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ABSTRACT
Despite the high computational throughput of GPUs, limited mem-
ory capacity and bandwidth-limited CPU-GPU communication via
PCIe links remain significant bottlenecks for accelerating large-
scale data analytics workloads. This paper introduces Vortex, a
GPU-accelerated framework designed for data analytics workloads
that exceed GPU memory capacity. A key aspect of our framework
is an optimized IO primitive that leverages all available PCIe links
in multi-GPU systems for the IO demand of a single target GPU. It
routes data through other GPUs to such target GPU that handles
IO-intensive analytics tasks. This approach is advantageous when
other GPUs are occupied with compute-bound workloads, such as
popular AI applications that typically underutilize IO resources.
We also introduce a novel programming model that separates GPU
kernel development from IO scheduling, reducing programmer bur-
den and enabling GPU code reuse. Additionally, we present the
design of certain important query operators and discuss a late ma-
terialization technique based on GPU’s zero-copy memory access.
Without caching any data in GPU memory, Vortex improves the
performance of the state-of-the-art GPU baseline, Proteus, by 5.7×
on average and enhances price performance by 2.5× compared to a
CPU-based DuckDB baseline.
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1 INTRODUCTION
GPUs, with their massively parallel architecture, offer high compu-
tational power and memory throughput, making them an attractive
choice for accelerating large-scale data analytics. However, a signif-
icant limitation is the memory capacity of GPUs, which is typically
constrained to tens or low hundreds of gigabytes in modern hard-
ware. In contrast, CPU memory has reached capacities of multiple
terabytes. Transferring data from CPU memory to GPU memory

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717780

is often bottlenecked by the limited bandwidth of interconnect
links such as PCIe. This combination of capacity-limited GPU mem-
ory and bandwidth-limited CPU-GPU communication significantly
restricts the acceleration potential of GPUs, as real-world data ana-
lytics workloads often require processing large datasets that by far
exceed the GPU memory capacity.

Prior works addressing this issue can be broadly categorized
into two approaches: (1) utilizing multiple GPUs [29, 39, 45], and
(2) leveraging CPU-side memory for data processing [12, 16, 27, 30,
33, 59]. The first approach employs multiple GPUs to horizontally
scale memory capacity. However, this also scales computational
resources, maintaining a constant compute-to-memory ratio, and
may lead to under-utilization of expensive GPU resources. In the
second category, some works stream data from CPU memory to
GPU [16, 27, 33], but still face the bandwidth limitations of PCIe
links. Additionally, the CPU-GPU hybrid execution approach [12,
30, 59] needs to deal with the large disparity in computational power
between CPUs and GPUs, risking leaving GPU resources idle when
CPU falls on the critical path. This raises a critical question: how
can we exploit the massively parallel GPU architecture to accelerate
data analytics workloads that exceed GPU memory capacity?

In this paper, we present Vortex—a GPU-accelerated framework
for large-scale data analytics that addresses memory capacity lim-
itations from a fresh perspective. Vortex has two crucial design
goals. First, it processes workload sizes that significantly exceed
GPU memory capacity. It assumes no data caching in GPU memory
before the execution of any query. Second, Vortex is designed to have
IO scheduling independent of GPU kernel optimization, alleviating
the burden on the GPU programmer. This unique programming
model also maximizes the reuse of optimized GPU code.

The design of Vortex is structured into three layers. With the
evolution of multi-GPU systems, we identify a unique opportunity
to leverage the IO resources of all GPUs on such systems to transfer
data to a single GPU executing data analytics. Based on this, at a
bottom design layer, we propose an optimized IO primitive that
fully exploits the bandwidth available from all PCIe links and inter-
GPU communication fabric to transfer data from CPU memory to
the GPU at high speeds. This design is motivated by the observation
that today’s data processing platforms serve both data analytics and
AI workloads to support intelligent workflows and diverse needs
from users. AI workloads tend to be compute-bound, leaving their
IO resources underutilized. We aim to co-locate compute-bound
workloads and data analytics on the same multi-GPU server to
process hybrid requests from users. Our primitive repurposes these
idle IO resources from other GPUs to forward data to the target
GPU that handles IO-intensive data analytics.
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We further present the design of an IO-decoupled programming
model that clearly separates the development of GPU kernels from
IO scheduling at a middle design layer. In this model, programmers
write optimized GPU kernels under the assumption that data is
readily available, even for workloads that far exceed GPU memory
capacity. Our primitive handles IO scheduling and orchestration
independently. This approach significantly simplifies the complex
process of GPU code development, promotes the reuse of existing
code, and allows for independent exploration of optimization strate-
gies for both kernel execution and IO scheduling. Finally, at a top
design layer, we implement a set of tailored query operators uti-
lizing our IO primitive and programming model. We demonstrate
data partitioning and compute orchestration strategies through
case studies of sort and hash join, and discuss late materialization
based on GPU’s zero-copy memory access technique, which further
improves query performance.

To demonstrate the effectiveness of Vortex, we use AMD’s multi-
GPU system with 4 GPUs connected to a single CPU socket; how-
ever, our techniques are vendor-agnostic. We conduct two sets of
experiments: (1) a single GPU running data analytics with the other
GPUs idle to uncover maximum performance gains, and (2) a single
GPU running data analytics while the other three GPUs handle var-
ious AI inference tasks to assess the impact on AI workloads when
their IO resources are engaged. On the end-to-end Star Schema
Benchmark [55] with a scaling factor of 1000, the first set of experi-
ments shows that Vortex outperforms the CPU-based DuckDB by
3.4× and GPU-based Proteus by 5.7× on average. In the second set
of experiments, our IO primitive causes only a marginal slowdown
of 6.8% on average for AI workloads. Furthermore, we compare
the price performance of Vortex with a CPU-only DuckDB solu-
tion that shows benefits ranging from 1.5×–4.2×, depending on the
workload. The key contributions of Vortex are summarized below.
• An optimized IO primitive that utilizes untapped PCIe bandwidth

from multiple GPUs for high-speed CPU-GPU data transfer.
• An IO-decoupled programming model that separates GPU kernel

development from IO scheduling, promoting GPU code reuse.
• Tailored query operator implementations with efficient data par-

titioning and compute orchestration, as well as a late material-
ization technique based on GPU’s zero-copy memory access that
further boosts the query performance.

• Vortex—an end-to-endGPU-accelerated framework that enhances
the performance and price-performance of DuckDB by 3.4× and
2.6×, respectively.

2 BACKGROUND AND MOTIVATION
This section discusses the effort of accelerating database workloads
with GPUs systems, challenges faced by existing approaches, and
improvement opportunities exploited by our design.

2.1 Background: Capacity-limited GPU Memory
Data analytics is a complex and resource-intensive task that in-
volves processing large volumes of data, necessitating substantial
computational power. The massively parallel architecture of GPUs
presents a compelling option for data analytics. However, a signifi-
cant limitation is their on-device memory capacity. For instance,
next-generation high-end GPUs offer up to 192 GB of memory per

card, which is considerably less than the 6 TBmaximumDRAM sup-
ported by CPUs [5, 6]. The distinct characteristics of GPU and CPU
memory technologies, such as HBM versus DDR, impose physical
constraints that make scaling GPU memory capacity challenging.
Consequently, the disparity between CPU and GPU memory ca-
pacities is likely to persist, posing a crucial design question: How
can we utilize the high computational bandwidth of GPUs for data
analytics given the limited GPU memory available?

2.2 Background: Prior Attempts in Processing
Large Datasets using GPUs

While many prior proposals focus on optimizing for the case where
the entire dataset can be stored in GPU memory [28, 31, 48], they
fall short to effectively handle larger datasets due to GPU memory
capacity limit. This significantly impairs their ability to handle
the vast volumes of data typical in real-world applications. Prior
research explores two approaches to accelerate data analytics with
GPUs: (1) utilizing multiple GPUs to increase the size of GPU-side
memory and (2) using CPU-side memory to hold data.
Utilizing multiple GPUs. High-bandwidth inter-GPU intercon-
nects enable the treatment of memory in multiple GPUs as a unified,
large memory pool, thereby allowing for horizontal scaling of GPU
memory capacity. Systems can take advantage of this fact to hold
more data in GPU-side memory [29, 39, 45]. However, this approach
is not without drawbacks. It necessitates the acceptance of bun-
dled GPU compute resources when the primary issue is memory
capacity. Such an inflexible strategy may lead to resource under-
utilization and consequently increase overall costs. Additionally,
there is a limit to the number of GPU cards a single node can sup-
port, typically up to 8, which means the total aggregated memory
capacity remains significantly less than what CPUs can provide.
Using CPU-side memory to hold data. This category includes
the systems that target CPU-side DRAM to hold large amounts of
data. Such systems typically adopt a CPU-GPU hybrid solution that
utilizes both GPU cores and CPU cores for high performance. To
keepGPU busy, some of them [16, 27, 33] choose to stream data from
CPU memory to GPU through the CPU-GPU PCIe link. Identifying
the limited bandwidth of PCIe links as a major bottleneck, some
other works opt to place part of the data in GPU memory and the
rest in CPU memory [12, 30, 59]. The GPU can first process its local
data and then handle the work streamed from the PCIe link, which
reduces the amount of data that goes through the narrow off-device
IO link. However, we argue that CPU-GPU IO is still a fundamental
issue for such solutions. While the GPU is much faster than the
CPU, it has access to less data due to its smaller memory capacity,
which creates load imbalance between the CPU and the GPU. As a
result, after the GPU finishes processing its small portion of data,
such a solution has to stream data through the PCIe link to keep
the GPU running. The low IO bandwidth makes it hard to keep up
with the speed GPU ingests data.

2.3 Background: Evolution of GPU Systems
To understand the CPU-GPU data transfer bottleneck and identify
new optimization opportunities, it is essential to examine the evolu-
tion of GPU system hardware architecture. Figure 1(a) illustrates a
classic single GPU system topology, which aligns with conventional
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Figure 1: Evolution of GPU system topology.

understanding. In this configuration, the GPU is connected to the
CPU via a single PCIe link, while the CPU connects to its mem-
ory through DDR channels. Considering the common standards
of PCIe 4.0 and DDR4-3200, which are prevalent in contemporary
systems, the CPU typically has eight memory channels. The PCIe
link provides approximately 28GB/s bandwidth in one direction
and up to 56GB/s in both directions due to its full-duplex nature.
However, this bandwidth is significantly lower than the 150GB/s
bandwidth achievable by the CPU, thereby making CPU-GPU data
transfer a critical bottleneck.

To further scale the computing power using multiple GPUs, Fig-
ure 1(b) depicts another system topology found in instances such
as AWS p3 and p4 [51, 56]. Due to the limited number of PCIe lanes
in older generations of CPUs, supporting four GPUs requires con-
necting to the CPU through PCIe switches. In this configuration,
each pair of GPUs shares a PCIe x16 link via these switches, pre-
venting concurrent communication with the CPU at full bandwidth.
Consequently, the bandwidth between the CPU and GPUs is lim-
ited to 56GB/s unidirectionally and 112GB/s bidirectionally. While
the bidirectional bandwidth approaches the 150GB/s achievable by
CPU DRAM, the unidirectional bandwidth remains insufficient by
comparison. In addition to the PCIe links between CPUs and GPUs,
modern systems also feature point-to-point high-speed communi-
cation between multiple GPUs via technologies such as NVLink
(NVIDIA) and Infinity Fabric (AMD).

More recently, server-class CPUs such as AMD’s Milan, Rome,
and Genoa have begun supporting more PCIe lanes, leading to an
architecture where each GPU is directly connected to the CPU
through separate PCIe links, as shown in Figure 1(c). With all four
GPUs connected to the CPU, the aggregated unidirectional PCIe
bandwidth is comparable to CPU DRAM bandwidth, and the bidi-
rectional bandwidth even exceeds CPU DRAM bandwidth. Given
that CPUs often struggle to fully utilize their DRAM bandwidth, it is
time to re-evaluate the assumption that CPU-GPU communication
bandwidth is always a bottleneck.

2.4 Opportunity: Scaling GPU IO Resources
Independently from Compute

Following the topology in Figure 1(c), a straightforward method to
increase CPU-GPU communication bandwidth is to use all GPUs
simultaneously. However, this approach falls short in resolving
the IO bottleneck since it scales both IO and computational power
equally. The GPU still processes data faster than it can be trans-
ferred, maintaining the IO as a bottleneck.

Our key observation is that, unlike data analytics, not all GPU
workloads are IO resource-bound. For example, modern AI tasks,

such as Large Language Model (LLM) inference, are primarily
compute-bound and rarely require substantial CPU-GPU data trans-
fer bandwidth. Besides, there is a recent trend that data processing
platforms not only host classic data analytics services but also AI
applications to support users’ AI-empowered workflow [10, 18, 23,
32, 58] or diverse computation needs that mix AI and data analytics
demands from multiple users [20, 21].

We aim to exploit the increasingly prevalent multi-GPU systems
to more efficiently serve this trend in the future. We observe a
unique opportunity to re-distribute the IO resources withmultiple
GPUs that serve hybrid data analytics and AI workloads. Such a
system can dedicate the compute of a small number of GPUs to
IO-bound data analytics workloads using all GPUs’ IO bandwidth.
It can then use the compute of the remaining GPUs for compute-
bound AI workloads while utilizing their IO resources as well.

In this work, we address the IO bottleneck for GPU-accelerated data
analytics by utilizing the compute resources of one GPU and the IO
resources of all GPUs in a multi-GPU system. Our approach targets a
“cold-start” scenario for the GPU - all data resides on CPU memory
before the execution starts, therefore the utilization of GPU is not
constraint by GPU memory size. Nevertheless, such an approach
may also generalize to more than one GPU for data analytics in
other settings, which we leave as future work.

2.5 Background: Data Transfer Modes on GPU
GPUs have two primary methods for accessing off-device data:
(1) System Direct Memory Access (SDMA) engines and (2) zero-
copy memory access. SDMA is a dedicated hardware component
separate from the compute units, responsible for performing data
transfers. It operates using Memcpy*() API calls in CUDA/HIP to
initiate I/O operations, without affecting the ongoing compute
tasks on the GPU. However, SDMA incurs a fixed overhead for
transfer initiation and typically requires a coarse-grained transfers
for efficiency, usually on the order of 10s of megabytes. In contrast,
zero-copy memory access allows compute units to directly access
CPU-side data at cache line granularity (typically 64/128 bytes).
Terminology. In the remainder of the paper, the following termi-
nology will be used. A multi-GPU system is conceptualized as being
divided into two sides by the PCIe links. The side containing the
GPUs is referred to as the Device side. The side containing the CPU
and DRAM is referred to as the Host side. The direction of data
transfer from the Host to the Device is abbreviated as H2D. The
direction of data transfer from the Device to the Host is abbreviated
as D2H. We use the term on-core to refer to concepts that apply to
the case where all data fits GPU memory, and out-of-core for the
cases where the dataset is larger than GPU memory.

3 VORTEX DESIGN OVERVIEW
We design Vortex—a framework that alleviates the IO bottleneck
for GPU-accelerated data analytics by tapping into the opportunity
discussed in §2.4. Vortex fully engages IO resources on a multi-GPU
system. Crucially, Vortex uses a single GPU for computation, and
multiple GPUs for data transfers; CPU is only used for orchestrating
these data transfers. The design ofVortex is divided into three layers
as detailed below.
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Figure 3: Pipelining data forwarding.

Optimized IO Primitive (Exchange) (§4) Because of non-ideal
runtime and hardware behaviors (detailed in §4.2), it is challenging
to fully leverage the IO bandwidth provided by hardware. In the
presence of these behaviors, we design an efficient IO primitive
Exchange that allows a target GPU to utilize its neighboring GPUs’
SDMA engines and PCIe bandwidth for data transfers.
IO-Decoupled ProgrammingModel (§5). Unlike prior works [25,
37, 38, 47, 49] that integrate the design of IO primitives with com-
pute kernels, we advocate for a fundamentally different approach.
We argue that such an integrated approach is challenging and hin-
ders the reuse of GPU code. By leveraging our high-throughput
Exchange primitive, we introduce an efficient programming model
that decouples IO scheduling from on-GPU kernel design. This
separation facilitates the reuse of existing code designed only for
on-core GPU data processing. It also enables the independent design
and exploration of next-generation IO primitives without concerns
about the compute kernels.
Tailored Query Execution (§6).With our IO primitive and pro-
gramming model, we leverage state-of-the-art on-core libraries
AMD rocPRIM [8] andCrystal [48] to build a set of high-performance
out-of-core query operators. Although we only showcase how to ap-
ply our techniques to these libraries, the idea is generally applicable
to other execution libraries.

Vortex’s programming model abstracts away the IO orchestra-
tion, but query operators still need to specify their data partitioning
strategy for out-of-core processing. For certain operators, including
selection, projection, and join with only one table larger than GPU
memory, we can trivially divide the out-of-core table into multiple
chunks and then stream the data onto the GPU.

We illustrate how we implement query operators using the exist-
ing on-core GPU libraries with two complex operators that require
tailored data partitioning strategy: sort (§6.1) and hash join with
both tables larger than the GPU memory (§6.2). In §6.3, we also
introduce a late materialization technique utilizing zero-copy mem-
ory accesses as a complementary optimization.

4 SDMA-BASED IO PRIMITIVE DESIGN
4.1 High-level Idea
We use an example system with four GPUs to illustrate our high-
level idea. As shown in Figure 2, in multi-GPU systems, data can
reach a specific GPU from the CPU-side DRAM through multi-
ple paths. In this example, GPU0 handles IO-intensive applications,

such as data analytics, while the other three GPUs execute compute-
intensive tasks like LLM inference. GPU0 can leverage the IO band-
width of its neighboring GPUs through inter-GPU links: beyond
its own PCIe links to the CPU, GPU0 can communicate with the
CPU indirectly by using the SDMA engines on the other three
GPUs as forwarders, utilizing a small fraction of their GPU memory
as buffers. These forwarding activities do not significantly affect
the normal execution of the other three GPUs, as their SDMA en-
gines and PCIe links are typically underutilized. Consequently, this
approach significantly enhances the IO capability of GPU0 with
minimal impact on the performance of the other GPUs.

Each forwarding GPU needs to first receive data from the source,
either GPU0 or the CPU (depending on the direction of data trans-
fer), into a buffer on its GPUmemory and then forward the received
data to the destination. To fully utilize the PCIe bandwidth, the
data transmission process needs to be packetized and pipelined.
Figure 3(a) illustrates a naive scheduling approach for this pro-
cess. In this approach, the forwarding GPU waits until all data
has reached its memory before forwarding it to the destination,
failing to take advantage of the full-duplex nature of PCIe links.
Moreover, a significant amount of memory must be allocated as
buffers on the forwarding GPUs, which reduces the capacity avail-
able for the compute-intensive kernels. In contrast, Figure 3(b)
shows a pipelined schedule that overlaps IO in both directions. This
approach requires only a small buffer on the forwarding GPU ca-
pable of holding a single packet, optimizing bandwidth usage and
minimizing memory overhead on the forwarding GPUs.

4.2 Challenges
Both NVIDIA’s CUDA and AMD’s HIP runtimes allow applications
to submit a set of concurrent tasks on different Streams and specify
dependencies among them through Events [7, 41]. A straightfor-
ward implementation of the idea presented above is to build a
Directed Acyclic Graph (DAG) using these two APIs, allowing the
runtime to manage data movement in a dataflow order. In this DAG,
nodes represent data packet transfer commands between GPUs
launched on different Streams, and edges represent Events that
enforce the forwarding order. However, in practice, we find two
challenges to achieve desired performance as listed below.
Challenge #1. Head-of-line blocking. Although operations are
submitted to different streams, they must traverse multiple layers
of software queues before ultimately being enqueued into a limited
set of hardware-managed queues [43, 44]. The execution engines
process operations from these queues in FIFO order. This FIFO order
can lead to head-of-line blocking between operations on different
streams. As a result, part of the Host-to-Device IO operations are
unintentionally blocked by the runtime in our baseline solution.
Challenge #2. Non-uniform IO bandwidth.When both direc-
tions of all PCIe links are used simultaneously for data transfer, the
combined IO bandwidth requirement exceeds the CPU-side mem-
ory controller’s capacity, resulting in some PCIe links not achieving
their maximum bandwidth. This leads to non-uniform bandwidth
availability across different paths, and the bandwidth achieved by
each link is highly dependent on the activity on other links. For
example, when all GPUs perform H2D data transfer and GPU0,
1, and 2 transfer data in D2H, the achievable H2D bandwidth on
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GPU0 and 2 is only around 8GB/s, and around 20GB/s on GPU1.
This is significantly less than the 28GB/s bandwidth when there is
no D2H traffic. In our test machine with 4 AMDMI100s, data traffic
in the D2H direction consistently outperforms H2D traffic when
competing for bandwidth, making H2D links more susceptible to
interference from other data transfers. This issue causes load imbal-
ance in data transfers. When transferring data in both directions
using our baseline solution, all H2D paths are assigned the same
number of equally-sized packets, yet they complete in significantly
different times, leading to underutilized PCIe links at the end.
These challenges motivate the necessity of a more sophisticated solu-
tion to fully utilize the potential of PCIe links.

4.3 Proposed Design
We follow two design principles to address the challenges above.
(1) Only submit requests that will be immediately executed by the

GPU. By ensuring that, no task waits inside all queue levels,
and we can eliminate unpredictable head-of-line blocking.

(2) Consider all concurrent data transfers and implement comprehen-
sive flow control. Given the irregular nature of IO bandwidth,
a holistic flow control mechanism that accounts for traffic in
both directions is essential to maintaining overall load balance.

Interface.We introduce a key primitive, Exchange, based on the
observations discussed, as illustrated in Figure 4. The Exchange
operation asynchronously transfers data between the CPU and
the target GPU while simultaneously managing data movement
in both directions. This transfer is pipelined at a specified packet
size granularity. By scheduling H2D and D2H data movements to-
gether, Exchange enables the underlying scheduler to manage both
directions and perform flow control effectively. Unlike traditional
Memcpy APIs, which require source and destination memory to be
contiguous, Exchange only mandates that the sizes of the source
and destination be identical. For example, it allows copying 4 chunks
of 2 GB data from CPU DRAM to an 8 GB region in GPU memory.
The design of Exchange elevates CPU-GPU data movement from
basic runtime APIs to a more sophisticated library component. This
design philosophy mirrors practices in databases, which maintain
their own buffer pools rather than relying on lower-level mmap [17],
and aligns with the use of collective communication primitives like
NVIDIA’s NCCL and AMD’s RCCL.
Implementation details. Our implementation of the Exchange
operation includes both link-level workers for data packet trans-
mission and a global scheduler to ensure balanced load distribution
among links. Figure 5 provides an example with GPU0 as the target
GPU. Each GPU initializes two link workers dedicated to H2D and
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H2D Link

D2H Link
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Figure 5: The implementation details of Exchange operation.

D2H data transfers, respectively. The link worker on forwarding
GPUs, referred to as the indirect link, maintains two buffers sized
to the packet granularity and alternates between them to enable
pipelined packet forwarding. In contrast, the link worker on the
target GPU, known as the direct link, functions as a proxy to the
underlying runtime memory copy API.

The global scheduler manages two task queues for H2D and D2H
packets, populated from the arguments to Exchange. Flow control
is enforced by a policy that dictates whether a link can dequeue a
task from its respective queue. Given that H2D traffic consistently
suffers from bandwidth competition on our test machine, our policy
ensures that the D2H queue does not drain faster than the H2D
queue; otherwise, the links are restricted from popping tasks from
the D2H queue. A more universal policy could involve maintaining
a balanced number of tasks in each queue. Below, we provide a
detailed walk-through of this process, illustrated in Figure 5.

When Exchange is instantiated, it initializes a pair of links for
each GPU and a global scheduler. Upon invoking the launch()
method, the global scheduler partitions the dstH2D and srcH2D data
at the packet size granularity and populates the H2D queue ( 1 ).
Similarly, it populates the D2H queue. All links are then activated
and continuously pop tasks from their respective queues. Each link
follows a work cycle until the queue is empty. In each cycle, the
indirect link pushes any buffered packets from the previous cycle to
the destination ( 2 ) and attempts to dequeue a task from the queue
( 3 ). If permitted by the flow control policy, the link retrieves a
task ( 4 ) and then transfers a packet from the source to its buffer
( 5 ). If the flow control policy rejects the pop request ( 6 ), the link
receives a stall signal ( 7 ), waits for a short period ( 8 ), and retries
the task pop ( 9 ). The direct link operates similarly but moves data
directly to the destination. Empirically, we set the waiting period to
10us, which is a few percent of the packet transfer time. Each link
is blocked at the end of each iteration until all IO operations issued
by the link are completed. This ensures that at the beginning of the
next iteration, the execution units used by the link are idle, allowing
any requests to be executed immediately rather than waiting in the
queue, adhering to the design principle of immediate execution (1).

5 IO-DECOUPLED PROGRAMMING MODEL
5.1 High-level Idea
With CPU-GPU data transfer bandwidth as a primary bottleneck,
many prior works design a tightly coupled CPU-GPU IO schedule
with compute kernels [25, 37, 38, 47, 49]. While these approaches
have achieved promising results, they complicate the design space
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by intertwining IO management with GPU kernel design, often
leading to ad-hoc optimization techniques. Furthermore, this strat-
egy limits the reuse of optimized and validated kernels provided by
GPU vendors, which are not designed for out-of-core processing.

We propose that, given Exchange’s significant mitigation of the
IO bottleneck, adopting a decoupled programming model that sep-
arates IO management from on-GPU computation is advantageous.
This model allows for a clear separation of concerns, facilitating
code reuse while maintaining high performance. In this approach,
programmers can develop data-parallel [57] operations by using
regular on-GPU kernels and specifying how to partition the data
to fit into GPU memory, leaving the framework managing all IO
orchestration. Programmers can develop GPU kernels with a tradi-
tional single-GPU model in mind, reusing code initially designed
for GPU-memory-fitted data. Vortex is designed for data analytics,
thus cannot accelerate algorithms/data structures involving data
access jumps exceeding the GPU memory size (i.e., tens of GBs).
However, in the scope of data analytics, many operations are natu-
rally data-parallel, like projection and aggregation, and others can
be decomposed into steps of data-parallel sub-operations, as we
will demonstrate for sort and join (§6.1 and §6.2).

The right-hand side of Figure 6 illustrates the proposed pro-
gramming model. In this model, programmers extend their exist-
ing on-GPU kernels into ExKernels, short for Extended Kernel.
ExKernels handle large datasets that exceed GPU memory by pro-
cessing data stored in DRAM and then saving the results back to
DRAM. These ExKernels are executed by a Pipelined Executor,
which leverages Exchange to manage off-GPU IO. This approach
allows ExKernels to efficiently process out-of-core data while fully
utilizing PCIe bandwidth.

5.2 Design Details of ExKernel
The interface of ExKernel is depicted in Figure 6. An ExKernel
comprises two sets of methods. (1) Data Mapping: this set of meth-
ods directs the executor on how to process the large dataset in
chunks on the GPU using the on-GPU kernel. (2) Kernel Adaptation:
this set of methods defines how the on-GPU kernel interacts with
the executor, specifying how to receive input and produce output.
Data Mapping. Efficient processing of datasets larger than GPU
memory requires chunk-wise handling, where each chunk fits into
GPU memory. The ExKernel maps inputs and outputs into chunks
of size chunkSz, ensuring each chunk fits within the allocated
memory. The chunks are accessible through the inputs() and
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Exchange

iInputs

Outputs

1
2 3

45

Figure 7: Implementation details of ExKernel execution.

outputs() methods, while size() indicates the total number of
chunks to process. During this process, data in DRAM remains
stationary; only a mapping table is created to associate data with
its respective chunk. A chunk can be either a contiguous memory
region or a collection of regions. Contiguous chunks are suitable
for embarrassingly parallel operations, such as element-wise addi-
tion. In contrast, non-contiguous chunks are used when processing
outputs from other ExKernels, as demonstrated in our sort (§6.1)
and hash join (§6.2) designs.
Kernel adaption. The kernel() method wraps the on-GPU ker-
nels designed solely for processing data within GPU memory. It
provides these kernels with (a) mem: a memory region containing
both input and output data, (b) type: a code indicating the layout
of mem, (c) it: an index specifying the chunk of data currently be-
ing processed, and (d) tmp: a memory area for temporary storage
during execution. The layout of mem is defined by the inBuffer()
and outBuffer() methods. These methods, given the type code
and index it, return specific regions of mem for input and output.
Upon completion, kernel() returns a type code that can be used
with outBuffer() to locate the output and with inBuffer() to
access the next input.
Output management. outputs() can cover a smaller or larger
range of memory than inputs() for operations with different in-
put/output sizes. kernel()may populate outputs() during execu-
tion for operations with indefinite output size. However, program-
mers need to be conservative on inputs() chunk size to avoid
overflowing GPU memory buffers. More details are in our techni-
cal report. Developing a more versatile input/output management
mechanism for indefinite-sized outputs is left as future work.

5.3 Design Details of Pipelined Executor
We illustrate the execution of an ExKernel using the pipeline ex-
ecutor with an example in Figure 7. The executor divides GPU
memory into three sections: two memory buffers, mem A and mem
B, each allocated 16 GB from the 32 GB available on the AMD
MI100, and a tmp memory for temporary storage. The computation
is performed in a software-pipelined manner [35], running through
multiple cycles. During the 𝑛th pipeline cycle 𝐶𝑛 : (1) The executor
processes the (𝑛 − 1)th chunk, which was previously loaded into
mem B, by invoking kernel(it=n-1) ( 1 ). (2) The kernel reads
from and writes to mem B and tmp, leaving the output in mem B
( 2 ). (3) The executor records the type code returned by kernel()
to determine the input and output buffers for the next cycle ( 3 ).
(4) Concurrently, an Exchange operation is performed over mem A,
with source and destination determined by the recorded type code
from the previous cycle ( 4 ). (5) The input for the 𝑛th chunk is
loaded from the CPU, and the output of the (𝑛−2)th chunk is saved
to the CPU ( 5 ).
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the IO-decoupled programming model.

6 TAILORED QUERY EXECUTION
In this section, we present the details of sort and hash join, as well
as late materialization based on zero-copy memory access.

6.1 Case Study – Sort
In this section, we illustrate the design of the sort operator in the
context of sorting a large array of 64-bit integers that exceeds
GPU memory capacity, which adapts the classic external sort al-
gorithm [34]. Our approach, as shown in Figure 8, employs two
ExKernels. The SortExKernel is responsible for partitioning the
input array and sorting each chunk individually. The sorted chunks
are then stored in an intermediate buffer on the CPU. Subsequently,
the MergeExKernel merges these sorted chunks and writes the fi-
nal output back to the original data location. To highlight the code
reuse capabilities of our programming model, we utilize existing
GPU kernels provided by vendors, avoiding the need to develop
custom GPU kernels.

6.1.1 Integration with Vendor-maintained GPU Primitives.
Both AMD and NVIDIA offer highly optimized parallel primitives
for their GPUs through libraries like rocPRIM [8] and CUB [40],
respectively. These libraries, extensively tested and continuously
updated with cutting-edge techniques [2, 26], ensure optimal per-
formance. In our work, we utilize rocPRIM primitives due to our
focus on AMD GPUs, noting that its interface closely mirrors that
of NVIDIA’s CUB.

We briefly outline the rocPRIM primitives used and their in-
put/output conventions. Double Buffer consists of two memory
regions, designated as current and alternate. It is a standard
construct in GPU sorting operations. radix_sort_key() operates
on a double buffer where current contains the input array. After
sorting, current holds the sorted array, and the roles of current
and alternate are swapped. radix_sort_pair() sorts pairs of
keys and values using two double buffers. It outputs the sorted keys
and values into the current regions of each buffer. merge()merges
two sorted arrays into a third output array, taking pointers to the
input and output arrays as arguments. These primitives facilitate
efficient data processing by leveraging optimized GPU operations
and memory management.

6.1.2 Design Details of SortExKernel. The goal is to sort the
given array in multiple chunks, which are subsequently merged.
DataMapping.The input is divided into several contiguous chunks
that fit within the on-GPU buffer, as illustrated in Figure 8. The
output on the CPU side is mapped similarly, with each chunk con-
taining a sorted sub-array.
Kernel Adaption.We wrap sort_by_key() to handle the sorting
operation on the GPU. To integrate the double buffer data structure
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Figure 9: Implementation details of RadixPartitionExKer.

with the executor, the buffer’s marker is used as the type code. The
methods inBuffer() and outBuffer() interpret the provided mem
as a double buffer, with the current buffer indicated by the type
code. They return this current buffer accordingly. Similarly, the
kernel()method reconstructs the double buffer based on the type
code and invokes sort_by_key(). After sort_by_key() completes
the sorting and updates the buffer marker, kernel() returns the
new marker as the updated type code.

6.1.3 Design Details of MergeExKernel. This ExKernelmerges
multiple sorted chunks produced by the SortExKernel into a single,
fully sorted array in a single pass.
Data Mapping. The input to this operation consists of 𝑁 sorted
chunks, each with a size of 𝐶 . The objective is to regroup these
chunks into 𝑁 new chunks 𝑃𝑖 (0 ≤ 𝑖 < 𝑁 ) such that max(𝑃𝑖 ) ≤
min(𝑃𝑖+1) for all 0 ≤ 𝑖 < 𝑁 − 1. Each new chunk will contain 𝑁

sorted segments, which can then be efficiently merged on the GPU.
We devise an efficient algorithm based on binary search, the details
of which can be found in our technical report [60]. In Figure 8, the
white points on MergeExKernels’s inputs() segment the input
chunks and reorganize them into the desired partitions. The output
is then partitioned to store the final sorted result.
Kernel Adaption. The on-GPU kernels are tasked with merging
the sorted segmentswithin each partition. This process is performed
in a tree-like order, as depicted in Figure 8, using the merge() kernel
from rocPRIM. We employ the double buffer layout described in
the sorting step. During each iteration, the kernel merges pairs of
segments from the current buffer and writes the results to the
alternate buffer. After completing the merge operations in an
iteration, the buffers are swapped. The management of the type
code, inBuffers, and outBuffers follows the same approach as
detailed in §6.1.2.

6.2 Case Study – Hash Join
Next, we discuss the design of the hash join operator on an equality
predicate where both tables exceed the GPU memory. We refer to
the two tables as𝐴 and 𝐵 and the join predicate as A.key == B.key.
Based on the classic idea of radix-partitioned hash join [11], Triton
join [38] proposes a solution that surpasses CPU performance,
relying heavily on a specialized high-bandwidth CPU-GPU NVLink
configuration. In contrast, we achieve even better results using
our Exchange primitive and an IO-decoupled programming model,
which utilizes standard PCIe links to access CPU-side memory.
For this case study, we follow the problem setup outlined in [38].
Both tables 𝐴 and 𝐵 have equal sizes, with each row consisting
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of an 8-byte unsigned integer tuple <key, val>. The key in table
𝐵 contains foreign key referencing A, with the keys distributed
uniformly. Following the idea of radix-partitioned hash join, our
solution includes a RadixPartitionExKer to cluster tuples with
identical hashes into groups and a HashJoinExKer to join the groups
from both tables with the same hashes together.

6.2.1 Design Details of RadixPartitionExKer. Figure 9 illus-
trates the details of the RadixPartitionExKer. This ExKernel
maps the table into chunks and clusters tuples within each chunk
using a hash function. Following [38], it utilizes the 0 to 23 bits of
the key as the hash value, partitioning the table into approximately
16.8 million groups. While a better hash function can be used to
handle the skewed key distribution, this is out of the scope of our
paper as we focus on IO optimization. Tuples in each group share a
distinct hash value ranging from 0 to 224 − 1. Groups with the same
hash value can be joined independently in the subsequent phase.
Kernel Adaption.We build the on-GPU clustering kernel by in-
tegrating the radix_sort_pair() primitive from rocPRIM with
our custom find_boundary() kernel, rather than developing it
from scratch. The clustering kernel organizes tuples based on their
hash values and generates a boundary array to demarcate group
boundaries. As illustrated in the lower half of Figure 9, consider an
example with 3-bit unsigned integers where we use the lower two
bits of the keys as hashes to cluster them into 4 groups.

(1) The executor loads a partition of 4 tuples from the CPU. The
kernel uses radix_sort_pair() to sort these tuples by the lower
two bits of their keys ( 1 ). Although the tuples are now clustered,
the exact boundaries between groups remain undetermined. (2)
The find_boundary() kernel generates a boundary array with
𝑁 + 1 elements for 𝑁 groups, whose 𝑖th and (𝑖 + 1)th elements
tell the boundary of the group with a hash 𝑖 . Initially, this array
contains placeholder values (e.g., N for "Not Available"). The kernel
masks the keys with 0’b11 to obtain their hash values ( 2 ). It then
performs parallel checks to identify transitions between different
hashes. (3) If a hashℎ at position 𝑖 differs from its previous hash, this
signifies the start of a new group. The position 𝑖 is recorded in the
correspondingℎth entry of the boundary array ( 3 ). In the example,
the second entry remains 1 because the group with hash 1 is empty.
(4) To complete the boundary array, we replace any remaining N
entries with the subsequent valid boundary positions, effectively
denoting empty groups ( 4 ). With the tuples now clustered and the
boundary array populated, the results are stored back to the CPU
for further processing.
Data Mapping. The table’s key and val columns are mapped into
chunks. When the table is mapped into N chunks, the output will
include N chunks of clustered key and val, as well as N chunks of
boundary to indicate mark the boundaries for each chunk.

6.2.2 Design Details of HashJoinExKer. After both tables are
radix partitioned, the join phase processes groups with identical
hash values from each table.
Data Mapping. The goal of this step is to ensure that all groups
with the same hash value are processed by the on-GPU kernel
together. We carefully partition the data by binary search over
‘boundary’ chunks, and present more details in technical report [60].
Kernel Adaption. We fully customize the hash join kernel to
leverage GPU shared memory for enhanced performance. In the
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Figure 10: Zero copy vs GPU IO.

partitioning phase, the data is divided into 16.8 million groups
that can be processed independently. Even with a dataset of 16
billion rows, each group contains approximately 1000 tuples and
occupies around 16KB, which fits comfortably within the 64KB
shared memory available per GPU core. As this paper focuses on
out-of-core GPU processing, we leave the details of this on-GPU
kernel for our technical report [60].

6.3 Case Study – Late Materialization
Late materialization is a common optimization for column-oriented
databases, where only columns referenced by selection/join predi-
cates and tuples not filtered out by selection/join predicates are fully
materialized from disk to memory [1]. Vortex utilizes this strategy
to reduce the amount of data transferred from CPUmemory to GPU
memory. Consider a selection operator based on two predicates
𝜎𝑎 and 𝜎𝑏 for a table with two columns 𝑎 and 𝑏. If 𝜎𝑎 is highly
selective, the execution engine only needs to transfer column 𝑎

from CPU memory to GPU to apply 𝜎𝑎 first. Then, it only transfers
the values of column 𝑏 from the tuples that satisfy 𝜎𝑎 to GPU to
further evaluate 𝜎𝑏 . The join predicates are optimized similarly.

However, such a technique requires fine-grained CPU-GPU data
access based on the predicate of each tuple, which is not achiev-
able efficiently by SDMA-based IO primitives (§2.5). In contrast,
although zero-copy memory access can operate at cache line granu-
larity, it cannot enjoy the idle IO resource on other GPUs due to its
need for compute units. We propose to late materialize a column 𝑐
with zero-copy access in an ExKernel based on a selectivity estima-
tor 𝑆�̂� for that column, which is determined before that Exkernel
happens. If 𝑆�̂� is less than an architectural-dependent threshold
𝑇𝐻 , the execution engine will not load column 𝑐 but let the on-core
kernel use zero-copy memory access to retrieve data on demand.
Otherwise, it will still load 𝑐 through SDMA-based Exchange. The
threshold 𝑇𝐻 is determined by GPU LLC cache line size, 𝐶𝑙2, the
size of the accessed element, 𝐸, as well as the number of GPUs
Exchange uses, 𝑁𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 .

𝑇𝐻 =
𝐸

𝐶𝑙2 × 𝑁𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒

If the selectivity is higher than 𝑇𝐻 , the benefit of selective data
access is less than plainly using neighboring GPUs’ IO resources.
On our test machine with 4 MI100 GPUs, whose LLC cache line size
is 64 bytes,𝑇𝐻 = 4

64×4 = 1
64 , when we are accessing 4-byte integers.

We validate our formula with the following micro-benchmark.
for i in range(16e9)

sum += pred[i % 2e9] % SEL == 0 ? v[i] : 0

The pred array resides in GPU memory, and SEL is a hyperpa-
rameter that is inversely related to selectivity. We implement this
micro-benchmark using both Exchange and zero-copy data transfer
techniques, varying SEL from 1 to 128. The results are presented
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in Figure 10. Notably, when SEL > 64, zero-copy becomes more
efficient. This aligns with the threshold 𝑇𝐻 = 1

64 , validating the
results derived from our formula.

6.4 Discussion
Vortex can be used to support data analytics engines with different
processing models. In this work, we bind Vortex with Crystal [48]
that uses kernel fusion for query execution, but executing an oper-
ator at a time is also viable by chaining multiple Vortex extended
GPU operators. For example, libraries like cuDF [50] implement
their operators based on on-GPU compute primitives in Thrust [42]
and CUB [40], which shares similar APIs as the rocPRIM [8] we
use. One may take a similar approach described in §6.1 and §6.2
to extend the operators with Vortex, and chain them for query
execution. The CPU memory can hold the intermediate results.

7 EVALUATION METHODOLOGY
We evaluate Vortex in two distinct scenarios. We first run Vortex
while keeping all forwarding GPUs idle to understand the upper
bound on the improvement from our IO primitive. We require that
all input/output data be retrieved from and stored in CPU’s DRAM,
with no GPU-side caching, which represents the most challenging
setup for GPU execution. Then, we concurrently run Vortex on
the target GPU and deep learning workloads on the forwarding
GPUs to analyze the interference introduced by our techniques.
While an alternative to partition system resources is by running
data analytics on 25% of four GPUs, we experimentally show in the
technical report [60] that this is an inferior design choice.

7.1 Interference-Free Analysis
Exchange.We evaluate the efficiency of our Exchange IO primitive
by varying both the total volume of data transferred and the granu-
larity of the data packets. For benchmarking, we compare it against
an in-house implementation that relies solely on the GPU runtime.
This baseline is susceptible to the challenges outlined in §4.2.
Sort. In this experiment, we sort 8 billion 8-byte integers and use
TBB and PARADIS [15], which are state-of-the-art CPU sort imple-
mentations from industry and academia, as our baselines. Due to
the absence of open-source out-of-core GPU sort libraries, we com-
pare Vortex against in-house GPU baseline. The only distinction
between this and Vortex is that the former utilizes the IO resources
of a single GPU, whereas Vortex leverages multiple GPUs.
Hash Join. Following the experimental setup outlined in [38], we
focus on the query below
SELECT SUM(A.val + B.val) FROM A, B WHERE A.key == B.key;

Because we lack access to machines equipped with CPU-GPU NV-
Links, we use the results from [38] as our GPU baseline. For our
CPU baselines, we employ DuckDB and the CPU hash join imple-
mentation from [38], representing state-of-the-art solutions from
both industry and academia.
Star Schema Benchmark (SSB). SSB is an OLAP benchmark
widely used by many prior database research [16, 48, 52, 59, 61],
composed of 13 queries grouped in 4 query flights that process
over a fact table and a few small dimension tables. These queries
commonly filter the dimension table, join them with the fact table,
and aggregate the joined results.

We integrate Vortex with the on-core query processing library
Crystal [48] to implement queries in SSB. As the dimension table
is small, we load the dimension tables to GPU memory, filter and
build the hash table for them, and keep them inside GPU memory.
Then, we partition the fact table and process these partitions one
by one by Crystal. We utilize the late materialization optimization
when transferring the fact table to the GPU. Because the selectivity
of each dimension table is known after their hash tables are built,
we can use the selectivity of the dimension table as an accurate
estimator for the selectivity of each column in the fact table. Thus,
we can optimize the star schema query by late materializing some
columns in the fact table during query execution, as long as their
selectivity estimator is less than 𝑇𝐻 .

We evaluate SSB at a scale factor (SF) of 1000, comprising 6 bil-
lion rows in the fact table. The entire database spans approximately
600 GB, with 144 GB designated as hot data for query processing.
For benchmarking, we use DuckDB as our CPU baseline and Pro-
teus [16] as our GPU baseline, which is a leading out-of-core GPU
database.We compareVortex against Proteus in two configurations:
CPU-GPU hybrid execution mode, and pure-GPU execution mode
using default settings. Vortex executes each query independently
without caching data between queries.

7.2 Interference Analysis
As we are borrowing idle IO resources from neighbors that run
compute-intensive applications like Deep Learning (DL), it is im-
portant to understand the degree of interference caused by our
technique in such a multi-tenant system. We run a range of deep
learning workloads from Hugging Face on the forwarding GPUs to
assess the impact of Vortex on system performance.
Text-to-imageDiffusionModel Inference.Weuse stable-diffusion-
3-medium (SD3) [3], a widely recognized text-to-image generative
model that creates images from user prompts. Since the diffusion
model operates iteratively, we measure performance based on the
number of iterations completed per second.
Text Embedding Generation. Text embeddings convert text into
high-dimensional vectors and are crucial for textmining and Retrieval-
Augmented Generation (RAG) applications, which enhance LLM. In
our evaluation, we use the state-of-the-art text embeddingmodel e5-
mistral-7b-instruct [53, 54]. This model processes text sequences to
generate corresponding embeddings. We measure its performance
by the number of embeddings produced per second.
LLM Serving. Our evaluation of LLM serving focuses on Meta-
Llama-3-8B-Instruct [4]. LLM inference comprises two distinct phases:
the compute-intensive prefill phase, which processes prompts, and
the memory-intensive decode phase, which generates text. We
assess these stages separately, given that they have different work-
load characteristics and modern LLM serving systems often process
them on decoupled GPU pools.
Workload Characteristics The DL workloads we analyze exhibit
varying demands on GPU memory subsystems and compute units.
Diffusion models, text embedding generation, and the prefill stage
of LLM serving are characterized by high arithmetic intensity and
are therefore classified as compute-bound applications [24, 63]. Con-
versely, the decode stage of LLM serving is memory-bound when
processing small batch sizes but shifts to compute-bound as batch
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Figure 11: Data transfer throughput achieved by the IO-primitives with different transfer granularity.
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Figure 12: Results for Sort (a-c) and Join (d-e). (a,d) the throughput achieved by different solutions, (b,e) the time breakdown for
the Vortex sort/join, and (c,f) the time taken by on-GPU kernel execution of a typical pipeline stage.

sizes increase [62]. A detailed analysis on how these characteristics
affect interference is present in §8.2.

7.3 Hardware Configuration
All the GPU workloads, except Proteus, are run on a dual-socket
server with 8 AMD MI100 GPUs connected to two AMD 7V13
processors in groups of 4. We only use 4 GPUs and one socket for
this work. The GPUs are directly connected to the CPU through
PCIe 4.0 links, which provide 28GB/s maximum bandwidth in each
direction. AMD 7V13 CPU has 8 memory channels running at
3200Mhz, and we measure the maximum DRAM bandwidth at
150GB/s using the STREAM benchmark [9]. Because Proteus is
developed based on Nvidia GPUs, we run it on Nvidia A40, a GPU
comparable to AMDMI100. We run CPU baselines on a dual-socket
server with two Intel Xeon Platinum 8380 processors, which also
have 8 memory channels per socket and deliver 150GB/s memory
bandwidth. We choose this server for CPU baselines as they achieve
better performance compared to the AMD server.

8 EVALUATION RESULTS
8.1 Interference-Free Analysis
Performance of the Exchange primitive. Figure 11 illustrates
a comparison of the IO throughput achieved by our optimized
Exchange and the baseline solution, which solely relies on the GPU
runtime. We vary the total amount of data transferred from 2GB
to 16GB and adjust the packet size from 10MB to 80MB. The com-
bination of data size and packet size determines the total number
of packets, which in turn affects the number of pipeline stages
required for data transfer. Too few pipeline stages can lead to signif-
icant overhead in the prologue and epilogue phases of the pipeline.
Conversely, utilizing excessively small packets is also inefficient,
as each memory copy incurs a fixed overhead from the runtime,
regardless of the transferred data volume. Therefore, small packet
sizes exacerbate this overhead, making it disproportionately large.

Our solution achieves up to 140GB/s throughput when transfer-
ring 8GB or more of data. When the total amount of data transferred
is small, we observe a decrease in throughput due to the reduced
number of pipeline stages. As previously explained, this issue can-
not be alleviated by simply reducing the packet size. For instance,

while a packet size of 10MB provides better performance compared
to an 80MB packet size when transferring 2GB of data, it delivers
lower throughput when the data size exceeds 8GB. Empirically, we
find that a packet size of 20MB strikes a balance, achieving desirable
performance for small and large data transfers. Consequently, we
use a packet size of 20MB for all the applications evaluated below.

Compared to the baseline, which fully relies on the GPU runtime,
our solution is not only more performant but also more stable.
Such a baseline fails to fully exploit the full-duplex capabilities of
PCIe links, achieving only about 110-130GB/s throughput when
transferring data bidirectionally. Additionally, its performance is
highly unstable due to the irregular PCIe bandwidth, especially
when the CPU DRAM bandwidth becomes saturated.
Performance of Sort. We compare our sort implementation with
CPU andGPU baselines in Figure 12(a). Our implementation achieves
a throughput of 2.7 billion elements per second, which is 27.9×
faster than TBB, 6.3× faster than PARADIS, and 1.7× faster than
the configuration using only one GPU’s IO resources. Figure 12(b)
provides a breakdown of the sort operation, revealing that 65.1% of
the time is consumed by the SortExKernel. This occurs because,
after enhancing the IO throughput, the sorting operation becomes
bounded by the GPU processing throughput, as illustrated in Fig-
ure 12(c). While it takes the GPU approximately 208ms to sort a
partition of 500 million 8-byte integers, transferring that partition
to the GPU using four GPUs’ IO resources requires only about
113ms. This limitation explains why we do not achieve nearly a
4× speedup compared to the single GPU IO solution. Conversely,
the MergeExKernel remains IO-bound, with the on-GPU kernel
completing in approximately 67ms.
Performance of Hash Join. In contrast to sorting, hash join re-
mains an IO-bound kernel even with our IO optimization technique.
As shown in Figure 12(d), our solution achieves a throughput of
2.3 billion tuples per second. This is 24.1× faster than DuckDB,
2.4× faster than Triton Join (CPU), 1.3× faster than the CPU-GPU-
NVLink-based Triton Join (GPU), and 3.2× faster than the single
GPU solution using a standard PCIe link. The speedup over the
single GPU IO solution is more pronounced because all phases
of hash join are IO-bound. This is evident in Figure 12(f). The
HashJoinExKer requires only 34ms to complete the on-GPU join
kernel, which is significantly less than the 61ms required for data

1259



Q11 Q12 Q13 Q21 Q22 Q23 Q31 Q32 Q33 Q34 Q41 Q42 Q43
SSB Queries

10−1
100
101

Ex
ec

ut
io

n
Ti

m
e 

(s
)

DuckDB naive Proteus-GPU Proteus-Lazy Proteus-Hybrid zero-copy IO redistribution (SDMA) Vortex

2.5

5.0

Sp
ee

du
p 

(x
) 

vs
 D

uc
kD

B

1.2
3.0 3.6

2.4

5.5
3.6 3.7 3.3

5.0
3.9 3.2 3.4

4.6
speedup over duckdb

Figure 13: Star Schema Benchmark execution time and speedup.

Stable Diffusion
text embedding

llama3 prefill (BS=32)

llama decode (BS = 32)

llama3 decode (BS=1)
H2D:D2H - 1:1

 (sort, join)
pure H2D

 (ssb)
pure D2H

7.2% 4.7% 4.2% 13.4% 16.9%

2.9% 3.2% 2.5% 4.5% 6.6%

4.8% 4.5% 3.9% 10.9% 11.8%

(a)

Stable Diffusion
text embedding

llama3 prefill (BS=32)

llama decode (BS = 32)

llama3 decode (BS=1)

sort
join
SSB

1.9% 5.8% 6.9% 0.8% 3.2%

5.1% 9.5% 10.6% 1.8% 7.4%

3.7% 7.5% 7.3% 3.4% 4.4%

(b)

Figure 14: Interference between Vortex on the target GPU
and the deep learning applications on the forwarding GPUs.

transfer. Similarly, it takes 90ms to partition a chunk of data, which
is transferred in around 113ms. All phases scale uniformly with the
improvement of IO throughput, as depicted in the time breakdown
in Figure 12(e), where they consume a comparable amount of time.
Notably, Vortex outperforms Triton Join without using proprietary
CPU-GPU interconnects by exploiting untapped PCIe bandwidth.
Performance of SSB queries. Figure 13 illustrates the comparison
of SSB query performance between our solution and the baseline
approaches. On average, our solution achieves a 3.4× speedup over
DuckDB, with all data dynamically fetched fromCPUDRAM.When
examining individual query flights, the speedup is 2.4× for Q1.*,
3.6× for Q2.*, 3.9× for Q3.*, and 3.7× for Q4.*. The higher speedup
observed in Q2.*, Q3.*, and Q4.* is attributed to their inclusion of
more complex multi-way joins. The more complex multi-way join
demands higher memory throughput for hash table probing, thus
favoring GPU-based solutions more as they can operate in high-
bandwidth GPU memory. The CPU-based solution has to use the
limited DRAM bandwidth on hash table probing and fact table
reading, while our solution only uses DRAM bandwidth for the
latter. Lightweight queries like Q11 only filter the fact table based
on some predicates, whose only DRAM traffic is reading the fact
table once. Thus, the benefit of high-bandwidth GPU memory is
minimized, and we observe less speedup.

By comparing the bars of navie and Proteus-GPU with DuckDB,
it becomes evident that GPU-based solutions struggle to achieve
performance comparable to the CPU-based DuckDB without utiliz-
ing our IO optimization technique. However, this technique alone
is insufficient, as indicated by the comparison between the Vortex
and DuckDB bars. It only achieves a 1.6× speedup against DuckDB
because it transfers unused data to the GPU without considering
column selectivity. While zero-copy can exploit selectivity, it falls
short of maximizing throughput because it relies on a single PCIe
link. Notably, using zero-copy alone results in worse performance
than Vortex . Our final solution dynamically switches between
SDMA-based data transfer for columns with selectivity greater
than a threshold 𝑇𝐻 and zero-copy data transfer for columns with
selectivity less than 𝑇𝐻 . Our solution also achieves 5.7× speedup
over Proteus-Hybrid, despite that it uses both CPU and GPU. It
is difficult for such a hybrid solution to divide work between CPU

and GPU and efficiently utilize the CPU DRAM bandwidth. Our so-
lution achieves 6.2× speedup over Proteus-Lazy, which enhances
Proteus-GPU with late materialization techniques. After we re-
solve the IO bottleneck and fully utilize CPU-side DRAM, a pure
GPU-based solution can achieve highly competitive results.

8.2 Interference Analysis
While Vortex utilizes additional GPUs and their IO resources to
forward data to a target GPU, running AI workloads on these auxil-
iary GPUs can lead to a slowdown of these workloads. Figure 14(a)
presents the slowdown for the AI applications (x-axis) when the
IO traffic (y-axis) runs in the background, and (b) shows the slow-
down for the Vortex applications (y-axis) when the deep learning
applications (x-axis) run in the background. (1) Compared to single-
direction IO traffic, bidirectional IO traffic has a more significant
impact on the performance of foreground applications. This is likely
due to the increased stress placed on the memory subsystems of
the forwarding GPUs. (2) Memory-intensive workloads are more
susceptible to interference from data forwarding activities, as their
performance is constrained by the memory bandwidth available
on the GPUs. Background data forwarding consumes a portion of
the memory bandwidth, leading to an average slowdown of 6.8%.
Compared to SD3, text embedding generation, and LLM prefilling,
LLM decoding experiences a greater degree of slowdown.

Figure 14 illustrates that current hardware may not optimize
for our IO optimization techniques due to two key observations.
First, although the memory subsystem is theoretically stressed to
the same degree in both scenarios, forwarding IO traffic from the
device to the host results in a more significant slowdown com-
pared to traffic from the host to the device. Second, to support the
140GB/s IO throughput we achieved, each GPU incurs an additional
memory bandwidth cost of 140×2

4 = 70GB/s, which constitutes only
70
1200 ≈ 5.8% of the MI100’s total bandwidth. However, empirical
observations reveal slowdowns of 7.2%, 13.4%, and 16.9% for SD3,
Llama3 decoding with a batch size of 32, and Llama3 decoding with
a batch size of 1, respectively. We hypothesize that this discrepancy
arises because our programming model generates atypical memory
traffic that hinders the GPU memory controller’s ability to fully
utilize bandwidth for the foreground application.

We analyze the slowdown of data analytics applications caused
by DL applications on forwarding GPUs. As shown in Figure 14, the
target GPU experiences less slowdown, with a maximum of 10.4%.
However, the slowdown patterns are more irregular compared to
forwarding GPUs. Text embedding generation and Llama3 prefill-
ing cause more interference than SD3, despite all being compute-
bound workloads. Interestingly, the memory-bound Llama3 decod-
ing shows less interference on the target GPU, contrasting with the
significant interference on the forwarding GPUs.
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Overall system efficiency. Given that our technique can acceler-
ate heavily IO-bound applications by 3 to 4 times, we argue that the
system is still more efficient even with a slowdown of up to 16.9%
on the other GPUs. The improvement of overall system efficiency
in a 4-GPU system can be quantified as shown below.

speedupsys =
speedupt ∗ slowdownt + 3 ∗ slowdownf

4

The subscripts ‘t’ and ‘f’ denote the target GPU and forwarding
GPUs, respectively. Consider the scenario where SD3 and hash join,
both with primarily bidirectional IO traffic, are collocated. The over-
all system speedup is 3.2∗(1−0.051)+3∗(1−0.072)

4 ≈ 1.45. In our setup,
the least favorable combination is running Llama3 decoding with-
out batching alongside sort. Despite this, we still achieve a modest
speedup of 1.7∗(1−0.032)+3∗(1−0.169)4 ≈ 1.03 speedup. Note that these
speedup values refer to the entire 4-GPU system. For a single GPU,
they correspond to speedups of 2.8× and 1.12×, respectively.

9 PRICE PERFORMANCE ANALYSIS
This section evaluates the price performance of our proposed sys-
tem compared to a baseline CPU-only solution. A key assumption
we take is that all input and output data is stored on the CPU-side
DRAM without caching on the GPU. The price of Vortex is

𝐶Vortex = 𝐶raw +𝐶raw × tax = 𝐶raw +𝐶raw × (taxt + 3 × taxf).

𝐶raw is the raw price of a GPU. The term tax is introduced to ac-
count for the tax paid for enhanced IO throughput. This factor takes
the interference on the target GPU, taxt, and the forwarding GPUs,
taxf, into account, which are calculated as taxt | f = 1 − 1

slowdownt | f .
The price performance of GPU-accelerated Vortex over a CPU base-
line is calculated as price performance =

𝐶cpu
𝐶Vortex+𝐶cpu

× speedup. To
calculate the price of renting a GPU, we approximate the price with
NVIDIA’s A100 GPU (as AMD MI100 GPUs are not available from
the cloud providers). Arguably, A100 is a more powerful GPU with
a higher price, making our price estimation conservative. The price
of renting an A100 GPU is estimated using AWS p4d.24xlarge and
r5dn.metal instances. p4d.24xlarge offers 8 A100 GPUs with a
more powerful CPU and larger DRAM capacity than r5dn.metal
with no GPU. Therefore, the upper-bound price of a single A100
GPU is estimated using

𝐶raw-A100 =
𝐶p4d.24xlarge −𝐶r5dn.metal

8
=

32.773 − 8.016
8

≈ 3.1($/h)

Because the CPU on r5dn.metal is weaker than the CPU we use,
we use the𝐶cpu = 𝐶r5dn.metal to calculate lower bounds of the base-
line price, making our estimation even more conservative. When
the background is running llama3 decode without batching that
introduces the highest degree of interference, the price performance
of Vortex compared to a CPU for sort, hash join, and SSB is 3.9×,
1.5×, and 2.3×, respectively. When the background is running SD3,
the price performance of Vortex for sort, hash join, and SSB is 4.2×,
1.6×, and 2.4×, respectively. On average, Vortex achieves 2.5× bet-
ter price performance over the CPU-based DuckDB. Notably, the
discussed price estimations are conservative. In practice, we expect
Vortex to achieve even better price performance.

10 RELATEDWORK
GPU native query processing systems. Many GPU-accelerated
systems [29, 39, 45] optimize for the case that the entire dataset
can be stored in GPU memory, and use CPU-based solutions or
stream data to GPU only as fallback plans. Such systems focus
on improving the performance of on-device GPU kernels while
addressing the memory capacity problem by using multiple GPUs.
In contrast, our work enables the GPU to process large datasets in
CPU-side memory by borrowing the IO bandwidth from the other
GPUs. Vortex also directly benefits from techniques that improve
on-device GPU kernels [22, 48], as it can reuse existing GPU code
through its IO-decoupled programming model.
CPU-GPU hybrid query processing systems. To handle large
datasets, multiple systems [12, 14, 16, 19, 27, 30, 33, 59] place part or
all of the data in CPUmemory and use both CPU andGPU to process
the query. These works include multiple optimizations to enhance
operator placement and data placement and reduce the amount
of data to be processed. Vortex focuses on IO optimization and is
orthogonal to prior works in this direction. Vortex’s discussion on
late materialization emphasizes trading off zero-copy access and
our SDMA-based IO primitives and provides a verified analytical
formula to benefit from both, setting it apart from the prior late
materialization techniques for GPU query processing like the one
in GHive [36]. Hybrid systems can incorporate our optimization to
improve their performance further.
GPU slicing for workload collocation. Some prior work [13, 46]
explores GPU slicing techniques to collocate workloads that stress
different micro-architecture resources on a single GPU. Resources,
like memory bandwidth, that would be left idle by a workload can
be used by another complementary workload. Vortex’s IO redistri-
bution idea at the GPU level, can be combined with GPU slicing
at sub-GPU granularity for even higher overall system efficiency,
which we leave as future work. For example, one can assign a 25%
GPU slice with all GPUs’ IO bandwidth with Vortex’s techniques
to further resolve the IO bottleneck.

11 CONCLUSION
This paper introduced Vortex, a fundamental rethinking of how
to overcome the limited memory capacity in GPUs for large-scale
data analytics. A key component of Vortex is an optimized IO prim-
itive that utilizes all PCIe links in a multi-GPU system to transfer
data to the GPU executing IO-intensive analytics. We presented
a novel programming model that enables independent GPU code
development and reuse, decoupled from IO scheduling and manage-
ment. We demonstrated data partitioning and compute scheduling
for workloads that exceed GPU memory capacity through specific
query operators, as well as a late materialization technique based on
GPU zero-copy memory access that further improves query perfor-
mance. Using end-to-end SSB queries, we achieved a performance
gain of 5.7× over state-of-the-art GPU baselines and an improved
price-performance of 2.5× compared to a CPU baseline.
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