
Jodes: Efficient Oblivious Join in the Distributed Setting
Yilei Wang, Xiangdong Zeng, Sheng Wang, Feifei Li

{fengmi.wyl,zengxiangdong.zxd,sh.wang,lifeifei}@alibaba-inc.com
Alibaba Cloud

Hangzhou, China

ABSTRACT

Trusted execution environment (TEE) has provided an isolated
and secure environment for building cloud-based analytic systems,
but it still suffers from access pattern leakages caused by side-
channel attacks. To better secure the data, computation inside TEE
enclave should be made oblivious, which introduces significant
overhead and severely slows down the computation. A natural way
to speed up is to build the analytic system with multiple servers in
the distributed setting. However, this setting raises a new security
concern—the volumes of the transmissions among these servers
can leak sensitive information to a network adversary. Existing
works have designed specialized algorithms to address this concern,
but their supports for equi-join, one of the most important but non-
trivial database operators, are either inefficient, limited, or under a
weak security assumption.

In this paper, we present Jodes, an efficient oblivious join al-
gorithm in the distributed setting. Jodes prevents the leakage on
both the network and enclave sides, supports a general equi-join
operation, and provides a high security level protection that only
publicizes the input sizes and the output size. Meanwhile, it achieves
both communication cost and computation cost asymptotically su-
perior to existing algorithms. To demonstrate the practicality of
Jodes, we conduct experiments in the distributed setting compris-
ing 16 servers. Empirical results show that Jodes achieves up to a
sixfold performance improvement over state-of-the-art join algo-
rithms.

PVLDB Reference Format:

Yilei Wang, Xiangdong Zeng, Sheng Wang, Feifei Li. Jodes: Efficient
Oblivious Join in the Distributed Setting. PVLDB, 18(5): 1291 - 1304, 2025.
doi:10.14778/3718057.3718060

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/Aqua-Dream/Jodes/.

1 INTRODUCTION

The provision of computation over encrypted data has become a cru-
cial offering for cloud-based analytic system providers [4, 35, 52, 60].
The importance of encryption lies in its ability to ensure the con-
fidentiality and privacy of data processed in the cloud, especially
given the large amounts of sensitive and confidential information
from enterprise customers. Data such as personal details, financial

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718060

documents, trade secrets, and intellectual property require strong
security measures to prevent unauthorized access or breaches. The
deployment of encrypted data analytic systems [4, 5, 10, 18, 24, 36,
44, 45, 50, 52, 59] guarantees the secure computation and transmis-
sion of data, ensuring that only authorized parties can access and
decipher the information. This capability grants customers more
authority over their data, enabling them to adhere to data gover-
nance protocols and address issues revolving around data privacy
and sovereignty.

However, computation over encrypted data often incurs signifi-
cant overhead, typically resulting in several orders of magnitude
slowdown. For instance, solutions based on secure multi-party
computation [10, 43] or homomorphic encryption [46] can intro-
duce at least three orders of magnitude slowdown in computations.
Meanwhile, the more practical approach builds encrypted analytic
systems based on trusted execution environments (TEEs) like Intel
SGX [4, 18, 24, 36, 50, 52, 59], which is the focus of this paper. In
this setup, cloud services operate within isolated enclaves where
confidential data is processed. Data must be decrypted only within
the enclave for computation and re-encrypted before leaving the
enclave, resulting in unavoidable encryption/decryption overhead.
Besides, TEEs still suffer from an important vulnerability known as
the access pattern leakage caused by side-channel attacks [41, 56]
where the host system can infer auxiliary information of encrypted
data by monitoring memory accesses of the application [30, 61].
To mitigate this issue, computation in enclave should be designed
as oblivious [14, 32], ensuring that the access pattern of the com-
putation is independent of the input. General techniques such as
Oblivious RAM (ORAM) [21] can be employed to transform non-
oblivious algorithms into oblivious counterparts. However, even
the most practical ORAM scheme [49] could significantly increase
the running time by a factor of𝑂 (log2 𝑁) where 𝑁 is the input size,
and the slowdown factor is between 90 and 450 according to the
experiments of database join in [14]. Such a high overhead prevents
the encrypted analytic system from practicality.

There are two directions to speed up the oblivious computa-
tion: (1) Design a specialized oblivious algorithm for each operator,
which typically reduce the 𝑂 (log2 𝑁) blow-up factor of ORAM to
𝑂 (log𝑁), e.g., sorting [9] and some database operations [6, 32]; (2)
Leverage the distributed setting [15, 51, 58], which distributes inten-
sive computation tasks to multiple servers, therefore offsetting the
overhead brought by obliviousness. Above two directions are or-
thogonal, and this paper studies their intersection point—designing
efficient specialized oblivious algorithms in the distributed setting.

As firstly pointed out in [41], building encrypted analytic sys-
tems in the distributed setting raises new security concerns, even
though data are encrypted and processed inside enclave with oblivi-
ousness protection. Consider a network adversary that observes the
communications between the servers. Although data are encrypted,

1291

https://doi.org/10.14778/3718057.3718060
https://github.com/Aqua-Dream/Jodes/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3718057.3718060
https://www.acm.org/publications/policies/artifact-review-and-badging-current

their volumes are revealed, which introduce the communication
pattern leakage, i.e., the number of elements transmitted between
each pair of servers leaks information. For example, a hash join op-
erator will gather all the tuples that have the same join keys to the
same server, which is determined by the hashing values. The net-
work adversary could therefore infer some information about the
distribution of join keys by analyzing the communication pattern.
To clearly distinguish the two types of leakages, we follow [13] and
define a distributed algorithm to be communication oblivious, if its
communication pattern is independent of the input (see Section 2.3
for a formal definition). The communication obliviousness defends
against the network adversary. Accordingly, computation oblivious
is defined over a local computation, meaning the memory access
pattern of the computation inside enclave is independent of the
input, which defends against a memory adversary. All algorithms
proposed in this paper are both communication and computation
oblivious, which we simply refer to as oblivious. For the case that
only communication obliviousness is required, e.g., the servers are
fully trusted, the system could implement the local computations in
a natural way without the computation obliviousness requirement,
which we ignore the details.

1.1 Previous Work

Opaque [59] and SODA [37] are the only two prior works that
present specialized oblivious distributed algorithms for join. Opaque
starts by proposing the oblivious sorting algorithm based on column
sort [33], and leverages it to implement oblivious filter, aggregate,
and join. Opaque’s join algorithm, however, is limited to only pri-
mary key join (PK join), a special type of join where tuples from
one of the input tables have unique join keys. SODA [37] considers
column sort to be too expensive, so it proposes its own oblivious
algorithms for filter, aggregate, and join without relying on oblivi-
ous sorting. SODA’s join supports a general binary equi-join, not
limited to any special type of join. Nevertheless, it requires pub-
licizing the degrees (i.e., frequencies) of the most popular keys of
the two tables, hence has a lower security level compared to other
algorithms. In SODA’s join algorithm, publicizing the maximum
degrees is necessary for grouping tuples with the same keys to
the same bins to perform join. To achieve obliviousness, all bins
should be padded to the same volume, which is computed from the
maximum degrees. We note that similar challenge also exists in
the standalone setting (i.e., a single machine is utilized to perform
the join), until the oblivious expansion algorithm appears [32]. It
then becomes the core building block of state-of-the-art oblivious
standalone join algorithm [32] without requiring any public degree
information of the input tables. In this paper, we propose the first
distributed expansion algorithm which also serves as one of the
basic primitive of our join algorithm Jodes.

1.2 Our Contribution

The major contribution of this paper is Jodes (Algorithm 4), an
efficient Join algorithm that is Oblivious in the DistributEd Setting.
Compared with previous works, it has the following advantages:

(1) Unlike Opaque’s join, Jodes supports a general binary equi-
join operation, not limited to a primary key join. It also

Table 1: Notations used in the paper

Notation Meaning

𝑝 Num of servers
[𝑝] The set {1, 2, . . . , 𝑝 }
𝑁 (resp.𝑀) Num of input (resp. output) elements/tuples
𝑛 (resp.𝑚) 𝑁 /𝑝 (resp.𝑀/𝑝)
𝜎 Security parameter
𝑋 [𝑖] The part of elements/tuples in 𝑋 that are located on

the 𝑖-th server
𝑛𝑖 |𝑋 [𝑖] | , num of elements/tuples on the 𝑖-th server
𝑌𝑖 𝑗 The subset of elements in 𝑋𝑖 that will be sent to the

𝑗-th server through communication
𝑈𝑖 The target size for padding of 𝑌𝑖 𝑗 for any 𝑗 ∈ [𝑝]

does not publicize any degree information as SODA’s join,
thus achieving higher security level than it (Section 2).

(2) Jodes is the first oblivious distributed join algorithm that
achieves communication cost linear to only input size and
output size. It also has computation cost asymptotically
better than all existing works (Table 2).

(3) Our experiments demonstrate that Jodes outperforms all
baselines. For example, it can finish a join that outputs 1.9×
108 rows in 86s using 16 servers, which is only 1/6 of time
taken by the the state-of-the-art distributed or standalone
join algorithm (Section 6).

Apart from the expansion primitive, Jodes also takes shuffle,
sorting, and PK join as primitives. For sorting, we simply adopt
the column sort in Opaque, while for shuffle and PK join, we have
dedicatedly design faster oblivious algorithms for them (Section 3).
Experiments show that our algorithms for these operators improve
the baselines by at least 60% (Section 6). These operators are basic
and instrumental, and our improvements should be of independent
interest to the community of oblivious query processing beyond the
scope of Jodes itself. Any future refinement to the sorting operator
can also enhance the performance of Jodes.

2 PRELIMINARY

The frequently used notations are summarized in Table 1.

2.1 Distributed Setting

In the distributed setting, there are 𝑝 servers that work collabo-
ratively to execute a computational task as dictated by a specific
algorithm, which we refer to as a distributed algorithm. Each server
holds a portion of the input, which consists of 𝑁 elements almost
equally distributed among them; the 𝑖-th server possesses a subset
with 𝑛𝑖 = Θ(𝑁 /𝑝) elements, constituting its initial local dataset.
The values 𝑁 , 𝑝 , and {𝑛𝑖 }𝑝𝑖=1 are public to all servers. The servers
complete the task over several rounds. In each round, the 𝑖-th server
processes its local dataset 𝑋𝑖 and generates output in the form
𝑌𝑖1, . . . , 𝑌𝑖𝑝 , for 𝑖 ∈ [𝑝]. This marks the computation phase for this
round. Following this, the servers enter the communication phase
where all pairs of servers exchange data over a complete network.
Specifically, the 𝑖-th server transmits the dataset 𝑌𝑖 𝑗 to the 𝑗-th
server. For any given server, the collective data received from all
other servers are amalgamated to form its updated local dataset.
This updated dataset is then either utilized in the subsequent round

1292

of computation, integrated into the input for the succeeding task,
or emitted as the output.

To differentiate from the distributed setting, we employ the term
standalone setting to refer to the standard setting when there is only
one server. An algorithm that is designed for the standalone setting
is called a standalone algorithm, which involves local computation
on the server without any network communication.

2.2 Encrypted Analytic System

We focus on the cloud-based encrypted analytic system. The data on
the servers is uploaded by one or more data owners in the encrypted
form. When a client (who could also be one of the data owners)
submits an (authorized) query to the servers, they translate the
query to a query plan, i.e., a series of database operations, and then
execute the operations following the underlying algorithms. The
output of the last operation, which is also the output of the query,
is then sent to the client, also in the encrypted form. The client has
the key and can decrypt the query result into plaintext. This system
securely enables querying across data from different owners, which
may distrust each other as well as the servers.

In the system, each server is equippedwith TEE, the size of whose
protected memory is large enough to hold elements located in this
server during computation. This is a reasonable assumption, thanks
to the second-generation Intel SGX that supports enclave size up to
128GB or even larger [17]. All data elements are safeguarded with
encryption while residing outside of the enclave, i.e., elements are
in plaintext form inside enclave and are in ciphertext form outside
enclave. The encryption scheme should defend against chosen-
plaintext attack so that ciphertexts consistently appear random to
the adversary, regardless of whether the corresponding plaintexts
are identical. The length of a ciphertext is linear to the length of its
underlying plaintext, which is independent of the plaintext’s actual
value. For example, AES with GCM encryption mode is sufficient.
The TEEs should hold all DEKs (data encryption keys) of the data
owners and the client, so that the input and output can be correctly
decrypted and encrypted respectively. A common DEK for interme-
diate computations is held by all the TEEs on the servers, allowing
ciphertexts received from one server to be correctly decrypted in
enclave of another server. In the descriptions of our algorithms, we
refer to an element without explicitly distinguishing its form, as
it is clear that a plaintext (resp. ciphertext) is always inside (resp.
outside) enclave.

2.3 Security Definition

Communication oblivious. In the distributed setting, for any (de-
terministic or randomized) algorithmA and any input𝑋 , let 𝑆 (𝑋) =
{𝑠𝑖 𝑗𝑘 } be a sequence where 𝑠𝑖 𝑗𝑘 is the size of messages that the 𝑖-th
server sends to the 𝑗-th server in the 𝑘-th round. Note that if A is
random, then each 𝑠𝑖 𝑗𝑘 is a random variable. This sequence 𝑆 (𝑋) is
all information that a network adversary can observe, which we
call the transcript of A. We then have the following definition:

Definition 2.1. A is communication oblivious if there exists a
probabilistic simulator Sim such that, for any input𝑋 = (𝑋1, . . . , 𝑋𝑝)
where |𝑋𝑖 | = 𝑛𝑖 for all 𝑖 ∈ [𝑝], the simulator can generate the simu-
lation 𝑆 = Sim(𝑛1, . . . , 𝑛𝑝) such that, there is no polynomial-time

algorithm that can distinguish between the transcript 𝑆 (𝑋) and the
simulation 𝑆 with success probability more than 1/2.

In other words, the transcript of any input is only dependent on
the input sizes across the servers, which ensures the network adver-
sary infers no information of the input from the transcript (despite
the input sizes). Note that the input sizes are usually assumed to
be public. One may need to further protect them by, for example,
differential privacy [16], which is out the scope of this paper.

Computation oblivious. For any standalone algorithm A with
input 𝑋 performed locally on any server, its memory access op-
erations of computing A(𝑋) can be expressed by the sequence
((op1, 𝑎1, 𝑥1), . . . , (op𝑘 , 𝑎𝑘 , 𝑥𝑘)), where each op𝑖 represents either
a read or a write operation. Specifically, a read operation retrieves
the element located at the 𝑎𝑖 -th position inside enclave memory,
while a write operation updates the element at the 𝑎𝑖 -th position
to 𝑥𝑖 . The memory access pattern of A with input 𝑋 is defined as
𝐴(𝑋) ≔ (𝑎1, . . . , 𝑎𝑘), which is all the information that a memory
adversary can observe through TEE side-channel attacks. We define
computation oblivious as below:

Definition 2.2. A is computation oblivious if there exists a prob-
abilistic simulator Sim such that, for any input 𝑋 with |𝑋 | = 𝑛, the
simulator generates𝐴 = Sim(𝑛) such that no polynomial-time algo-
rithm can distinguish between𝐴(𝑋) and𝐴 with success probability
more than 1/2.

Security parameter. Our algorithms may fail to return correct
answer. We define 𝜎 as the security parameter, and the theoretical
analysis ensures that the failure probabilities of our algorithms are
all bounded by 2−𝜎 . Note that the adversary could not observe any
failure, but the potential reaction to the failure may leak informa-
tion, e.g., the client may re-submit the same query when a wrong
answer is detected. Therefore, it is necessary to choose a sufficiently
large 𝜎 (say, 𝜎 = 40) so that the failure becomes almost impossible.

Dummy. During the execution of an oblivious algorithm, both
computation and communication may involve dummy elements.
These elements serve as placeholders to maintain the algorithm’s
obliviousness without realistic meaning, as opposed to real ele-
ments. For example, to achieve communication oblivious, the 𝑖-th
server may pad messages with dummy elements to a public and
data independent size 𝑈𝑖 before sending to the 𝑗-th server (Sec-
tion 3.2). To implement dummy elements, one may assign a unique
value to it, guaranteed not to occur within the actual data domain,
or alternatively, append an additional attribute to each element,
indicating it as either dummy or real. Regardless of the chosen
implementation strategy, it is crucial that dummy elements remain
imperceptible to the adversary that: (1) the ciphertexts of dummy
and real elements are indistinguishable, and (2) the access patterns
to dummy and real elements are indistinguishable.

2.4 Cost Model

In evaluating a distributed algorithm, we consider both the com-
munication cost and the computation cost. Regarding theoretical
analysis, we treat each element (or tuple, in cases where the input
comprises sets of tables) as a basic unit, and define input size (resp.
output size) as the total number of elements or tuples within the

1293

input (resp. output). The communication cost is the total number
of elements that are communicated across the servers during the
execution of an algorithm. Algorithms in Opaque [59], SODA [37],
and this paper, have communication cost linear to the input and
output size, so we do not hide the constant of the linear term for
detail comparison. However, we do neglect the lower-order terms.
For instance, the communication cost of our oblivious shuffle by
key algorithm is 𝑁 + 𝑜 (𝑁), and we omit the 𝑜 (𝑁) term in our dis-
cussions. Meanwhile, the computation cost of an algorithm is the
total costs of all the rounds, where the cost of each round is defined
as the maximum cost of local computations of all the servers in the
round. Computation cost typically scales superlinearly, especially
with computation obliviousness. We express computation costs
using asymptotic notations.

In the encrypted model, data are encrypted prior to communica-
tion and re-decrypted afterward. We incorporate these encryption
and decryption costs into the communication cost since they are
performed (and only performed) before and after communication,
and their costs are also linear to the number of elements exchanged
between servers. Specifically, the time incurred by communication
costs is proportional to a combination of network bandwidth and
the speeds of decryption and encryption, introducing a considerable
constant factor to the overall runtime. In contrast, computation cost,
while superlinear, typically has a smaller constant factor dependent
on CPU clock speed, memory frequency and latency, etc. Given the
varying significance of each cost in different scenarios, we strive in
this paper to minimize both to the greatest extent possible.

Parameter assumptions. Commonly, the security 𝜎 is set between
40 and 80 in the literature [19, 53]. Given this context, our study
will focus on inputs with size 𝑁 that satisfies both 𝑁 = 𝜔 (𝑝2𝜎)
and 𝑁 = 𝑂 (2𝜎). This ensures that 𝑁 is not overly small (ren-
dering the distributed setting superfluous) nor excessively large
(exceeding contemporary servers’ processing capabilities). In the
join algorithm, the costs are also determined by the public output
size 𝑀 . We make similar assumptions to 𝑀 , i.e., 𝑀 = 𝜔 (𝑝2𝜎) and
𝑀 = 𝑂 (2𝜎). Note that if 𝑀 is too small, the number of servers 𝑝
may be correspondingly reduced (in either a logical or physical
sense) subsequent to the join operation, or it might even revert to
the standalone setting. We leverage these assumptions to simplify
complexity expressions throughout this paper, e.g., it is obvious
that log𝑁 = Θ(log𝑛) and log𝑚 = Θ(log𝑀) = 𝑂 (log𝑁), where
𝑛 = 𝑁 /𝑝 and𝑚 = 𝑀/𝑝 . Note that these assumptions only affect the
performance analysis; correctness and security of our algorithms
remain intact.

2.5 Output Padding

The security definition in Section 2.3 assumes the input size 𝑁 is
public but not the output size𝑀 as it is data dependent. However,
the worst-case output size of join operations can grow exponen-
tially, resulting in poor performance or even system unavailability.
Consequently, researchers working on oblivious query processing
have chosen to sacrifice certain security measures to achieve bet-
ter performance. Specifically, they have proposed various padding
schemes to standardize the output size of each join operation. De-
tailed explanations can be found in the full version of the paper
[55].

3 BASELINE

In this section, we review state-of-the-art distributed algorithms
for the operators utilized by our join algorithm, as well as the sole
existing oblivious distributed join algorithm. Our enhancements to
some of these algorithms are presented in Section 4.

3.1 Computation Oblivious Primitives

Below we introduce some oblivious primitives that will be used in
the local computations of our algorithms. All primitives introduced
in this section only run locally in the standalone setting, i.e., they
are standalone primitives, therefore in Section 3.1 by “oblivious”
we mean computation oblivious. These primitives form the basic
building blocks to achieve computational obliviousness.

We denote the oblivious computation of the assertion 𝑐 as a
binary value with [𝑐] (e.g., [𝑥 < 𝑦] has value 1 if 𝑥 < 𝑦 and 0 other-
wise). We employ the notation CMove(𝑧, 𝑥, 𝑎) to denote an oblivious
subroutine that conditionally assigns the value of 𝑎 to 𝑥 if 𝑧 equals
1; if 𝑧 is 0, 𝑥 remains unmodified. The concrete implementations
of the above operations could be based on assembly instructions
[42] or branchless XOR-based C code [40]. We use ⊥ to represent a
dummy element or tuple, which is utilized solely for the purpose
of padding and is designed to exert no influence on the outcome of
the computation.

Sorting OSort. The bitonic sort [9] stands as the most favored
oblivious sorting algorithm, celebrated for its simplicity and prac-
ticality. It accomplishes the sorting of 𝑛 elements in 𝑂 (𝑛 log2 𝑛)
time. While there exist oblivious sorting algorithms with lower
asymptotic complexity [3, 7, 22], they are either non fully obliv-
ious (assuming a super-constant sized trusted memory without
obliviousness requirement), or encumbered by impractically large
constant factors (outpace bitonic sort only when the input size is
exceedingly large, which is an uncommon circumstance in the dis-
tributed setting). In this paper, we use OSort(𝑋,𝐾) to represent an
oblivious sorting operation that sorts 𝑋 by key 𝐾 . Note that we will
also discuss oblivious sorting under in the distributed setting that
globally sorts the data across the servers. For disambiguation, we
always use OSort to refer to the locally sorting in the standalone
setting, while using “sorting” to refer to the globally sorting in the
distributed setting.

Compaction OCompact. The compaction operator takes an ar-
ray 𝑋 of 𝑛 elements and a binary array 𝑀 of length 𝑛 as input.
The positions of𝑀 with a value of 1 indicate “marked” elements,
while positions with a value of 0 indicate “unmarked” elements.
The compaction operation rearranges the elements in 𝑋 such that
all marked items are positioned before unmarked items. We use
OCompact(𝑋,𝑀) to represent an oblivious compaction operation.
Although it can be realized by invoking OSort(𝑋,𝑀), we use the
specialized oblivious algorithm for compaction in [47], which has
only 𝑂 (𝑛 log𝑛) cost and is highly practical.

Distribution ODistribute. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) be an array of
non-dummy elements, and 𝑇 = (𝑡1, . . . , 𝑡𝑛) is an array with dis-
tinct values such that 𝑡𝑖 ∈ [𝑚] for all 𝑖 ∈ [𝑛], where 𝑚 ≥ 𝑛 is
a public parameter. The distribution operator ODistribute will
output an array with size 𝑚 such that each 𝑥𝑖 is located at the
𝑡𝑖 -th position for 𝑖 ∈ [𝑚], while non-occupied positions are filled

1294

with dummy elements. Krastnikov et al. [32] proposed an oblivious
distribution algorithm with 𝑂 (𝑚 log𝑚) cost under the constraint
that elements in 𝑇 are in ascending order. Note that this constraint
can be removed if we apply OSort((𝑋,𝑇),𝑇) in advance, and then
the total cost of ODistribute will be 𝑂 (𝑛 log2 𝑛 +𝑚 log𝑚). We
use ODistribute(𝑋,𝑇 ,𝑚) to represent an oblivious distribution
operation.

Partitioning OPartition. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) be an array of
elements, and𝑇 = (𝑡1, . . . , 𝑡𝑛) is an array such that: (1) Each 𝑡𝑖 ∈ [𝑝];
(2) Let 𝑋 𝑗 ≔ {𝑖 ∈ [𝑛] | 𝑡𝑖 = 𝑗}, then |𝑋 𝑗 | ≤ 𝑈 for all 𝑗 ∈ [𝑝]. We
define the partitioning operator OPartition as taking 𝑋 and 𝑇 as
input, and outputs 𝑝 sequences {𝑌𝑗 }𝑖=𝑝 , where each sequence 𝑌𝑗
consists of 𝑋 𝑗 and 𝑈 − |𝑋 𝑗 | dummy elements, while the orders of
them can be arbitrary. In other words, 𝑌𝑗 is obtained by padding
𝑋 𝑗 to the size bound 𝑈 . In the distributed setting, OPartition is
an important primitive for a server to reorganize its local data 𝑋
by their specified targets 𝑇 , where each 𝑡𝑖 ∈ [𝑝] is the designated
server that 𝑥𝑖 should be sent to from this server. After OPartition,
the 𝑗-th output sequence 𝑌𝑗 will be sent to the 𝑗-th server. As the
total size of the sequences is 𝑝𝑈 , the blow up factor of OPartition
due to padding is 𝑝𝑈 /𝑛. In this paper, to avoid oversized padding,
our algorithms will always ensure that 𝑈 = 𝑂 (𝑛/𝑝), so that the
blow up factor is no more than a constant. SODA [37] has proposed
an oblivious algorithm for OPartition (Algorithm 1 in [37]). The
idea is to first OSort elements 𝑋 by 𝑇 , compute the global position
where each element should go to, and then apply ODistribute the
elements to these positions. The complexity of their algorithm is
hence 𝑂 (𝑛 log2 𝑛).

3.2 Shuffle

We then return to the distributed setting. If any sequence 𝑋 in a
distributed algorithms is physically distributed across the servers,
we use 𝑋 [𝑖] to denote the segment of 𝑋 located on the 𝑖-th server.

The most basic operator is shuffle. Note that in this paper, shuffle
does not mean random permutation (a procedure that puts data
items in a uniformly random order). Instead, it refers to the operator
for re-distributing data across servers in the distributed setting, as
adopted in distributed data analytics engines such as Apache Spark
[58]. The shuffle operator takes two sequences 𝑋 and 𝑇 as input,
where each 𝑥 ∈ 𝑋 corresponds to a 𝑡𝑥 ∈ 𝑇 which specifies the
target server that 𝑥 should be sent to. Note that 𝑋 and 𝑇 locates
across the 𝑝 servers, but each (𝑥, 𝑡𝑥) pair is in the same server.
After the shuffle operator, the 𝑗-th server will receive {𝑥 ∈ 𝑋 |
𝑡𝑥 = 𝑗}, i.e., all elements in 𝑋 with target 𝑗 . For communication
obliviousness, the shuffle operator also takes public parameters
{𝑈𝑖 }𝑝𝑖=1 as input, and then the set of elements the 𝑖-th server receives
will be padded to size𝑈𝑖 by some dummy elements. Apparently, the
shuffle operator can be implemented based on SODA’s OPartition,
as shown in Algorithm 1. Given 𝑈𝑖 = (1 + 𝑜 (1)) (𝑛𝑖/𝑝) for all 𝑖 , the
communication cost is 𝑁 and the computation cost of each server
is 𝑂 (𝑛 log2 𝑛).

We use “shuffle 𝑋 by 𝑇 ” to represent a shuffle operator with
input 𝑋 and target servers 𝑇 . Despite the standard definition, the
shuffle operator also has two commonly used variants:

Algorithm 1: Shuffle
Input: 𝑋 ,𝑇 , and public parameters {𝑈𝑖 }𝑝𝑖=1

1 for 𝑖 ← 1 to 𝑝 do

2 (𝑌1, . . . , 𝑌𝑝) ← OPartition(𝑋 [𝑖],𝑇 [𝑖],𝑈𝑖) ;
3 Send 𝑌𝑗 to the 𝑗-th server for each 𝑗 ∈ [𝑝];

Random shuffle. Random shuffle is a powerful operator that effec-
tively eliminates the imbalance of the input. In the random shuffle
operator, all 𝑇 are randomly chosen from [𝑝] uniformly and inde-
pendently, i.e., all elements will be randomly shuffled across the
𝑝 servers. Since each 𝑡 ∈ 𝑇 is independent to the input, it could
be safely publicized without breaching the obliviousness defini-
tion, hence no padding is required. Therefore, instead of calling
OPartition, a random shuffle operator simply groups the elements
with the same target server in a natural (non-oblivious) way (e.g.,
by a length-𝑝 array of lists). The computation cost can therefore
be reduced to 𝑂 (𝑛). We use “shuffle 𝑋 randomly” to represent a
random shuffle operator with input 𝑋 .

Shuffle by key. Assume each element is in the key-value form
𝑥 = (𝑘, 𝑣) where 𝑘 is the key and 𝑣 is the value. The shuffle by
key operator defines 𝑡𝑥 = ℎ(𝑘), where ℎ is a random oracle1 that
is public to all servers. The shuffle by key operator can gather
elements with the same key across the servers to the same server
for further computation. Since the targets of shuffle by key are data
dependent, we should apply the OPartition for obliviousness. The
parameters {𝑈𝑖 } are determined by Theorem 3.1. We use “shuffle
𝑋 by key 𝐾” to represent a shuffle by key operator with input
𝑋 = (𝐾,𝑉) and its key 𝐾 .

Theorem 3.1. Setting 𝑈𝑖 = (1 + 𝑐𝑖)𝑛𝑖/𝑝 , if the keys of 𝑋 [𝑖] are
all distinct for any 𝑖 , then the shuffle by key algorithm fails with
probability at most 2−𝜎 , where 𝑐𝑖 =

√︁
2.08𝑝 (𝜎 + 2 log𝑝)/𝑛𝑖 = 𝑜 (1) .

In this paper, we omit all the proofs, which can be found in the
full version of the paper [55].

3.3 Sorting

The sorting operator permutes the original input such that for each
server 𝑖 , its local data 𝑋 [𝑖] is sorted, and for any two servers 𝑖 and 𝑗
where 𝑖 < 𝑗 , 𝑥 ≤ 𝑦 for any 𝑥 ∈ 𝑋 [𝑖] and 𝑦 ∈ 𝑋 [𝑗]. Please note that
the sorting operator in this section is for the distributed setting,
while OSort in Section 3.1 is for the standalone setting. Opaque [59]
uses column sort [33], which is naturally oblivious.2 Column sort
requires four rounds of local sorting and communication, with the
communication costs for these rounds being 𝑁 , 𝑁 , 𝑁 /2, and 𝑁 /2
respectively. Thus, the total communication cost sums up to 3𝑁 . A
recent study introduces DBucket [40], a distributed sorting algo-
rithm. DBucket adapts the bucket oblivious random permutation
proposed in [7] to the distributed setting. This is followed by a
non-oblivious distribution sort [2] (aka. sample sort). The bucket
random permutation leads to a communication cost of 2𝑁 due to

1A random oracle is an ideal function that maps distinct elements to independent
and uniformly random outputs taken from its range. In practice we suggest using a
cryptographic hash function such as BLAKE3.
2Opaque’s sorting algorithm is not inherently computation oblivious; however, substi-
tuting its local sorts with OSort straightforwardly makes it computation oblivious.

1295

https://github.com/BLAKE3-team/BLAKE3/

padding, while the non-oblivious sort contributes an additional 𝑁 .
Consequently, the total communication cost for DBucket is also
3𝑁 . We employ column sort in our experiments due to its simplicity.

3.4 Prefix Sum and Suffix Sum

Let ⊕ be a binary associative operator. The prefix sumoperator takes
(𝑥1, . . . , 𝑥𝑁) as input and outputs (𝑥1, 𝑥1⊕𝑥2, . . . , 𝑥1⊕𝑥2⊕· · ·⊕𝑥𝑁).
The common choices of ⊕ are +, max, min, etc. If each 𝑥𝑖 is in the
key-value pair form 𝑥𝑖 = (𝑘𝑖 , 𝑣𝑖), then ⊕ is usually defined as3

(𝑘1, 𝑣1) ⊕ (𝑘2, 𝑣2) =
{
(𝑘2, 𝑣1 ⊕̂ 𝑣2) if 𝑘1 = 𝑘2,

(𝑘2, 𝑣2) otherwise,

where ⊕̂ is another binary associative operator that operates on
the values. For example, in Opaque [59], the stage 2–3 of oblivious
aggregate is essentially a prefix sum operator where the key is the
set of grouping attributes and ⊕̂ is the aggregate function, and the
stage 2–3 of oblivious sort-merge join (PK join in our paper) is also
equivalent to a prefix sum operator where the key is the set of join
attributes and ⊕̂ always returns the first input, i.e., 𝑣1 ⊕̂ 𝑣2 = 𝑣1.

The distributed algorithm for prefix sum operator [23] has com-
munication cost 𝑂 (𝑝), which is negligible compared with other
operators as 𝑝 ≪ 𝑁 . The algorithm is quite simple. First, each
server 𝑖 locally computes the prefix sum on its input 𝑋 [𝑖]. Let 𝑌 [𝑖]
be the output and 𝑦𝑖 be the last element of 𝑌 [𝑖], which is equal to
sum of elements in𝑋 [𝑖]. Each server sends𝑦𝑖 to the first server, who
then locally computes the prefix sum of {𝑦𝑖 }𝑝𝑖=1. Denote {𝑧𝑖 }

𝑝

𝑖=1 to
be the output. The first server sends each 𝑧𝑖 to the 𝑖 + 1-th server
for all 𝑖 ∈ [𝑝 − 1]. Finally each server 𝑖 ≥ 2 adds the element 𝑧𝑖−1
it receives to all the elements in 𝑌 [𝑖], i.e., updates each 𝑦 ∈ 𝑌 [𝑖] to
𝑧𝑖−1 ⊕ 𝑦. Then (𝑌 [𝑖])𝑝𝑖=1 is the prefix sum of (𝑋 [𝑖])𝑝

𝑖=1.
We will also need the suffix sum operator, which takes the same

input as prefix sum but outputs (𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑁 , 𝑥2 ⊕ · · · ⊕
𝑥𝑁 , . . . , 𝑥𝑁−1 ⊕ 𝑥𝑁 , 𝑥𝑁). It is trivial to implement oblivious suffix
sum algorithm as the prefix sum operator in a symmetric way with
the same costs, and we omit the details.

3.5 Join

In database theory, a join4 operator takes two tables𝑅 and 𝑆 as input,
and outputs the combinations of tuples from 𝑅 and 𝑆 that have the
same values on the joined attributes (aka. join key). Without loss
of generality, assume 𝑅 = 𝑅(𝐴, 𝐵) and 𝑆 = 𝑆 (𝐵,𝐶) and let the join
key be 𝐵, then the join result of 𝑅 and 𝑆 is

𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) = {(𝑎, 𝑏, 𝑐) | (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆}.
In the rest of this paper, we denote 𝑁1 = |𝑅 |, 𝑁2 = |𝑆 |, and

𝑀 = |𝑅 Z 𝑆 |. We define 𝛼1, the maximum degrees of the join
key on 𝑅, as 𝛼1 ≔ max𝑏0 |{(𝑎, 𝑏) ∈ 𝑅 | 𝑏 = 𝑏0}|. Similarly, 𝛼2 ≔

max𝑏0 |{(𝑏, 𝑐) ∈ 𝑆 | 𝑏 = 𝑏0}|. We also define the ℓ∞-skewness of a
join with output size𝑀 as 𝜙 = 𝛼1𝛼2/𝑀 .

Comparison between oblivious joins. The theoretical comparison
between our oblivious join Jodes with existing ones is summarized
in Table 2. The standalone algorithm works by all servers sending
data to the first server who then performs state-of-the-art local
3To implement ⊕ in an oblivious way, one could run CMove([𝑘1 = 𝑘2], 𝑣2, 𝑣1 ⊕̂ 𝑣2)
and then simply outputs (𝑘2, 𝑣2) .
4We only consider natural join (aka. equi-join) in this paper.

Table 2: Comparisons between oblivious join algorithms.

Computation costs are presented asymptotically.

Algorithm Communication Computation

Standalone 𝑁 +𝑀 𝑝 (𝑛 +𝑚) log2 𝑛

Cartesian join 𝑁1𝑁2 𝑝 (𝑛 log𝑛)2
SODA [37] 4𝑁 + (𝑝𝜙 + 1)𝑀 (𝑛 + (𝑝𝜙 + 1)𝑚) log2 𝑛

Jodes (Ours) 7𝑁 + 2𝑀 +min(2𝑀,𝑁𝑝) (𝑛 +𝑚) log2 𝑛

oblivious join [32] in the standalone setting, splits the join result to 𝑝
parts, and sends each part to the corresponding server.Cartesian join
first ignores the join conditions and computes the cartesian product
of the two input tables [1, 11], and then filters the output tuples that
does not meet the join conditions out by oblivious filter [37]. It is
notable that Jodes has computation cost 𝑂 (1/𝑝) of the standalone
algorithm. The speed up factorΘ(𝑝) means that Jodes has perfectly
balanced the computation to the 𝑝 servers asymptotically.

SODA [37] proposed the first specialized oblivious algorithm for
a general join. In addition to the total input size 𝑁 and the output
size 𝑀 , SODA’s join algorithm also reveals 𝛼1, 𝛼2, the maximum
degrees of the join key of the two tables. The key idea of SODA’s
join algorithm is to first arrange all the various-sized join groups
into a set of equally-sized bins (first level assignment), and then
distribute the bins to servers in a load balancedmanner (second level
assignment). Thereafter, each server computes the local join based
on its assigned bins. To achieve obliviousness, the local join at each
server produces an output of size 𝑀/𝑝 + 𝛼1𝛼2 padded with some
dummy tuples. Optionally, the dummy tuples could be ultimately
removed by SODA’s filter algorithm. Note that in second level
assignment, the granularity of the involved shuffle is bins, with
numbers bounded by 𝑂 (𝑁 /(𝛼1 + 𝛼2)). As a result, it implicitly
assumes𝑁 = Ω((𝛼1+𝛼2)𝑝2𝜎) to avoid padding by a super-constant
factor, which means that it is infeasible to set 𝛼1, 𝛼2 to the worst
sizes 𝑁1, 𝑁2 to achieve the same security level as other algorithms,
where 𝑁1 and 𝑁2 are the sizes of the two input tables respectively.
In conclusion, Jodes has both costs asymptotically strictly better
than all existing algorithms, except that when 𝛼1𝛼2 = 𝑂 (𝑀/𝑝), i.e.,
𝑝𝜙 = 𝑂 (1), SODA’s join has the same complexity with Jodes. But
in any case, SODA’s join provides a weaker security guarantee than
Jodes.

3.5.1 Primary Key Join. We consider a special type of join, primary
key join (PK join), which guarantees that the join key is the primary
key of 𝑆 , i.e., All tuples in 𝑆 have distinct values in 𝐵. With this
constraint on 𝑆 , PK join typically gains more efficient algorithm
than general join. Opaque [59] supports oblivious PK join following
the idea of sort-merge join. It calls the oblivious sorting operator
twice on the union of the two tables, and the communication and
computation costs of their algorithm are 6𝑁1 + 6𝑁2 and𝑂 (𝑛 log2 𝑛)
respectively, where 𝑛 = (𝑁1 + 𝑁2)/𝑝 . The oblivious join algorithm
in SODA [37] can also be applied to PK join: By the primary key
constraint, 𝛼2 = 1 and 𝑀 ≤ 𝑁1, hence it has communication cost
5𝑁1 + 4𝑁2 + 𝑝𝛼1 and computation cost 𝑂 ((𝑛 + 𝛼1) log2 𝑛).

4 DESIGN

We propose the design of our algorithms in this section.

4.1 Shuffle

1296

The computation cost of the shuffle algorithm (Algorithm 1) is
primarily attributed to OPartition. We note that OPartition does
not need elements in each output sequence to be sorted, hence
employing OSort on all elements is superfluous.We borrow the idea
of quicksort and propose our oblivious algorithm for OPartition
as follows.5 At the high level, quicksort is a recursive algorithm that
partitions data to several buckets, where any element in 𝑖-th bucket
is not larger than any element in the 𝑗-th bucket for any 𝑖 < 𝑗 .
Then it applies the quicksort algorithm on each bucket recursively.
In OPartition, this recursion can be early stopped as long as the
bucket size is at most 𝑈 , hence the number of recursion levels
can be reduced from log𝑛 to log𝑝 . For each level, we choose the
middle point as the pivot, and partition the elements to two parts
according to the pivot by using OCompact: Move all elements (𝑥𝑖 , 𝑡𝑖)
with 𝑧𝑖 = 1 in front of other elements in an oblivious way. Such 𝑧𝑖
could be determined by a linear scan. Afterwards, we input each
of the two parts recursively. The cost of OCompact in each level is
𝑂 (𝑛 log𝑛) and the number of levels is ⌈log𝑝⌉, so the total cost is
𝑂 (𝑛 log𝑛 log𝑝). Hence our algorithm reduces the computation cost
of the shuffle operator from SODA’s𝑂 (𝑛 log2 𝑛) to𝑂 (𝑛 log𝑛 log 𝑝).

4.2 Primary Key Join

Below we present our oblivious PK join algorithm (Algorithm 2)
with lower costs. Our basic idea follows the aggregate algorithm in
SODA [37] that tuples with the same key should be shuffled to the
same server so that they can be joined locally. The main issue of
simply invoking the shuffle by key operator is that it requires the
tuples of the input table are distinct on their keys (Theorem 3.1),
which holds for 𝑆 but not for 𝑅. To resolve this issue, for tuples in
𝑅 with the same key in each server, we choose one of them as the
representative andmark other tuples as inactive. In the shuffle by key
operator, the representatives are shuffled by the join key while the
inactive tuples are shuffled to random target servers independently.
Then we can join the representatives of 𝑅 with all tuples of 𝑆 locally
in each server (Line 12–22). Taking the information from 𝑆 , the
representatives then go back to their original servers (Line 23) and
distribute the data they receive from 𝑆 to those inactive tuples
(Line 25–28). Note that in Line 8, representatives have distinct 𝐵
but with 𝑍 = 0 while inactive tuples have distinct and nonzero 𝑍 ,
so they are all distinct on (𝐵, 𝑍), hence shuffle by key operator can
be applied. Also note that Line 23 is essentially the reverse of the
shuffle in Line 8, so they should have the same padding size. Our
algorithm has communication and computation cost 2𝑁1 + 𝑁2 and
𝑂 (𝑛 log2 𝑛) respectively.

Example 4.1. Consider the example as shown in Figure 1, in
which there are two servers S1 and S2. The representatives of 𝑅
in S1 and S2 are (𝑎1, 1), (𝑎2, 2) and (𝑎2, 1), (𝑎1, 2) respectively. All
other tuples are deemed inactive and represented in gray. Step (a)
is the shuffle by key operation, during which representatives in 𝑅
and all tuples in 𝑆 are shuffled by their 𝐵 values (ℎ(2) = ℎ(3) = 1
and ℎ(1) = ℎ(4) = 2), whereas the inactive tuples are randomly
assigned to a server. Step (b) entails executing a local PK join on
each server. Note that inactive tuples are excluded from this join
and instead have their 𝐶 values designated as ⊥ (dummy). In step
(c), all tuples are shuffled back to their original server. For instance,
5The algorithmic description is in the full version of this paper [55].

Algorithm 2: Oblivious PK join
Input: 𝑅 (𝐴, 𝐵) and 𝑆 (𝐵,𝐶) where 𝐵 is the primary key of 𝑆
Output:𝑉 (𝐴, 𝐵,𝐶) = 𝑅 Z 𝑆

1 Add column 𝑍 to 𝑅 [𝑖] with 𝑍 ← 0;
2 for 𝑖 ← 1 to 𝑝 do

3 OSort(𝑅 [𝑖], 𝐵) ;
4 Add column 𝐼 to 𝑅 [𝑖] with 𝐼 ← 𝑖 ; // Record the original server

id
5 for 𝑗 ← 2 to |𝑅 [𝑖] | do
6 (𝑡 𝑗−1, 𝑡 𝑗) ← the (𝑗 − 1, 𝑗)-th tuple of 𝑅 [𝑖];
7 CMove([𝑡 𝑗 .𝐵 = 𝑡 𝑗−1 .𝐵], 𝑡 𝑗 .𝑍, 𝑗) ; // Set inactive tuples to

distinct and positive 𝑍

8 Shuffle 𝑅 by key (𝐵,𝑍) ; // Inactive tuples are randomly shuffled
9 Shuffle 𝑆 by key (𝐵, 0) ;

10 Initialize table𝑉 (𝐴, 𝐵,𝐶, 𝐼 , 𝑍) ;
11 for 𝑖 ← 1 to 𝑝 do

12 𝑛0 ← |𝑅 [𝑖] |;
13 Add column𝐶 to 𝑅 [𝑖];
14 Add columns 𝐴, 𝐼, 𝑍 to 𝑆 [𝑖] with 𝑍 ← −1;
15 𝑉 [𝑖] ← 𝑅 [𝑖] ∪ 𝑆 [𝑖];
16 OSort(𝑉 [𝑖], (𝐵,𝑍)) ;
17 for 𝑗 ← 2 to |𝑉 [𝑖] | do
18 (𝑡 𝑗−1, 𝑡 𝑗) ← the (𝑗 − 1, 𝑗)-th tuple of𝑉 [𝑖];
19 𝑐 ← [𝑡 𝑗 .𝐵 = 𝑡 𝑗−1 .𝐵 ∧ 𝑡 𝑗 .𝑍 = 0];
20 CMove(𝑐, 𝑡 𝑗 .𝐶, 𝑡 𝑗−1 .𝐶) ;
21 OCompact(𝑉 [𝑖], [𝑍 ≥ 0]) ; // Move tuples from 𝑅 to the front
22 Truncate𝑉 [𝑖] to size 𝑛0;

23 Shuffle𝑉 = (𝑉 [1], . . . ,𝑉 [𝑝]) by𝑉 .𝐼 ; // Shuffle tuples back
24 for 𝑖 ← 1 to 𝑝 do

25 OSort(𝑉 [𝑖], (𝐵,𝑍)) ;
26 for 𝑗 ← 2 to |𝑉 [𝑖] | do
27 (𝑡 𝑗−1, 𝑡 𝑗) ← the (𝑗 − 1, 𝑗)-th tuple of𝑉 [𝑖];
28 CMove([𝑡 𝑗 .𝐵 = 𝑡 𝑗−1 .𝐵], 𝑡 𝑗 .𝐶, 𝑡 𝑗−1 .𝐶) ;

29 Remove columns 𝐼 , 𝑍 from𝑉 ;
30 return𝑉 ;

𝑅(𝐴, 𝐵) 𝑆 (𝐵,𝐶)

S1

(𝑎1, 1),
(𝑎2, 2),
(𝑎3, 2),
(𝑎5, 2)

(1, 𝑐1),
(2, 𝑐2)

S2

(𝑎2, 1),
(𝑎3, 1),
(𝑎1, 2),
(𝑎4, 2)

(3, 𝑐1),
(4, 𝑐3)

(a)
−−→

𝑅(𝐴, 𝐵) 𝑆 (𝐵,𝐶)
(𝑎1, 2),
(𝑎2, 2),
(𝑎3, 1),
(𝑎5, 2)

(2, 𝑐2),
(3, 𝑐1)

(𝑎1, 1),
(𝑎2, 1),
(𝑎3, 2),
(𝑎4, 2)

(1, 𝑐1),
(4, 𝑐3)

(b)
−−→

𝑇 (𝐴, 𝐵,𝐶)
(𝑎1, 2, 𝑐2),
(𝑎2, 2, 𝑐2),
(𝑎3, 1,⊥),
(𝑎5, 2,⊥)
(𝑎1, 1, 𝑐1),
(𝑎2, 1, 𝑐1),
(𝑎3, 2,⊥),
(𝑎4, 2,⊥)

(c)
−−→

𝑇 (𝐴, 𝐵,𝐶)
(𝑎1, 1, 𝑐1),
(𝑎2, 2, 𝑐2),
(𝑎3, 2,⊥),
(𝑎5, 2,⊥)
(𝑎2, 1, 𝑐1),
(𝑎3, 1,⊥),
(𝑎1, 2, 𝑐2),
(𝑎4, 2,⊥)

(d)
−−→

𝑇 (𝐴, 𝐵,𝐶)
(𝑎1, 1, 𝑐1),
(𝑎2, 2, 𝑐2),
(𝑎3, 2, 𝑐2),
(𝑎5, 2, 𝑐2)
(𝑎2, 1, 𝑐1),
(𝑎3, 1, 𝑐1),
(𝑎1, 2, 𝑐2),
(𝑎4, 2, 𝑐2)

Figure 1: PK join algorithm example

the tuple (𝑎3, 2,⊥), which was initially (𝑎3, 2) on S1, is relocated
back to S1. Finally, in step (d), the active tuples distribute their 𝐶
values to the inactive tuples, thus completing the PK join process.

4.3 Expansion

Before presenting our join algorithm, we need to introduce the
expansion operator first. Given a public parameter𝑀 , the expansion
operator takes two arrays 𝑋 = (𝑥1, . . . , 𝑥𝑁) and 𝐷 = (𝑑1, . . . , 𝑑𝑁)
as input, where each 𝑑𝑖 is a non-negative integer and 𝑑⊥ ≔ 𝑀 −∑𝑁
𝑖=1 𝑑𝑖 ≥ 0. The values 𝑑𝑖 indicates the number of repetitions that

1297

𝑥𝑖 should appear in the output, i.e., the output is a length-𝑀 array:

(𝑥1, . . . , 𝑥1︸ ︷︷ ︸
𝑑1 times

, 𝑥2, . . . , 𝑥2︸ ︷︷ ︸
𝑑2 times

, . . . , 𝑥𝑁 , . . . , 𝑥𝑁︸ ︷︷ ︸
𝑑𝑁 times

, . . . ,⊥, . . . ,⊥︸ ︷︷ ︸
𝑑⊥ times

) .

Note that those 𝑥𝑖 with 𝑑𝑖 = 0 would not appear in the output.
The expansion operator was initially proposed for database join
in [6] and the oblivious standalone algorithm is formally described
in [32]. In this section, we propose the first oblivious algorithm for
the expansion operator in the distributed setting. Each server holds
𝑁 /𝑝 elements of 𝑋 and 𝐷 as input, and will hold 𝑀/𝑝 elements
of 𝑌 as output after computation. Our algorithm is described in
Algorithm 3, in which we (logically) organize the input as a table
𝑅(𝑋, 𝐷) and output as a table 𝑆 (𝑋) for better readability.

Our algorithm works in two steps. Assume the output array
{𝑦𝑖 }𝑀𝑖=1 is initially a length-𝑀 array filled with dummy elements,
i.e., 𝑦𝑖 = ⊥ for all 𝑖 ∈ [𝑀]. Note that the largest index of each
𝑥𝑖 appearing in the output array is supposed to be 𝑙𝑖 ≔

∑𝑖
𝑗=1 𝑑 𝑗 ,

except that those with 𝑑𝑖 = 0 would not appear. The first step is
to set 𝑦𝑙𝑖 to 𝑥𝑖 for each 𝑖 ∈ [𝑁] for those 𝑑𝑖 > 0, and the second
step is to replace each dummy element with the first non-dummy
element after it (if there is), which could be realized by a suffix sum
operator by defining proper ⊕ (Line 14 in Algorithm 3).

To achieve the first step obliviously, we first note that the array
{𝑙𝑖 }𝑁𝑖=1 can be obtained by calling a prefix sum operator with input
(𝑑1, . . . , 𝑑𝑁). Since each server will hold𝑚 elements of the output
array, the 𝑙𝑖 -th element in the output will be held by server 𝑡𝑖 =

⌈𝑙𝑖/𝑚⌉, which suggests we should shuffle each 𝑥𝑖 to the 𝑡𝑖 -th server
(if 𝑑𝑖 = 0, 𝑥𝑖 is simply ignored). We denote this shuffle SF1. Since
the target servers in SF1 are data dependent, it needs padding to
achieve obliviousness. We perform a random shuffle SF0 before SF1
to balance the data, so that the padding size of SF1 is bounded.

Theorem 4.2. Let SF0 be the random shuffle and SF1 be the shuf-
fle following SF0. If we set𝑈𝑖 = (1+𝑐𝑖)𝑛𝑖 ·min(𝑚/𝑁, 1) in SF1, then
Algorithm 3 has communication cost 𝑁 +min(𝑀, 𝑁𝑝) and compu-
tation cost𝑂 (𝑚 log𝑛 +min(𝑚, 𝑁) log2 𝑛) with failure probability at
most 2−𝜎 , where 𝑛𝑖 is the number of tuples on the 𝑖-th server after
SF0, and 𝑐𝑖 =

√︁
2.08 max(𝑁 /𝑚, 1) (𝜎 + 2 log𝑝)/𝑛𝑖 = 𝑜 (1) .

Example 4.3. Consider the example in Figure 2 with 𝑝 = 3,
𝑀 = 18, and 𝑑⊥ = 2. Each server will hold 𝑚 = 𝑀/𝑝 = 6 ele-
ments of the output. Our algorithm first computes the prefix sum
of (1, 3, 1, 0, 5, 2, 1, 1, 2) as 𝐿 in step (a), indicating that 𝑥𝑖 will lastly
appear at the 𝑙𝑖 -th location in the output array, except that 𝑑 will
not appear. This in turn implies 𝑥𝑖 will lastly appear in the 𝑝𝑖 -th
location of the 𝑡𝑖 -th server, with 𝑇 and 𝑃 locally computed in step
(b). In step (c), we shuffle 𝑅 randomly, then shuffle it with target
servers of tuples specified by 𝑇 with proper padding. Afterwards,
each server locally put each tuple 𝑡 at the 𝑡 .𝑃-th position in its
server by ODistribute. The result is shown as the fourth table in
this figure. Step (d) is a suffix sum operation as described in Line 14
of Algorithm 3 which finally yields the expansion result.

4.4 Oblivious Join

Now we are ready to present our oblivious join algorithm. Note
that our idea for PK join is not directly applicable to a generalized
join operation, because for any 𝑏, there could be multiples tuples

Algorithm 3: Oblivious expansion
Input: 𝑅 (𝑋,𝐷) , and public parameter𝑀
Output: 𝑆 (𝑋) where 𝑡 .𝑋 appears 𝑡 .𝐷 times for any 𝑡 ∈ 𝑅

1 Add columns (𝐿,𝑇 , 𝑃) to 𝑅;
2 𝑅.𝐿 ← the prefix sum of 𝑅.𝐷 ; // Target global position
3 for 𝑖 ← 1 to 𝑝 do

4 for 𝑗 ← 1 to |𝑅 [𝑖] | do
5 𝑡 𝑗 ← the 𝑗-th tuple of 𝑅 [𝑖];
6 𝑡 𝑗 .𝑇 ← ⌈𝑡 𝑗 .𝐿/𝑚⌉ ; // Target server
7 𝑡 𝑗 .𝑃 ← 𝑡 𝑗 .𝐿 − (𝑡 𝑗 .𝑇 − 1)𝑚 ; // Target position in the target

server
8 CMove([𝑡 𝑗 .𝐷 = 0], 𝑡 𝑗 ,⊥) ;

9 Shuffle 𝑅 randomly ; // No padding
10 Shuffle 𝑅 by 𝑅.𝑇 with padding sizes specified by Theorem 4.2;
11 Initialize table 𝑆 (𝑋) ;
12 for 𝑖 ← 1 to 𝑝 do

13 𝑆 [𝑖] .𝑋 ← ODistribute(𝑅 [𝑖] .𝑋, 𝑅 [𝑖] .𝑃,𝑚) ;
14 Run suffix sum operator on 𝑆 with ⊕ defined as: 𝑥1 ⊕ 𝑥2 is 𝑥2 if

𝑥1 = ⊥, otherwise 𝑥1;
15 return 𝑆 ;

𝑅(𝑋, 𝐷)

S1
(𝑎, 1),
(𝑏, 3),
(𝑐, 1)

S2
(𝑑, 0),
(𝑒, 5),
(𝑓 , 2)

S3
(𝑔, 1),
(ℎ, 1),
(𝑖, 2)

(a)
−−→

𝑅(𝑋, 𝐷, 𝐿)
(𝑎, 1, 1),
(𝑏, 3, 4),
(𝑐, 1, 5)
(𝑑, 0, 5),
(𝑒, 5, 10),
(𝑓 , 2, 12)
(𝑔, 1, 13),
(ℎ, 1, 14),
(𝑖, 2, 16)

(b)
−−→

𝑅(𝑋,𝑇 , 𝑃)
(𝑎, 1, 1),
(𝑏, 1, 4),
(𝑐, 1, 5)
⊥,

(𝑒, 2, 4),
(𝑓 , 2, 6)
(𝑔, 3, 1),
(ℎ, 3, 2),
(𝑖, 3, 4)

(c)
−−→

𝑆 (𝑋)
𝑎, ⊥, ⊥,
𝑏, 𝑐 , ⊥
⊥, ⊥, ⊥,
𝑒 , ⊥, 𝑓
𝑔, ℎ, ⊥,
𝑖 , ⊥, ⊥

(d)
−−→

𝑆 (𝑋)
𝑎, 𝑏, 𝑏,
𝑏, 𝑐 , 𝑒
𝑒 , 𝑒 , 𝑒 ,
𝑒 , 𝑓 , 𝑓
𝑔, ℎ, 𝑖 ,
𝑖 , ⊥, ⊥

Figure 2: Expansion algorithm example with𝑀 = 18

in both 𝑅 and 𝑆 with 𝐵 = 𝑏. While it is still feasible to select any
tuple from 𝑅 with 𝐵 = 𝑏 as a representative, it is not known how to
efficiently associate all corresponding tuples in 𝑆 with 𝐵 = 𝑏 to this
chosen representative.

We start by revisiting the state-of-the-art standalone oblivious
join algorithm [32]. The high level idea is based on the observation
that for any (𝑎, 𝑏) ∈ 𝑅, it appears deg𝑆 (𝑏) times in the join result,
where deg𝑆 (𝑏) is the number of tuples in 𝑆 with 𝐵 = 𝑏, which
we call the degree of 𝑏 in 𝑆 . These degrees can be computed by
combining sorting and prefix sum operators, and can be attached
to the correct tuples in 𝑅 by a PK join operator. Then an expansion
operator expands 𝑅 according to the degree of 𝑆 , increasing the total
size to𝑀 , the output table size. Note that this expansion requires
𝑀 as introduced in Section 2.5. These steps are then applied to 𝑆
symmetrically. Finally, it aligns the two expanded tables properly
by an extra sorting on 𝑆 by join key and its alignment key, which
could be computed by the degrees of the two tables. Note that
the above algorithm is essentially the composition of the sorting,
aggregate, PK join, and expansion operators. By instantiating these
operators with our proposed distributed oblivious algorithms, it is
transformed to the distributed version correctly.

Our oblivious join algorithm Jodes is presented in Algorithm 4,
and the subroutine that computes the degrees of the two tables
are described in Algorithm 5. Despite following the idea of the
standalone oblivious join algorithm, we also optimize Jodes in

1298

distributed setting by noting that the final alignment can be im-
plemented without the sorting operator. Specifically, the original
alignment key 𝐿 indicates the positions of the tuples in each group
of𝐵.We redefine 𝐿 so that it indicates the global positions, which are
computed as in Line 7–13. Instead of simply performing global sort-
ing on 𝐿, we first compute the target servers 𝑇 of the tuples by the
alignment key 𝐿 (Line 14), shuffle the table by 𝑇 , and then perform
OSort on the alignment key in each server. However, the target
servers are data dependent, hence padding is required. Similar to
our expansion algorithm, we perform a random shuffle in advance
to balance the data, and setting padding size as stated in Theo-
rem 4.4 is adequate. The communication costs of the first 6 lines are
3𝑁1+3𝑁2, 2𝑁1+𝑁2, 0, 𝑁1+min(𝑀, 𝑁1𝑝), 𝑁1+2𝑁2, 𝑁2+min(𝑀, 𝑁2𝑝)
respectively, and the communication cost of the each of the two
shuffles is 𝑀 . Other operators involve only costs with low-order
term. Hence the total communication cost of Jodes is 7(𝑁1 +𝑁2) +
min(𝑀, 𝑁1𝑝)+min(𝑀, 𝑁2𝑝)+2𝑀 ≤ 7𝑁 +2𝑀+min(2𝑀, 𝑁𝑝) where
𝑁 = 𝑁1+𝑁2. The computation cost of Jodes is dominated by OSort
before and after expansion, which is 𝑂 ((𝑛 +𝑚) log2 𝑛).

Algorithm 4 assumes 𝑀 is a public parameter. If the padding
scheme is “no padding”, i.e.,𝑀 is the exact output size of the join as
in SODA [37], then we can simply compute𝑀 by summing all the
degrees that 𝑅 receives after PK join, without the need of it being
public. Specifically, insert “𝑀 ← sum of 𝑅′ .𝐷𝑆 ” after Line 2.

Theorem 4.4. Let SF0 be the random shuffle (Line 15) and SF1
be the other shuffle (Line 16) in Algorithm 3. If we set 𝑈𝑖 = (1 +
𝑐𝑖)𝑛𝑖/𝑝 in SF1, then it fails with probability at most 2−𝜎 , where
𝑛𝑖 is the number of tuples on the 𝑖-th server after SF0, and 𝑐𝑖 =√︁

2.08𝑝 (𝜎 + 2 log𝑝)/𝑛𝑖 = 𝑜 (1) .

Example 4.5. Consider the example shown in Figure 3, in which
the output size bound𝑀 is set to the true join size, i.e., no padding.
The subroutine Algorithm 5 corresponds to step (a), which includes
two sub-steps: (a1) computing the prefix sum on key-value pair
(𝐵, 1) to get 𝐷𝑅 , and (a2) updating 𝐷𝑅 by suffix max and then
obtaining 𝐷𝑆 by PK join. Step (b) is to apply the expansion operator
on the degree of the other table. Besides, for 𝑆 , it also computes the
alignment key 𝐿 and the target servers 𝑇 . In step (c), we apply the
two shuffle operators and then local OSort so that 𝑆 is ordered by
𝐿. The final step (d) is to combine 𝑅 and 𝑆 to get the join result 𝑉 .

5 SECURITY ANALYSIS

In this section, we prove that our proposed algorithms are both
communication oblivious and computation oblivious. Recall Defini-
tion 2.1 for communication obliviousness. Note that all our algo-
rithms involve communication only by calling the shuffle operator
accompanied by determinate padding sizes, and the servers will
receive messages whose sizes are congruent with these padding
sizes {𝑈𝑖 }, which can be computed from the input sizes {𝑛𝑖 } and
public parameters 𝑝 and 𝜎 (Theorem 3.1, 4.2, 4.4). Therefore, let
the simulator simply outputs 𝑆 as random numbers with sizes {𝑈𝑖 },
then the transcript of the algorithm and 𝑆 are in identical sizes and
hence indistinguishable.

For computation obliviousness in Definition 2.2, note that none
of our algorithms involves any data dependent operations due to:
(1) the execution of all loops with publicly known sizes; (2) the

Algorithm 4: Oblivious join Jodes
Input: 𝑅 (𝐴, 𝐵) and 𝑆 (𝐵,𝐶) ; public output size bound𝑀
Output:𝑉 (𝐴, 𝐵,𝐶) = 𝑅 (𝐴, 𝐵) Z 𝑆 (𝐵,𝐶)

1 Sort both 𝑅 and 𝑆 by 𝐵;
2 𝑅′ (𝐴, 𝐵, 𝐷𝑅, 𝐷𝑆) ← run Algorithm 5 with input 𝑅, 𝑆 ;
3 Remove column 𝐷𝑅 from 𝑅′;
4 𝑆 ′ (𝐵,𝐶, 𝐷𝑅, 𝐷𝑆) ← run Algorithm 5 with input 𝑆, 𝑅;
5 𝑅 (𝐴, 𝐵) ← expansion with input (𝑅′ .𝐴, 𝑅′ .𝐵) , (𝑅′ .𝐷𝑆) and𝑀 ;
6 𝑆 (𝐵,𝐶, 𝐷𝑅, 𝐷𝑆) ← expansion with input 𝑆 ′ , 𝑆 ′ .𝐷𝑅 and𝑀 ;
7 Add column 𝐼 , 𝐽 , 𝐿,𝑇 to 𝑆 ;
8 𝑆.𝐼 ← prefix sum on key-value pair (𝐵, 1) ;
9 𝑆.𝐽 ← prefix min on key-value pair (𝐵, [𝑀]) ;

10 for 𝑖 ← 1 to 𝑝 do

11 for 𝑡 ∈ 𝑆 [𝑖] do
12 𝑞 ← 𝑡 .𝐼 − 1;
13 𝑡 .𝐿 ← ⌊𝑞/𝑡 .𝐷𝑅 ⌋ + (𝑞 mod 𝑡 .𝐷𝑅) · 𝑡 .𝐷𝑆 + 𝑡 .𝐽 ;
14 𝑡 .𝑇 ← ⌈𝑡 .𝐿/𝑚⌉;

15 Shuffle 𝑆 randomly;
16 Shuffle 𝑆 by 𝑆.𝑇 with padding size specified by Theorem 4.4;
17 Initialize table𝑉 (𝐴, 𝐵,𝐶) ;
18 for 𝑖 ← 1 to 𝑝 do

19 OSort(𝑆 [𝑖], 𝐿) ;
20 for 𝑗 ← 1 to𝑚 do

21 (𝑡𝑅, 𝑡𝑆) ← the 𝑗-th tuple of (𝑅 [𝑖], 𝑆 [𝑖]) ;
22 Insert (𝑡𝑅 .𝐴, 𝑡𝑅 .𝐵, 𝑡𝑆 .𝐶) to𝑉 [𝑖];

23 return𝑉 ;

Algorithm 5: Compute degrees
Input: 𝑅 (𝐴, 𝐵) and 𝑆 (𝐵,𝐶) , both ordered by 𝐵 ;
Output: 𝑅 (𝐴, 𝐵, 𝐷𝑅, 𝐷𝑆)

1 Add column 𝐷𝑅 to 𝑅;
2 𝑅.𝐷𝑅 ← prefix sum on key-value pair (𝐵, 1) ;
3 𝑅.𝐷𝑅 ← suffix max on key-value pair (𝐵,𝐷𝑅) , i.e., ⊕ is defined as

𝑥 ⊕ 𝑦 = max(𝑥, 𝑦) ;
4 Add column 𝐷𝑆 to 𝑆 ;
5 𝑆.𝐷𝑆 ← prefix sum on key-value pair (𝐵, 1) ;
6 𝑆.𝐷𝑆 ← suffix max on key-value pair (𝐵,𝐷𝑆) ;
7 for 𝑖 ← 1 to 𝑝 do

8 for 𝑗 ← 2 to |𝑆 [𝑖] | do
9 (𝑡 𝑗−1, 𝑡 𝑗) ← the (𝑗 − 1, 𝑗)-th tuple of 𝑆 [𝑖];

10 CMove([𝑡 𝑗−1 .𝐵 = 𝑡 𝑗 .𝐵], 𝑡 𝑗−1,⊥) ; // Remove duplicates

11 𝑅 (𝐴, 𝐵, 𝐷𝑅, 𝐷𝑆) ← 𝑅 (𝐴, 𝐵, 𝐷𝑅) Z 𝑆 (𝐵,𝐶, 𝐷𝑆) ; // PK join with
communication cost 2 |𝑅 | + |𝑆 |

12 return 𝑅;

substitution of all conditional branches with CMove instructions;
(3) the utilization of data independent memory access locations; (4)
the employment of primitives that are intrinsically oblivious, e.g.,
OSort and OCompact. Therefore, the simulator can simply simulate
the memory access pattern by running the algorithm with arbitrary
input (of the same sizes), and the adversary could not distinguish
between the access patterns from the true input and the simulated
input. Note that for the random shuffle operator, the access pat-
tern is random, but the distribution of the access pattern is data

1299

𝑅(𝐴, 𝐵)

S1

(𝑎1, 𝛼),
(𝑎2, 𝛼),
(𝑎3, 𝛼),
(𝑎2, 𝛽)

S2

(𝑎5, 𝛽),
(𝑎3, 𝛾),
(𝑎1, 𝛾),
(𝑎4, 𝛿)

(a1)
−−−→

𝑅′ (𝐴, 𝐵, 𝐷𝑅)
(𝑎1, 𝛼, 1),
(𝑎2, 𝛼, 2),
(𝑎3, 𝛼, 3),
(𝑎2, 𝛽, 1)
(𝑎5, 𝛽, 2),
(𝑎3, 𝛾, 1),
(𝑎1, 𝛾, 2),
(𝑎4, 𝛿, 1)

(a2)
−−−→

𝑅′ (𝐴, 𝐵, 𝐷𝑅, 𝐷𝑆)
(𝑎1, 𝛼, 3, 1),
(𝑎2, 𝛼, 3, 1),
(𝑎3, 𝛼, 3, 1),
(𝑎2, 𝛽, 2, 2)
(𝑎5, 𝛽, 2, 2),
(𝑎3, 𝛾, 2, 0),
(𝑎1, 𝛾, 2, 0),
(𝑎4, 𝛿, 1, 3)

(b)
−−→

𝑅(𝐴, 𝐵)
(𝑎1, 𝛼),
(𝑎2, 𝛼),
(𝑎3, 𝛼),
(𝑎2, 𝛽),
(𝑎2, 𝛽)
(𝑎5, 𝛽),
(𝑎5, 𝛽),
(𝑎4, 𝛿),
(𝑎4, 𝛿),
(𝑎4, 𝛿)

(d)
−−→

𝑇 (𝐴, 𝐵,𝐶)
(𝑎1, 𝛼, 𝑐1),
(𝑎2, 𝛼, 𝑐1),
(𝑎3, 𝛼, 𝑐1),
(𝑎2, 𝛽, 𝑐1),
(𝑎2, 𝛽, 𝑐2)
(𝑎5, 𝛽, 𝑐1),
(𝑎5, 𝛽, 𝑐2),
(𝑎4, 𝛿, 𝑐3),
(𝑎4, 𝛿, 𝑐4),
(𝑎4, 𝛿, 𝑐5)

𝑆 (𝐵,𝐶)

S1

(𝛼, 𝑐1),
(𝛽, 𝑐1),
(𝛽, 𝑐2),
(𝛿, 𝑐3)

S2

(𝛿, 𝑐4),
(𝛿, 𝑐5),
(𝜖, 𝑐1),
(𝜖, 𝑐2)

(a)
−−→

𝑆 ′ (𝐴, 𝐵, 𝐷𝑅, 𝐷𝑆)
(𝛼, 𝑐1, 3, 1),
(𝛽, 𝑐1, 2, 2),
(𝛽, 𝑐2, 2, 2),
(𝛿, 𝑐3, 1, 3)
(𝛿, 𝑐4, 1, 3),
(𝛿, 𝑐5, 1, 3),
(𝜖, 𝑐1, 0, 2),
(𝜖, 𝑐2, 0, 2)

(b)
−−→

𝑆 (𝐵,𝐶, 𝐷𝑅, 𝐷𝑆 , 𝐼 , 𝐽 , 𝐿,𝑇)
(𝛼, 𝑐1, 3, 1, 1, 1, 1, 1),
(𝛼, 𝑐1, 3, 1, 2, 1, 2, 1),
(𝛼, 𝑐1, 3, 1, 3, 1, 3, 1),
(𝛽, 𝑐1, 2, 2, 1, 4, 4, 1),
(𝛽, 𝑐1, 2, 2, 2, 4, 6, 2)
(𝛽, 𝑐2, 2, 2, 3, 4, 5, 1),
(𝛽, 𝑐2, 2, 2, 4, 4, 7, 2),
(𝛿, 𝑐3, 1, 3, 1, 8, 8, 2),
(𝛿, 𝑐4, 1, 3, 2, 8, 9, 2),
(𝛿, 𝑐5, 1, 3, 3, 8, 10, 2)

(c)
−−→

𝑆 (𝐵,𝐶, . . . , 𝐿,𝑇)
(𝛼, 𝑐1, . . . , 1, 1),
(𝛼, 𝑐1, . . . , 2, 1),
(𝛼, 𝑐1, . . . , 3, 1),
(𝛽, 𝑐1, . . . , 4, 1),
(𝛽, 𝑐2, . . . , 5, 1)
(𝛽, 𝑐1, . . . , 6, 2),
(𝛽, 𝑐2, . . . , 7, 2),
(𝛿, 𝑐3, . . . , 8, 2),
(𝛿, 𝑐4, . . . , 9, 2),
(𝛿, 𝑐5, . . . , 10, 2)

Figure 3: Join algorithm example

independent, thereby excluding any possibility for the adversary
to differentiate.

6 EVALUATION

6.1 Experimental Setup

Environment. We deployed the distributed environment on 16
machines, each equipped with an Intel(R) Xeon(R) Platinum 8369B
CPU @ 2.90GHz and having 1TB RAM capacity. For each machine,
we initialized the enclave with 64GB EPC size. The machines were
interconnected via a local area network with bandwidth up to 2.9
GB/s, facilitating communication using the HTTP protocol built on
Facebook’s Proxygen framework [20]. We counted the communica-
tion cost as the total number of bytes sent across the servers. We
chose AES-GCM with 128-bit key as the data encryption scheme,
with encryption and decryption speed (inside enclave) around
1.0GB/s. The compiler was GCC 8.5.0 with “-O3” optimization en-
abled, and the implementation of CMove followed the XOR-based
C code in [40]. We enabled multi-threading outside the enclave,
i.e., a server may receive data from other servers and perform com-
putations inside the enclave simultaneously, but all computations
within the enclave were executed using a single thread.

Default settings. For our experiments, we standardized the com-
putational environment by configuring the number of servers to
𝑝 = 16 and setting the security parameter to 𝜎 = 40. For join opera-
tor, we set𝑀 to be the output size (no output padding). For a fair
comparison, in evaluations involving shuffle or PK join operations,
except when directly comparing these primitives, we consistently
employed our implementations as described in Section 3. This en-
sured that any observed performance differences could be attributed
to the intrinsic merits of the algorithms under investigation rather
than variations in the underlying primitives.

6.2 Performance of Basic Operators

OPartition. Our first improvement to the baseline is the stan-
dalone algorithm for OPartition, which is the key building block
for the shuffle operator. We benchmarked the local computation
phase of our algorithm against that of SODA [37] using inputs
generated randomly, varying input size 𝑁 , the number of servers

Figure 4: Computation time of OPartition varying input size

𝑁 , number of servers 𝑝, or security parameter 𝜎 .

Table 3: PK join input table information; Total time and

communication cost of the PK join algorithms

customer orders

#Rows 𝑁2 = 1.5×106 𝑁1 = 1.5×107

Zipf parameter 𝑧 0 0 0.5 1 1.5
Max degree 𝛼 1 37 449 50697 210490

Ours Opaque SODA

#Output (×107) 1.50 1.50 1.50 1.50 1.58 1.84
Total time (s) 6.44 12.5 11.0 11.0 11.3 12.0
Comm. cost (GB) 0.62 1.56 1.19 1.19 1.23 1.34

𝑝 , or the security parameter 𝜎 . The nature of obliviousness ensures
that the performance of the algorithms remains consistent regard-
less of the variability in the input data. The results are shown in
Figure 4. Our algorithm shows a substantial empirical performance
improvement, ranging from 60% to as much as 310%. Notably, this
enhancement factor grows in proportion to the increase in input
size 𝑁 or the decrease in the number of servers 𝑝 . This trend is in
line with our theoretical analysis, which states an improvement fac-
tor on the order of log𝑛/log𝑝 . Besides, we find that both algorithms
are insensitive to the security parameter. In applications requiring
even smaller failure probability, the performance degradation will
be minimal.

Primary key join (PK join). We conducted the PK join experiments
on the well-known TPC-H dataset evaluating our Algorithm 2
against Opaque’s PK join and SODA’s join using the query below:

SELECT * FROM orders JOIN customer ON o_custkey= c_custkey;

Note that c_custkey is the primary key of table customer, so the
query is a PK join. Both tables were generated by the code from
a publicly accessible GitHub repository [57] with a scale factor
of 10 and with the orders table exhibiting four distinct values of
Zipfian distribution parameters, denoted by 𝑧, as outlined in Table 3.
Irrelevant columns were eliminated from computation, leaving only
c_custkey, c_nationkey, o_orderkey, and o_custkey.

The results are also in Table 3. Different values of 𝑧 result in
different maximum degrees on the join key, thereby affecting the
output size of SODA’s join but not impacting our algorithm or
Opaque’s join. In terms of overall running time, our algorithm
improves upon the baselines by at least 70%. This improvement rises
to more than 90% regarding communication costs. While SODA’s
join slightly outperforms Opaque’s PK join, the gap narrows as
𝑧 increases, due to the increasing output size. Meanwhile, both
Opaque’s PK join and our algorithm maintain steady performance
despite varying 𝑧 due to obliviousness.

1300

Table 4: Join input table information; Output sizes of the join

algorithms

DBLP email Youtube wiki

#Input 𝑁1 = 𝑁2 1.0×106 4.2×105 2.9×106 2.9×107

Max #dst 𝛼1 306 930 28576 3907
Max #src 𝛼2 113 7631 4256 238040
ℓ∞-skewness 𝜙 0.0049 0.14 0.64 0.36

#Output𝑀 7.1×106 5.0×107 1.9×108 2.6×109

#Output (SODA) 7.7×106 16×107 21×108 17×109

6.3 Performance of Join

For join, in addition to evaluating Jodes and SODA, we also con-
ducted tests on a single server using the state-of-the-art oblivious
standalone join [32], in which all data is sent to the first server that
performs the standalone join locally and then sends the results to
the other servers.

Varying datasets. We evaluated the join operator on Stanford
Large Network Dataset Collection [34]. We selected four graphs
with various ℓ∞-skewnesses: “com-DBLP” (DBLP), “email-EuAll”
(email), “com-Youtube” (Youtube), and “wiki-topcats” (wiki). More
information of the four graphs are in Table 4. Each graph was
converted into a relational table format with two columns, src and
dst, to represent the source and destination nodes of each edge. We
assessed the performance on the following self-join query designed
to identify all length-2 paths within the graphs:

SELECT * FROM graph R JOIN graph S ON R.dst= S.src;

Figure 5a includes the performance results, with the y-axis repre-
sented on a logarithmic scale. For thewiki dataset, both SODA and
standalone algorithm could not complete within an hour. The speed-
up of Jodes compared to the standalone algorithm ranges from 4x
(for small data) to 6x (for large data). In contrast, our speed-up over
SODA is highly dependent on the value of 𝜙 : it is 1.1x for DBLP
(small 𝜙), 1.6x for email (medium 𝜙), and 6x for Youtube (large
𝜙). Specifically, for the Youtube dataset, the total time of SODA
using 16 servers even exceeds that of the standalone algorithm with
only one server, thus losing the advantages of distribution. With
respect to communication costs, the standalone algorithm incurs
the least, equivalent to only the I/O size. Jodes exhibits slightly
higher communication costs than SODA for DBLP and email, but
lower costs for Youtube.

Varying bandwidths. We note that for DBLP and email in Fig-
ure 5a, Jodes has a shorter running time but incurs a higher com-
munication costs than SODA. The reason is that SODA adopts
complex design of local computations to minimize the communi-
cation cost. To see whether SODA outperforms Jodes for limited
bandwidth, we reran the tests on the email dataset and limited
the bandwidth to assess its impact on performance. The results are
shown in Figure 5b. Since varying bandwidths does not change the
communication costs, we only plot the running time. It appears
that only under very limited bandwidth conditions (less than 25
MB/s), Jodes’s performance is surpassed by SODA. However, we
argue that in distributed settings, a large bandwidth requirement is
reasonable. For example, all instances of Amazon EMR [48] have a
minimum bandwidth of 10 Gbps (1280 MB/s).

Varying I/O sizes. We also conducted experiments on sampled
data from the wiki dataset to assess the scalability of Jodes and
SODA. Specifically, we sampled each row of the input table with
probability 𝜖 independently and then performed the join on the
sampled table, as described by the following SQL:

WITH sampled AS (SELECT * FROM graph WHERE rand() < 𝜖)

SELECT * FROM sampled R JOIN sampled S ON R.dst= S.src;

Note that a sampling probability of 𝜖 induces the expected join size
of the sampled table to be 𝜖2 times that of the original table. We
tried 𝜖 ∈ {0.2, 0.4, 0.6, 0.8}, and the performance results are shown
in Figure 5c. For 𝜖 = 0.8, the standalone algorithm could not finish
in an hour. The total time of all algorithms scales almost linearly to
the I/O sizes, i.e., the total sizes of input and output. The speed-up
factor of Jodes to SODA ranges from 2.5 (𝜖 = 0.2) to 3.9 (𝜖 = 0.8).
Jodes also incurs less communication cost, except when 𝜖 = 0.2,
where it is slightly higher.

Varying number of servers. To examine how the number of servers
influences performance, we conducted experiments with different
values of 𝑝 using the Youtube dataset, and the results are presented
in Figure 5d. We observe that SODA does not scale well for large
𝑝: the running time when using 12 servers is almost identical to
that when using 16 servers. The major reason is that the output
size of SODA on each server is𝑀 (1/𝑝 +𝜙). Since the extra padding
size 𝑀𝜙 is independent of 𝑝 and dominates the join size 𝑀/𝑝 , in-
creasing the number of servers does not significantly reduce the
workload on each server, while the increasing total communication
can even degrade the performance. On the contrary, the output size
of Jodes on each server is always𝑀/𝑝 , allowing it to scale much
more effectively.

Running time breakdown analysis. Jodes (Algorithm 4) works in
a manner similar to the standalone algorithm at a high level, which
can be segmented into the following three phases:

(1) Preparation. This phase involves computing the degrees of
join keys in both input tables and matching them through
a primary key (PK) join (Lines 1–4);

(2) Expansion. In this phase, both tables are expanded from size
𝑁 to𝑀 through expansion operations (Lines 5–6);

(3) Alignment. This phase focuses on aligning the two tables
to ensure that the correct tuples match (Lines 7–23).

We evaluated the breakdown of running time for these three
phases using the YouTube dataset, and the results are presented in
Table 5. The findings align with our theoretical analysis, indicating
that the preparation phase depends solely on 𝑁 , while both the
expansion and alignment phases are influenced by𝑀 , where𝑀 ≫
𝑁 . Utilizing 16 servers, the performance improvement factors of
Jodes compared to the standalone algorithm for the three phases
are 5.2, 3.5, and 7.7, respectively. This suggests that optimizing the
design of the expansion algorithm could be a productive pathway
for further enhancing Jodes.

7 RELATEDWORK

Existing analytic systems based on TEE include [4, 18, 24, 36, 50, 52,
59]. However, most of them only focus on the standalone setting.
Ohrimenko et al. [41] firstly pointed out the leakage by the network
traffic in the distributed setting. Their empirical analysis on datasets

1301

(a) Varying input datasets (b) Varying bandwidths (MB/s) (c) Varying I/O sizes (GB) (d) Varying number of servers

Figure 5: Total time of join, where the labels on top of the bars or adjacent to the data points are communication costs (GB).

Table 5: Running time breakdown of Jodes and the stan-

dalone algorithm

Preparation Expansion Alignment Total

Jodes 5.7% 37.2% 57.1% 100%
Standalone 29.5% 129.7% 437.9% 597%

that include personal and geographical data shows that the runs
of typical jobs can infer precise information about their input. To
prevent such leakage, they provided a shuffle-in-themiddle solution:
before sending data (with some padding techniques) to the intended
destination, permuting the input randomly among the servers in
advance to remove potential skewness; Chan et al. [13] proposed a
different solution based on oblivious routing, which packs data into
several bins, and routes the bins to a random server through the
butterfly network. Both solutions turn any non-oblivious algorithm
to the oblivious counterpart. Nevertheless, the communication cost
blows up by a constant factor (at least 2) only when the load of the
non-oblivious algorithm is balanced, i.e., the number of elements
any server received in any round is 𝑂 (𝑅/𝑝) where 𝑅 is the total
number of elements received of all the 𝑝 servers. Without load
balancing, the communication cost can increase by a factor of up to
𝑝 in the worst-case scenario. However, existing non-oblivious join
algorithms, including the hash join and sort merge join adopted
by Spark [58], do not satisfy the constraint. Note that even in the
plaintext model where obliviousness is not required, such imbalance
happens when the input is skewed, leading to severe performance
downgrade. Our join algorithm Jodes naturally provides a solution
to this issue caused by input skew in the plaintext model, because
its performance is independent of the input and hence its skewness.

Opaque [59] proposes an encrypted distributed analytic system
based on Spark. Unlike these general solutions, it designs special-
ized oblivious algorithms for sorting, filter, aggregate, and PK join,
but not (general equi-)join. Most of their designs are based on its
oblivious sorting, which is implemented based on column sort.
SODA [37] considers column sort to be heavy, so it proposes its
own oblivious algorithms for filter, aggregate, and join without
relying on oblivious sorting, but SODA’s join needs to publicize the
maximum degrees of the input tables.

A circuit also naturally induces an oblivious algorithm in the dis-
tributed setting. To evaluate the circuit, it is necessary to ensure the
inputs of each gate lie on the same server. Therefore, it incurs a com-
munication round before each level, hence the number of rounds of
the algorithm is linear to the depth of the circuit. However, existing
circuits for database joins are all with Ω(log2 𝑁) depth [32, 54] and

hence will induce algorithms with polylogarithm number of com-
munication rounds, which severely downgrades the performance
due to network latency. Meanwhile, common distributed algorithms
introduced above incur only 𝑂 (1) communication rounds.

Plaintext distributed join. Numerous studies have been conducted
on join algorithms within the plaintext distributed model, as ref-
erenced in [12, 26, 28, 29, 31]. These studies primarily focus on
the massively parallel computation model where only the sizes
of data received are considered, while disregarding the costs of
sending data (including emitting the output) and local computa-
tions. However, these algorithms are unsuitable for cloud-based
encrypted systems because their local computations, when made
oblivious, incur costs that are significantly higher than negligi-
ble. Furthermore, the sizes of local joins in their final rounds are
data-dependent, which presents challenges for adapting them into
oblivious algorithms.

Join under MPC. There are several join algorithms [8, 10, 25, 38,
39, 43, 53] under the secure multi-party computation (MPC) model,
in which several servers jointly compute the join over the secret
shared data from the user. The security guarantee of MPC is incom-
parable to the distributed TEE model: Under MPC, the user does
not need to trust any hardware as in TEE, but they believe that the
servers will not collude to steal data from the user. In real-world
scenarios, the servers in distributed TEE can belong to the same
cluster connected by network with low latency and high bandwidth,
while servers in MPC are usually from different organizations (e.g.,
Alibaba, Amazon, and Azure). Regarding efficiency, the speed of
join under MPC is usually slower than the one in the standalone
TEE setting, which is slower than the distributed TEE setting, All
existing join algorithms under MPC incur both computation and
communication cost Ω(𝑁 log𝑁 +𝑀) with a considerable hidden
constant factor.

8 CONCLUSION AND FUTUREWORK

We have proposed Jodes, an oblivious algorithm in the distributed
setting that is superior to existing works in both theoretical and
experimental aspects. Following the idea in [27], one can prove that
the communication cost of a perfect load balanced oblivious join
(i.e., each server holds𝑂 (𝑀/𝑝) of the output tuples of join result) is
Ω(𝑁 +

√︁
𝑀𝑝). Since the communication costs of existing oblivious

join algorithms are all Ω(𝑁 + 𝑀), an interesting future research
direction is to close the gap, i.e., either proposing an oblivious join
algorithm with less cost or providing a stronger lower bound.

1302

REFERENCES

[1] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing Multiway Joins in a Map-
Reduce Environment. IEEE Transactions on Knowledge and Data Engineering 23,
9 (2011), 1282–1298. https://doi.org/10.1109/TKDE.2011.47

[2] Alok Aggarwal and S. Vitter, Jeffrey. 1988. The Input/Output Complexity of
Sorting and Related Problems. Commun. ACM 31, 9 (sep 1988), 1116–1127.
https://doi.org/10.1145/48529.48535

[3] M. Ajtai, J. Komlós, and E. Szemerédi. 1983. An 0(n Log n) Sorting Network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing
(STOC ’83). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/800061.808726

[4] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish
Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann,
Nikolas Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil
Vaswani, Ramarathnam Venkatesan, and Mike Zwilling. 2020. Azure SQL
Database Always Encrypted. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 1511–1525.
https://doi.org/10.1145/3318464.3386141

[5] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik,
Donald Kossmann, Ravi Ramamurthy, Prasang Upadhyaya, and Ramarathnam
Venkatesan. 2013. Secure Database-as-a-Service with Cipherbase. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data (New
York, New York, USA) (SIGMOD ’13). Association for Computing Machinery,
New York, NY, USA, 1033–1036. https://doi.org/10.1145/2463676.2467797

[6] Arvind Arasu and Raghav Kaushik. 2014. Oblivious Query Processing. In Proc.
17th International Conference on Database Theory (ICDT), Athens, Greece, March
24-28, 2014, Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy (Eds.).
OpenProceedings.org, 26–37. https://doi.org/10.5441/002/ICDT.2014.07

[7] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. 2020. Bucket oblivious sort: An extremely simple oblivious sort. In
Symposium on Simplicity in Algorithms. SIAM, 8–14. https://doi.org/10.1137/1.
9781611976014.2

[8] Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan Raghu-
raman, and Peter Rindal. 2022. Secret-Shared Joins with Multiplicity from Ag-
gregation Trees. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. Association for Computing Machinery, 209–222.

[9] K. E. Batcher. 1968. Sorting Networks and Their Applications. In Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference (Atlantic City, New
Jersey) (AFIPS ’68 (Spring)). Association for Computing Machinery, New York,
NY, USA, 307–314. https://doi.org/10.1145/1468075.1468121

[10] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. 2017. SMCQL: Secure Querying for Federated Databases. Proc. VLDB
Endow. 10, 6 (feb 2017), 673–684. https://doi.org/10.14778/3055330.3055334

[11] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in Parallel Query
Processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (Snowbird, Utah, USA,) (PODS ’14). Association
for Computing Machinery, New York, NY, USA, 212–223. https://doi.org/10.
1145/2594538.2594558

[12] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps
for Parallel Query Processing. J. ACM 64, 6, Article 40 (oct 2017), 58 pages.
https://doi.org/10.1145/3125644

[13] T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and Elaine Shi. 2020. MPC for
MPC: Secure Computation on a Massively Parallel Computing Architecture. In
11th Innovations in Theoretical Computer Science Conference (ITCS 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 151), Thomas Vidick (Ed.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 75:1–
75:52. https://doi.org/10.4230/LIPIcs.ITCS.2020.75

[14] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. 2022. Towards Practical
Oblivious Join. In Proceedings of the 2022 International Conference on Management
of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Ma-
chinery, New York, NY, USA, 803–817. https://doi.org/10.1145/3514221.3517868

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https:
//doi.org/10.1145/1327452.1327492

[16] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-
ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (aug 2014), 211–407.
https://doi.org/10.1561/0400000042

[17] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the Second Generation
of Intel SGX Hardware (DaMoN ’22). Association for Computing Machinery, New
York, NY, USA, Article 5, 8 pages. https://doi.org/10.1145/3533737.3535098

[18] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing
for Secure Databases. Proc. VLDB Endow. 13, 2 (oct 2019), 169–183. https:
//doi.org/10.14778/3364324.3364331

[19] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Intro-
duction to Secure Multi-Party Computation. Found. Trends Priv. Secur. 2, 2–3
(dec 2018), 70–246. https://doi.org/10.1561/3300000019

[20] Facebook. 2022. Proxygen: Facebook’s C++ HTTP Libraries. https://github.com/
facebook/proxygen/releases/tag/v2022.11.14.00 Accessed: 2024-08-12.

[21] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (may 1996), 431–473. https://doi.org/10.1145/
233551.233553

[22] Michael T. Goodrich. 2014. Zig-Zag Sort: A Simple Deterministic Data-Oblivious
Sorting Algorithm Running in O(n Log n) Time. In Proceedings of the Forty-
Sixth Annual ACM Symposium on Theory of Computing (New York, New York)
(STOC ’14). Association for Computing Machinery, New York, NY, USA, 684–693.
https://doi.org/10.1145/2591796.2591830

[23] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,
and Simulation in the MapReduce Framework. In Algorithms and Computation,
Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu Watanabe (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 374–383.

[24] Alexey Gribov, Dhinakaran Vinayagamurthy, and Sergey Gorbunov. 2017.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Pro-
ceedings on Privacy Enhancing Technologies 2019 (2017), 370 – 388. https:
//api.semanticscholar.org/CorpusID:28591687

[25] Feng Han, Lan Zhang, Hanwen Feng,Weiran Liu, and Xiang-Yang Li. 2022. Scape:
Scalable Collaborative Analytics System on Private Database with Malicious
Security. In 38th IEEE International Conference on Data Engineering, ICDE 2022,
Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 1740–1753. https://doi.org/10.
1109/ICDE53745.2022.00176

[26] Xiao Hu. 2021. Cover or Pack: New Upper and Lower Bounds for Massively
Parallel Joins. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (Virtual Event, China) (PODS’21). Association
for Computing Machinery, New York, NY, USA, 181–198. https://doi.org/10.
1145/3452021.3458319

[27] Xiao Hu, Yufei Tao, and Ke Yi. 2017. Output-Optimal Parallel Algorithms for
Similarity Joins. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17).
Association for Computing Machinery, New York, NY, USA, 79–90. https:
//doi.org/10.1145/3034786.3056110

[28] Xiao Hu and Ke Yi. 2019. Instance and Output Optimal Parallel Algorithms
for Acyclic Joins. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Amsterdam, Netherlands) (PODS
’19). Association for Computing Machinery, New York, NY, USA, 450–463.
https://doi.org/10.1145/3294052.3319698

[29] Xiao Hu and Ke Yi. 2020. Parallel Algorithms for SparseMatrixMultiplication and
Join-Aggregate Queries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (Portland, OR, USA) (PODS’20).
Association for Computing Machinery, New York, NY, USA, 411–425. https:
//doi.org/10.1145/3375395.3387657

[30] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack and Miti-
gation. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-
searchable-encryption-ramification-attack-and-mitigation

[31] Bas Ketsman andDan Suciu. 2017. AWorst-Case OptimalMulti-RoundAlgorithm
for Parallel Computation of Conjunctive Queries. In Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Chicago,
Illinois, USA) (PODS ’17). Association for Computing Machinery, New York, NY,
USA, 417–428. https://doi.org/10.1145/3034786.3034788

[32] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient
Oblivious Database Joins. Proc. VLDB Endow. 13, 12 (jul 2020), 2132–2145. https:
//doi.org/10.14778/3407790.3407814

[33] Tom Leighton. 1984. Tight Bounds on the Complexity of Parallel Sorting. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing
(STOC ’84). Association for Computing Machinery, New York, NY, USA, 71–80.
https://doi.org/10.1145/800057.808667

[34] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[35] Mingyu Li, Xuyang Zhao, Le Chen, Cheng Tan, Huorong Li, Sheng Wang, Zeyu
Mi, Yubin Xia, Feifei Li, and Haibo Chen. 2023. Encrypted Databases Made Secure
Yet Maintainable. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). USENIX Association, Boston, MA, 117–133. https:
//www.usenix.org/conference/osdi23/presentation/li-mingyu

[36] Xiang Li, Fabing Li, and Mingyu Gao. 2023. Flare: A Fast, Secure, and Memory-
Efficient Distributed Analytics Framework. Proc. VLDB Endow. 16, 6 (feb 2023),
1439–1452. https://doi.org/10.14778/3583140.3583158

[37] Xiang Li, Nuozhou Sun, Yunqian Luo, and Mingyu Gao. 2023. SODA: A Set of
Fast Oblivious Algorithms in Distributed Secure Data Analytics. Proc. VLDB
Endow. 16, 7 (mar 2023), 1671–1684. https://doi.org/10.14778/3587136.3587142

[38] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. 2023.
SECRECY: Secure collaborative analytics in untrusted clouds. In 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX

1303

https://doi.org/10.1109/TKDE.2011.47
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/2463676.2467797
https://doi.org/10.5441/002/ICDT.2014.07
https://doi.org/10.1137/1.9781611976014.2
https://doi.org/10.1137/1.9781611976014.2
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.14778/3055330.3055334
https://doi.org/10.1145/2594538.2594558
https://doi.org/10.1145/2594538.2594558
https://doi.org/10.1145/3125644
https://doi.org/10.4230/LIPIcs.ITCS.2020.75
https://doi.org/10.1145/3514221.3517868
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/3533737.3535098
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1561/3300000019
https://github.com/facebook/proxygen/releases/tag/v2022.11.14.00
https://github.com/facebook/proxygen/releases/tag/v2022.11.14.00
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/2591796.2591830
https://api.semanticscholar.org/CorpusID:28591687
https://api.semanticscholar.org/CorpusID:28591687
https://doi.org/10.1109/ICDE53745.2022.00176
https://doi.org/10.1109/ICDE53745.2022.00176
https://doi.org/10.1145/3452021.3458319
https://doi.org/10.1145/3452021.3458319
https://doi.org/10.1145/3034786.3056110
https://doi.org/10.1145/3034786.3056110
https://doi.org/10.1145/3294052.3319698
https://doi.org/10.1145/3375395.3387657
https://doi.org/10.1145/3375395.3387657
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.1145/3034786.3034788
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.1145/800057.808667
http://snap.stanford.edu/data
https://www.usenix.org/conference/osdi23/presentation/li-mingyu
https://www.usenix.org/conference/osdi23/presentation/li-mingyu
https://doi.org/10.14778/3583140.3583158
https://doi.org/10.14778/3587136.3587142

Association, 1031–1056.
[39] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and

PSI for Secret Shared Data. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,
1271–1287.

[40] N. Ngai, I. Demertzis, J. Ghareh Chamani, and D. Papadopoulos. 2024. Distributed
& Scalable Oblivious Sorting and Shuffling. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 156–156.
https://doi.org/10.1109/SP54263.2024.00153

[41] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf
Kohlweiss, and Divya Sharma. 2015. Observing and Preventing Leakage in
MapReduce. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (Denver, Colorado, USA) (CCS ’15). Association
for Computing Machinery, New York, NY, USA, 1570–1581. https://doi.org/10.
1145/2810103.2813695

[42] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. ObliviousMulti-PartyMachine
Learning on Trusted Processors (SEC’16). USENIX Association, USA, 619–636.

[43] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa,
and Joseph M. Hellerstein. 2021. Senate: A Maliciously-Secure MPC Platform
for Collaborative Analytics. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 2129–2146. https://www.usenix.org/conference/
usenixsecurity21/presentation/poddar

[44] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-
chinery, New York, NY, USA, 85–100. https://doi.org/10.1145/2043556.2043566

[45] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database Using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). 264–
278. https://doi.org/10.1109/SP.2018.00025

[46] Xuanle Ren, Le Su, Zhen Gu, Sheng Wang, Feifei Li, Yuan Xie, Song Bian, Chao
Li, and Fan Zhang. 2022. HEDA: Multi-Attribute Unbounded Aggregation over
Homomorphically Encrypted Database. Proc. VLDB Endow. 16, 4 (dec 2022),
601–614. https://doi.org/10.14778/3574245.3574248

[47] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious
Compaction and Shuffling. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security (Los Angeles, CA, USA) (CCS
’22). Association for Computing Machinery, New York, NY, USA, 2565–2579.
https://doi.org/10.1145/3548606.3560603

[48] Amazon Web Services. 2024. Amazon EMR pricing. https://aws.amazon.com/
emr/pricing/ Accessed: 2024-08-12.

[49] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An
Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article 18 (apr 2018),

26 pages. https://doi.org/10.1145/3177872
[50] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-

Native Storage Engines for Practical Encrypted Databases. Proc. VLDB Endow.
14, 6 (feb 2021), 1019–1032. https://doi.org/10.14778/3447689.3447705

[51] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (aug 1990), 103–111. https://doi.org/10.1145/79173.79181

[52] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan
Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, Xuntao Cheng, Xiaolong Xie, and
Yu Zou. 2022. Operon: An Encrypted Database for Ownership-Preserving Data
Management. Proc. VLDB Endow. 15, 12 (aug 2022), 3332–3345. https://doi.org/
10.14778/3554821.3554826

[53] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over
Private Data. In Proceedings of the 2021 International Conference onManagement of
Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMachinery,
New York, NY, USA, 1969–1981. https://doi.org/10.1145/3448016.3452808

[54] Yilei Wang and Ke Yi. 2022. Query Evaluation by Circuits (PODS ’22). Association
for Computing Machinery, New York, NY, USA, 67–78. https://doi.org/10.1145/
3517804.3524142

[55] Yilei Wang, Xiangdong Zeng, Sheng Wang, and Feifei Li. 2024. Jodes: Efficient
Oblivious Join in the Distributed Setting. https://raw.githubusercontent.com/
Aqua-Dream/Jodes/main/Jodes_full.pdf

[56] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE
Computer Society, USA, 640–656. https://doi.org/10.1109/SP.2015.45

[57] YSU-Data-Lab. 2024. TPC-H-Skew. https://github.com/YSU-Data-Lab/TPC-H-
Skew Accessed: 2024-08-12.

[58] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory
Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (San Jose, CA) (NSDI’12). USENIXAssociation,
USA, 2.

[59] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In Proceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation (Boston, MA, USA) (NSDI’17). USENIX Asso-
ciation, USA, 283–298.

[60] Jinwei Zhu, Kun Cheng, Jiayang Liu, and Liang Guo. 2021. Full Encryption: An
End to End Encryption Mechanism in GaussDB. Proc. VLDB Endow. 14, 12 (jul
2021), 2811–2814. https://doi.org/10.14778/3476311.3476351

[61] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. 2004. HIDE: an infrastructure
for efficiently protecting information leakage on the address bus. SIGARCH
Comput. Archit. News 32, 5 (oct 2004), 72–84. https://doi.org/10.1145/1037947.
1024403

1304

https://doi.org/10.1109/SP54263.2024.00153
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1145/2810103.2813695
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/3574245.3574248
https://doi.org/10.1145/3548606.3560603
https://aws.amazon.com/emr/pricing/
https://aws.amazon.com/emr/pricing/
https://doi.org/10.1145/3177872
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.1145/79173.79181
https://doi.org/10.14778/3554821.3554826
https://doi.org/10.14778/3554821.3554826
https://doi.org/10.1145/3448016.3452808
https://doi.org/10.1145/3517804.3524142
https://doi.org/10.1145/3517804.3524142
https://raw.githubusercontent.com/Aqua-Dream/Jodes/main/Jodes_full.pdf
https://raw.githubusercontent.com/Aqua-Dream/Jodes/main/Jodes_full.pdf
https://doi.org/10.1109/SP.2015.45
https://github.com/YSU-Data-Lab/TPC-H-Skew
https://github.com/YSU-Data-Lab/TPC-H-Skew
https://doi.org/10.14778/3476311.3476351
https://doi.org/10.1145/1037947.1024403
https://doi.org/10.1145/1037947.1024403

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminary
	2.1 Distributed Setting
	2.2 Encrypted Analytic System
	2.3 Security Definition
	2.4 Cost Model
	2.5 Output Padding

	3 Baseline
	3.1 Computation Oblivious Primitives
	3.2 Shuffle
	3.3 Sorting
	3.4 black Prefix Sum and Suffix Sum
	3.5 black Join

	4 Design
	4.1 black Shuffle
	4.2 black Primary Key Join
	4.3 Expansion
	4.4 Oblivious Join

	5 Security Analysis
	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance of Basic Operators
	6.3 Performance of Join

	7 Related Work
	8 Conclusion and Future Work
	References

