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ABSTRACT
This paper presents an in-memory, RDMA-enabled, highly-available,
transactional Key-Value Store (KVS), dubbed Dandelion, that sig-
nificantly improves performance in small deployments (e.g., 5-10
machines). Small deployments are motivated by the anticipated
memory expansion (e.g., through CXL), which enables the deploy-
ment of in-memory KVSes with few machines but lots of memory.

A small deployment presents locality opportunities that have not
been examined by related work. Specifically, it is more likely that at
any given time, we must send multiple messages to the same recip-
ient. We leverage this by transparently batching multiple requests
in the same network packet. Similarly, there is a greater chance of
having multiple requests that can be served by the local hashtable
without going through the network. Sending all requests to the
hashtable as a batch allows it to overlap their memory latencies
through software prefetching. Finally, it is more likely that the node
that requests a key is itself a backup of that key. We leverage this
by allowing strongly-consistent local reads from backups.

Our evaluation shows that these optimizations result in up to
6.5x throughput improvement over a state-of-the-art system, FaSST,
in OLTP workloads in a 5-machine deployment. We characterize
the impact and scalability of each of these optimizations with up to
10 machines – where Dandelion still offers as much as 3.5× higher
throughput than FaSST.
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1 INTRODUCTION
This paper focuses on reliable distributed Key-Value Stores (KVSes).
Modern KVSes shard and replicate the data in-memory of multi-
ple servers and provide strongly consistent transactions with high
availability. They leverage RDMA for efficient networking to de-
liver high throughput while scaling into big deployments (e.g., 90
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machines). FaRM [12, 13, 39] was the first such work, which sparked
a multitude of subsequent works [8, 20, 37, 41–44, 47, 49]. Unlike
these works, we focus on small deployments (e.g., 3-10 machines).

Smaller deployments exhibit various forms of locality. For exam-
ple, it is more likely that at any given time, multiple messages from
different transactions must be sent to the same recipient. Similarly,
it is more likely that a key-value pair is stored in the machine that is
searching for it. Such locality opportunities have, for the most part,
not been exploited in the context of RDMA-enabled transactional
KVSes, because of the assumption that the deployment must always
be large. Instead, related work has focused mostly on debating the
correct usage of the RDMA primitives [11, 19, 37, 42].

We focus on smaller deployments, partially in anticipation of
CXL [1] memory expansion. In its first version, CXL-1 will enable
scaling up a few servers by adding more memory at a significantly
lower cost (than buying more new servers). Further down the line, it
is expected that CXL-2 will enable the pooling of memory, entirely
removing the coupling between compute and memory. In either
case, we will no longer need a large number of servers simply to
fit the dataset in-memory. We are faced then with the following
challenge: If we can fit our larger dataset in a few machines, are those
few machines sufficient to also achieve the target throughput?

This work tackles this challenge by exploiting the locality oppor-
tunities presented in small deployments. Specifically, we build Dan-
delion (DNL), a distributed, in-memory, highly-available, RDMA-
enabled Key-Value Store, that achieves up to 6.5x (3.5x) higher
throughput than the state-of-the-art system FaSST [20] with 5 (10)
machines in popular OLTP workloads. Below, we introduce each of
DNL’s main components – networking, hashtable, and protocol –
discussing the relevant locality opportunities we exploit.
Networking - § 5. The main locality opportunity that arises in
small deployments is that there is a higher probability that mul-
tiple messages must be sent to the same node at the same time.
We leverage this opportunity by batching multiple requests and
responses in the same network packet. Batching multiple messages
in the same packet amortizes the per-packet overheads incurred in
CPU (software stack needed to transmit/receive), PCIe, and network
(per-packet metadata in NIC caches, packet headers, routing, etc.).

Batching mandates the use of RPCs. RPCs can be implemented
with either two-sided or one-sided RDMA. This choice is orthogonal
to this work. As we will see in § 5, in small deployments with small
messages, batching can yield up to a 10x throughput improvement.

We use eRPC [21], which is the state-of-the-art RPC library that
encapsulates the community’s RDMA expertise. eRPC is a complete
product in terms of features, offering multiple transports (Infini-
band/RoCE, DPDK, UDP), large packets, and packet re-transmission.
However, eRPC does not support batching. We apply performance
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System # Protocols (Model Checked) Network Batching Hashtable Batching Local Reads from Backups Main Focus Tatp / Smallbank Perf.

FaRM [37] 1 (✗) ✗ ✗ ✗ one-sided RDMA 9.5 / – Mtps*
DrTM [42] 1 (✗) ✗ ✗ ✗ hybrid one-/two-sided RDMA — / 35 Mtps*
FaSST [20] 1 (✗) ✗ ✓ ✗ efficient two-sided RDMA 51 / 23 Mtps

Dandelion 3 (✓) ✓ ✓ ✓ locality optimizations 268 / 102 Mtps

Table 1: Key features & performance comparison of fault-tolerant distributed transactional RDMA systems. Tatp (read-intensive) and Smallbank
(write-intensive) performance is in Million (3-way replicated) distributed transactions per second on 5 machines. *FaRM and DrTM performance is
based on reported numbers. FaRM (DrTM) uses 3-way (2-way) replication and has NICs with the same (double) network bandwidth (§ 8).

optimizations over eRPC including a layer that batches messages
to the same packet without programmer intervention.

While network batching is by no means a new idea, this work is
the first to highlight its importance for in-memory, RDMA-enabled,
transactional KVSes and characterize its performance benefits.
Hashtable - § 6. In DNL, each server uses a hashtable to store
and index key-value pairs. Again, locality facilitates batching, as it
is more likely that at any given time, there are multiple requests
that must be propagated to the local hashtable (e.g., after receiving
a batch of requests through the network). Batching in the hashtable
has been shown to significantly increase throughput by overlapping
the memory latencies of the different requests [31, 36].

We design the Dandelion hashtable (DLHT), which implements
a batching API along with a number of other features, such as lock-
free operations (Gets, Puts, Inserts, Deletes), special support for
transactions, non-blocking resizing, garbage collection, support for
variable-size keys and values and iterator API. We resorted to a
new design because, to the best of our knowledge, no open-source
hashtable includes all these features. We provide a summary of
DLHT in section § 6.
Protocol - § 4. DNL features a customizable protocol skeleton,
through which we implement three protocols whose correctness we
verify in TLA+. One of the protocols is very similar to FaRM’s OCC
protocol, while the other two have not yet been explored, as far as
we know. Our results show that the three protocols provide very
similar performance, even though they have many differences. The
protocol skeleton leverages locality by allowing consistent reads of
local replicas, regardless of the replica being a primary or a backup.
This optimization has been explored before ([24]), but not in closely
related work, as it provides limited benefit in large deployments.
With the skeleton protocol, we can implement a new distributed
fault-tolerant transactional protocol with fewer than 150 lines of
code. The new protocol takes advantage of all DNL optimizations.
Batching. Batching is the main performance driver across DNL. In
the network, we leverage locality to do batching and amortize the
costs per packet. At the hashtable, again, locality enables batching,
which allows overlapping the memory accesses of multiple requests.
On the protocol side, locality affords reading the local backup, which
is beneficial because it increases the batching opportunity for the
hashtable (shown in § 8). DNL is architected from the ground up
to support and leverage batching across the stack. We discuss this
more, along with its impact on latency in the next section.

Related work has mostly focused and debated on what type of
RDMAprimitives to use to achieve linear scalability on large deploy-
ments. In contrast, DNL demonstrates that locality optimizations
are equally or more important and can provide more significant
performance gains when on small deployments.

Contribution Summary. This work anticipates that memory ex-
pansion (e.g., via CXL) will open the road for deploying in-memory,
transactional KVSes in a small number of machines with access
to lots of memory. We build DNL, an in-memory, RDMA-enabled,
transactional KVS to leverage three locality opportunities found
in small deployments. Related work on RDMA-enabled distributed
transactions primarily concentrated on which RDMA primitives
are best suited to improve scalability in large-scale deployments
(Table 1). In contrast, DNL highlights that locality optimizations
can be just as, if not more, crucial, offering substantial performance
improvements in smaller deployments. Specifically, DNL batches
in the network to amortize the fixed per-packet costs, batches in
the hashtable to enable software prefetching, and offers consistent
reads from local backups in the protocol. Our evaluation shows
that these optimizations result in up to 6.5x higher throughput
in OLTP workloads in a 5-machine deployment over FaSST. We
experimentally characterize the impact and scalability of each of
these optimizations with up to 10 machines, where DNL still main-
tains a significant throughput benefit. Our modeling shows that
the locality benefits diminish beyond 58 machines, where DNL’s
performance matches FaSST.
Limitations. Notably, this work is not evaluated with CXL hard-
ware. However, we note that due to hashtable batching, all accesses
to the index and dataset are software prefetched. For that, we expect
that with CXL, our approach will become even more favorable in
the face of CXL’s additional latency. We emulate CXL (§ 8.4) and
show that DNL effectively hides the higher latency without affect-
ing performance. Similar to related work [12, 20, 43, 47, 49], DNL
does not handle range queries. At the moment, DNL can remain
available after a server crash (discussed in § 4.4) but does not replace
the crashed node nor re-replicate the lost replicas. This is currently
a work in progress. A complete discussion of DNL recovery will
merit its own paper in the near future. Related work has done the
same [8, 12, 13, 43], or does not support recovery at all [20, 37, 49].

2 PRELIMINARIES
Architecture and assumptions. We assume a symmetric archi-
tecture of 𝑁 machines, where each hosts part of the dataset, and
all execute transactions, communicating via a local-area network.
The dataset consists of key-value pairs. Each key-value pair is repli-
cated across multiple machines to ensure availability in the case of
faults. One replica is typically the primary; others are backups. The
machine executing a transaction is the coordinator.

We also make some assumptions, which all exist in related work
(i.e., FaRM [12], FaSST [20] and DrTM [42]). We assume that client
applications run on the same machines as DNL and target OLTP
workloads with short-lived transactions and small values (< 100
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Figure 1: DNL architecture

Servers
10 x Two-socket 18-core Intel Xeon Gold 6254
(72 h/w threads in total incl. hyper-threads)

Hardware Caches 36× 1MB L2 | 2× 24.8MB L3
System Memory 4× 32GB DDR4-2933 (128GB in total)
OS / Kernel Ubuntu 20.04.3 | Linux 5.4.0-90-generic

NICs
Mellanox ConnectX-5 100GbE
(single-port QSFP28 PCIe3x16)

Table 2: Cluster configuration

bytes). This allows us to cover several internal workloads, including
transactional updates for caching and metadata services, as well
as financial, graph, and telecom applications. Clients use DNL as a
library, issuing interactive transactions; i.e., applications do not a
priori know the shape of transactions, which may vary at runtime.
We focus on the strongest consistency (strict serializability [38]),
and can recover from machine crashes (§ 4.4). We do not target
durability, but note that FaRM’s technique is applicable to DNL.
API. Transactions are issued through the multi-key API, whose
core functions are Init(), Get(), Put(), Insert(), Delete(), Commit(),
and Abort(). We also offer a single-key API for transactions that
access only a single key; the core functions are GetOne(), PutOne(),
InsertOne(), and DeleteOne().
Transactional protocols. A transaction is logically split into
two phases, the execution phase in which requests are issued and
the commit phase, which validates that reads were consistent and
applies all updates atomically. In DNL, during the execution phase,
reads are executed, but all other requests are buffered.
Threading model. DNL runs in the same threads as the client
code. I.e. we do not spawn any additional DNL threads. Crucially,
in each thread, DNL only communicates with one thread in each
remote machine of the cluster. The only shared data between the
threads is the hashtable. Each thread works on its own transactions,
unaware of other threads. This model is scalable and is also used in
FaRM and FaSST. Our design description focuses on a single thread
of client code that uses the DNL API to issue transactions.
Testbed. Table 2 describes our 10-machine cluster.
Software Stack. Figure 1 shows the DNL software stack, including
how components communicate with each other. Client code uses
the DNL API to issue transactions. The Client Side propagates the
transactional requests to the Protocol, which executes them using
the Hashtable and the Networking in the process.
Batching and Latency. Batching is a common theme across the
design of DNL. Requests are buffered by the protocol and batched
to the networking or the hashtable. Crucially, we never wait to fill a
quota. Instead, we work in each module until there is no more work
to be done. Then we move to the next module. Client code executes

until it cannot make any progress. At this point, the protocol takes
over and works until it cannot make any more progress; then, the
networking takes over. Each time a module takes over, it executes
its batches. Similarly to prior work [19, 20], we refer to this pattern
as opportunistic batching. Because we never wait to fill a quota, this
has a minimal impact on latency. When the load is low, the batching
is low. At higher loads, we use batching to increase throughput and
thus keep latency from exploding. We corroborate this in § 8.
Deployment size with CXL. One of the purposes of the CXL
spec [1] is to loosen the tight coupling of memory and compute.
Initially, type-3 of CXL-1 will allow for memory expansion. I.e. we
will be able to plug DIMMs in PCIe slotsConsider the example of
FaRM, which requires 90 machines for a dataset of 4.9TB (14.7TB
with 3-way replication). We can fit this dataset (plus the indexes
and other overheads) on 5 machines with 4TB each. This is possible
today without CXL, but it will require very expensive large-capacity
DIMMs. For reference, a 64GB DIMMmay cost around 200 USD and
a 128GB DIMM around 1k USD and a 256GB DIMM more than 3k
USD. Even buying the most expensive DIMMs will be much cheaper
than buying, maintaining, and cooling another 85 machines. With
the additional DIMM slots provided by CXL-1, we can reach the
goal of 4TB per machine through smaller, cheaper DIMMs [26].
More aggressive CXL prototypes have demonstrated that memory
expansion of a single machine can reach up to 20TBs [25].

To avoid this scale-up approach, CXL-2 specifies a more ambi-
tious scheme, where multiple servers can have access to a pool of
DIMMs through a CXL switch. In this case, the memory will still
be statically allocated to one server at a time. Sharing the pooled
memory is left to CXL-3.

Recent industry-led works suggest that CXL will come into the
mainstream [2, 14, 29, 33]. Adding to their arguments, we show that
memory expansion enables a range of locality-based optimizations
that boost the transaction load that each server can provide.

Next, we go through each of the four main modules of our soft-
ware stack: Client Side, Protocol, Networking, and Hashtable using
Figure 2 to demonstrate various aspects of the design.

3 DNL CLIENT-SIDE

Applications use DNL as a library. Client code interfaces with DNL
through a construct called transaction context (TxCtx). Client code
uses the TxCtx to issue API calls, such as Init, Get, Put, Insert,
Delete, Commit, and so on. Calls are asynchronous by default. For
instance, after issuing a Get, the value will not be available after
the Get call has returned. A set of API calls allows the client to poll
for the completion of a specific request or all previous requests. All
API calls have also a synchronous flavor.

As shown in Figure 2, a TxCtx encapsulates a transaction cache
(TxCache) and a reorder buffer (RoB). A TxCache consists of an array
of entries acting as a cleverer log of a transaction. In this array,
each entry holds a key-value pair plus some necessary metadata,
such as the type of operation (Get, Put, etc.) and the state of the
request (e.g., Success, NotYetDone, KeyNotFound, etc.). Each cache
has a compile-time configurable height (by default 16 entries) and
width (by default 128 bytes per entry); when more space is needed
in either direction, we allocate it on the spot.
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Figure 2: An overview of the DNL architecture

The RoB is a lock-free ring buffer that maintains the order of re-
quests within a given transaction. Each entry in the RoB is a pointer
to a TxCache entry. Respecting the order of requests is not required
for correctness, but improves the usability of the API. Specifically,
after the client polls for the completion of a Get, using the RoB we
guarantee that all previous Gets have also been completed. This
relieves the client from having to poll for every Get. It also enables
the efficient implementation of the PollAll API call. Notably, only
the Get and Commit calls allocate an RoB entry, as the rest of the
calls do not need to be propagated to the protocol explicitly.

As an example, assume the following client code that issues a
transaction to DNL.

1 TxCtx tx;
2 tx.Init();
3 tx.Get(key1 , val1);
4 tx.Get(key2 , val2);
5 coroutine_yield;
6 tx.PollAll ();
7 if (val1 == val2) {
8 tx.Put(key1 , 0);
9 }
10 auto ret = tx.Commit ();
11 coroutine_yield;
12 PollRequest(ret);

On a Get, we first probe the TxCache. If we do not find an entry
for the requested key, we allocate an entry in the TxCache and
another in the RoB. In the latter case, we then notify the protocol of
the new request through the PassGet() function (discussed in §4.1).
The protocol buffers the request (i.e., a pointer to the TxCache entry),
but does not execute it yet. We then do the same for the second Get.
At this point, the client yields to another coroutine. We discuss the
use of coroutines immediately after this example. Before using val1

and val2, we call PollAll(), which returns only after all previous
requests have been completed. PollAll() calls on the protocol to
run an iteration, executing all buffered requests, including the two
Gets. After executing the Gets, the protocol copies the values for
val1 and val2 in their respective entries in the TxCache and tags
them completed in the RoB. The Gets return pointers to the TxCache
entries, so no further copies are needed. Suppose the two values
are equal. The first Put request will find that there is already a
TxCache entry allocated for key1 and will fuse its operation on it. It
will change the type of the entry to GetPut, overwrite the value in
the same TxCache entry, and return to the client. Notably, the Put
need not allocate an RoB entry or be propagated to the protocol yet.
Finally, the Commit allocates an RoB entry and gets communicated

to the protocol. The protocol buffers this information and returns.
When we poll for the commit, we trigger the protocol to run an
iteration, during which it runs its commit protocol.
Parallelism within a client thread. To increase parallelism,
clients must be able to issue multiple transactions from each thread.
We facilitate this through the asynchronous API. The clients can
take advantage through the use of coroutines. Specifically, in the
above code example, before polling for the Gets, the client yields to
a different coroutine. After cycling through all of the coroutines,
the client can then poll. This allows for a bigger batch to be created
on the protocol side. Coroutines are a standard practice in related
work (e.g., FaRM, FaSST, DrTM) to increase parallelism.
Summary. DNL offers an asynchronous API. A small TxCache
holds the state of the transaction and an RoBmaintains the ordering
so that clients need not poll for every request explicitly. Client code
can leverage the asynchronous API to issue multiple transactions
concurrently through coroutines.

4 DNL PROTOCOL
We start our discussion with an overview that describes the actions
taken by the protocol when probed by the client-side. Then, we dive
into the protocol’s specification, describing the execution phase
and the customizable commit phase. Finally, we discuss the locality
optimization and the recovery mechanism.

4.1 Overview
The client-side module interfaces with the protocol via three func-
tions: 1) PassGet(), which is called after a Get request is issued
during execution; 2) PassCommit(), which is called after a Commit
request and 3) RunIteration() which is called when the client polls
for a request that has not yet been completed. This interface is
illustrated in Figures 1 and 2.
1. PassGet(). First, we identify the primary and backup nodes of
the requested key. If the key exists locally, as primary or backup,
we buffer the request so that it can be batched to the hashtable later.
Otherwise, we call TryInsert() on the networking, which inserts
the Get request in a network packet. This packet will be sent when
RunIteration() is called, to facilitate batching at the network.
2. PassCommit(). A client thread can have up to 𝑁 ongoing trans-
actions (𝑁 is a configuration parameter). The protocol maintains
metadata for each of these transactions. On PassCommit()we simply
mark the transaction as ready to be committed and return.
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Version 29-bytes, used by the protocol to validate reads
Lock 1-bit, used by the protocol commit phase to lock objects

Readable
1-bit, used in backups to denote that a Tx holds
the protocol lock on the primary

Deleted 1-bit, used to denote whether the key has been deleted
Table 3: Key-value metadata used by the protocol(s)

3. RunIteration(). This function takes three steps: 1) batches all
Gets that can be executed locally to the hashtable and writes back
the values to the corresponding TxCaches. 2) for each transaction
that must be committed, it makes progress until it reaches a point
where further progress requires a response from a remote node 3) it
notifies the networking layer that it should send all buffered packets
and poll for remote messages (through network.RunIteration()).

4.2 Protocol Specification
A transaction is logically split into two phases, the execution phase
in which requests are issued, and the commit phase, which is initi-
ated when the client code calls Commit(). Before we delve into the
two phases, note that the protocol requires that each key-value pair
is accompanied by certain metadata (Table 3). The “Lock” is orthog-
onal to thread-safety. Instead it is a protocol-level lock ensuring
isolation for distributed transactions. For thread-safety, we use a
spin-lock for each key-value pair.

4.2.1 Execution Phase. During the execution phase, only Gets are
executed and all other requests are buffered in the TxCaches. Hence,
the execution phase is lock-free. To perform the Get, the protocol
identifies the set of machines that replicate the requested key. If
the coordinator is one such machine, then the Get will be executed
locally; otherwise, a Get RPC is sent to the key’s primary replica.

If the key was not found or has been marked deleted, then an
error code is reported to the client. Otherwise, the value is copied
in the corresponding TxCache entry, to be used by the client. Note
that we return the value, even if it is locked by the protocol or it is
tagged not readable. During the commit phase, we will check if the
value was legally read, and if not, we will abort the transaction.

Recall that we also offer single-key transactions. In this case,
a single-key GetOne() transaction does not have a commit phase.
For this reason, in GetOnes, we return an error code if we find
that the key is locked by the protocol, or is tagged as not-readable.
Therefore, the readable flag is needed only to support GetOnes.

4.2.2 Commit Phase. Figure 3 outlines the commit phase skeleton.
It entails four steps: 1) Locking, 2) Read Validation, 3) Replication,
and 4) Unlocking. The four steps can be customized to create differ-
ent protocols. We first describe the four steps, and then the three
protocols we implement by customizing the steps.
1. Locking. For each key in the transaction, we lock it in all of
its replicas. If the access is not a Get, we also write it in a log.
Locking will fail in two cases: 1) if the key is already locked or
2) if the version does not match the version we read during the
execution phase. The latter is only applicable if the key was read
during the execution phase and can occur when another transaction
has modified the key after the read. To avoid deadlocks, if locking
fails, we transition to the Unlocking step with the intention to abort.
This deadlock avoidance scheme is referred to as no-wait [5, 46].

Figure 3: Skeleton of the DNL commit-phase protocol. We create 3
concrete protocols by specializing this skeleton.

2. Read Validation. For each read in the read-set of the trans-
action, we validate that the key is unlocked and still has the same
version in its primary replica. If it is not, we transition to the Un-
locking step with the intention to abort.
3. Replication. If we have reached this step, then the transaction
can commit successfully. This step ensures that we replicate the
transaction state before reporting success to the client. For each
key in the transaction, we access all of its replicas and log the
corresponding operation. For each key in the write-set, we also
lower the Readable flag in each of its backup replicas. This ensures
the correctness of GetOne operations (as discussed in § 4.2.1).
4. Unlocking. In this step, we issue unlocks to all replicas that
were locked during the Locking step. We transition to this step,
either when we must commit or abort. The unlock messages in-
clude this information. We can notify the client about the result of
her transaction either after sending all unlock messages, or after
receiving all acks. Notifying the client early, before receiving the
acks for the unlocks saves a network round-trip time in the latency
perceived by the client, but may have repercussions on the recovery.
We discuss this in more detail in § 4.4.
Logging. We use undo logging in the backups. Hence, we apply
any updates during the Replication step and log the previous value.
This is beneficial compared to the redo logs used by FaRM because,
if the transaction has reached this step, it means it will commit
(unless a failure occurs). Using undo logging means that we need
not communicate with the backup again, since we have already
applied the update.
Raising readable flag. During the Replication step, we lower
the readable flag, denoting that the key is locked and GetOnes
should not return its value. We raise the flag, when we know that
the transaction has committed. This information is piggybacked in
messages of subsequent transactions.

4.2.3 Customizing the Commit Phase. We customize the commit
phase by creating three protocols which we call Dnl-4, Dnl-2, and
Dnl-1. The names refer to the number of network round-trip times
(rtts) needed before we can report commit to the client. For instance,
in Dnl-1, we can report commit after 1 rtt (but need 2 rtts in aborts).

Table 4, describes how each step of the commit phase is cus-
tomized for each protocol. Specifically, the Locking step can be
customized to be performed for the write-set (W) only or to also
include the read-set (R). And it can visit only the primaries (P) or in-
clude the Backups (B). Similarly, for the Replication step. Unlocking
always mirrors the Locking step. Any step can be elided.

1268



V. Gavrielatos and A. Katsarakis et al.

Protocol Locking
Read

Validation
Replication Unlocking

Dnl-4
P
W

Yes
B
W

P
W

Dnl-2
P

R & W
No

P & B
W

P
R & W

Dnl-1
P & B
R & W

No No
P & B
R & W

Dnl-RO No Yes No No

Table 4: Commit phase of three different OCC protocols committing
in 4, 2 and 1 rtt. Read-only transactions are committed via Dnl-RO in
all cases. (P = primary, B = backup, R = read-set, W = write-set)

Dnl-4 is largely the protocol used in FaRM. It locks the primaries
of the write-set, validates reads, logs the write-set in the backups,
and unlocks the primaries. Dnl-2 locks the primaries of both reads
and writes, logs the write-set in both backups and primaries and
finally unlocks. Dnl-1 locks both reads and writes in all replicas
and if successful, it skips to the Unlocking step1. In all protocols,
read-only transactions are handled through Dnl-RO which only
performs read-validation. This is what happens by default in Dnl-4.

4.3 Locality: Reads from local backups
Recall that for each key, one of its replicas is denoted the primary
and the rest are called backups. Writes and reads are performed on
the primary replica. To take advantage of the small deployment, the
protocol allows Gets to read from a backup, when a backup is found
locally. For instance, if machine𝑀 coordinates a transaction that
reads key 𝐾 , and𝑀 is a backup replica for 𝐾 , we allow𝑀 to read
𝐾 without contacting the primary. This removes the overhead of
sending a remote RPC to execute the Get. In a deployment with 𝑁
machines, the probability that a Get executes locally increases from
1/𝑁 to 𝑅/𝑁 , where 𝑅 is the replication degree. For instance, in a
deployment with 5 machines and 𝑅 = 3, our optimization increases
the chance that a Get executes locally from 20% to 60%. But in a
deployment with 50 machines, the same percentage increases from
2% to 6%. The performance penalty for this optimization is that we
must set and reset the readable flag in all backups, every time we
lock a primary. Based on this we hypothesize that the optimization
will be more impactful on read-intensive workloads and will not
scale well in write-intensive workloads. We investigate this in § 8.2.

4.4 Recovery
Currently, DNL offers a limited form of fault tolerance. It can recover
after a server crash and continue operation, but does not replace
the crashed node nor does it re-replicate the lost data replicas.

On a crash, all operation is halted and control transfers to the
recovery protocol. Each server examines its own coordinated trans-
actions and its logs with transactions coordinated by remote servers.
For each transaction, a decision is reached: commit or abort. Once
all decisions for all transactions are applied, recovery has completed
and operation can resume.

In each server, we maintain an epoch-id counter. When initiating

1Dnl-1 is the first protocol with a lock-free execution phase that can reliably commit a
transaction in 1 rtt. For more details see our brief workshop announcement [18].

recovery we increment this counter in all live nodes. This allows
servers to ignore messages from prior epochs (messages are tagged
with an epoch-id). We also ensure that the decision reached for each
transaction does not contradict any decision that has already been
reported to the client (abort or commit) e.g., if the client believes
its transaction is committed, we cannot abort it during recovery.
This entails a synergy between the transactional and the recovery
protocol. When the transactional protocol notifies the client of a
decision, then it must be that after any 𝑓 crashes (with replication
degree 𝑓 + 1), the recovery protocol guarantees this decision.

4.5 Correctness
For all three protocols, we have formally specified them in TLA+
and conducted comprehensive model-checking to ensure strict se-
rializability, even in scenarios involving crashes. This process also
guarantees that no decisions reported to the client (i.e., commit or
abort) are ever contradicted. For full transparency and to enable
independent verification, we have made all our models, includ-
ing detailed protocol descriptions and their modeling information,
accessible in the following repository https://bit.ly/dnl-tla.

4.6 Summary
The protocol creates batches of requests by buffering requests and
executing them all together. The execution phase only issues Gets,
reading local backups if they exist. The commit phase can be cus-
tomized to implement different protocols. We present, implement
and model-check three protocols that can recover after a crash.

5 DNL NETWORKING
5.1 Overview
As shown in Figure 1, the networking library exposes three func-
tions to the protocol; namely, TryInsert(), TryInsertMcast() and
RunIteration(). In turn, the protocol must also implement three
handlers: InsertHandler(), ReqHandler() and RespHandler().
TryInsert(). Whenever the protocol reaches a state where it must
send a message it calls TryInsert(). The network identifies the
buffer that holds the appropriate network packet based on destina-
tion and calls the protocol’s InsertHandler() passing it the pointer
where it must write its message. If there is no buffer available it
returns false, and the protocol must retry in the future.
TryInsertMcast(). Same as TryInsert, but a message is written in
multiple buffers that will be sent as unicasts to the multicast group.
RunIteration(). This function first sends all buffered messages
and then checks if any new messages have been received. For each
received message, it calls the appropriate handler, ReqHandler() or
RespHandler().
Flows. The networking library exposes the abstraction of flows.
A flow is a group of messages that can be batched together in the
same network packet. Separate handlers must be implemented and
registered for each flow. DNL uses three flows: one for the execution
phase, one for the commit phase, and one for the recovery. Using
multiple flows reduces the opportunity for batching, but simplifies
the software. Crucially, the programmer of a new protocol does not
need to expend any additional effort to leverage network batching.
Network batching happens under the hood by the networking layer.
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To increase batching, the programmer can optionally specify which
types of messages can be batched together in the same flow.

5.2 eRPC
The Networking layer is implemented over the eRPC networking
library [21]. eRPC implements RPCs over UD RDMA, DPDK or UDP.
We use RDMA over Converged Ethernet (RoCE). eRPC is a feature-
complete library, supporting features such as packet retransmission
and packet fragmentation. It also makes use of commonly known
RDMAoptimizations such as doorbell batching [3, 19]. Furthermore,
it is well-documented with high-quality code, easy to use, and its
many features do not hinder performance in the common case.

We performed a thorough exploration of eRPC performance
and found four performance bugs, which we fixed. Specifically, we
removed an unnecessary header in RoCE messages, increased the
RDMA inlining limit to 188 bytes (from 60),2 spawned the buffers in
the socket that the thread is pinned rather than the socket that the
NIC is attached to, and finally, we removed the 4-byte immediate
from the header, which was not being used. We discuss the impact
of these fixes in the next section.

5.3 Batching layer
Over eRPC, we implement a layer that batches multiple messages
in a single packet. Each batch of requests, results in a batch of
responses. Batching is not a new idea. However, it is typically
not used in modern RDMA-enabled OLTP KVSes despite its large
benefits in cases where small messages abound. The rest of this
section analyzes the impact of batching.

To do this, we perform an experiment where we use DNL as a
single-machine KVS and two other machines issue Get requests
for 8B keys and 16B values. The KVS holds 10 million keys, but
all requests are for the same key. This is done in order to isolate
the performance of the networking library. Figures 4-6 characterize
the effect of batching through measurements on the machine that
acts as the KVS. Figure 4 shows the throughput of the KVS in
millions Gets per second while scaling the threads. We run three
configurations 1) DNL: is regular DNL which can batch up to 100
read requests/responses in every network packet. 2) DNL-no-batch:
we disable batching and 3) eRPC: we also remove the performance
bug fixes that wementioned in the previous section. Figure 5 focuses
2This is not part of the specification, even though the programmer must decide at a
per-packet basis if a packet can be inlined. To find the inlining limit, we modify the
driver, such that on initialization of DNL we can query it. We assume eRPC uses 60
Bytes as a lower bound for safety.

on DNL (64 threads) and shows three statistics as we increase
batching from 1 to 64: the throughput, the send network bandwidth
(Gbps), and the number of packets sent per second. Finally, Figure 6
breaks down the send network bandwidth into goodput and headers
when increasing the batching degree (using 64 threads).

We make the following observations. First note that our opti-
mizations on eRPC yield a throughput improvement from 20% with
1 thread to 5x with 71 threads. From this point on, we always use the
optimizations and do not discuss them again. Batching yields from
2.8x improvement up to more than 10x at 71 threads. As batching
increases we cannot sustain the same packet rate, because packets
become larger and thus more expensive to create, DMA, transfer etc.
Adding to this, when batching more than 6 responses, the payload
surpasses the inlining threshold (188 bytes), and thus, the NIC must
do a second DMA per packet to fetch the payload (the first DMA
fetches the work request). This is why increasing batching from 4
to 8 is underwhelming. However, with bigger packets, we use more
of the available network bandwidth (100Gbps) because we send
fewer packets amortizing the required costs per packet, such as the
NIC DMAs to fetch the packet payload or the required per-packet
metadata that are cached in the NIC. Crucially, a lot more of that
bandwidth is spent on application data (rather than on headers).

5.4 Locality: Network batching
In our Introduction, we hypothesized that network batching is
useful in small deployments because of locality. Simply put, it is
more likely to find two messages for the same recipient at any
given time. However, in Figure 5, we observe that even batching
two requests yields almost a 2x improvement in throughput. This
hints that batching may be useful even with lower locality in bigger
deployments. We explore this further in our Evaluation (§8).

5.5 RDMA primitives debate
Related work has extensively debated the use of two-sided vs one-
sided RDMA. One-sided RDMA cannot execute in a gather/scatter
fashion; i.e., we can only read/write at a single memory location at
a time. This means that we need RPCs in order to do batching in the
network, as reading/writing multiple locations directly with RDMA
Reads/Writes would require multiple network packets. Therefore,
this work takes the position that in a scenario where small mes-
sages are exchanged at a high rate, we must use batched RPCs; the
primitive through which we implement the RPCs, be it one-sided
or two-sided, is of secondary importance.
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5.6 Summary
We identified eRPC [21] as a feature-complete, high-performance
networking library for RPCs over RDMA. We fix a few performance
bugs in eRPC that yield 1.2x - 5x throughput improvement, and
implement a batching layer on top of it, which yields another 2.8x -
10x throughput improvement.

6 DNL HASHTABLE (DLHT)
We designed a new hashtable called DLHT. In this section, we
provide a summary of DLHT, noting that we have also written a
full paper on it [23].

We design a new hashtable because fast, open-source hashta-
bles lack many important features, that are necessary to make
them usable in practice. Specifically, DLHT supports a very high-
throughput CRUD API and comes with its own garbage collector. It
can handle keys and values of any size in the same instance and it
implements a practically non-blocking resizing algorithm. It offers
significant optimizations for small values that can be inlined in the
index, and it can handle non-unique keys. Most of these features
are not found in open-source hashtables [10, 31, 32, 36].

Besides omitting core functionality, state-of-the-art designs incur
multiple memory accesses per request and block request processing
in three cases. First, most hashtables block while waiting for data to
be retrieved from memory. Second, open-addressing designs, which
represent the current state-of-the-art, either cannot free index slots
on deletes or must block all requests to do so. Third, index resizes
block every request until all objects are copied to a new index.

Defying folklore wisdom, DLHT forgoes open-addressing and
adopts a fully-featured and memory-aware closed-addressing de-
sign based on bounded cache-line-chaining. This design offers
1 lock-free operations and deletes that free slots instantly,
2 completes most requests with a single memory access,
3 utilizes software prefetching to hide memory latencies, and
4 employs a non-blocking resizing while offering high occupancy.
Locality. Our DLHT paper compares with eight other high-perfor-
mance hashtables (the fastest we could find) [23]. Here we focus
solely on how we can take advantage of the locality that is present
in smaller clusters. Specifically, with a small cluster, it is more likely
that at any given time, there are multiple requests that must be
propagated to the local hashtable.

Having a batch of requests allows us to overlap their memory
latencies. As shown in Figures 1 and 2, DLHT offers a batching API
(BatchReqs()), that allows clients to propagate a batch of hashtable
requests. Before executing the requests, DLHT loops through the

batch issuing a software prefetch for the hashtable location of
each request. Thus the memory accesses of the batched requests
are overlapped. This is a crucial optimization because hashtable
accesses are random by nature and thus cannot be prefetched by
the hardware. This technique has been shown by DLHT but also
prior work [31, 36] to increase throughput by more than 2x.

Figure 7, shows the throughput of DLHT for Gets that access
random keys in a 4GB index that holds 100m 8-byte keys (with
8-byte values). Note that (unlike previous Figures) there is no net-
work involved in Figure 7; this is within a single node. We simply
measure the number of Gets we can do to the hashtable. The mea-
surement is taken with 16 threads. With 24 requests, we can achieve
an improvement of more than 3x in throughput. However, when
only few requests are available, e.g., four, the improvement is not
very big. This hints that this optimization will work best in small
deployments, but may not scale that well on larger clusters. We
corroborate this hypothesis in our evaluation (§ 8).

7 EXPERIMENTAL METHODOLOGY
Table 2 summarizes the cluster hardware. By default, we run with
5 machines and use a replication degree of 3 in all experiments.
We use 2 MiB hugepages and we pin threads to cores. We briefly
discuss our workloads next.
Smallbank. Smallbank is a write-intensive OLTP benchmark
simulating bank transactions. 15% of transactions read a single key.
Keys and values are 8 bytes each. Every machine acts as primary
and backup for 18 and 36 million keys, respectively. We chose these
numbers based on the maximum number of keys FaSST supported.
Tatp. Tatp is a read-intensive OLTP benchmark that simulates a
telecommunication workload. In Tatp, 70% of transactions read a
single key. Keys are 8 bytes and values are 48 bytes. Each machine
is the primary for 11 million keys and the backup for 22 million
keys. As in the Smallbank, we chose these numbers based on FaSST.
TPC-C. We did not include TPC-C (similarly to related work e.g.,
FaRM [12], Zeus [24], and FaSST [20]) as our in-memory storage is
currently based on a hashtable (§ 6) and does not yet support the
range queries that TPC-C requires.
Microbenchmarks. As in FaSST we use the notation O(G,P) to
specify a microbenchmark with G Gets and P Puts. We run O(1,0),
O(0,1), O(4,0) and O(4,2). Keys are 8 bytes and values are 16 bytes.
We select keys at random. Each machine is the primary for 18
million keys and the backup for 36 million keys (again, this is the
maximum in FaSST).
Evaluated Systems. We evaluate the three protocols implemented
in DNL (Dnl-4, Dnl-2 and Dnl-1). The most relevant systems we can
compare against are FaSST [20], DrTM [42], and FaRM [37]. They
are all in-memory, RDMA-enabled transactional systems, whose
main differences are in the choice of RDMA primitives. FaSST ar-
gues for 2-sided, FaRM argues for 1-sided, and DrTM argues for a
hybrid approach. FaSST and DrTM show significant improvements
over FaRM, so, we do not discuss FaRM in our evaluation (also
FaRM is closed source). We could not get DrTM to run in our setup.
However, the infrastructure used in the DrTM evaluation [42] is
very similar to ours, so we compare with the numbers from their
paper. We ran FaSST, observing that we measured very similar
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throughput/latency as reported in their paper. As in DNL, FaSST
uses two-sided RDMA and employs batching in the hashtable.
Metrics. Most of our plots show Total Mtps. That is the throughput
of all machines in million committed transactions per second.

8 EVALUATION
The main thesis of this paper is that we can leverage the locality
found in small deployments to increase throughput. To corroborate
this, we first compare the throughput and latency of DNL with
FaSST on 5 machines (§ 8.1).

Our thesis raises a crucial question. How big is a “small deploy-
ment”? In previous sections, we hypothesized that the three locality
optimizations scale differently. To characterize this, we do a break-
down of the impact of each optimization as we increase the cluster
size to 10 machines (§ 8.2).

Then we perform two additional studies. Firstly, we focus on
network batching to better understand how it impacts performance
as a function of the load (§ 8.3). Second, in § 8.4, we vary the number
of keys that are stored in each machine. This allows us to emulate
the system’s behavior with a skewed workload (with very few keys)
and ensure that performance does not degrade with more keys.
Finally, in § 8.4, we emulate the behavior of DNL with CXL using a
remote NUMA memory (as in recent CXL works [30, 40]) and in
§ 8.6, we model DNL performance on larger deployments.

8.1 Performance in a small deployment
Figures 8 to 13 show the throughput of the four evaluated systems
across six benchmarks when varying the number of threads (on
5 machines). In the read-only benchmarks, (O(1,0) and O(4,0)) the
DNL protocols are the same, i.e., Dnl-RO. Figures 14 and 15 show the
throughput vs latency of all evaluated systems as the load increases.

In Smallbank, DNL protocols achieve about 100 Million transac-
tions per second (Mtps). FaSST achieves up to 23 Mtps. From [42],
DrTM achieves up to 35 Mtps, but with 2-way replication (we use

3), using two 100 Gbps NICs per node (we use one) and assuming
that 4% of the keys are accessed by 90% of transactions. Crucially
4% is not a small enough number to cause a high abort rate. In
§ 8.4 we show that DNL performance in Smallbank improves when
accessing only 4% of keys. Crucially, 4% is small enough so that
DrTM can cache all indexes for only these keys in all nodes. This is
very beneficial for DrTM, because servers can Get the keys with a
single RDMA Read. The question of how this hot 4% is identified
remains unanswered. In Tatp, DNL protocols achieve up to 268
Mtps. FaSST achieves up to 51 Mtps. DrTM does not run Tatp.

When we compare the three protocols of DNL, we observe that
their performance is very similar with the exception of O(4,2). This
is because the protocols take very similar steps unless the transac-
tion has Gets and Puts to different keys. This pattern exists only
in O(4,2). The difference is that on a Get, Dnl-4 performs read-
validation for the key, Dnl-1 locks all replicas of the key and Dnl-2
locks its primary. These differences are not visible when we do only
Gets, because then all protocols execute Dnl-RO or when Gets and
Puts are to the same key, because then this operation is treated as a
Put (more precisely a GetPut).

With respect to latency in Figures 14 and 15, we observe that
in Tatp, the 50th percentile latencies are very small in all systems,
because 70% of all transactions are Gets to a single key. The DNL
latencies are similar to FaSST, for the same throughput, despite the
batching on DNL. This is because the batching is opportunistic, and
thus when the load is small, the batching is also small.

Figures 16 and 17 characterize the performance of the locality
optimizations. no-opts is Dnl-4 but without the optimizations. We
incrementally add optimizations: nw-batch adds network batching;
ht-batch adds hashtable batching; local-reads adds reading from
local backups. (local-reads is the same as Dnl-4 in Figures 14 and 15.)

Without any of the optimizations, DNL’s performance is similar
to FaSST. Network batching is the most influential optimization,
increasing throughput by 4x in Smallbank and 3x in Tatp. Hashtable
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Figure 19: Smallbank: scaling up to 10 ma-
chines

batching adds another 25% in Smallbank and 20% in Tatp. Local
reads is the least influential optimization improving both Tatp and
Smallbank by 7%. The next section discusses the impact of the
optimizations further.

8.2 How big is a small deployment?
In this section we investigate the scalability of our three locality
optimizations when expanding the deployment up to 10 machines.
We focus on Dnl-4 on Smallbank and Tatp with 64 threads.

Firstly, in Figures 18 and 19, we compare the total throughput in
million transactions per second (Mtps) of Dnl-4 with FaSST as we
increase the number of machines. Note that we show FaSST with
both 64 and 32 threads. This is because 64 threads is our default, but
FaSST maximizes throughput with 32 threads. As the number of
machines increases the gap betweenDnl-4 and FaSST closes because
locality decreases. However, at 10 machines, DNL offers more than
3x higher throughput in both workloads. Figures 20 and 21 show
the total throughput of Dnl-4 as we increase the cluster size and
as we add and remove optimizations. Specifically, no-opts includes
none of the optimizations. We incrementally add optimizations:
nw-batch adds network batching; ht-batch adds hashtable batching;
local-reads adds reads from local backups. Finally, -ht-batch removes
hashtable batching, but leaves local-reads and nw-batch.

Without any of the optimizations DNL’s performance is similar
to FaSST. Network batching is the most influential optimization
and scales well up to 10 machines. Ht-batch and local-reads work
best when used together. This is shown in the last bar that removes
ht-batch and a lot of the benefit of local-reads disappears. This is be-
cause with local reads we have a bigger opportunity to batch in the
hashtable. When we remove batching, we can no longer prefetch
the keys for the local reads; hence we must wait for memory in each
request. In Smallbank, the cumulative benefit of the two optimiza-

tions ranges from 38% with 3 machines to 10% with 10 machines.
In Tatp, the same benefit ranges from 50% with 3 machines to 10%
with 10 machines. Tatp benefits more, as it is read-intensive.

Recall that when we employ local reads, we pay an overhead on
writes, which must set and reset the readable flag on backups. As the
number of machines increases, the percentage of reads that can be
executed locally decreases. In Smallbank which is write-intensive,
the overhead surpasses the benefit with 6 machines.

Tables 5 and 6 offer a deeper dive into the impact of network and
hashtable batching. All optimizations are enabled for these measure-
ments. Note that the rows show numbers of different metrics. For
ht-batch and nw-batch they show the average number of requests
that are being batched to the hashtable and network, respectively.
For nw-bw it shows the Gigabits per second (Gbps) that are sent
by each node; goodput is the nw-bw (in Gbps) minus the packet
headers. Finally, for packet-rate, the rows show millions packets
per second sent by a single node.

Note that, as the number of machines increases both types of
batching decrease. As network batching decreases the packet rate
increases, as we need to send more packets. For this reason, the
difference between nw-bw and goodput also increases, as more of
our nw-bw is spent on packet headers.

Finally, we note that even though nw-batch steadily decreases
with more machines, it still provides a 5x improvement with 10
machines. This is because, as we saw earlier in Figure 5, even a very
low batching degree has a very significant impact on throughput.

8.3 Impact of network batching
In this section we further study network batching by varying the
amount of ongoing transactions in each machine. Specifically, in
Figure 22 we plot the Mtps for Dnl-4 when running Smallbank,
while increasing the number of ongoing transactions per thread
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machine num -> 3 4 5 6 7 8 9

ht-batch 28.9 19.3 14.7 11.8 9.9 8.4 7.4
nw-batch 12.8 11.8 10.3 8.9 7.9 6.9 6.2
nw-bw (Gbps) 23.9 31.2 35.0 38.7 40.5 42.0 42.5
goodput (Gbps) 17.3 21.8 23.3 24.6 24.6 24.3 23.1
packet-rate (Mpps) 7.0 10.1 12.8 15.6 17.7 20.2 21.3

Table 5: Tatp: batching analysis on increasing machine number

machine num -> 3 4 5 6 7 8 9

ht-batch 27.1 19.8 16.2 14 12 10.3 9
nw-batch 25 18.6 15.5 13.5 11.7 10.2 8.9
nw-bw (Gbps) 27.5 32 34.5 36.5 37 38.1 38.5
goodput (Gbps) 20.9 22.9 23.1 23.5 22.6 22.2 21.3
packet-rate (Mpps) 6.8 10.1 12.4 14.4 16.1 17.9 19.5

Table 6: Smallbank: batching analysis on increasing machine number

(i.e., the TxCtxs). We use 64 threads and 5 machines. We also plot
the average payload size in the right y-axis and the inlining limit
(188 Bytes). Note that "payload" here refers to a network packet’s
payload. Recall that when the payload of a packet exceeds the
inlining limit, then it cannot be inlined in the descriptor (called
“Work Request”) that the NIC reads from the send queue. Instead,
the descriptor will contain a pointer to the payload, which the NIC
must read through a second DMA.

The first observation is that as we increase the number of TxCtxs,
the average packet size is increased. This is because, with more
TxCtxs, network batching increases. The second observation is that
while initially throughput scales with the packet size, the scaling
stops at around 75 TxCtxs, even though the average packet size
continues to grow. This is because of the inlining limit: when a
packet’s payload exceeds 188 bytes the NIC needs to perform a
second DMA, significantly hindering throughput.

8.4 Varying keys and contention study (skew)
In Figure 23, we run Smallbank in 5 machines with 64 threads,
and we vary the number of keys. Note that the x-axis is in log
scale. The figure also points to the default number of keys used in
previous experiments (52M). It also explicitly points to 4% of that
(2M), because both DrTM and FaSST assume that 90% of accesses go
to 4% of the keys to represent skew (discussed in § 8.1).We start with
3072 keys per machine (1024 primaries and 2048 replicas) up to 1
billion. With fewer keys, we simulate skewed workloads. With 3072
keys per machine, we see that the abort rate is very high because
Smallbank is write-intensive. As the number of keys increases, the
throughput oscillates around 100 Mtps. The oscillations are due to
the different occupancy in the hashtable. For example, whenmoving
from 800M keys to 1B, throughput improves because a bigger index
is needed for 1B, which, however, has a lower occupancy.

The fact that the performance stabilizes around 100 Mtps indi-
cates that with 2MiB hugepages, the pressure on the virtual memory
subsystem (TLBs, walkers, and MMU caches) remains manageable.

8.5 Emulating memory expansion with CXL
In Figure 24, we emulate DNL’s behavior with CXL memory expan-
sion. As in recent CXL works [30, 40], we emulate CXL by pinning
our KVS memory to a remote NUMA node (i.e., a remote socket)
and restricting processing to another NUMA node (i.e., the local
socket). Briefly, we run Smallbank with Dnl-4 on 18 threads all
always pinned to the same local socket (without hyperthreading).
The hashtable is normally pinned to the same socket where the
processing occurs, and the NIC is also connected. To emulate CXL,
we move the hashtable’s memory to the other (remote) socket (Dnl-
4-cxl-em). We observe no substantial difference in the performance
of the two configurations.

8.6 Performance beyond 10 machines
DNL is not optimized for large-scale deployments. However, to
provide a comprehensive understanding of its scalability limits,
we present a conservative model illustrating DNL’s per-machine
performance study with more than 10 machines. The system-wide
performance scaling can be studied by looking at the per-machine
throughput as we increase the deployment size. When the per-
machine throughput stays the same, the system throughput scales
linearly. This analysis, which is shown in Figure 25, reveals the
breakeven point (~58 machines) where the advantages of the pro-
posed locality optimizations diminish, causing DNL’s performance
to converge with systems lacking these optimizations (e.g., FaSST).

Briefly, the per-machine throughput of DNL, which exploits
locality optimizations, is significantly higher than FaSST on small or
moderately-sized clusters but decreases as the cluster grows. This is
because the benefits of locality optimizations decay with each added
machine. Crucially, this decrease also decays as more machines are
added. For instance, when we increase the deployment from 3 to
4 machines, the locality opportunities decrease significantly, and
naturally the per-machine throughput drops significantly (10% in
Smallbank). However, increasing the deployment from 99 to 100
machines has a negligible impact on locality and performance.
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Figure 23: Smallbank: Committed and
Aborted Mtps of Dnl-4 varying the number of
keys stored in each machine.
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Figure 24: Smallbank: Dnl-4 with 18 threads
with and without CXL emulation.
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Figure 25: Smallbank: FaSST, Dnl-4 (mea-
sured and modeled) per-machine throughput
for large deployments.

9 RELATEDWORK
FaRM [12, 13, 39] sparked the research interest in in-memory,
RDMA-enabled, transactional KVSes. Since then, a number of works
have improved on various aspects of its design.

Most of the discussion has been focused on RDMA [11, 41].
FaSST [20] exposed a number of performance issues caused by
one-sided RDMA and argued for two sided. Storm [37] argues
that the issues can be solved and in-memory transactional KVSes
should use one-sided RDMA. The DrTM series [8, 42–44] has com-
bined hardware transactional memory with RDMA, arguing for
using both one-sided and two-sided. RCC [41] evaluates a num-
ber of protocols and also argues for a hybrid approach [41]. Other
works [16, 19, 27, 28, 34] have focused on the low-level details of
RDMA, creating guidelines on how to use it best. RIMA [45] ex-
posed an important issue when dealing with variable size messages,
and proposed a microarchitectural solution.

In addition, there are several in-memory transactional KVSes
that target specific use-cases. Zeus [24] focuses on transactions that
exhibit locality. Note that this is an orthogonal kind of locality to the
one we have exploited. NAM-DB [6, 47] offers Snapshot Isolation
over disaggregated memory which can be accessed through one-
sided RDMA. FORD [49] offers Strict Serializability over the same
architecture, while G-Tran [7] focuses on graphs.

Crucially, none of these systems have studied optimizations for
small deployments, such as network batching.

There have also been other RDMAnetworking libraries. Flock [35]
offers RPCs and batches messages from different threads in the
same network packet. Crucially, Flock does not require any col-
laboration from the above layers; hence, it can be easily adopted
by existing systems. While an essential feature for a library, this
is significantly limiting for performance. We opted on the side
of performance. ScaleRPC [9] focuses on scalability with respect
to one-sided RDMA. The solutions provided could be used in an
RPC library on top of one-sided (we use two-sided). However, with
network batching, we send significantly fewer packets per sec-
ond, substantially decreasing the pressure from NIC resources that
can otherwise hinder scalability. Odyssey [15] contains an RDMA-
based networking library that uses two-sided similarly to eRPC
and also supports network batching similarly to DNL. However,
it does not provide most of the features found in eRPC that are
crucial for a complete system. Notably, high-performance imple-
mentations of single-key replication protocols have used network
batching [15, 22], but have not highlighted its impact in their imple-

mentations. Finally, a number of systems have studied transactional
protocols, without a focus on the networking [4, 17, 46, 48].

10 DISCUSSION
Protocols & concurrency control. Prior work emphasized the
importance of protocols and concurrency control in the perfor-
mance of distributed transactions. We found that for a local-area
network deployment, although different protocols affect perfor-
mance, other factors (e.g., batching) are equally or more important.
Why not use CXL directly instead of RDMA?. CXL does not
provide fault tolerance or transactional guarantees – not even co-
herence for objects that span more than a single cacheline. Proto-
cols like FORD implement fault-tolerant transactions via one-sided
RDMA that resembles the CXL setting. However, comparing Dan-
delion to FORD would be unfair, as FORD is significantly slower
than Dandelion (e.g., in 3 servers running TATP and Smallbank,
Dandelion achieves 200M and 75M txs/second, respectively, while
FORD is an order of magnitude slower). This is because FORD’s
protocol is limited to the cumbersome one-sided RDMA semantics,
which includes the inability to batch any requests. Note that the
batching of loads is also not exploitable by CXL accesses.
OLAP workloads. Dandelion mainly targets fault-tolerant OLTP
workloads (similar to prior work—FaRM, FaSST, DrTM). Yet, parts
of Dandelion have been used by another internal product to im-
plement high-performance OLAP operators, including joins and
aggregations. However, in this case, fault tolerance was stripped
down as it was not a requirement of the OLAP solution.

11 CONCLUSION
WepresentedDandelion, an in-memory, RDMA-enabled, distributed,
replicated, transactional KVS that ensures strict serializability. We
focused on smaller deployments and explored system- and protocol-
level optimizations to take advantage of the locality found on such
a scale. Namely network batching, hashtable batching, and reading
backups. We showed that the optimizations provide substantial
performance improvements – as high as 6.5x over a state-of-the-art
system – we characterized their individual and combined benefits
and stressed their scalability limits. In addition, we provide a frame-
work for developing new protocols. We implemented and tested
three protocols, two of which we had not seen before.
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