10% Point Cloud Network

Feature Distribution Skew is a graph-independent strategy
to simulate feature distribution shifts [46, 113]. In OpenFGL, we
utilize this approach to create more challenging and realistic scenar-
ios for evaluating FGL algorithms [60]. Speci!cally, we implement
various feature operations: (1) Adding Gaussian or Laplacian noise
to introduce variability; (2) Applying scaling operations to simu-
late di"erent magnitudes of features; (3) Employing mathematical
transformations to further diversify the feature distributions.

Label Distribution Skew is a graph-independent strategy [118,
132]. In our implementation, we use the 𝑅-based Dirichlet distri-
bution to create imbalanced label distributions across clients [10].
This approach ensures varied and imbalanced label distributions,
simulating real-world data scenarios. The 𝑅 in Dirichlet distribution
controls the concentration of probabilities across label classes, with
larger values leading to more uniform distributions and smaller
values resulting in sparser and more concentrated distributions.
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Table 5: A summary of our proposed graph-speci#c data simulation strategies.

Federated Simulation Scenarios Feature Label Topology Implemented By

Feature Distribution Skew Both FS-G, OpenFGL
Label Distribution Skew Both FS-G, FedGraphNN, OpenFGL
Cross Domain Data Skew Both FS-G, OpenFGL

Topology Distribution Skew Graph-FL OpenFGL
Metis-based Community Split Subgraph-FL FS-G, OpenFGL

Louvain-based Community Split Subgraph-FL FS-G, OpenFGL
Metis-based Label Imbalance Split Subgraph-FL OpenFGL

Louvain-based Label Imbalance Split Subgraph-FL OpenFGL

Cross Domain Data Skew is a fundamental challenge in FL,
arising from the heterogeneous nature of data sources and collection
methods across distributed databases [128]. In OpenFGL, we simu-
late this scenario by evenly distributing multiple datasets among a
prede!ned number of clients, maintaining a diverse representation.

Topology Distribution Skew represents the strategy for parti-
tioning graphs based on their topology properties in Graph-FL [105,
122]. This approach involves sorting the global graph according
to speci!c characteristics, such as average node degree, and then
distributing the resulting graphs to prede!ned clients. This ensures
that the distribution of graph data among clients accurately re$ects
the underlying topological diversity of the original global dataset.

Metis-based Community Split is a widely adopted Subgraph-
FL federated data simulation strategy that utilizes a multilevel re-
cursive bisection and k-way partitioning technique. This method
iteratively reduces the size of the graph and re!nes the partitioning.
Notably, compared to the following the Louvain-based data simula-
tion strategy, Metis can directly partition a graph into a prede!ned
number of communities, aligning precisely with the number of
clients and streamlining data allocation in the federated settings.

Louvain-based Community Split stands as the other preva-
lent federated data simulation strategy in Subgraph-FL, partition-
ing a graph into multiple communities (subgraphs) via modularity
optimization. The number of communities is determined by the res-
olution parameter of the Louvain algorithm. However, the Louvain
algorithm often generates more communities than the prede!ned
number of clients. To resolve this, communities can be allocated
among the clients by averaging node quantities.

Metis-based Label Imbalance Split is a new Subgraph-FL data
simulation strategy introduced in this paper. The naive Metis-based
Community Split lacks post-processing capabilities, leading to chal-
lenges in controlling subgraph heterogeneity among clients. In
contrast, our approach enables prede!ned community partition-
ing, followed by clustering based on label distribution similarity,
thereby consolidating similar communities under a single client.

Louvain-based Label Imbalance Split enhances the conven-
tional Louvain method by allocating communities to clients based
on similarities in label distributions rather than solely on node
averages. This approach ensures that each client receives commu-
nities with consistent label characteristics, thereby mitigating label
imbalance and promoting equitable model training across federated
clients. By aligning label distributions, this strategy enhances the
fairness and robustness of federated learning, reducing biases that
may arise from heterogeneous label distributions among clients.

These 8 federated distributed data simulation strategies, meticu-
lously developed based on the combination of features, labels, and
topology, signi!cantly enhance the robustness and generalization
capabilities of FGL studies. We have crafted a comprehensive and
realistic benchmark tailored for industrial applications, thereby
fostering substantial progress and paving the way for future ad-
vancements in FGL research. Therefore, OpenFGL not only tests
the e"ectiveness of existing FGL algorithms but also serves as a
platform for developing new methodologies and approaches.

Downstream Tasks. Our proposed OpenFGL evaluates FGL
studies across a range of downstream tasks, including graph classi-
!cation and regression for Graph-FL, as well as node classi!cation,
clustering, and link prediction for Subgraph-FL. While acknowledg-
ing the traditional focus on graph and node classi!cation, OpenFGL
extends its scope to additional tasks, promoting broader advance-
ments and greater $exibility in the FGL benchmark. Notably, to
avoid complex presentation and ensure reader-friendly, we primar-
ily focus on classi!cation task to present experimental results.

3.2 Method-level FGL Algorithms
GNN Backbones. To provide a broader spectrum of learning
paradigms on the client side, OpenFGL integrates a diverse range
of local GNN backbones. Speci!cally, we implement various well-
designed polling strategies (TopKPooling [26], SAGPooling [52],
EdgePooling [19], and PANPooling [84]) based on the most repre-
sentative GIN [124] with weight-free MeanPooling [124] for Graph-
FL. As for Subgraph-FL, OpenFGL includes prevalent GCN [51],
GAT [108], GraphSAGE [36], SGC [117] and GCNII [15]. The de-
tailed descriptions of these backbones can be found in [1] (A.2).
FL/FGL Algorithms. To achieve federated training, multi-client
collaboration algorithms are crucial (CV-based FL also can be ap-
plied to FGL). We follow the historical progression of FL to include
a spectrum of algorithms from the most representative methods in
CV to FGL: (1) CV-based FL algorithms: FedAvg [85], FedProx [63],
Sca"old [48], MOON [61], FedDC [27], FedProto [106], FedNH [16]
and FedTGP [137]; (2) all FGL algorithms possible: GCFL+ [122]
and FedStar [105] in Graph-FL and FedSage+ [140], Fed-PUB [8],
FedGTA [70], FGSSL [44], FedGL [13], AdaFGL [67], FGGP [110],
FedDEP [138], and FedTAD [149] in Subgraph-FL. More details
about these algorithms can be found in [1] (A.2). Notably, these
algorithms are implemented with a uni!ed API to facilitate future
development in a user-friendly manner. For more details about our
API design from the algorithm perspective, please refer to Sec. 4.5.
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3.3 Experiment-level FGL Evaluations
Data Analysis. (1) Feature KL Divergence: It reveals feature skew
among clients while the label domain remains consistent, which
may arise due to the di"erent geographical locations of clients,
such as the characteristics of a certain disease may signi!cantly
di"er across various regions. (2) Label Distribution: It is widely dis-
cussed in CV-based FL. However, in FGL, the relationship between
labels and topology frequently reveals underlying connections,
characterized as homophily. Thus, we further integrate multi-level
homophily metrics [76, 80, 91–93] to o"er comprehensive analysis.
(3) Topology Statics: This perspective stems from the critical role of
topology in GNNs, especially in distributed scenarios. This arises
from the signi!cant impact of diverse local topology statistics on
the local model, causing complex cascading e"ects in collaboration.
Therefore, we examine topological di"erences among clients (e.g.,
Degree, Centrality, Largest Component) to provide insights.
E!ectiveness. Details of our evaluation metrics are as follows:
graph/node classi!cation (Accuracy, F1, Recall, Precision), graph
regression (MSE, RMSE), link prediction (AP, AUC-ROC), and node
clustering (Clustering-accuracy, NMI, ARI). More detailed descrip-
tions of these metrics are presented in [1] (A.3).
Robustness. To evaluate the practical deployment of FGL, we ex-
amine its robustness from the following perspectives: (1) Noise:
This corresponds to data quality issues resulting from data collec-
tion [58, 78]. (2) Sparsity: This re$ects scenarios with incomplete
features, labels, and topology due to data scarcity and high labor
costs, and with a low rate of client participation [32, 56, 118]. (3)
Client Communication: This simulates scenarios with network
constraints or high communication costs [132, 134]. (4) General-
ization: This evaluates the e"ectiveness of algorithms in various
scenarios. (5) Privacy Preserve: This re$ects the applicability of
algorithms in privacy-sensitive scenarios, thereby we conduct an
in-depth analysis from the perspective of Di"erential Privacy (DP).
Please refer to [1] (A.4) for further details on the robustness settings.
E"ciency. To facilitate FGL deployment, we conduct an evalua-
tion of current baselines regarding their e#ciency. Speci!cally, we
evaluate them from both theoretical (algorithm complexity) and
experimental (communication cost and running time) perspectives.

4 EXPERIMENTS AND ANALYSIS
In this section, we systematically investigate FGL algorithms by an-
swering the following questions: (1) For E!ectiveness, Q1: What
advantages does federated collaboration o"er compared to training
solely on local data? Q2: How do FGL algorithms and federated
implementations of GNNs perform in two prevalent FGL scenarios?
(2) For Robustness, Q3: How do FGL algorithms perform under
local noise and sparsity settings (i.e., features, labels, and edges)?
Q4: What are the performance of FGL algorithms under low client
participation rates in communication? Q5: Can FGL algorithms
maintain generalization across various graph-speci!c distributed
scenarios? Q6: Do FGL algorithms support additional DP privacy
protection? (3) For E"ciency, Q7: What are the theoretical algo-
rithm complexity of FGL algorithms? Q8: What is the practical
running e#ciency of FGL algorithms? To maximize the usage for
the constraint space, more results are shown in [1] (A.5-A.7).

4.1 Performance Comparison
To answer Q1, in addition to the federated multi-client collabo-
ration, we introduce "Local" to represent solely local training for
analyzing the advantages and potential limitations of FGL. Based
on this, to answer Q2, we present the end-to-end performance in
Table 6 and Table 7. The detailed analysis is presented as follows:
Graph-FL Scenario. Since the baselines for Graph-FL are scarce.
Therefore, we expand pooling-based backbones and CV-based FL in
Table 6. For Q1, we !nd that the bene!ts of federated collaboration
are not signi!cant for small-scale MUTAG, BZR, and COX2 due
to limited data that can not support federated training and thus
a"ect predictions. Subsequently, we conclude that C1: Federated
collaboration is more advantageous for larger-scale datasets, bene!t-
ing from abundant data sources [64, 98]. As for Q2, we observe that:
(1) GCFL+ and FedStar concentrate on topology Non-iid within
the cross-domain simulation, thereby not consistently achieving
competitive performance in this single-source setting. Therefore,
they perform less favorably than FL algorithms on ENZYMES, COL-
LAB, and MULTI. (2) Existing FGL algorithms heavily rely on node
semantics. We observe signi!cant improvements on datasets with
abundant node descriptions like DD and PROTEINS, whereas lim-
ited performance on BINARY whose node representations are ini-
tialized with node degrees. Consequently, we conclude that C2:
Graph-FL algorithms still have improvement space, especially in the
single-source domain and constrained data semantics [3, 57].
Subgraph-FL Scenario. Experimental results are shown in Table 7.
For Q1, although Subgraph-FL can bene!t from abundant data, for
Chameleon, Actor, and Ratings, the improvement from both FL
and FGL is limited or even worse than solely local training in some
cases.We attribute this to the heterophily, where di"erences in node
connection rules across clients signi!cantly a"ect local updates and
server-side collaboration, deviating from the global optimum and
resulting in sub-optimal performance. Although AdaFGL addresses
this issue through personalized technology, there is still room for
better performance. Based on this and C1, we conclude that C3:
The prerequisite for positive impacts of federated collaboration is the
uniform distribution of node features, labels, and topology [79, 121].
Regarding Q2, we observe that: (1) Subgraph-FL is thriving, with
numerous baselines vigorously competing for the best performance.
Among them, FedTAD and AdaFGL stand out in most cases. (2) The
outstanding performance of existing algorithms stems from the
!ne-grained exploration of the topology, but some methods lack
scalability when dealing with large-scale ogbn-products, resulting
in OOM (out-of-memory) errors. Consequently, we conclude that
C4: Subgraph-FL algorithms need to resolve the complexity in real-
world deployments, especially focusing on large-scale scenarios and
graph-speci!c federated heterogeneity challenges [68, 71].

4.2 Robustness Analysis
Local Noise. To answer Q3 from the perspective of noise, the ex-
perimental results are shown in the upper part of Fig. 1(a)-(c). For
feature noise, we randomly select the channels of node features
and inject Gaussian noise. To simulate edge noise in the Graph-
FL without node labels, we utilize Metattack [150] to add noise
edges, signi!cantly perturbing the training gradients. As for label
noise, we randomly reassign non-real labels to a certain proportion

1310



Table 6: Graph-FL test accuracy (%). The best result is bold. The second result is underlined.

Graph-FL MUTAG BZR COX2 ENZYMES DD PROTEINS COLLAB BINARY MULTI

GIN-Local 84.2±2.5 84.3±1.6 81.6±2.9 40.7±1.1 82.7±2.0 81.8±1.1 75.4±1.9 76.3±2.8 47.1±1.8
SAG-Local 82.0±1.9 89.5±1.9 82.1±2.3 41.4±0.8 80.3±1.5 83.3±1.4 77.0±1.5 77.7±2.5 49.0±2.1
Edge-Local 80.8±1.9 86.7±1.8 78.6±2.4 42.1±0.7 81.5±2.4 82.7±0.9 76.2±1.7 78.9±1.9 48.0±2.0
PAN-Local 86.1±2.7 80.3±2.0 80.8±2.4 38.0±1.0 84.2±2.2 81.0±1.9 75.1±2.0 80.7±2.3 46.1±2.4

FedAvg 78.9±2.9 76.5±1.3 79.0±1.7 47.4±0.9 82.4±2.6 80.1±1.5 77.5±1.6 79.2±2.5 50.8±2.0
FedProx 76.5±2.4 81.8±1.7 77.2±1.6 46.7±1.4 83.1±1.5 77.4±1.7 77.9±1.9 81.9±2.0 51.6±2.2
Sca"old 75.4±2.9 82.3±1.8 82.0±1.4 40.9±1.5 84.5±2.4 79.9±1.1 76.4±1.8 80.3±1.7 52.4±2.8
MOON 80.5±2.9 82.6±1.8 78.8±1.5 49.3±1.6 79.8±2.1 80.0±2.0 79.8±2.0 81.1±2.0 51.4±2.2
FedProto 82.7±2.0 86.7±1.4 79.4±2.4 42.5±1.4 85.2±2.0 80.3±1.3 76.7±1.4 80.6±2.7 49.9±2.1
FedNH 84.3±2.2 85.2±1.6 81.2±2.4 45.3±1.5 84.9±2.0 81.2±1.8 75.3±1.2 79.4±2.0 50.4±2.6
FedTGP 83.8±2.8 84.6±1.0 81.8±1.6 43.0±1.0 87.3±2.8 80.9±2.0 77.2±2.1 78.6±2.5 50.9±2.5

GCFL+ 82.6±2.6 87.8±1.9 82.6±2.3 47.8±1.3 85.2±2.5 83.6±1.3 77.5±1.1 80.4±2.3 51.8±2.5
FedStar 84.7±2.6 89.1±1.5 80.6±2.3 48.4±0.8 88.4±2.3 84.5±1.7 78.6±1.7 82.7±2.3 51.4±2.6

Table 7: Subgraph-FL test accuracy (%). The best result is bold. The second result is underlined.

Subgraph-FL Cora CiteSeer PubMed Photo Computers Products Chameleon Actor Ratings

GCN-Local 77.9±0.3 64.3±0.8 84.6±0.3 88.8±0.4 87.7±0.6 79.4±0.5 64.7±0.6 29.4±1.4 45.5±0.8
GAT-Local 78.5±0.4 63.9±0.6 85.3±0.4 89.6±0.5 87.4±0.5 78.9±0.6 65.1±0.5 30.2±0.9 46.2±0.5

FedAvg 82.5±0.7 69.5±0.7 86.4±0.5 90.3±0.7 89.1±0.4 82.3±0.5 61.2±0.8 28.7±0.8 42.5±0.4
FedDC 81.4±0.8 70.4±0.5 87.9±0.4 91.2±0.6 88.4±0.5 81.9±0.3 58.6±1.2 26.9±1.2 41.2±0.4
FedProto 79.4±0.6 67.2±0.2 85.1±0.2 87.4±0.4 86.9±0.3 77.2±0.4 64.0±0.6 28.0±0.6 46.1±0.4
FedTGP 80.7±0.5 68.8±0.4 85.9±0.3 86.5±0.5 86.4±0.6 78.3±0.5 62.7±1.1 28.4±0.7 45.7±0.9

FedSage+ 82.6±0.8 71.2±0.8 88.2±0.7 90.8±0.8 90.4±0.8 82.8±0.7 65.6±0.7 30.8±1.0 45.8±0.7
FedGTA 83.0±0.4 72.4±0.4 87.6±0.4 91.0±0.4 90.8±0.5 83.2±0.4 66.2±0.8 30.5±0.6 45.5±0.5
Fed-PUB 81.7±0.6 71.9±0.7 87.8±0.3 91.5±0.6 91.1±0.7 82.1±0.5 64.4±0.7 29.2±0.8 44.8±0.6
FGSSL 81.5±0.8 70.1±0.5 87.3±0.4 88.8±0.6 89.2±0.5 OOM 64.9±0.9 28.9±1.0 45.2±0.8
FedGL 82.5±0.7 71.5±0.7 87.1±0.5 89.7±0.5 90.7±0.5 OOM 65.4±0.8 29.4±1.3 46.0±0.7
AdaFGL 83.4±0.5 72.0±0.5 87.9±0.6 91.3±0.7 91.0±0.6 OOM 67.2±1.0 31.2±1.2 46.9±0.5
FGGP 81.4±0.5 69.1±0.7 87.0±0.4 88.6±0.6 88.3±0.4 OOM 65.3±0.7 28.3±0.4 45.6±0.5
FedTAD 84.1±0.6 71.8±0.8 88.0±0.6 91.4±0.5 91.6±0.7 81.9±0.3 65.9±1.3 30.7±1.0 46.1±0.8

of training node samples. Based on the experimental results, we
observe that FGL algorithms are highly sensitive to edge noise com-
pared to topology-agnostic FL algorithms. This inherent limitation
directly disrupts the model optimization of GCFL+ and FedStar, mis-
leading local updates and topology-driven collaboration, thereby
resulting in sub-optimal predictive performance. However, GCFL+
and FedStar demonstrate superior robustness under feature and
label noise, as they address client interference with each other using
server-side clustering customization and additional local models
maintained at client-side. Consequently, we can conclude that C5:
Noise scenarios determine the performance lower bound for FGL algo-
rithms, where personalized strategies emerge as crucial technologies.
However, they fall slightly short in addressing edge noise [77, 141].

Local Sparsity. To answer Q3 from the perspective of sparsity, the
experimental results are shown in the lower part of Fig. 1(a)-(c).
Regarding feature sparsity, we simulate partial feature absence for
unlabeled nodes and randomly remove the original edges. As for
label sparsity, we change the ratio of training nodes. Under feature
sparsity, FGSSL and Fed-PUB exhibit signi!cant performance $uctu-
ations due to heavy reliance on high-quality features for node-wise
contrastive learning andmodel-wise gradientmatching. Conversely,
FedSage+, AdaFGL, and FedTAD leverage multi-client collabora-
tion, mitigating confusion in under-trained model collaboration,
thus ensuring robustness. Similar analysis can extend to label spar-
sity, as both of them directly a"ect local updates. Regarding edge
sparsity, FedTAD’s vulnerability lies in its reliance on client-side
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(a) Feature-level (c) Edge-level(b) Label-level (d) Round Communication

Figure 1: Robustness performance on Graph-FL ENZYMES (upper) and Subgraph-FL Cora (lower).

Table 8: Generalization performance (%). The best result is bold. The second result is underlined.

Graph-FL DHFR DD COLLAB Multi-source
Simulation Feature Label (0.5) Topology Feature Label (0.5) Topology Feature Label (0.5) Topology Cross-domain

FedAvg 69.1±2.7 70.5±3.6 72.3±3.2 80.3±2.9 81.2±2.4 81.8±2.4 68.7±2.5 76.6±1.8 70.3±1.8 73.6±2.6
FedDC 70.3±3.0 68.2±4.2 71.6±3.5 78.6±4.2 83.9±3.2 80.7±3.0 66.9±3.9 78.2±2.2 69.8±2.7 71.3±3.2
FedProto 68.4±2.4 71.9±3.1 71.1±3.2 79.8±2.5 83.6±2.5 82.1±2.5 70.4±1.5 76.0±1.8 72.0±1.1 72.6±2.8
FedTGP 71.5±2.7 69.8±3.5 72.0±2.9 81.4±2.9 85.5±2.1 80.8±3.6 72.9±2.6 75.9±2.3 72.7±1.9 74.1±3.0
GCFL+ 72.3±1.9 73.2±2.4 74.5±2.4 83.1±2.2 84.2±1.8 83.9±2.7 73.8±1.9 77.3±2.5 75.4±1.5 76.2±2.5
FedStar 73.9±2.6 74.6±2.9 73.4±3.1 82.5±2.9 86.3±2.0 82.2±3.2 74.6±2.3 78.5±2.9 73.8±2.6 77.3±2.9

Subgraph-FL Photo Squirrel Questions Multi-source
Simulation Louvain Metis+ Louvain+ Louvain Metis+ Louvain+ Louvain Metis+ Louvain+ Cross-domain

FedGL 91.4±1.0 89.5±0.9 87.9±1.1 47.0±1.5 47.2±1.0 45.7±1.3 96.8±0.4 94.4±0.4 93.5±0.3 78.3±0.8
FedSage+ 92.1±0.7 90.4±0.8 88.9±1.0 46.2±1.4 46.0±1.2 46.4±1.1 97.0±0.3 93.6±0.5 92.4±0.4 80.5±0.6
FGSSL 90.5±0.6 89.8±0.6 87.5±0.7 45.9±0.7 46.3±0.9 43.3±0.8 96.1±0.4 94.2±0.4 92.7±0.3 76.9±1.0
FedGTA 92.4±0.4 91.0±0.5 88.6±0.4 47.8±0.8 47.0±0.5 45.8±0.6 96.3±0.2 95.0±0.3 95.3±0.2 82.4±0.4
Fed-PUB 91.8±0.5 90.2±0.7 88.3±0.6 47.5±1.0 46.9±1.3 44.6±1.1 96.5±0.3 94.1±0.4 95.0±0.2 79.8±0.7
AdaFGL 91.7±0.8 90.9±0.7 88.2±0.8 48.6±1.2 47.8±1.5 46.0±0.9 97.2±0.2 94.7±0.3 95.2±0.3 81.6±0.9

topology embeddings to supervise server-sider pseudo-subgraph
generator. However, AdaFGL and FedSage+, leveraging topology
mining, adeptly handle this challenge. Based on this, we can con-
clude that: C6: Sparsity scenarios determine the performance upper
bound for FGL algorithms, where multi-client collaboration is the piv-
otal technology, particularly in synergy with topology mining [7, 119].
Client Participation. To answer Q4, we present the experimental
results in Fig. 1(d), where robust FGL algorithms with low client
participation exhibit one of the following characteristics: (1) They
rely less on messages received from the server and focus on local
training; (2) They custom global messages for each participating

client. For instance, in Graph-FL, the unstable performance of Fed-
Star arises from its heavy reliance on speci!c topological properties.
Conversely, GCFL+ ensures high-quality local updates by tailor-
ing the most suitable messages for each client through server-side
clustering. In Subgraph-FL, AdaFGL, Fed-PUB, and FedGTA rely on
client-side personalized training, server-side pseudo-graph-driven
clustering, or identi!cation of subgraph statistics to ensure custom
global messages for each participating client. Consequently, we can
conclude thatC7: Low client participation underscores the emphasis of
FGL algorithms on local updates, highlighting the importance of local
data understanding and customizing messages for each client [23, 95].
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Table 9: Performance (%) on DP privacy preserve.

Graph-FL AIDS NCI1
Simulation Label Topology Label Topology

FedAvg 94.2±0.7 93.6±1.1 82.7±0.6 79.5±0.4
𝑆(5)-DP 91.9±0.9 90.5±1.6 78.3±0.7 74.2±0.5
𝑆(20)-DP 93.5±0.6 92.8±0.9 80.4±0.8 76.8±0.5

GCFL 95.8±0.5 94.2±0.7 84.9±0.5 81.5±0.3
𝑆(5)-DP 92.3±0.7 90.8±0.9 81.1±0.8 75.1±0.4
𝑆(20)-DP 94.0±0.8 93.0±0.8 82.5±0.6 77.4±0.6

Subgraph-FL CS Physics
Simulation Louvain+ Metis+ Louvain+ Metis+

FedAvg 83.2±0.9 84.0±0.7 91.6±0.3 91.0±0.4
𝑆(10)-DP 78.2±1.1 77.9±1.2 88.7±0.5 89.1±0.6

FedGTA 85.0±0.7 85.3±0.5 92.8±0.4 91.9±0.3
𝑆(10)-DP 78.8±0.8 79.2±0.9 89.4±0.7 89.2±0.8

FedSage+ 84.2±1.1 85.6±0.7 92.1±0.9 91.4±0.5
FedDEP 84.5±0.9 84.9±0.6 91.7±1.1 91.7±0.4

Generalization. To answerQ5, the experimental results are shown
in Table 8, where graph-level cross-domain setting includes MU-
TAG, COX2, PTC-MR, AIDS, ENZYMES, DD, PROTEINS, COL-
LAB, and IMDB-B/M and subgraph-level setting includes Cora,
CiteSeer, Pubmed, CS, and Physics. We observe that current FGL
algorithms exhibit inconsistent performance across data simula-
tions. Speci!cally, in Graph-FL, tiny-scale datasets with abundant
node descriptions such as DHFR and DD mitigate inherent di"er-
ences among data simulations potentially due to over-!tting issues.
As for the Subgraph-FL, data simulations present challenges for
existing FGL algorithms. For instance, Fed-PUB and AdaFGL, in-
corporating personalized strategies, lose their previous advantages,
whereas FedSage+ and FedGTA, emphasizing multi-client collabo-
ration mechanisms, show signi!cant potential. Therefore, we can
conclude that C8: In practical deployments aiming for generalization,
client-speci!c design should be used cautiously, with an emphasis on
discovering inherent global consensus [35, 88].
DP-based Privacy Preserve. To answer Q6, the experimental
results are shown in Table 9, where 𝑆 is the privacy budget. To
implement DP in FGL, we introduce well-selected random noise in
the local model gradients for server-side perturbed model aggrega-
tion. More technology details can be found in [1] (A.8). Meanwhile,
we integrate FedDEP into OpenFGL, which introduces additional
edge-level DP. Based on the results, we observe that a large 𝑆 en-
ables privacy-preserving methods to match the accuracy of the
non-private approach. However, reducing 𝑆 results in a notable
performance drop, primarily due to the need for local models for
excessive noise injection into gradients, leading to signi!cant degra-
dation. Regarding FedDEP, compared to FedSage+, it achieves edge-
level di"erential privacy through random sampling and enhances
model capacity with a deep neighbor generation module, striking a
balance between performance and privacy preservation. Based on
this, we conclude that C9: FGL algorithms currently face a dilemma
between predictive performance and privacy preservation [22, 144].

4.3 FGL Algorithm Complexity Analysis
To answer Q7, we provide a theoretical algorithm complexity anal-
ysis of the prevalent FL and FGL baselines, as illustrated in Table 10,
where 𝑇,𝑈, 𝑉 , and 𝑊 are the number of nodes, edges, classes, and
feature dimensions, respectively. 𝑋 is the number of selected aug-
mented nodes and 𝑌 is the number of generated neighbors. 𝑍 and
𝑂 are the batch size and training rounds, respectively. 𝑀 and 𝐿
correspond to the number of times we aggregate features and mo-
ments order, respectively.𝑁 is the number of participating clients in
each training round. 𝑃 represents the number of clients exchanging
information with the current client. 𝑎 represents the model-wise
weight alignment loss term,𝑏 denotes the size of the query set used
for CL, 𝑐 stands for the number of models for ensemble learning,
𝑑 and 𝑒 indicate the dimension of the trainable matrix used to
mask trainable weights and the prototypes. Besides, 𝑓𝑈 represents
pseudo-graph data stored on the server side.

For convenience, we choose SGC [117] as the local model (𝑀-step
feature propagation), otherwise, we adopt the model architecture
(𝑔-layer) used in their original paper. For the 𝑀-layer SGC model
with batch size 𝑍, the X(𝐿 ) is the propagated feature bounded by a
space complexity of𝑕 ((𝑍+𝑀) 𝑊 ). The overhead for linear regression
by multiplyingW is 𝑕 (𝑊 2). In the training stage, the above proce-
dure is repeated to iteratively update the model weights. For the
server performing FedAvg, it needs to receive the model weights
and the number of samples participating in this round. Its space
complexity and time complexity are bounded as𝑕 (𝑁 𝑊 2) and𝑕 (𝑁 ).
As discovered by previous studies [14, 66, 142], the dominating
term is 𝑕 (𝑀𝑈𝑊 ) or 𝑕 (𝑔𝑈𝑊 ) when the graph is large since feature
learning can be accelerated by parallel computation. Consequently,
𝑕 (𝑔𝑈𝑊 ) emerges as the dominating complexity term of linear trans-
formation. Although FGL o"ers a new perspective for large-scale
graph learning through a distributed paradigm, it still requires the
deployment of suitable scalable GNNs on the local client.

The current mainstream trend in FL or FGL studies emphasizes
the development of well-designed client-side updates to !t local
data. For instance, FedProx introduces model weight alignment
loss, resulting in complexities of𝑕 (𝑎𝑊 2). Similarly, approaches like
MOON, FGSSL, FGGP, FedStar, and AdaFGL employ CL loss and
ensemble learning for local updates, introducing additional com-
putational overhead upon the graph learning. Speci!cally, for the
contrastive learning in MOON, FGSSL, and FGGP, the additional
computational cost depends on the size and semantics of the query
sample set, resulting in complexities of 𝑕 (𝑏𝑊 2), 𝑏 ((𝑍 + 𝑀) 𝑊 + 𝑊 2),
𝑕 (𝑏𝑉𝑒2) respectively. This will lead to unacceptable computational
overhead as the scale of local data increases. As for ensemble learn-
ing approaches like FedStar and AdaFGL, which maintain multi-
ple models locally to extract private data semantics from various
perspectives, they can be bounded by 𝑕 (𝑐 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)). Fur-
thermore, FedSage+, Fed-PUB, and FedGTA exchange additional
information during communication to improve federated train-
ing. Despite their inherent similarities, these methods exhibit sig-
ni!cantly di"erent time-space complexities due to variations in
their design. Speci!cally, FedSage+ involves client-side data shar-
ing for local subgraph data augmentation, leading to a complexity
of𝑕 (𝑔((𝑇 + 𝑋𝑌) 𝑊 + 𝑊 2)). Fed-PUB maintains a global pseudo-graph
on the server side and utilizes locally uploaded weights to update
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Table 10: Algorithm complexity analysis for existing prevalent FL and FGL studies.

Method Client Mem. Server Mem. Inference Mem. Client Time. Server Time. Inference Time

FedAvg 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑁 𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedProx 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑎𝑊 2) 𝑕 (𝑁 𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑊 2) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
Sca"old 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑎𝑊 2) 𝑕 (𝑁 𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑊 2) 𝑕 (𝑁 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
MOON 𝑕 ((𝑍 + 𝑀) 𝑊 +𝑏𝑊 2) 𝑕 (𝑁 𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 +𝑏𝑇𝑊 ) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedProto 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑉𝑒) 𝑕 (𝑁𝑉𝑒) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑉𝑒2) 𝑕 (𝑁𝑉𝑒) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedNH 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑉𝑒) 𝑕 (𝑁 (𝑊 2 + 𝑉𝑒) + 𝑉2𝑒2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑉𝑒2) 𝑕 (𝑁 (𝑊 + 𝑉𝑒) + 𝑉3𝑒3) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedTGP 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑉𝑒) 𝑕 ((𝑁 +𝑏)𝑉𝑒 + 𝑒2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑉𝑒2) 𝑕 (𝑁𝑉𝑒 +𝑏𝑉𝑒2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
GCFL+ 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑂𝑁 𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2) 𝑕 (𝑁 2 (log(𝑁 ) +𝑂 2 𝑊 2)) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedStar 𝑕 (𝑐 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)) 𝑕 (𝑁 𝑊 2) 𝑕 (𝑐 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)) 𝑕 (𝑐 (𝑀𝑈𝑊 + 𝑇𝑊 2)) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑐 (𝑀𝑈𝑊 + 𝑇𝑊 2))
FedGL 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2 + 𝑉) 𝑕 (𝑁 (𝑊 2 + 𝑇𝑉 + 𝑇2)) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2 + 𝑇𝑉2) 𝑕 (𝑁 𝑊 + 𝑇𝑉 + 𝑇2 𝑊 2) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)

FedSage+ 𝑕 (𝑔((𝑇 + 𝑋𝑌) 𝑊 + 𝑊 2)) 𝑕 (𝑔𝑃𝑁 𝑊 2) 𝑕 (𝑔(𝑇 + 𝑋𝑌) 𝑊 + 𝑔𝑊 2) 𝑕 (𝑔((𝑈 + 𝑋𝑌) 𝑊 + (𝑇 + 𝑋𝑌) 𝑊 2)) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑔((𝑈 + 𝑋𝑌) 𝑊 + (𝑇 + 𝑋𝑌) 𝑊 2))
FGSSL 𝑕 (𝑏 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)) 𝑕 (𝑁 𝑊 2) 𝑕 (𝑔(𝑍 + 𝑀) 𝑊 + 𝑔𝑊 2) 𝑕 (𝑏𝑀𝑈𝑊 +𝑏𝑇𝑊 2) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
Fed-PUB 𝑕 (𝑑 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) +𝑑2) 𝑕 (𝑁 (𝑊 2 +𝑑) + 𝑓𝑈) 𝑕 (𝑑 (𝑍 + 𝑀) 𝑊 +𝑑𝑊 2) 𝑕 (𝑑𝑀𝑈𝑊 +𝑑𝑇𝑊 2) 𝑕 (𝑁 2 (log(𝑁 ) +𝑑2)) 𝑕 (𝑑𝑀𝑈𝑊 +𝑑𝑇𝑊 2)
FGGP 𝑕 ((𝑇 + 𝑋𝑌) 𝑊 + 𝑊 2 +𝑏𝑉𝑒) 𝑕 (𝑁𝑉𝑒) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 ((𝑈 + 𝑋𝑌) 𝑊 + (𝑇 + 𝑋𝑌) 𝑊 2 +𝑏𝑉𝑒2) 𝑕 (𝑁 2 (log(𝑁 ) + 𝑉2𝑒2) + 𝑁𝑉𝑒) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
FedGTA 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2 + 𝑀𝐿𝑉) 𝑕 (𝑁 𝑊 2 + 𝑁𝑀𝐿𝑉) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑈(𝑊 + 𝑀𝑇𝑉) + 𝑇(𝑊 2 + 𝑉)) 𝑕 (𝑁 𝑊 + 𝑁𝑀𝐿𝑉) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)
AdaFGL 𝑕 (𝑐 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)) 𝑕 (𝑁 𝑊 2) 𝑕 (𝑐 ((𝑍 + 𝑀) 𝑊 + 𝑊 2)) 𝑕 (𝑐 (𝑀𝑈𝑊 + 𝑇𝑊 2)) 𝑕 (𝑁 𝑊 ) 𝑕 (𝑐 (𝑀𝑈𝑊 + 𝑇𝑊 2))
FedTAD 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2 + 𝑇𝑊 ) 𝑕 (𝑁 𝑊 2 + 𝑋𝑌𝑊 + 𝑔𝑊 2) 𝑕 ((𝑍 + 𝑀) 𝑊 + 𝑊 2) 𝑕 (𝑀𝑇𝑈𝑊 + 𝑇𝑊 2) 𝑕 (𝑁 𝑊 + (𝑔 + 𝑇) 𝑊 2 + 𝑔𝑋𝑌𝑊 ) 𝑕 (𝑀𝑈𝑊 + 𝑇𝑊 2)

(a) PROTEINS in Graph-FL Scenario (b) Computers in Subgraph-FL Scenario

Figure 2: Practical e"ciency in terms of performance, communication costs, and running time.

Table 11: Performance (%) on large-scale GraphFL.

Graph-FL
Label (0.5)

molhiv
(ROC-AUC)

molpcba
(AP)

ppa
(Acc)

code2
(F1 score)

FedAvg 72.2±2.4 20.4±0.4 65.8±1.6 29.8±0.4
FedProx 72.8±2.2 20.9±0.3 65.4±1.9 29.5±0.5
Sca"old 71.7±2.5 21.2±0.3 66.4±1.5 29.7±0.5
FedProto 70.5±1.8 19.3±0.2 63.7±1.2 28.6±0.3
FedNH 71.2±2.0 19.5±0.2 64.4±1.1 28.4±0.2
FedTGP 70.8±2.4 19.7±0.3 64.2±1.4 28.8±0.3

GCFL+ 73.4±1.9 21.8±0.3 67.0±1.5 30.5±0.3
FedStar 73.8±1.7 21.5±0.2 67.2±1.8 31.2±0.4

trainable mask matrices for personalized learning, introducing a
complexity of 𝑕 (𝑁 (𝑊 2 +𝑑) + 𝑓𝑈). In contrast, FedGTA is a light-
weight method that utilizes topology-aware soft labels to encode
local data, enabling personalized model aggregation on the server.
As a result, this approach possesses a complexity of 𝑕 (𝑀𝐿𝑖).

While client-side training has proven e"ective, an increasing
number of methods have recently recognized the signi!cant po-
tential of optimizing server-side model aggregation for federated
training. For example, FedGL empowers local training by execut-
ing global pseudo-labeling and topological mining on the server
side, which can be bounded by 𝑕 (𝑁 𝑊 + 𝑇𝑉 + 𝑇2 𝑊 2). FedTAD, on
the other hand, meticulously adjusts global aggregation models to

Table 12: E"ciency on Louvain-based Physics (Subgraph-FL).

Method Test Acc (%) Memory Com. Running Time

Sca"old 90.6±0.5 538k 1076k 152.42s
FedTGP 87.4±0.3 539k 0.38k 76.87s

FedSage+ 91.7±0.8 1296k 1784k 1517.96s
GCFL+ 91.0±0.3 538k 538k 184.24s
Fed-PUB 91.6±0.5 1076k 1076k 391.60s
FedGTA 91.5±0.3 538k 539k 120.45s
FedStar 91.3±0.5 1076k 539k 268.12s
FGSSL 91.1±0.6 751k 540k 476.58s
AdaFGL 92.0±0.4 964k 538k 162.19s

enhance the initialization of local models for the next communica-
tion round through graph-speci!c data-free knowledge distillation,
albeit incurring additional overhead of 𝑕 (𝑁 𝑊 + (𝑔 + 𝑇) 𝑊 2 + 𝑔𝑋𝑌𝑊 ).

Moreover, FedProto, FedNH, and FedTGP propose prototype-
based FL. They exchange class-speci!c embeddings between partic-
ipating clients and servers in each communication round, reducing
the complexity from 𝑕 (𝑁 𝑊 2) to 𝑕 (𝑁𝑉𝑒). Additionally, FedNH op-
timizes global prototype initialization using interior point methods,
which, while e"ective, poses an out-of-time risk of 𝑕 (𝑉3𝑒3) when
datasets comprise multiple categories. In comparison, FedTGP in-
troduces independent neural architectures on the server side to
adjust global prototypes, providing relative $exibility.
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Table 13: A summary and selection suggestions for current prevalent FGL studies.

Methods E"ectiveness Robustness E#ciency
Statistic Heterogeneity Noise Sparsity Low Client Generalization Privacy Communication Scalability Parallelism

GCFL+ [122]
FedStar [105]
FedSage+ [140]
Fed-PUB [8]
FedGTA [70]
FGSSL [44]
FedGL [13]
AdaFGL [67]
FGGP [110]
FedDEP [138]
FedTAD [149]

4.4 E"ciency Evaluation
To answer Q8, we provide the e#ciency reports in Fig. 2, Table 11,
and Table 12, and obtain the following observations: (1) Prototype-
based FedProto, FedTGP, and FGGP reduce communication costs
but require extra computation, o"setting their runtime advantage.
(2) Cross-client FedGL and FedSage+ su"er reduced e#ciency due
to delays from inter-client communication. (3) Decoupled AdaFGL
maximizes local computation and minimizes communication costs,
providing e#ciency advantages. (4) In Graph-FL, models treat data
samples independently, so even with large-scale graph samples, the
limited size of each graph minimizes OOM or OOT issues. However,
no single approach consistently achieves superior performance. (5)
In our experiments, Param. refers to trainable parameters, Time
to total runtime, and Com. to communication costs. FedSage+ and
AdaFGL perform better but incur high Com. and computational
complexity. Consequently, we conclude that C10: FGL algorithms
leveraging prototypes and decoupled techniques (i.e., multi-client
collaboration then local updates) demonstrate substantial potential in
applications with stringent e"ciency requirements [39, 69].

4.5 FGL Guidance and OpenFGL Tutorial
In this section, we provide a detailed overview of OpenFGL: (1)
Comprehensive evaluation of FGL methods to guide deployment
(FGL Guidance); (2) User-friendly APIs to facilitate the reproduction
and further development of FGL algorithms (OpenFGL Tutorial).
FGL Guidance. In Sec.4.1-Sec.4.4, we conduct a comprehensive
empirical investigation of e"ectiveness, robustness, and e#ciency,
drawing 10 conclusions. These insights are crucial for selecting
appropriate FGL algorithms in real-world applications. To provide
a clearer presentation, we summarize the prevalent FGL algorithms
in Table 13. Notably, scalability refers to the ability of a method to
handle large-scale graphs without OOM or OOT. Regarding paral-
lelism, we evaluate whether the method relies heavily on server-
broadcasted information for local training. Minimal dependency
allows for fewer communication and enables more independent
parallel client training. Based on this, we observe that current FGL
algorithms struggle to maintain consistent competitiveness across
various requirements, highlighting that the !eld is still in its early
stages with signi!cant potential for future development.

Algorithm 1: OpenFGL-FGLTrainer .Pytorch style.

class FGLTrainer:
def __init__(self, args):

self.args = args
self.message_pool = {}
self.clients = load_client(args,...)

def train(self):
for round_id in range(self.args.num_rounds):

self.message_pool[!round!] = round_id
self.message_pool[!sampled_clients!] = sampled_clients
self.server.send_message()
for client_id in sampled_clients:

self.clients[client_id].execute()
self.clients[client_id].send_message()

self.server.execute()
self.evaluate()

OpenFGL Tutorial. We now present the algorithm design princi-
ples, which o"er a uni!ed API. It uses the FGLTrainer to manage
client-server communication during each training round, aggregat-
ing messages via the message_pool variable. Users can customize
the FGLClient and FGLServer to adjust message content and rules
for speci!c algorithms. For clarity, we provide PyTorch-style imple-
mentations, exempli!ed by the FedAvg algorithm:
(a) FGLTrainer. This class manages message and command $ows
between clients and a central server. In each training round, the
trainer selects clients, updates the message_pool, and dispatches
server messages. Clients process tasks locally and send updates to
the server for global aggregation. Each round includes an evaluation
phase. The implementation of FGLTrainer is shown in Algorithm 1.
(b) FedAvgClient. Users only need to customize: (1) Local execution,
where FedAvg downloads the global model and performs local train-
ing; (2) Client-to-server messages, including the local sample count
and model weights in FedAvg. The Pytorch-style implementation of
FedAvgClient is provided in Algorithm 2.
(c) FedAvgServer. Similar to FedAvgClient, users customize two mod-
ules: (1) Global execution (e.g., in FedAvg: weighted model aver-
aging based on sample size); (2) Server-to-client messages (e.g., in
FedAvg: global model weights). The Pytorch-style implementation
of FedAvgServer is illustrated in Algorithm 3.
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Algorithm 2: OpenFGL-FGLClient.Pytorch style.

class FedAvgClient(BaseClient):
def __init__(self, args, client_id...):

def execute(self):
# Receive messages (global model weights) from the server

stored in the message pool to update the local model
with torch.no_grad():

for (l_param, g_param) in zip(self.task.model.parameters
(), self.message_pool[server][weight]):

local_param.data.copy_(global_param)
self.task.train()

def send_message(self):
self.message_pool[f!client_{self.client_id}!] = {

num_samples: self.task.num_samples,
weight: list(self.task.model.parameters())}

Algorithm 3: OpenFGL-FGLServer: Pytorch style.

class FedAvgServer(BaseServer):
def __init__(self, args, message_pool...):

def execute(self):
# Receive messages (number of samples, local model weight)

from each client stored in the message pool
with torch.no_grad():

for it, client_id in enumerate(sampled_clients):
weight = self.message_pool[client_id][num_samples]/

num_tot_samples (FedAvg_model_aggregation...)

def send_message(self):
self.message_pool[!server!] = {

weight: list(self.task.model.parameters())}

5 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we !rst present a comprehensive overview of the
current research progress in the FGL !eld and the signi!cant po-
tential of this technology for deployment in graph-based database
applications. Subsequently, we propose OpenFGL, a comprehensive
FGL benchmark, which encompasses 18 recently proposed SOTA
FGL algorithms and 42 datasets from 18 domains for 5 downstream
tasks across 2 prevalent FGL scenarios. The goal of our work is
to fairly examine the current state of FGL development and o"er
key insights for future research endeavors. Although FGL primarily
serves downstream tasks in graph-based ML, it also holds signi!-
cant potential for database applications. Speci!cally, it enables each
client to generate high-quality graph embeddings (nodes, edges,
and subgraphs) in a privacy-preserve and distributed manner. These
embeddings provide rich semantic representations, which can be
leveraged for e#cient retrieval in vector databases. This perspec-
tive introduces new opportunities for applying FGL techniques to
enhance the performance and scalability of graph-based databases.

Subsequently, we conduct extensive experiments aimed at unveil-
ing the performance of FGL algorithms from 3 orthogonal perspec-
tives: e"ectiveness, robustness, and e#ciency. Our investigations
reveal promising advancements achieved by FGL studies but also
highlight their limitations, such as vulnerability in inadequate node
descriptions, robustness, and scalability. To inspire future research,
we combine experimental Conclusions to present the following
signi!cant challenges and promising directions.

For E!ectiveness, (1) Quantify Distributed Graphs (C1, C3).
Essentially, the potential bene!ts of FGL in real-world deployments
stem from the uniform graph distribution. However, the entan-
glement of node features, labels, and topology poses a challenge
in explicitly quantifying statistics within distributed graphs, re-
sulting in coarse descriptions. This constraint sharply contrasts
with the intuitive semantic feature and label distribution skew
observed in CV-based FL. Therefore, quantifying the statistics of
multi-source graphs is crucial. (2) FGL Heterogeneity (C2, C4).
Although some FGL studies attempt to de!ne graph-based hetero-
geneity challenges, these de!nitions are often insu#cient due to
the complexity of graph characteristics and the diversity of ap-
plications. Furthermore, the advantages of these FGL algorithms
(e.g., AdaFGL) lack signi!cant impact. Consequently, there is still a
necessary e"ort to be made in addressing FGL heterogeneity.

For Robustness, (3) Personalized FGL (C5, C7 ). In the real
world, the robustness of FGL against client-speci!c noise and low
client participation in communication is essential. During federated
training, these factors signi!cantly impact the attainment of global
consensus, thereby hindering high-quality supervision provided for
local training. Fortunately, personalized techniques can leverage
local knowledge to establish unbiased global consensus for local
updates. (4) Multi-client Collaboration FGL (C6, C8). During
our investigation, we found that promoting server-side multi-client
collaboration can extract global insights from sparse data. Addi-
tionally, this collaborative approach can capture shared semantic
knowledge across data domains to facilitate robust generalization.
(5) Privacy-preserve FGL (C9). The goal of FGL is to achieve
multi-client collaborative training in a privacy-preserving manner
without direct data sharing. However, current FGL algorithms, in
pursuit of superior performance, increasingly share local informa-
tion, raising potential concerns. Therefore, the development of FGL
algorithms with strict privacy requirements is imperative.

For E"ciency, (6) Decoupled and Scalable FGL (C10). Exist-
ing FGL algorithms face challenges in practical deployment due
to communication delay and topology mining, making it di#cult
to handle large-scale datasets. Therefore, developing new feder-
ated collaboration paradigms such as decoupled mechanisms and
focusing on algorithm design scalability is crucial.

FGL should establish federated collaboration standards for vari-
ous graph types (e.g., directed, signed, hypergraphs, heterogeneous)
and learning paradigms (e.g., unsupervised, few-shot, continual,
unlearning) based on the data systems [9, 107, 146]. However, FGL
remains a burgeoning !eld with numerous research gaps. Never-
theless, we are committed to continually enhancing OpenFGL to
support future research endeavors. For instance, we are progres-
sively re!ning the execution standards for federated heterogeneous
graph learning. Notably, considering the space constraints and the
need for a clear and reader-friendly presentation, we provide an
overview and corresponding experimental results in [1] (A.9).
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