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ABSTRACT
Super spreader detection in high-speed data streams is crucial for

numerous applications. Although many methods have emerged,

existing works can hardly concurrently achieve high memory effi-

ciency, support online detection, enable merging data from different

measurement points/periods, and offer invertibility. This makes

them unable to satisfy flexible application requirements. This pa-

per proposes RGS-Sketch, a novel sketch designed to address this

problem. The core of RGS-Sketch lies in a new mergeable memory

sharing design called register group sharing. This design organizes

registers into groups as basic memory sharing units, accommodat-

ing the high skewness of real-world data streams and offering high

memory efficiency. Besides, it enables online detection through

the real-time acquisition of a group’s state, which also facilitates

invertibility. To enhance detection accuracy further, we propose a

limited register update strategy. It blocks small flows from updating

registers, thereby reducingmemory overhead and estimation noises.

Extensive experimental results based on four real-world datasets

show that RGS-Sketch significantly outperforms the most accurate

baselines in accuracy while maintaining a high throughput. Specifi-

cally, it improves the F1 scores by up to 0.643 for measurements at a

single point/period and up to 0.472 across multiple points/periods.
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1 INTRODUCTION
Super spreader detection in high-speed data streams is fundamental

for many applications, such as database query optimization [14],
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web caching prioritization [1], search engines [16], malicious net-

work attack detection [10, 21, 34], and network hot-spot localiza-

tion [31]. For example, super spreaders can be hosts with an ab-

normally large number of distinct connections, indicating various

networking issues such as worm propagation or DDoS attacks. In

a general model [37], a data stream consists of a sequence of data

items that form multiple sub-streams, also called flows. Each data

item is a pair composed of a flow ID and an element. The definitions

of flow IDs and elements are flexible, depending on the specific

application interests, such as IP addresses, user IDs, and product

IDs. The number of distinct elements within a flow is called flow

cardinality (spread). Consequently, detecting super spreaders can

be modeled as identifying the flows with large cardinalities.

Detecting super spreaders in high-speed data streams faces three

critical challenges. Firstly, memory constraints pose a significant

hurdle. It is desirable to access only high-speed cache memory (e.g.,

SRAM) to ensure a high item processing throughput. However,

the cache memory is limited in capacity and must be shared by

many functions, necessitating highly memory-efficient methods.

Secondly, mergeability is indispensable to accommodate flexible

application requirements. For instance, we can merge the data

from multiple separate points for parallel collaborative measure-

ment [35]. Another case is merging the algorithm instances in

different measurement periods to detect over longer timescales.

Otherwise, multiple instances deployed for different time ranges

must run simultaneously, causing much larger overhead. Thirdly,

online detection is crucial for real-time applications [19]. However,

calculating cardinalities is complex as it involves remembering all

elements and eliminating duplicates. To fit in the limited memory,

sketches, a family of probabilistic data structures that employ hash-

ing techniques for summarizing stream data, are widely employed.

For example, sketches for estimating a single flow’s cardinality,

such as bitmap [39] and HyperLogLog [13], usually serve as basic

sharing units in super spreader detection. To balance memory and

accuracy, most sketches require scanning hundreds of bits or regis-

ters (small-sized counters) for estimation, which is time-consuming

and unsuitable for real-time applications.

Many research efforts have been devoted to super spreader de-

tection, which can be broadly categorized into invertible and non-

invertible methods. Non-invertible methods prioritize minimizing

memory consumption and estimation noises [7, 37, 43]. However,

to locate the super spreaders, they necessitate prior knowledge of

flow IDs. Besides, they also suffer from the over-estimation problem
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caused by hash collisions when querying on numerous small flows

(i.e., with low cardinalities). Invertible methods, on the other hand,

can recover flow IDs just from their own data structures. Most of

them rely on uniform-sized cardinality estimators, whose size is

determined by the possible maximum flow cardinality [2, 27, 35, 38].

Unfortunately, in real-world data streams, most flows are small,

and only a few are large (i.e., with high cardinalities) [15, 19, 20].

Thus, most cardinality estimators cannot fully utilize their memory

space, causing memory waste. ExtendedSketch [20] and Extend-

edSketch+ [15] dynamically expand small bitmaps to accommodate

the skewness, but the memory pointers in their design introduce

significant memory overhead. FreeBS-SSD and FreeRS-SSD [19]

support online super spreader detection and achieve high mem-

ory efficiency through bit/register memory sharing. However, their

data structures are non-mergeable, limiting their flexibility. In short,

existing work can hardly address the challenges simultaneously.

To this end, we propose RGS-Sketch, a novel sketch that simulta-

neously achieves highmemory efficiency, supports online detection,

maintains mergeability, and offers invertibility. The core of RGS-
Sketch lies in a new memory sharing strategy called Register Group
Sharing. Specifically, we assign each flow a virtual estimator com-

posed of registers that are organized into uniformly sized groups.

Then, each group in the virtual estimator maps to a group in a

shared physical register pool. Through this strategy, small flows

consume only a few physical registers, while larger flows consume

more. Thus, it accommodates the high skewness of real-world data

streams, thereby ensuring high memory efficiency. Furthermore,

each group is stored within a machine word, allowing a single mem-

ory access to retrieve all registers in the group. Then, we can get a

real-time estimation of the flow cardinality increment based on the

group’s state. With buckets that record the IDs and accumulated

cardinality estimations of candidate super spreaders, RGS-Sketch

provides invertibility and online detection capability. Also, we can

merge the register pools from different measurement points/periods

and estimate the aggregated flow cardinalities. In addition, we pro-

pose the limited register update strategy to enhance the algorithm’s

accuracy further. This technique restricts register updates only to

elements of candidate super spreaders. Therefore, it can reduce the

memory overhead and estimation noises caused by the numerous

small flows. We perform a detailed theoretical analysis and conduct

extensive experiments based on four real-world datasets. Compared

with the state-of-the-art algorithms, RGS-Sketch significantly im-

proves the F1 scores while maintaining a high throughput.

2 BACKGROUND AND RELATEDWORK
2.1 Problem Statement
We consider a general model where a data stream consists of a

sequence of data items that form multiple sub-streams, also called

flows. Each data item is a pair composed of a flow ID and an element.

The flow ID and element definitions are configured according to

application requirements, such as IP addresses, user IDs, and prod-

uct IDs. Measurement is typically conducted in each pre-defined

period for a continuous data stream, such as a packet stream on

the Internet. Let 𝐹 = {𝑓1, 𝑓2, 𝑓3, ...} and 𝐸 = {𝑒1, 𝑒2, 𝑒3, ...} separately
represent the flow ID set and element set. Each data item can be

denoted as (𝑓 , 𝑒), where 𝑓 ∈ 𝐹, 𝑒 ∈ 𝐸. Consequently, each flow is

a sub-stream comprising all data items with its ID, and a flow’s

cardinality is defined as the number of distinct elements in it.

Super spreaders are defined as flows whose cardinality exceeds

a pre-defined threshold. Let 𝑛𝑓 represent the cardinality of flow 𝑓 ,

and 𝑛 represent the total cardinality of all flows, e.g., 𝑛 =
∑︁

𝑓 ∈𝐹 𝑛𝑓 .
Then, a flow is a super spreader if 𝑛𝑓 ≥ 𝑇 , where𝑇 is a pre-defined

threshold. According to application needs, 𝑇 can be a constant

or a variable 𝜙𝑛, where 𝜙 is a pre-defined fraction threshold. In

practice, we usually employ a separate cardinality estimator with

tiny memory space to estimate 𝑛.

2.2 Related Work
Two main techniques are widely employed in super spreader detec-

tion: sampling and sketches. The sampling-based methods usually

capture large flows by sampling elements, and then utilize a hash ta-

ble to record the captured flows and sampled elements [5, 22, 33, 36].

Some studies have pointed out that thesemethods inherently exhibit

poor accuracy and high memory consumption [26]. Non-duplicate

sampling [17] and the further work [8, 9] utilize an on-chip/off-chip

model and record the captured flows and sampled elements in the

off-chip memory (e.g., DRAM) to reduce the demand for the on-chip

memory. However, the sampling probability is constrained by the

update speed of the off-chip memory and the communication speed

between the on-chip and off-chip components.

Sketch-based methods have gained wide attention due to their

high memory efficiency and accuracy. Random Aging Streaming

Filter [43] detects super spreaders using a two-dimensional bit ar-

ray with aging operations. BACON Sketch [7] combines Count-Min

Sketch [6] and Direct Bitmap [11] to estimate flows’ cardinalities.

Randomized Error-reduction Sketch [37] splits the noises caused by

estimator-level memory sharing into two parts and removes noises

by subtracting the complement from the primary part. Geometric-

Min Filter [28] identifies the super spreaders by recording the ar-

rival flows’ maximum geometric hash values in a two-dimensional

counter array. Geometric-Min Filter itself is not invertible. Further-

more, it does not provide cardinality estimations. The methods

above lack invertibility, necessitating the adoption of additional

mechanisms for recording flow IDs.

Invertible sketches can recover the IDs of super spreaders from

their own data structures. This invertibility can be achieved through

two primary ways. The first way is to record ID information using

indexes and reconstruct flow IDs after the measurement. Connec-

tion Degree Sketch [38] employs a three-dimensional bit array for

cardinality estimation and reconstructs super spreader IDs based

on the Chinese Remainder Theorem. Double Connection Degree

Sketch [38] further introduces an additional valid sketch to re-

duce the false positives when reconstructing IDs. Vector Bloom

Filter [27] extracts bits from flow IDs as indexes and recovers the

flow IDs by overlapping the indexes. The above methods are not

memory-efficient as they ignore the highly skewed flow cardinal-

ity distribution when allocating estimators’ memory. ExtendedS-

ketch [20] aims to accommodate the skewness by dynamically

extending bitmaps. Specifically, it constructs a two-dimensional

bucket array where each bucket contains an extensible bitmap for

cardinality estimation. Besides, it uses the Chinese Remainder The-

orem for ID reconstruction. However, ExtendedSketch confronts
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substantial memory overhead of pointers and challenges in pre-

dicting final memory consumption. Moreover, reconstructing flow

IDs requires enumerating all possible index combinations, which is

time-consuming and prone to generating numerous fake flow IDs.

The second way to achieve invertibility is directly storing flow

IDs inmemory. Since thememory is limited, the number of recorded

flows is constrained. Thus, flows must compete for opportunities

to be recorded. SpreadSketch [35] enhances Count-Min Sketch by

equipping each bucket with a multiresolution bitmap [11], an ID

field, and a hash value level field for competition. FlowFight [2] uses

a fixed number of HyperLogLog estimators [13] and maintains a

sorted flow list based on rough cardinality estimations. These meth-

ods allocate the same memory to each cardinality estimator, thus

not memory-efficient. Like ExtendedSketch, ExtendedSketch+ [15]

also builds upon the idea of dynamically extending bitmaps. Except

for the extensible bitmap, it adds an ID field and a possibility index

to each bucket for flow competition. Besides, it adds a quotient set

for each bit in the bitmap to ensure a lossless extension strategy.

However, the sets also lead to more considerable memory overhead

than ExtendedSketch. FreeBS-SSD and FreeRS-SSD [19] achieve

high memory efficiency by sharing memory among all flows at a

bit/register level. Specifically, they employ a bit/register pool for

cardinality estimation and a Stream-Summary [29] for recording

the IDs and estimated cardinalities of candidate super spreaders.

Each time a flow element arrives, it will be hashed to one bit/register

within the whole pool, and the flow can immediately get an incre-

ment value of the estimated cardinality. Since large flows tend to

use more bits/registers, their designs accommodate the skewed

flow cardinality distribution. However, neither FreeBS-SSD nor

FreeRS-SSD are mergeable due to their sharing strategies.

3 ALGORITHM DESIGN
3.1 Main Idea
The main idea of RGS-Sketch lies in organizing contiguous registers

within a machine word into a group for memory sharing. This

design provides fine-grained memory sharing and enables online

cardinality tracking. Furthermore, this design is also amenable to

merging operations.

Accurately tracking large flows is imperative to facilitate precise

super spreader detection. In other words, we must accurately deter-

mine which flows surpass others in cardinality duringmeasurement.

To this end, we adopt a real-time cardinality tracking technique

rooted in computing real-time state-changing probabilities. The

basic concept is as follows. Consider a register array whose state

can be changed by a new element with a probability 𝑝 . Suppose a

new element alters the array at the current moment. In that case,

we can increment the corresponding flow’s cardinality estimation

by 𝑝−1. Thus, we can provide real-time estimations with a structure

that accumulates the estimations of flows’ cardinality increments.

Considering the requirement for mergeability, one typical mem-

ory sharing strategy is vHLL [40], which is designed to estimate the

cardinalities of all flows. This strategy assigns each flow a virtual

HyperLogLog estimator composed of registers, and each register is

randomly drawn from a register pool. Then, we can leverage Hyper-

LogLog’s methodology for cardinality estimation. In this strategy,

we canmerge multiple register pools by taking the maximum values
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Figure 1: The data structure of RGS-Sketch.

in the corresponding registers. However, when estimating a flow’s

cardinality, vHLL needs to read all registers within the virtual esti-

mator, involving computing hash functions and accessing discrete

memory hundreds of times. This high estimation overhead makes

it impractical to capture the super spreaders during measurement.

Thus, it is unsuitable for super spreader detection.

In the design of RGS-Sketch, we propose RegisterGroup Sharing
to reconcile real-time state-changing probability calculation and

mergeable fine-grained memory sharing. This strategy organizes

registers into groups, where each group is a contiguous memory

block. Subsequently, each flow is assigned a virtual HyperLogLog

estimator comprised of register groups randomly selected from

a physical register pool. Instead of traversing the entire virtual

estimator, we only examine one group to compute the group’s state-

changing probability. When a group is confined to a single machine

word, it only involves two hash function calculations to determine

the physical group index and one memory access to retrieve the

content. Thus, the probability calculation process can be executed

in real time. Note that we choose to employ the probability of a

group rather than a single register to utilize the averaging effect.

This design avoids the large estimation errors caused when items

belonging to small flows coincidently alter a register with a small

state-changing probability. Meanwhile, this register group sharing

approach can still provide high memory efficiency due to the small

group size. Additionally, it retains the ability to perform themerging

operations based on HyperLogLog’s estimation method.

3.2 Data Structure
As depicted in Figure 1, the data structure of RGS-Sketch includes a

bucket array 𝐵 containing 𝜔 buckets and a register pool 𝑅 consist-

ing of 𝑀 registers. Each bucket comprises 𝜆 cells, each including

two fields: an ID field for recording the flow ID and a counter field

for tracking flow cardinality. We use 𝐵 [𝑖] [ 𝑗] .𝐼𝐷 and 𝐵 [𝑖] [ 𝑗] .𝐶 to

represent the ID and counter field of the 𝑗-th cell in the 𝑖-th bucket,

respectively. The register pool 𝑅 can be seen as a two-dimensional

register array arranged in 𝑑 rows and𝑚 columns, resulting in a

total of 𝑀 = 𝑑𝑚 registers. Each register can be seen as a small-

sized counter, whose size is typically 5 bits like the configuration in

HyperLogLog. Within the register pool, we refer to the set of𝑚 reg-

isters aligned horizontally as a register group, ensuring contiguous
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memory allocation for each group. Note that the memory of contin-

uous groups is contiguous in implementation, with no wasted space

between the groups. At the beginning of each measurement period,

bucket array 𝐵 and register pool 𝑅 must be initialized, ensuring

that all fields and registers are set to 0.

During the measurement process, each flow 𝑓 is assigned a vir-

tual HyperLogLog estimator𝑅𝑓 comprising 𝑠 virtual register groups,

where 𝑠 ≪ 𝑑 . Consequently, 𝑅𝑓 has𝑀′ = 𝑠𝑚 virtual registers. As

configured in HyperLogLog, to facilitate updating the virtual Hy-

perLogLog,𝑀′ should be a power of 2. Then,𝑚 and 𝑠 should also

be powers of 2. We term these estimators and register groups as

“virtual” to emphasize that they exist solely in a logical sense, with-

out incurring any additional memory overhead. Specifically, each

virtual group is randomly mapped to a physical group within 𝑅

through a hash function. This strategy ensures that all flows share

the register pool 𝑅 at a level of register groups.

3.3 Update Operation
The pseudo-code for the update operation is shown in Algorithm 1.

For each arrival item (𝑓 , 𝑒), we first calculate three values: virtual
group index 𝑔𝑣 = ℎ (𝑓 , 𝑒) mod 𝑠 , register index 𝑟 = ⌊ℎ (𝑓 , 𝑒) /𝑠⌋
mod 𝑚 in the group, and the remaining string ⌊ℎ (𝑓 , 𝑒) /(𝑠𝑚)⌋,
where ℎ (·) is a hash function that outputs a 32-bit string. The

virtual group 𝑅𝑓 [𝑔𝑣] is mapped to a physical group 𝑅 [𝑔] through
𝑔 = ℎ′𝑔𝑣 (𝑓 ), where ℎ

′
𝑖
(·) are hash functions with a range of [0, 𝑑).

The hash functions ℎ′
𝑖
(·) can be implemented as follows:

ℎ′𝑖 (𝑓 ) = ℎ′ (𝑓 ⊕ 𝐶 [𝑖]) or ℎ′𝑖 (𝑓 ) = ℎ′ (𝑓 | 𝑖) , 0 ≤ 𝑖 < 𝑠, (1)

where ℎ′ (·) is a master function, ⊕ represents the XOR operator,𝐶

is an array containing distinct constant integers that are randomly

generated, and | denotes the concatenation operator.

Subsequently, an element rank value 𝑜 is calculated using the

function 𝜌 (⌊ℎ (𝑓 , 𝑒) /(𝑠𝑚)⌋). The function 𝜌 (·) returns one plus
the count of leading zeros in the input binary string. For instance,

𝜌 (10...2) = 1, 𝜌 (01...2) = 2. When the input equals 0, 𝜌 (·) gets
the maximum output 𝑜𝑚𝑎𝑥 that equals one plus the length of the

input binary string. If 𝑜 is not larger than 𝑅 [𝑔] [𝑟 ], no further action
is taken for the current item. Otherwise, we need to update the

bucket array and the register pool. The state-changing probability

of group 𝑅 [𝑔] must be calculated to perform the updates. For an

arbitrary item mapped to 𝑅 [𝑔], the probability that 𝑜 exceeds the

value stored in the corresponding register is calculated as follows:

𝑝 =

𝑚−1∑︂
𝑗=0

Pr (𝑟 = 𝑗 ∧ 𝑜 > 𝑅 [𝑔] [ 𝑗])

=
1

𝑚

∑︂
0≤ 𝑗<𝑚,𝑅 [𝑔] [ 𝑗 ]≠𝑜𝑚𝑎𝑥

2
−𝑅 [𝑔] [ 𝑗 ] .

(2)

Then, we access bucket array 𝐵 to update the estimated cardi-

nality of flow 𝑓 using 𝑝 . Note that we do not immediately update

the register 𝑅 [𝑔] [𝑟 ]. Instead, the decision is deferred until after

processing bucket array 𝐵. The bucket index of flow 𝑓 is deter-

mined by 𝑏 = ℎ′′ (𝑓 ), where ℎ′′ (·) is a hash function whose range

is [0, 𝜔). Depending on the mapped bucket 𝐵 [𝑏], we apply different
operations in the following three cases:

Case 1. If a cell 𝐵 [𝑏] [𝑐] recording flow 𝑓 exists, we increment

the cell’s counter filed 𝐵 [𝑏] [𝑐] .𝐶 by 𝑝−1. Note that 𝑝−1 is typically

Algorithm 1: Update Operation
Input :data item (𝑓 , 𝑒 )

1 flag← false; // indicate if 𝑓 has been recorded

2 𝑔𝑣 ← ℎ (𝑓 , 𝑒 ) mod 𝑠 ; 𝑟 ← ⌊ℎ (𝑓 , 𝑒 ) /𝑠 ⌋ mod 𝑚;

3 𝑔← ℎ′𝑔𝑣 (𝑓 ) ; 𝑜 ← 𝜌 ( ⌊ℎ (𝑓 , 𝑒 ) /(𝑠𝑚) ⌋ ) ;
4 if 𝑜 ≤ 𝑅 [𝑔] [𝑟 ] then
5 return;

6 𝑝 ← 1

𝑚

∑︁
0≤ 𝑗<𝑚,𝑅 [𝑔] [ 𝑗 ]≠𝑜𝑚𝑎𝑥

2
−𝑅 [𝑔] [ 𝑗 ]

; 𝑏 ← ℎ′′ (𝑓 ) ;
7 𝑐′ ← 0; // capture the smallest cell

8 for 𝑐 ← 1 to 𝜆 do
9 if 𝐵 [𝑏 ] [𝑐 ] .𝐼𝐷 = 𝑓 then // Case 1

10 Increase

(︁
𝐵 [𝑏 ] [𝑐 ] .𝐶, 𝑝−1

)︁
; flag← true;

11 break;

12 if 𝐵 [𝑏 ] [𝑐 ] .𝐶 = 0 then // Case 2

13 𝐵 [𝑏 ] [𝑐 ] .𝐼𝐷 ← 𝑓 ; Increase

(︁
𝐵 [𝑏 ] [𝑐 ] .𝐶, 𝑝−1

)︁
;

14 flag← true;

15 break;

16 if 𝐵 [𝑏 ] [𝑐 ] .𝐶 < 𝐵 [𝑏 ] [𝑐′ ] .𝐶 then
17 𝑐′ ← 𝑐 ;

18 if flag = false and ℎ′′′ (𝑓 , 𝑒 ) < 𝑋
𝐵 [𝑏 ] [𝑐′ ] .𝐶+1 then // Case 3

19 𝐵 [𝑏 ] [𝑐′ ] .𝐼𝐷 ← 𝑓 ; Increase(𝐵 [𝑏 ] [𝑐′ ] .𝐶, 1) ;
20 flag← true;

21 if flag = true then
22 𝑅 [𝑔] [𝑟 ] = 𝑜 ;

a decimal, which introduces problems in the counter updates. We

will discuss it in Section 3.7.

Case 2. No cell recording flow 𝑓 exists, while empty cells are

available in bucket 𝐵 [𝑏]. Assuming the first empty cell is 𝐵 [𝑏] [𝑐],
we set its ID field and counter field to 𝑓 and 𝑝−1 separately, i.e., let
𝐵 [𝑏] [𝑐] .𝐼𝐷 = 𝑓 and 𝐵 [𝑏] [𝑐] .𝐶 = 𝑝−1.

Case 3. There is no cell recording flow 𝑓 , and no empty cell

remains in bucket 𝐵 [𝑏]. In this case, we adopt a probability-based

replacement strategy to replace the flow ID recorded in the smallest

cell. Assuming the cell with the smallest counter is 𝐵 [𝑏] [𝑐′], we
set 𝐵 [𝑏] [𝑐′] .𝐼𝐷 to 𝑓 with a probability of (𝐵 [𝑏] [𝑐′] .𝐶 + 1)−1. We

utilize a hash function ℎ′′′ (·) with a range of [0, 𝑋 ) to implement

this probabilistic replacement, where 𝑋 is a large enough constant.

If ℎ′′′ (𝑓 , 𝑒) is less than (𝐵 [𝑏] [𝑐′] .𝐶 + 1)−1 𝑋 , we replace the value

of 𝐵 [𝑏] [𝑐′] .𝐼𝐷 as well as increment 𝐵 [𝑏] [𝑐′] .𝐶 by one. Otherwise,

the content of 𝐵 [𝑏] [𝑐] will not be changed.
It can be seen that when updating the bucket array, we only need

one hash function to locate the bucket and continuous memory

accesses to retrieve the cells in it. In contrast, Stream-Summary [29],

the Count-Min-like structures [6, 15, 20, 29], and the structures [12,

32] based on Cuckoo Hashing [30] require multiple discrete mem-

ory accesses. The updating operations for these structures are more

time-consuming. Moreover, Stream-Summary includes numerous

memory pointers, harming its memory efficiency. Thus, we choose

the bucket array structure for recording the candidate super spread-

ers. After updating the bucket array, we determine whether to

update the register 𝑅 [𝑔] [𝑟 ]. Conventionally, 𝑅 [𝑔] [𝑟 ] will always
be set to the element rank value 𝑜 . However, this strategy lets the

large number of small flows that are unlikely to be super spreaders
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consume significant memory. To solve this problem, we propose a

novel limited register update strategy. It updates 𝑅 [𝑔] [𝑟 ] to 𝑜 only

if flow 𝑓 has been recorded in bucket array 𝐵 after the previous

processing. In other words, this strategy only allows the candidate

super spreaders to perform register updates. Through this limited

register update strategy, we can avoid the unnecessary memory

consumption caused by small flows, thereby enhancing ourmemory

efficiency compared with the traditional approach.

3.4 Merging Operation
Multiple instances of RGS-Sketch, deployed at different measure-

ment points/periods, can be merged to detect the super spreaders

within the aggregated data stream. Given a set of 𝐼 RGS-Sketches

𝑅𝐺𝑆0, 𝑅𝐺𝑆1, ..., 𝑅𝐺𝑆𝐼−1 sharing identical register-related parame-

ters (e.g., 𝑠, 𝑑,𝑚, and hash functions), the merging operation is:

𝑅𝐺𝑆.𝑅 [𝑖] [ 𝑗] = max

0≤𝑘<𝐼
𝑅𝐺𝑆𝑘 .𝑅 [𝑖] [ 𝑗], (3)

where 𝑅𝐺𝑆.𝑅 [𝑖] [ 𝑗] and 𝑅𝐺𝑆𝑘 .𝑅 [𝑖] [ 𝑗] separately represent the 𝑗-th

register in the 𝑖-th group of the merged and the 𝑘-th RGS-Sketch.

The bucket arrays remain separate and provide flow IDs for the

query based on the merged register pool.

3.5 Query Operation
RGS-Sketch includes two query techniques: counter-based query

and register-based query, which are employed in different scenarios.

The former is employed to estimate flow cardinalities at a single

measurement point/period. Meanwhile, the latter estimates flow

cardinalities across multiple points/periods.

3.5.1 Counter-basedQuery. To query a flow 𝑓 , we first locate its

mapped bucket 𝐵 [ℎ′′ (𝑓 )] and then scan the cells in it. If there exists
a cell 𝐵 [ℎ′′ (𝑓 )] [𝑐] recording flow 𝑓 , we employ the cell’s counter

value as 𝑓 ’s cardinality estimation 𝑛̂𝑓 , i.e., 𝑛̂𝑓 = 𝐵 [ℎ′′ (𝑓 )] [𝑐] .𝐶 .
Otherwise, we conservatively estimate its cardinality as 0 if flow 𝑓

is not recorded.

3.5.2 Register-basedQuery. This query is performed on the register

pool of the sketch 𝑅𝐺𝑆 merged from 𝐼 RGS-Sketches 𝑅𝐺𝑆0, 𝑅𝐺𝑆1,

..., 𝑅𝐺𝑆𝐼−1. The query method is similar to that of vHLL [40]. Given

flow 𝑓 , we construct its virtual estimator 𝑅𝑓 as follows: 𝑅𝑓 [𝑖] [ 𝑗] =
𝑅 [ℎ′

𝑖
(𝑓 )] [ 𝑗] for 0 ≤ 𝑖 < 𝑠 and 0 ≤ 𝑗 < 𝑚. Due to memory sharing,

𝑅𝑓 records not only the elements of flow 𝑓 but also those of other

flows, which introduces noises. Let 𝑛 (𝑅) and 𝑛(𝑅𝑓 ) be the total

number of distinct elements recorded by 𝑅 and 𝑅𝑓 , respectively.

Additionally, let 𝑛𝑓(𝑅) represent the number of 𝑓 ’s recorded distinct

elements. The recorded elements refer to the elements that arrive

when their flows are recorded in the bucket array (including the

elements that put their flows into the bucket array), thereby not

discarded by the limited register update strategy. Thus, 𝑛 (𝑅) ≤ 𝑛

and 𝑛𝑓(𝑅) ≤ 𝑛𝑓 . The noise 𝑛(𝑅𝑓 ) − 𝑛𝑓(𝑅) approximately follows the

binomial distribution 𝐵𝑖𝑛𝑜

(︂
𝑛 (𝑅) − 𝑛𝑓(𝑅) ,

𝑠
𝑑

)︂
. Hence, we have

E
(︂
𝑛(𝑅𝑓 ) − 𝑛𝑓(𝑅)

)︂
=

𝑠

(︂
𝑛 (𝑅) − 𝑛𝑓(𝑅)

)︂
𝑑

.
(4)

We can approximate 𝑛(𝑅𝑓 ) − 𝑛𝑓(𝑅) using this expectation. Then,

𝑛𝑓(𝑅) ≈
𝑑𝑠

𝑑 − 𝑠

(︃𝑛(𝑅𝑓 )
𝑠
−
𝑛 (𝑅)
𝑑

)︃
. (5)

It is worth noting that the discrepancy between the estimations of

𝑛𝑓(𝑅) and 𝑛𝑓 is insignificant. On the one hand, large flows tend to be

rapidly captured in the bucket array, therebyminimally impacted by

our limited register update strategy. On the other hand, without our

strategy, small flows usually struggle to receive accurate estimates

due to the overwhelming noises from other flows. In contrast, our

strategy effectively mitigates this issue by reducing the noises. By

replacing 𝑛(𝑅𝑓 ) and 𝑛 (𝑅) with their estimations 𝑛̂(𝑅𝑓 ) , 𝑛̂ (𝑅) and
estimate 𝑛𝑓 using the estimation of 𝑛𝑓(𝑅) , we have

𝑛̂𝑓 =
𝑑𝑠

𝑑 − 𝑠

(︄
𝑛̂(𝑅𝑓 )
𝑠
−
𝑛̂ (𝑅)
𝑑

)︄
. (6)

Using the HyperLogLog estimation formula, we can get

𝑛̂(𝑅𝑓 ) = 𝛼𝑀 ′
(︁
𝑀′

)︁
2 ⎛⎜⎝

𝑠−1∑︂
𝑖=0

𝑚−1∑︂
𝑗=0

2
−𝑅𝑓 [𝑖 ] [ 𝑗 ]⎞⎟⎠

−1

, (7)

𝑛̂ (𝑅) = 𝛼𝑀𝑀2 ⎛⎜⎝
𝑑−1∑︂
𝑖=0

𝑚−1∑︂
𝑗=0

2
−𝑅 [𝑖 ] [ 𝑗 ]⎞⎟⎠

−1

. (8)

Here, 𝛼𝑥 is a bias correction constant associated with variable 𝑥 :

𝛼𝑥 =

(︃
𝑥

∫ ∞

0

(︃
log

2

(︃
2 + 𝑢
1 + 𝑢

)︃)︃𝑥
𝑑𝑢

)︃−1
. (9)

Due to the complexity of this formula, it is common practice to em-

ploy numerical approximations in real-world applications. Specif-

ically, we often use 𝛼16 = 0.673, 𝛼32 = 0.697, 𝛼64 = 0.709, and

𝛼𝑥 = 0.7213
(︁
1 + 1.079𝑥−1

)︁−1
for 𝑥 ≥ 128.

While Formulas (7) and (8) are typically accurate, they may

yield large errors when the estimated values are extremely small or

large, which need to be corrected. Take 𝑛̂(𝑅𝑓 ) as an example. The

corrected formula is as follows:

𝑛̂(𝑅𝑓 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀′ ln (𝑀′/𝑉 ′) 𝑛̂(𝑅𝑓 ) ≤ 2.5𝑀′ and 𝑉 ′ > 0

−232 ln
(︂
1 − 1

2
32
𝑛̂(𝑅𝑓 )

)︂
𝑛̂(𝑅𝑓 ) ≥

1

30
2
32

𝑛̂(𝑅𝑓 ) otherwise

,

(10)

where 𝑉 ′ represents the number of registers equal to 0 in 𝑅𝑓 . A

similar correction is applied to 𝑛̂ (𝑅) by replacing 𝑛̂(𝑅𝑓 ) , 𝑀
′
, and

𝑉 ′ in the above formula with 𝑛̂ (𝑅) ,𝑀 , and𝑉 respectively, where𝑉

denotes the number of registers equal to 0 in 𝑅.

In the context of a single RGS-Sketch, the counter-based query

offers an estimate by leveraging all state changes of 𝑅𝑓 , while the

register-based query can only rely on the final state. Additionally,

memory sharing makes the register-based query susceptible to

noises introduced by other flows. As a result, the counter-based

query usually yields superior accuracy, which will be proved in

Section 4.3. Recall that the register-based query is based on 𝐼 RGS-

Sketches 𝑅𝐺𝑆0, 𝑅𝐺𝑆1, ..., 𝑅𝐺𝑆𝐼−1. We can leverage the counter-

based query results from the 𝐼 RGS-Sketches to enhance estimation

accuracy further. Let 𝑛̂
(𝐶 )
𝑓
[𝑘] represent the counter-based query
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result of flow 𝑓 on the 𝑘-th RGS-Sketch, and min[𝑘] represent the
value of the smallest counter in the bucket array of the 𝑘-th RGS-

Sketch. We can then refine our estimation using the upper and

lower bounds:

𝑛̂𝑓 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈 𝑛̂𝑓 > 𝑈

𝐿 𝑛̂𝑓 < 𝐿

𝑛̂𝑓 otherwise

, (11)

where𝑈 =
∑︁𝐼−1
𝑘=0

max{𝑛̂ (𝐶 )
𝑓
[𝑘],min[𝑘]} and 𝐿 = max

0≤𝑘<𝐼
𝑛̂
(𝐶 )
𝑓
[𝑘].

3.6 Super Spreader Detection
3.6.1 Detection at a Single Measurement Point/Period. When mea-

surements are conducted at a single point/period, RGS-Sketch sup-

ports online and offline super spreader detection. For online detec-

tion, after recording each item (𝑓 , 𝑒), we can use the counter-based

query to get the cardinality estimation 𝑛̂𝑓 of flow 𝑓 . If 𝑛̂𝑓 ≥ 𝑇 , flow
𝑓 is promptly reported as a super spreader. For offline detection, we

systematically scan each cell 𝐵 [𝑏] [𝑐] to retrieve flow ID 𝐵 [𝑏] [𝑐] .𝐼𝐷
and the flow’s cardinality estimation 𝐵 [𝑏] [𝑐] .𝐶 . If 𝐵 [𝑏] [𝑐] .𝐶 ≥ 𝑇 ,
we report 𝐵 [𝑏] [𝑐] .𝐼𝐷 as a super spreader.

3.6.2 Detection across Multiple Measurement Points/Periods. Sup-
pose we have collected 𝐼 RGS-Sketches 𝑅𝐺𝑆𝑘 , 0 ≤ 𝑘 < 𝐼 from the 𝐼

measurement points/periods. Initially, we systematically scan the

bucket arrays of all 𝐼 RGS-Sketches to obtain a set of recorded flow

IDs 𝐹 ′ = {𝑅𝐺𝑆𝑘 .𝐵 [𝑏] [𝑐] .𝐼𝐷, 0 ≤ 𝑘 < 𝐼 , 0 ≤ 𝑏 < 𝜔, 0 ≤ 𝑐 < 𝜆}.
Subsequently, for each flow 𝑓 ∈ 𝐹 ′, we leverage Formula (11) to

estimate its cardinality 𝑛̂𝑓 . If 𝑛̂𝑓 ≥ 𝑇 , flow 𝑓 is promptly identified

as a super spreader.

3.7 Discussion on Counter Updates
In Cases 1 and 2 of the update operation, the counter fields to be up-

dated will be increased by 𝑝−1. Since 𝑝−1 is typically a decimal, we

cannot simply configure the counter fields as integers. One choice

is configuring each counter field as a float-type or a double-type

variable. However, in modern machines, a float-type variable usu-

ally has only 6 or 7 significant digits, which means large counters

may ignore the small increment of 𝑝−1. In contrast, a double-type

variable has enough significant digits but usually takes up 64 bits

and is not memory-efficient. Another choice is configuring the

counter fields as integers and using the rounded value of 𝑝−1 as
updates. Unfortunately, the rounded value of 𝑝−1 is not an unbi-

ased approximation when 𝑝 is not a uniform random variable. For

example, when the recorded elements increase and 𝑝 decreases

from 1 to
2

3
(not included), the rounded value of 𝑝−1 will always

be

⌊︁
𝑝−1

⌋︁
. To overcome this issue, we employ a sampling method

to update the counter fields when configuring them as integers.

Initially, we set the update value to

⌊︁
𝑝−1

⌋︁
. Subsequently, we incre-

ment the update value by one with a probability of 𝑝−1 −
⌊︁
𝑝−1

⌋︁
.

Finally, we use this update value to update the counters. Let 𝑈

be a random variable representing the update value. We can get

𝐸 (𝑈 ) =
(︁ ⌊︁
𝑝−1

⌋︁
+ 1

)︁ (︁
𝑝−1 −

⌊︁
𝑝−1

⌋︁ )︁
+

⌊︁
𝑝−1

⌋︁ (︁
1 − 𝑝−1 +

⌊︁
𝑝−1

⌋︁ )︁
=

𝑝−1. In other words, this method provides an unbiased approxima-

tion. Thus, we adopt this method instead of the rounded value to

accurately approximate the value of 𝑝−1 while maintaining high

memory efficiency.

3.8 Optimization on Number of Hash Functions
In the update operation of RGS-Sketch, the execution of four hash

functions (i.e., ℎ (𝑓 , 𝑒), ℎ′
𝑖
(𝑓 ), ℎ′′ (𝑓 ), and ℎ′′′ (𝑓 , 𝑒)) could be ex-

pensive in time cost. To mitigate this computational burden, we

employ a technique inspired by Kirsch et al.’s work [25] that reduces

the number of hash functions to calculate. Specifically, we utilize

two hash functions, 𝐻 (𝑓 ) and 𝐻 ′ (𝑒), to simulate the four hash

functions mentioned above. The simulation is achieved as follows:

ℎ (𝑓 , 𝑒) = 𝐻 (𝑓 ) + 𝐻 ′ (𝑒) ,
ℎ′𝑖 (𝑓 ) = 𝐻 (𝑓 ) ⊕ 𝐶 [𝑖], 0 ≤ 𝑖 < 𝑠

ℎ′′ (𝑓 ) = 𝐻 (𝑓 ) ,
ℎ′′′ (𝑓 , 𝑒) = 𝐻 (𝑓 ) +𝐶 [𝑠]𝐻 ′ (𝑒) ,

(12)

where ⊕ denotes the XOR operator, and 𝐶 is an array consisting of

𝑠 + 1 randomly generated distinct constant integers larger than 1.

Leveraging this approach, we only need to execute two actual hash

functions for each arrival item, significantly decreasing the hash

computation cost.

4 THEORETICAL ANALYSIS
This section formally analyzes the performance of counter-based

and register-based queries. In particular, the register-based query

in this section refers to the query method without Formula (11). We

give the expectation and variance of each query method’s estima-

tion results for super spreaders. Finally, we prove that the counter-

based query is more accurate than the register-based query.

4.1 Analysis on Counter-based Query
In real-world data streams, the cardinality distribution is generally

highly skewed [15, 19, 20]. Thus, the number of counters in the

bucket array is usually much larger than that of super spreaders. In

such a case, the likelihood of super spreaders colliding with each

other can be negligible. Moreover, super spreaders’ cardinalities

are usually hundreds to tens of thousands of times greater than

those of small flows. A super spreader can easily be inserted into

the cell with the smallest counter, even if its mapped bucket is full.

Subsequently, the counter will promptly increase its value and cease

to be the smallest one in the bucket. Therefore, the flow competition

process has little impact on the accuracy of super spreaders. Due to

the complexity of the dynamic flow competition process, we draw

inspiration from the typical works [15, 18, 19, 35, 41, 42, 44] and

assume that each super spreader has an individual counter to track

its cardinality estimation to simplify the analysis.

We use the time notation (𝑡) as superscripts to explain the pro-

cess of state changes. Let T (𝑡 )
𝑓

be the set of the first occurrence

times of flow 𝑓 ’s elements in the data stream until time 𝑡 . Then, at

time 𝑖 ∈ T (𝑡 )
𝑓

, flow 𝑓 ’s actual cardinality, its estimation, and the

sum of all flow’s cardinality are denoted as 𝑛
(𝑖 )
𝑓

, 𝑛̂
(𝑖 )
𝑓

, and 𝑛 (𝑖 ) , re-
spectively. In addition, the state-changing probability of the group

mapped by a new element arriving at time 𝑖 is denoted as 𝑝 (𝑖 ) .

Theorem 4.1. For a super spreader 𝑓 , the expectation and variance
of the counter-based query result are

E
(︂
𝑛̂
(𝑡 )
𝑓

)︂
= 𝑛
(𝑡 )
𝑓

, (13)
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𝑉𝑎𝑟

(︂
𝑛̂
(𝑡 )
𝑓

)︂
=

∑︂
𝑖∈T (𝑡 )

𝑓

E
(︃

1

𝑝 (𝑖 )

)︃
− 𝑛 (𝑡 )

𝑓
,

(14)

where E
(︂

1

𝑝 (𝑖 )

)︂
≈ 1

𝛼𝑚𝑀

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
when

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
>

2.5𝑀 , and 𝛼𝑚 is calculated by Formula (9).

Proof. Let 𝛿 (𝑖 ) be the indicator variable for the event that reg-
ister pool 𝑅 is changed by the element arriving at time 𝑖 , and 𝑥 (𝑖 )

be the random variable representing the state-changing probability

of the element’s mapped register group. Then, we have

E
(︂
𝛿 (𝑖 )

|︁|︁|︁ 𝑥 (𝑖 ) = 𝑝 (𝑖 )
)︂
= 𝑝 (𝑖 ) , (15)

𝑉𝑎𝑟

(︂
𝛿 (𝑖 )

|︁|︁|︁ 𝑥 (𝑖 ) = 𝑝 (𝑖 )
)︂
= 𝑝 (𝑖 ) −

(︂
𝑝 (𝑖 )

)︂
2

. (16)

The estimation of flow 𝑓 ’s cardinality is calculated based on the

group state-changing probabilities each time its element changes

the register pool, namely,

𝑛̂
(𝑡 )
𝑓

=
∑︂

𝑖∈T (𝑡 )

𝛿 (𝑖 )

𝑝 (𝑖 )
. (17)

Note that the random variables 𝛿 (𝑖 ) , 𝑖 ∈ T (𝑡 ) are independent of
each other. Given a sequence of group state-changing probabilities

𝑥 (0) , 𝑥 (1) , ..., 𝑥 (𝑡 ) , 𝛿 (𝑖 ) is only associated with the variable 𝑥 (𝑖 ) at
the current time. Therefore, we have

E
(︂
𝑛̂
(𝑡 )
𝑓

|︁|︁|︁ 𝑥 (0) = 𝑝 (0) , 𝑥 (1) = 𝑝 (1) , ..., 𝑥 (𝑡 ) = 𝑝 (𝑡 )
)︂

=
∑︂

𝑖∈T (𝑡 )

E
(︂
𝛿 (𝑖 )

|︁|︁|︁ 𝑥 (𝑖 ) = 𝑝 (𝑖 )
)︂

𝑝 (𝑖 )

=
∑︂

𝑖∈T (𝑡 )

𝑝 (𝑖 )

𝑝 (𝑖 )
= 𝑛
(𝑡 )
𝑓

.

(18)

Then, we can get

E
(︂
𝑛̂
(𝑡 )
𝑓

)︂
=E

(︂
E

(︂
𝑛̂
(𝑡 )
𝑓

|︁|︁|︁ 𝑥 (0) = 𝑝 (0) , 𝑥 (1) = 𝑝 (1) , ..., 𝑥 (𝑡 ) = 𝑝 (𝑡 )
)︂)︂

=E
(︂
𝑛
(𝑡 )
𝑓

)︂
= 𝑛
(𝑡 )
𝑓

.

(19)

Next, we calculate the variance of 𝑛̂
(𝑡 )
𝑓

. We first calculate the

variance under given group state-changing probabilities:

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡 )
𝑓

|︁|︁|︁ 𝑥 (0) = 𝑝 (0) , 𝑥 (1) = 𝑝 (1) , ..., 𝑥 (𝑡 ) = 𝑝 (𝑡 )
)︂

=
∑︂

𝑖∈T (𝑡 )

𝑉𝑎𝑟

(︂
𝛿 (𝑖 )

|︁|︁|︁ 𝑥 (𝑖 ) = 𝑝 (𝑖 )
)︂

(︁
𝑝 (𝑖 )

)︁
2

=
∑︂

𝑖∈T (𝑡 )

𝑝 (𝑖 ) −
(︂
𝑝 (𝑖 )

)︂
2(︁

𝑝 (𝑖 )
)︁
2

=
∑︂

𝑖∈T (𝑡 )

1

𝑝 (𝑖 )
− 𝑛 (𝑡 )

𝑓
.

(20)

Then, we have

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡 )
𝑓

)︂
=𝑉𝑎𝑟

(︂
E

(︂
𝑛̂
(𝑡 )
𝑓

|︁|︁|︁ 𝑥 (0) = 𝑝 (0) , ..., 𝑥 (𝑡 ) = 𝑝 (𝑡 )
)︂)︂

+ E
(︂
𝑉𝑎𝑟

(︂
𝑛̂
(𝑡 )
𝑓

|︁|︁|︁ 𝑥 (0) = 𝑝 (0) , ..., 𝑥 (𝑡 ) = 𝑝 (𝑡 )
)︂)︂

=𝑉𝑎𝑟

(︂
𝑛
(𝑡 )
𝑓

)︂
+ E ⎛⎜⎝

∑︂
𝑖∈T (𝑡 )

1

𝑝 (𝑖 )
− 𝑛 (𝑡 )

𝑓

⎞⎟⎠
=

∑︂
𝑖∈T (𝑡 )

E
(︃

1

𝑝 (𝑖 )

)︃
− 𝑛 (𝑡 )

𝑓
.

(21)

It is complex to analyze the exact expression for E
(︂

1

𝑝 (𝑖 )

)︂
. For-

tunately, we can get an estimation of E
(︂

1

𝑝 (𝑖 )

)︂
from the estimation

formula of HyperLogLog. Specifically, we treat the register group

mapped by 𝑓 ’s element at time 𝑖 as a small HyperLogLog estima-

tor. Suppose the register group mentioned above is 𝑅 [𝑔]. We em-

ploy 𝑛
(𝑖 )
(𝑅 [𝑔] ) to represent the number of distinct elements recorded

by 𝑅 [𝑔] until time 𝑖 . According to HyperLogLog’s theory, when

𝑛
(𝑖 )
(𝑅 [𝑔] ) > 2.5𝑚, we have

𝑛
(𝑖 )
(𝑅 [𝑔] ) ≈E

⎛⎜⎝𝛼𝑚𝑚2 ⎛⎜⎝
𝑚−1∑︂
𝑗=0

2
−𝑅 [𝑔] [ 𝑗 ]⎞⎟⎠

−1 |︁|︁|︁|︁|︁|︁ 𝑛 (𝑖 )(𝑅 [𝑔] )⎞⎟⎠
≈𝛼𝑚𝑚E

(︃
1

𝑝 (𝑖 )

|︁|︁|︁|︁ 𝑛 (𝑖 )(𝑅 [𝑔] ) )︃ .
(22)

Thus, we have

E
(︃

1

𝑝 (𝑖 )

|︁|︁|︁|︁ 𝑛 (𝑖 )(𝑅 [𝑔] ) )︃ ≈ 𝑛
(𝑖 )
(𝑅 [𝑔] )
𝛼𝑚𝑚

. (23)

The elements recorded by 𝑅 [𝑔] can be divided into two parts:

the elements of flow 𝑓 , and the elements of the other flows. The

number of distinct elements in the former part and the latter part

approximately follows the binomial distribution 𝐵𝑖𝑛𝑜

(︂
𝑛
(𝑖 )
𝑓

, 1𝑠

)︂
and

𝐵𝑖𝑛𝑜

(︂
𝑛 (𝑖 ) − 𝑛 (𝑖 )

𝑓
, 1
𝑑

)︂
, respectively. Therefore, we can get

E
(︂
𝑛
(𝑖 )
(𝑅 [𝑔] )

)︂
= 𝑛
(𝑖 )
𝑓

1

𝑠
+

(︂
𝑛 (𝑖 ) − 𝑛 (𝑖 )

𝑓

)︂
1

𝑑
. (24)

Then, we have

E
(︃

1

𝑝 (𝑖 )

)︃
= E

(︃
E

(︃
1

𝑝 (𝑖 )

|︁|︁|︁|︁ 𝑛 (𝑖 )(𝑅 [𝑔] ) )︃)︃
≈
E

(︂
𝑛
(𝑖 )
(𝑅 [𝑔] )

)︂
𝛼𝑚𝑚

=
1

𝛼𝑚𝑚

(︃
𝑛
(𝑖 )
𝑓

1

𝑠
+

(︂
𝑛 (𝑖 ) − 𝑛 (𝑖 )

𝑓

)︂
1

𝑑

)︃
=

1

𝛼𝑚𝑀

(︃
𝑑 − 𝑠
𝑠

𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︃
,

(25)

when

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
> 2.5𝑀 . □
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4.2 Analysis On Register-based Query
In the analysis of the register-based query, we still assume that each

super spreader has an individual counter to track its cardinality

estimation during measurement.

Theorem 4.2. For a super spreader 𝑓 , the expectation and variance
of the register-based query result are

E
(︂
𝑛̂
(𝑡 )
𝑓

)︂
= 𝑛
(𝑡 )
𝑓

, (26)

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡 )
𝑓

)︂
≈

(︃
𝑀

𝑀 −𝑀′

)︃
2

(︄
1.042

𝑀′

(︃
𝑛
(𝑡 )
𝑓
+

(︂
𝑛 (𝑡 ) − 𝑛 (𝑡 )

𝑓

)︂ 𝑀′

𝑀

)︃
2

+
(︂
𝑛 (𝑡 ) − 𝑛 (𝑡 )

𝑓

)︂ 𝑀′

𝑀

(︃
1 − 𝑀′

𝑀

)︃
+

(︃
𝑀′

𝑀

)︃
2

1.042

𝑀

(︂
𝑛 (𝑡 )

)︂
2

)︄
.

(27)

Proof. The proof is very similar to the analysis in Section 6 of

vHLL [40]. Due to the page limit, we omit the proof. □

4.3 Discussions
In this part, we prove that the counter-based query outperforms

the register-based query in accuracy. This explains why we employ

the counter-based query rather than the register-based query for

offline estimation when measuring at a single point/period. We

employ 𝑛̂
(𝑡,𝐶 )
𝑓

and 𝑛̂
(𝑡,𝑅)
𝑓

to represent the estimated results of the

counter-based query and register-based query, respectively.

Theorem 4.3. For a super spreader 𝑓 , when𝑚 ≥ 8, we have

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡,𝐶 )
𝑓

)︂
⪅ 𝑉𝑎𝑟

(︂
𝑛̂
(𝑡,𝑅)
𝑓

)︂
. (28)

Proof. From HyperLogLog [13] and its improvement [16], we

can find that E
(︃
𝛼𝑚𝑚

2

(︂∑︁𝑚−1
𝑗=0 2

−𝑅 [𝑔] [ 𝑗 ]
)︂−1 |︁|︁|︁|︁ 𝑛 (𝑖 )(𝑅 [𝑔] ) )︃ ⪆ 𝑛

(𝑖 )
(𝑅 [𝑔] )

when 𝑛
(𝑖 )
(𝑅 [𝑔] ) < 2.5𝑀 . When 𝑛

(𝑖 )
(𝑅 [𝑔] ) = 0, the difference between

them gets the largest, which equals 𝛼𝑚𝑚. Then, according to For-

mula (25), we can derive that, when

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
= 0, the

difference between E
(︂

1

𝑝 (𝑖 )

)︂
and

1

𝛼𝑚𝑀

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
gets the

largest, which equals 1. In other words, we can get E
(︂

1

𝑝 (𝑖 )

)︂
⪅

1

𝛼𝑚𝑀

(︂
𝑑−𝑠
𝑠 𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︂
+ 1. Thus, from Theorem 4.1, we have

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡,𝐶 )
𝑓

)︂
⪅

∑︂
𝑖∈T (𝑡 )

𝑓

(︃
1

𝛼𝑚𝑀

(︃
𝑑 − 𝑠
𝑠

𝑛
(𝑖 )
𝑓
+ 𝑛 (𝑖 )

)︃
+ 1

)︃
− 𝑛 (𝑡 )

𝑓

≤
∑︂𝑛

(𝑡 )
𝑓

𝑗=1

(𝑑 − 𝑠)
𝛼𝑚𝑀𝑠

𝑗 +
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 )

𝛼𝑚𝑀

≤ (𝑑 − 𝑠)
2𝛼𝑚𝑀𝑠

(︃(︂
𝑛
(𝑡 )
𝑓

)︂
2

+ 𝑛 (𝑡 )
𝑓

)︃
+
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 )

𝛼𝑚𝑀

≤ 1

2𝛼𝑚𝑀′

(︂
𝑛
(𝑡 )
𝑓

)︂
2 ⎛⎜⎝1 + 1

𝑛
(𝑡 )
𝑓

⎞⎟⎠ +
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 )

𝛼𝑚𝑀
.

(29)

Figure 2: CCDF of the first segments’ flow cardinalities (left)
and the entire datasets’ flow cardinalities (right).

We can get 𝛼8 ≈ 0.6256 from Formula (9). In addition, according

to the numerical approximations, 𝛼𝑚 increases with the value of

𝑚. Thus, 𝑉𝑎𝑟

(︂
𝑛̂
(𝑡,𝐶 )
𝑓

)︂
⪅ 0.7992

𝑀 ′

(︂
𝑛
(𝑡 )
𝑓

)︂
2

(︄
1 + 1

𝑛
(𝑡 )
𝑓

)︄
+ 1.5985

𝑀
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 )

when𝑚 ≥ 8. In contrast, from Theorem 4.2, we can get

𝑉𝑎𝑟

(︂
𝑛̂
(𝑡,𝑅)
𝑓

)︂
⪆

(︃
𝑀

𝑀 −𝑀′

)︃
2

1.042

𝑀′

(︃
𝑛
(𝑡 )
𝑓
+

(︂
𝑛 (𝑡 ) − 𝑛 (𝑡 )

𝑓

)︂ 𝑀′

𝑀

)︃
2

≥ 1.04
2

𝑀′

(︂
𝑛
(𝑡 )
𝑓

)︂
2

+ 21.04
2

𝑀
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 )

=
1.0816

𝑀′

(︂
𝑛
(𝑡 )
𝑓

)︂
2

+ 2.1632

𝑀
𝑛
(𝑡 )
𝑓

𝑛 (𝑡 ) .

(30)

We can find that 0.7992

(︄
1 + 1

𝑛
(𝑡 )
𝑓

)︄
is always smaller than 1.0816

when 𝑛
(𝑡 )
𝑓
≥ 3, which is common for a super spreader. Therefore,

Theorem 4.3 holds, proving that the counter-based query is more

accurate than the register-based query. □

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Dataset: Our experiments utilize four real-world datasets, includ-

ing two ten-minute network traces and two e-commerce datasets.

The network traces, originating from CAIDA [3, 4], were collected

in 2016 and 2019, respectively. These traces’ flow IDs and elements

are defined as packets’ source and destination addresses. The e-

commerce datasets are separately 5-month e-commerce behavior

data from a medium cosmetics shop [24] and 1-month data from a

large multi-category online store [23]. We use the product IDs as

flow IDs and user IDs as elements. These datasets contain about

293M, 372M, 21M, and 67M items, respectively. Each dataset is

divided into ten segments of equal temporal duration. For conve-

nience, we use the abbreviations C16, C19, Cos, and Mul to rep-

resent these datasets. In practice, the threshold 𝑇 for detecting

super spreaders is determined by applications, and the detection is

harder with a lower threshold. To demonstrate the superiority of

our algorithm, we tune the threshold to keep the number of super

spreaders to 500. In this case, state-of-the-art solutions can hardly

work well with extremely limited memory. We show the CCDF of

flow cardinalities in the four datasets’ first segments and the entire

datasets in Figure 2, where the red points indicate the thresholds

for detecting super spreaders.
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Implementation: We implement our algorithm and the state-of-

the-art algorithms in C++ on a server equipped with two Intel

Xeon E5-2643 v4 @3.40GHz CPUs and 256 GB RAM. Each CPU has

20 MB of L3 cache that is shared by all cores. We implement the

following baselines in C++ for comparison: SpreadSketch (SS) [35],

ExtendedSketch (ES) [20], ExtendedSketch+ (ES+) [15], FlowFight

(FF) [2], and FreeRS-SSD (FR) [19]. We employ FreeRS-SSD rather

than FreeBS-SSD as the baseline since their performance is very

similar, while FreeRS-SSD can record more distinct elements.

Default Parameters: In our experiments, the register size is set

to 5 bits, and each memory pointer is calculated as 32 bits. For FR,

we allocate 80% of the total memory to build the Stream-Summary

to achieve the best performance. For our algorithm, the default

memory ratio of the bucket array is 35% for measurements at

a single point/period and 10% for measurements across multiple

points/periods. The bucket size 𝜆 is set to 8. Besides, each virtual es-

timator has 256 registers. For SS, the size of multiresolution bitmaps

is configured based on the relative error of 0.1 and the maximum

flow cardinality [35]. For FF, we set the size of the base zone to 500,

and the remaining memory is divided equally between the inter-

mediate zone and the promotion zone. For ES and ES+, we only

consider the initial memory of their data structure, and the initial

size of each bitmap is set to 32 bits. Actually, their final memory

consumption is much larger than the initial memory. Besides, the

thresholds of their bitmaps’ fullness ratio determining the extension

condition are set to 0.75 [15, 20]. ES employs bitmaps’ extension

times to identify abnormal bitmaps and reconstruct flow IDs using

the index of these abnormal bitmaps. However, the reconstruction

process is time-consuming and can generate many fake flows. Thus,

we tune the threshold on extension times to control the number of

total generated flow IDs and the number of reported super spreaders

to be less than one billion and five thousand, respectively.

5.2 Evaluation Metrics
F1 Score: the harmonic mean of precision (PR) and recall (RC),

namely, 𝐹1 = 2×𝑃𝑅×𝑅𝐶
𝑃𝑅+𝑅𝐶 . Precision is the ratio of true super spread-

ers detected to all reported super spreaders, which is defined as

|Ψ∩Ω |
|Ψ | , where Ψ is the set of reported super spreaders, and Ω is set

of true super spreaders. Recall is the ratio of true super spreaders

detected to all true super spreaders, which is defined as
|Ψ∩Ω |
|Ω | .

Average Relative Error (ARE): the average relative error of the
estimated cardinality of reported super spreaders, which is defined

as
1

|Ψ |
∑︁

𝑓 ∈Ψ
|𝑛̂𝑓 −𝑛𝑓 |

𝑛𝑓
. Note that ExtendedSketch may report fake

flows. In the calculation, we let the true cardinalities of those fake

flows be 1 to allow the division operation.

Throughput: the number of data items processed per second,

which is defined as
𝑁
𝑆
, where 𝑁 is the total number of data items,

and 𝑆 is the seconds used to process all items. We use Millions of

updates per second (Mps) to measure the throughput.

5.3 Experiments on Parameter Settings
Let 𝛽 be the memory ratio of the bucket array and 𝑁𝑚𝑒𝑚 be the

number of bits in the total given memory. Suppose the ID and

counter fields in each cell are both 32 bits. Then, each bucket

occupies 64𝜆 bits. Thus, there are 𝜔 =

⌊︂
𝑁𝑚𝑒𝑚𝛽

64𝜆

⌋︂
buckets and

Figure 3: F1 score and ARE for different memory ratios at a
single point/period.

Figure 4: F1 score and ARE for differentmemory ratios across
multiple points/periods.

𝑀 =

⌊︂
1

5

(︂
𝑁𝑚𝑒𝑚 − 64𝜆

⌊︂
𝑁𝑚𝑒𝑚𝛽

64𝜆

⌋︂ )︂⌋︂
registers. In this part, we an-

alyze the settings on memory ratio 𝛽 and register group size𝑚.

For the measurements at a single point/period, we get the aver-

age counter-based query results of the ten segments of each dataset

with the total memory varying from 100 KB to 500 KB. For the

measurements across multiple points/periods, the total memory is

fixed to 500 KB. We treat each dataset segment as the data stream

at a single measurement point/period. Then, we utilize the merg-

ing operation along with the register-based query to detect super

spreaders within the aggregated stream. We vary the number of

points/periods from 2 to 10 and repeat each experiment ten times

with different hash seeds to obtain the average results.

Firstly, we set𝑚 = 8 and vary the memory ratio. The F1 scores

and AREs are shown in Figure 3 and Figure 4. We can find that

when the memory ratio rises, the F1 scores tend to increase first and

then decrease. The lowest AREs are achieved near where we get the

highest F1 scores. However, the optimal memory ratio differs for

different datasets due to their different flow distributions. In dataset

C16, the super spreader threshold is much lower than the other

datasets, leading to more intense flow competition. Thus, a higher

memory ratio can reduce the errors caused by flow competition,

especially when the memory is very small (e.g., 100 KB to 300 KB

in the single-point/period measurements). When the memory is

larger (e.g., 500 KB in the multiple-points/periods measurements)

or the threshold is higher, a smaller memory ratio can ensure suffi-

cient buckets, thereby maintaining low flow competition errors. We

set the default memory ratio to 0.35 (single-point/period) and 0.1

(multiple-points/periods) to maximize the lowest F1 scores of the

four datasets. The performance of our algorithm is stable, and the

performance with the selected memory ratio only declines slightly

compared with the best performance on each dataset.

Next, we change𝑚 to 4, 8, 16, 32, and 64. The memory ratios max-

imizing the lowest F1 scores are still around 0.35 and 0.1 for each

value of𝑚. Thus, we still set the default memory ratio to 0.35 and 0.1.

As shown in Figure 5, when𝑚 increases, the F1 score of each dataset
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Figure 5: F1 score for different group size 𝑚 at a single
point/period (left) and across multiple points/periods (right).

Table 1: Throughput (Mps) for different group size𝑚.

Dataset \𝑚 4 8 16 32 64

C16 31.28 30.28 26.28 22.14 16.95

C19 39.39 39.61 34.82 31.20 26.00

Cos 26.73 26.74 22.83 19.74 15.50

Mul 33.37 33.12 29.85 26.75 22.47

Figure 6: F1 score and ARE on dataset C16 at a single
point/period.

slightly increases for measurements at a single point/period. This

is because when the group stage-changing probability is calculated

based on more registers, the averaging effect can better mitigate the

impact of items belonging to small flows but coincidently having

very large element rank values. However, a larger group size also

leads to fewer groups in a virtual estimator, making the noise distri-

bution less uniform during the memory sharing, thereby decreasing

the accuracy of the register-based query. Thus, the F1 score has

a more pronounced decrease for measurements across multiple

points/periods. Besides, as shown in Table 1, the throughput de-

creases since there are more memory accesses and operations when

calculating larger groups’ state-changing probabilities. We can find

that the throughput has no significant decrease when𝑚 changes

from 4 to 8, and the total F1 score is a little higher when𝑚 = 8.

Therefore, we set 8 as the default value of𝑚. Then, each group’s

memory is limited in a 64-bit machine word and byte-aligned.

5.4 Accuracy at a Single Point/Period
In this section, we evaluate the super spreader detection accuracy

when performing measurements at a single point/period. We vary

the total memory from 100 KB to 500 KB and calculate the average

results across the ten segments of each dataset.

As shown in Figure 6-9, the F1 scores of our algorithm are always

the highest in the four datasets. Besides, the gaps between our

algorithm and the baselines increase when the memory gets smaller.

When the memory is 100 KB, compared with the most accurate

Figure 7: F1 score and ARE on dataset C19 at a single
point/period.

Figure 8: F1 score and ARE on dataset Cos at a single
point/period.

Figure 9: F1 score and ARE on dataset Mul at a single
point/period.

baselines, our algorithm improves the F1 score by 0.643, 0.587, 0.504,

and 0.413 for datasets C16, C19, Cos, and Mul, respectively. The

ARE of our algorithm is a little higher than FF. However, FF has

such a low ARE since it has a severe under-estimation problem.

When the memory is varied or the dataset changes, the results of

ES have large fluctuations because the bitmap extension times have

significant variations. ES relies on the extension times to identify

abnormal bitmaps and reconstruct IDs using the Chinese Remainder

Theory. Thus, the significant variation of bitmap extension times

can lead to significant differences in ID reconstruction and finally

impact the detection accuracy.

Our algorithm significantly improves the accuracy, especially

when memory is limited, mainly for three reasons. First, the pro-

posed register group sharing strategy allows smaller flows to con-

sume less memory, thereby providing high memory efficiency. Be-

sides, since the memory consumption of a flow at most equals

the size of a virtual estimator, this strategy can also avoid the ex-

cessive memory consumption of the flows with extremely large

cardinalities. Second, our algorithm can accurately estimate flows’

cardinalities in real time with the help of the group state-changing

probability and the highly memory-efficient bucket array structure.

Thus, we can accurately capture the super spreaders during mea-

surement. Though FR also employs fine-grained memory sharing

and can make accurate real-time estimations, its Stream-Summary
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Table 2: Accuracy of RGS-Sketch when measuring the entire
datasets with 100 KB of memory at a single point/period.

Dataset C16 C19 Cos Mul

F1 score 0.915 0.921 0.884 0.913

ARE 0.205 0.190 0.102 0.098

Figure 10: F1 score and ARE on dataset C16 across multiple
points/periods.

Figure 11: F1 score and ARE on dataset C19 across multiple
points/periods.

structure harms its memory efficiency due to the large number of

memory pointers. Moreover, the other baselines have to use coarse

estimations to capture the super spreaders. Third, the proposed lim-

ited register update strategy further enhances memory efficiency by

preventing small flows from consuming memory. The experiments

in Section 5.7 also prove that this update strategy significantly im-

proves detection accuracy when the memory is extremely limited.

To demonstrate our algorithm’s performance in extreme sce-

narios, we process the whole ten segments with only 100 KB of

memory. The results are shown in Table 2. Due to the high memory

efficiency, the performance only shows a slight decrease compared

to the results on single dataset segments with 100 KB of memory.

Moreover, since the difference between super spreaders and small

flows increases, the F1 score on dataset C16 even rises.

5.5 Accuracy across Multiple Points/Periods
We utilize the merging operation to merge the sketch instances.

Then, we evaluate the accuracy when measuring across multiple

points/periods. We set the memory to 500 KB and vary the number

of points/periods from 2 to 10. FR is not included in the experiments

since it does not support the merging operation.

As shown in Figure 10-13, our algorithm’s F1 scores and AREs

are always the best compared with the baselines. Specifically, our

algorithm achieves an F1 score of at least 0.894, 0.909, 0.911, and

0.947 for datasets C16, C19, Cos, and Mul, respectively. In contrast,

the F1 scores of the baselines are not greater than 0.469, 0.771, 0.679,

and 0.782, respectively. Compared with the most accurate baselines,

Figure 12: F1 score and ARE on dataset Cos across multiple
points/periods.

Figure 13: F1 score and ARE on dataset Mul across multiple
points/periods.

our algorithm improves the F1 score by up to 0.472, 0.288, 0.304,

and 0.223 separately for datasets C16, C19, Cos, and Mul. Note

that our algorithm is different from vHLL. Since our algorithm can

accurately capture large flows’ IDs, it avoids the over-estimation

problem in vHLL caused by querying on numerous small flows.

The AREs of SS, ES, and ES+ are quite large. For SS and ES+, this

is because they employ estimator-level sharing strategies, leading

to large sharing noises that can hardly be removed when memory is

insufficient to build enough estimators. Though the initial memory

of each estimator in ES+ is only 32 bits, the number of estimators

is still small since the memory pointers consume much memory.

Moreover, the sharing noises also lead to over-estimation problems

in SS and ES+. Like SS and ES+, ES also has the sharing noises

that cause large AREs. However, due to its extension strategy, ES

also has under-estimation problems after performing the merging

operations. We can find that when the number of points/periods

increases, ES’s F1 scores have a more apparent decrease for datasets

Cos and Mul. This is because datasets C16 and C19 contain more

duplicate elements, mitigating the loss during merging.

5.6 Item Processing Throughput
In this part, we compare our algorithm with the baselines from the

perspective of throughput. In the experiments, we set the memory

ratio of the bucket array in our algorithm to 0.35 and vary the total

memory from 100 KB to 500 KB.

We measure the recording throughput first and do not perform

queries actively. As shown in the left part of Figure 14, each dataset’s

columns in the bar chart represent the average throughputs with

different memory, and the error bar presents the minimum and

maximum throughputs. We can find that our algorithm is second

only to FR. FR is faster mainly because it employs the traditional

strategy. Our algorithm’s throughput can be comparable to FR if it

also uses the traditional strategy, as shown in the next subsection.

Then, we estimate the cardinality of the item’s flow after pro-

cessing each arrival item and measure the online query throughput.
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Figure 14: Recording throughput (left) and online query
throughput (right) of all compared methods.

Figure 15: Recording throughput of register update strategies.

Note that SS, ES, ES+, and FF are not designed for online detection.

As shown in Figure 14, our algorithm’s online query throughput is

the highest, nearly eleven times as high as that of the fastest non-

online algorithm. FR also has a high throughput. This is because

our algorithm and FR only need to access the bucket array or the

Stream-Summary to get the estimation. Since the Stream-Summary

needs multiple discrete memory accesses, FR is slower than our

algorithm. SS and ES+ have extremely low throughputs since they

must combine the mapped bitmaps via the bitwise AND operation

to minimize the sharing noise, which is time-consuming. Moreover,

ES+ needs to unify the mapped bitmaps. In contrast, ES performs

the bitwise AND operation only when all the mapped bitmaps have

not expanded. Once a mapped bitmap has been expanded, ES only

accesses the counters recording the number of ones in the bitmaps.

Since FF must traverse the whole mapped HyperLogLog to get the

estimation, it also has a lower throughput than ES.

5.7 Impacts of Limited Register Update Strategy
In this part, we evaluate the impacts of our limited register update

strategy on the recording throughput and accuracy. For comparison,

we construct a variant of our algorithm that replaces our limited

register update strategy with the traditional one. Then, we denote

our algorithm and the variant as LRU and TRU, respectively. Besides,

the prefixes C16, C19, Cos, and Mul in the legends represent the

datasets. Since the register update strategies have little impact on

the query overhead, we only show the recording throughput.

As shown in Figure 15, the traditional register update strategy

exhibits superior throughputs. This superiority stems from its lower

frequency of accessing the bucket array. Once an item arrives with

a higher element rank value than its mapped register, the register

must be updated. It prevents the subsequent items mapped to this

register with the same or smaller rank values (yet exceeding the

register’s original value) from accessing the bucket array. For our

limited register strategy, the register may not be updated even if

an item’s rank value exceeds its mapped register. In this case, the

subsequent items with the same or smaller rank values can still

Figure 16: F1 score andARE of different register update strate-
gies at a single point/period.

Figure 17: F1 score andARE of different register update strate-
gies across multiple points/periods.

access the bucket array and try the replacement, incurring lower

throughput.

However, as shown in Figure 16 and Figure 17, the limited register

update strategy has a superiority in detection accuracy. For dataset

C16, our strategy improves the F1 score by up to 0.094 for a single

point/period, and by up to 0.130 across multiple points/periods.

Besides, our strategy’s ARE can also be up to 1.75 and 5.06 times

smaller than the traditional strategy, respectively. The gains for the

other datasets are less pronounced because their super spreader

thresholds are much higher, which means small flows have less

impact on the estimation accuracy of super spreaders. When the

memory or the number of points/periods is large, our strategy’s

performance is worse than the traditional strategy, but the gap is

tiny. Overall, our limited register update strategy outperforms the

traditional register update strategy in accuracy.

6 CONCLUSION
This paper introduces a novel algorithm named RGS-Sketch, tai-

lored for detecting super spreaders in high-speed data streams. The

core of RGS-Sketch is founded on a new memory sharing approach

called register group sharing. This method shares memory at a level

of register groups, providing high memory efficiency, facilitating

online detection, and offering mergeability and invertibility. Addi-

tionally, we propose a limited register update strategy to enhance

our algorithm’s detection accuracy by minimizing the memory con-

sumption of small flows. Extensive experiments using real-world

datasets reveal that RGS-Sketch consistently achieves the high-

est F1 scores compared with the state-of-the-art algorithms while

maintaining a high throughput.
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