
Discovering Approximate Inclusion Dependencies
Qingdong Su

School of Computer Science, Fudan University, China
qdsu22@m.fudan.edu.cn

Zhikang Wang
School of Computer Science, Fudan University, China

zkwang22@m.fudan.edu.cn

Zijing Tan
School of Computer Science, Fudan University, China

Shanghai Key Laboratory of Data Science
zjtan@fudan.edu.cn

Shuai Ma
SKLSDE Lab, Beihang University, China

mashuai@buaa.edu.cn

ABSTRACT
Inclusion dependencies (INDs) are widely used in data management
tasks. The discovery techniques of INDs have thus received a lot of
attention, for discovering INDs valid in data. However, real-world
data quality issues may lead to partial violations of INDs. This pa-
per makes the first effort to provide a comprehensive study on the
discovery of approximate INDs (AINDs), aiming to identify INDs
with error rates below a given threshold. This paper introduces a
new definition of AIND based on deletion semantics, in addition
to the existing definition based on insertion semantics. A discov-
ery method is developed that can be configured to identify AINDs
based on either of these semantics. The method combines parti-
tioning techniques to handle tables that cannot all fit into memory
simultaneously, with novel approaches to quantify AIND violations
based on partitioned tables. To improve efficiency, the method em-
ploys a novel three-layer filtering structure and techniques that
can potentially prune invalid candidate AINDs and identify valid
AINDs without necessarily processing all tuples. We conduct an
extensive experimental evaluation and verify the following: the
proposed method significantly outperforms existing methods for
AIND discovery based on insertion semantics, the AIND discoveries
with insertion and deletion semantics can provide complementary
results, and our discovery method can effectively deal with dirty
dataset containing various types of errors.

PVLDB Reference Format:
Qingdong Su, Zhikang Wang, Zijing Tan, and Shuai Ma. Discovering
Approximate Inclusion Dependencies. PVLDB, 18(4): 1210 - 1222, 2024.
doi:10.14778/3717755.3717777

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/A-IND/AINDD.

1 INTRODUCTION
Understanding the relationships between data is crucial for effec-
tively utilizing the data, while these relationships are typically
hidden in the data and are too costly to be manually defined. To this
end, data profiling techniques [1, 2] have been extensively studied

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717777

Table 1: Student Information

Name Department Origin
𝑡1 Alice Smith Chemical Science California
𝑡2 Bob Johnson Electrical Engineering California
𝑡3 Charlie Brown Mechanical Engineering California
𝑡4 David Williams Environmental Engineering Texas
𝑡5 Emily Davis Computer Engineering Taxas
𝑡6 Frank Miller Computer Engineering Texas
𝑡7 Grace Martinez Artificial Intelligence Texas
𝑡8 Henry Wilson Artificial Intelligence Texas
𝑡9 Ivy Clark Aerospace Engineering Texas

Table 2: Department Information

Department Number
𝑡1 Computer Science 200
𝑡2 Electrical Engineering 150
𝑡3 Mechanical Engineering 180
𝑡4 Chemical Engineering 160
𝑡5 Environmental Engineering 130
𝑡6 Aerospace Engineering 120
𝑡7 Architecture 110

for automatically finding various data relationships from data. The
goal of this work is to present an efficient solution to the discovery
of approximate inclusion dependencies (AINDs). We first briefly
review the definition of inclusion dependencies (INDs), and then
highlight the advantage of AINDs compared to (exact) INDs.

IND is one of the most well known types of data dependency and
has found applications in many data management tasks, such as
schema design [3, 30], table joins [13, 24, 51], data integration [17,
18, 35] and query optimization [16, 26], among others. In brief, a
unary IND is in the form of 𝑅1 .𝐴 ⊆ 𝑅2 .𝐵, where 𝑅1 and 𝑅2 are two
relational schemas, and 𝐴 (resp. 𝐵) is an attribute of 𝑅1 (resp. 𝑅2).
This IND is satisfied by an instance 𝑟1 of 𝑅1 and an instance 𝑟2 of
𝑅2, if for every tuple 𝑡 of 𝑟1, there exists a tuple 𝑠 of 𝑟2 such that
𝑡 [𝐴] = 𝑠 [𝐵]. This definition is based on the assumption of a clean
and complete dataset, while data in practice often contain errors due
to inaccuracies, inconsistencies or incompleteness [14, 19]. Dirty
data hinders the application of exact INDs, as illustrated below.
Example 1: Consider Table 1 with the student information and
Table 2 with the department information of a university. It is ex-
pected that all the values in the attribute Department of Table 1
are present in the attribute Department of Table 2, as every student
should belong to a department. This relationship can be specified as
an IND and suggest joining the two tables to find interesting facts.

1210

https://doi.org/10.14778/3717755.3717777
https://github.com/A-IND/AINDD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717777
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 3: State Information

State Postal Code
𝑡1 California CA
𝑡2 Texas TX
𝑡3 West Virginia WV
𝑡4 Wisconsin WI
𝑡5 Wyoming WY

However, the values in the attribute Department of tuples 𝑡7 and
𝑡8 in Table 1 are absent from Table 2, thereby violating the IND. As
another example, all the values in the attribute Origin of Table 1
are expected to appear in the attribute State of Table 3, but this IND
also fails due to a spelling error in tuple 𝑡5 of Table 1. □

To recover INDs so as to facilitate table joins, we need relaxations
in the satisfaction of INDs, which motivates the notion of AINDs that
can hold with exceptions. Some criteria are needed to measure the
error rates of AINDs, and an AIND is considered as valid if its error
rate is below a given threshold. One notion of AINDs, a.k.a. partial
INDs, is defined based on insertion semantics [5, 33]. Consider the
IND involving the attributesDepartment of Table 1 and Table 2. The
satisfaction of it can be recovered by adding one tuple to Table 2
with the value of “Artificial Intelligence” in attribute Department.
As “Artificial Intelligence” is one of the seven distinct values in the
attribute Department of Table 1, the error rate of this IND is 1/7
based on the AIND definition under insertion semantics. This rate
is calculated as the ratio of the number of distinct values absent
from Table 2 to the total number of distinct values in the attribute
Department of Table 1. Now, consider the IND across Table 1 and
Table 3. The error rate in this case is 1/3, as there are three distinct
values in the left-hand-side (LHS) attribute Origin, and one of those
values does not appear on the right-hand-side (RHS) attribute State.

As a complement to insertion semantics, we propose a new AIND
definition based on deletion semantics. The core idea is that, to
eliminate the impact of data errors, we can not only add values to
the RHS attribute of an IND but also remove erroneous values from
the LHS attribute. Consequently, the error rate of an IND is calculated
as the proportion of tuples whose values in the LHS attribute of the
IND are absent from all the values in the RHS attribute of the IND. In
contrast to the insertion semantics, the deletion semantics takes into
account the occurrence frequencies of values. Under the deletion
semantics, the error rate of the second IND is calculated as 1/9. The
insertion semantics measures violations from the perspective of the
number of distinct values, while the deletion semantics approaches
the problem from the perspective of the number of tuples. They
offer complementary options for users in AIND discovery.

The advantages of AINDs make them desirable in many applica-
tions. In data lake environments, due to the fact that tables often
come from different data sources, data quality issues are very com-
mon, very likely leading to the invalidity of exact INDs. The exis-
tence of AINDs between tables can imply the possibility of table join
operations, which is crucial for data analysts [10, 12, 13, 24, 50, 51].
The vast scale of tables in data lake scenarios and the lack of stan-
dardized attribute naming also highlight the quest for automatic
discovery techniques for AINDs. The problem of AIND discovery is
necessarily challenging, given that exact IND discovery is already
known to be a tough problem [7]. To our best knowledge, existing
methods for AIND discovery [5, 33] are simple extensions of the

methods for exact IND discovery, and only consider AINDs based
on insertion semantics.

Contributions & Organizations.We make the first effort to give
a comprehensive study on the discovery problem of AINDs.
(1) A new definition of AIND (Section 3). We give a new definition of
AIND based on deletion semantics, as a complement to the existing
definition based on insertion semantics.
(2) AIND Discovery method (Sections 4 and 5). We provide an algo-
rithm that can be configured to discover AINDs based on either
of the semantics, equipped with a set of novel techniques: (a) the
combination of partitioning techniques, to quantify AIND violations
based on partitioned tables when there are many tables that can-
not all fit into memory simultaneously; (b) a three-layer filtering
structure to first estimate and finally compute numbers of AIND vi-
olations; and (c) an enumeration method for finding all valid AINDs,
which has an early termination feature, potentially determining the
validity or invalidity of candidate AINDs before accessing all tuples.
(3) Experimental study (Section 6). We integrate our algorithm into
the Metanome data profiling platform [37] and perform an in-depth
experimental evaluation. Our method significantly outperforms
existing methods for discovering AINDs based on insertion seman-
tics. AIND discoveries utilizing insertion and deletion semantics can
offer complementary results. Our discovery method can effectively
handle dirty datasets containing various types of errors.

2 RELATEDWORK
IND is known as one of themost important types of data dependency,
and hence, discovery techniques for IND and its variants have drawn
much attention. We investigate related work in this section.

Discovery of Exact INDs. Exact IND discovery methods have a
long history. These algorithms differ not only in the indexing tech-
niques for validating INDs (pruning non-INDs), but also in the sched-
uling methods for data between memory and disk. This is because
IND discovery methods are usually faced with a huge number of
tables that are too large to be loaded into memory simultaneously,
a departure from discovery methods of other dependencies.

An early IND discovery algorithm, called as Demarchi, is pro-
posed in [33]. It builds an inverted index of the entire data set at once
and does not scale with large datasets. The algorithm SPIDER [6]
first collects attribute values into files and then compares the values
to prune non-INDs in a similar spirit to merge sort. SPIDER usually
suffers from the limitation of opening too many files at the same
time. The algorithm SINDD and its improvement SINDD++ are
presented in [42] and [44]. They introduce the concept of attribute
clustering to eliminate the number of redundant operations result-
ing from the direct computation of inverted indexes, and propose
the idea of partitioning to address the scalability problem for large
datasets. The algorithm BINDER [38] also adopts the idea of parti-
tioning, and for each partition, calculates unary INDs by building
an inverted index in a similar way to [6, 33]. Another algorithm,
calledMANY [47], is optimized for a large number of short input
relations, i.e., the number of data tables is very large while the
number of tuples in each table is not large. It first generates unary
candidate INDs by leveraging a Bloom filter, and then verifies each
of them with intersection of sets based on memory hashing. Most

1211

studies on IND discovery focus on unary INDs with only one LHS
attribute and one RHS attribute, while there are also researches on
the discovery of n-ary INDs that possibly have multiple attributes
on the LHS and RHS [25, 33, 34, 36]. The techniques for discovering
n-ary INDs usually assume that the set of unary INDs is known. Last
but not least, an experimental evaluation of unary and n-ary IND
discovery methods has been conducted in [11].
This work differs in the following. We discover unary AINDs that al-
low the existence of violations, and propose novel data structures
and techniques. (a) We extend partitioning techniques to AIND dis-
covery. It is highly non-trivial to quantify AIND violations in case
of partitioned data, which significantly differs from checking the
validity of exact INDs. (b) We design a three-layer filtering structure,
which is first employed for a rough calculation to quickly discard
invalid AINDs, and is then used to calculate the exact number of
violations. (c) We introduce techniques to confirm AINDs as valid or
invalid in early stages. An AIND can be verified to be valid before ac-
cessing all tuples, which is a unique characteristic that distinguishes
AIND discovery significantly from exact IND discovery.

Discovery of approximate INDs. To our best knowledge, we are
not aware of methods that are specifically designed for discover-
ing AINDs. The methods of Demarchi [33] and SPIDER [5, 6] are
extended to find AINDs based on insertion semantics. Our discovery
method can be configured to find AINDs based on either insertion
or deletion semantics, and significantly beats prior methods by
employing a set of novel techniques introduced for AIND discovery.

Other studies on IND discovery. There are more studies on IND
discovery, but their settings are significantly different from ours.
[29] introduces an algorithm to find all unary INDs in a distributed
setting, by partitioning tables and distributing computations across
a map-reduce-style framework. Conditional INDs [9, 32] are pro-
posed to state INDs that do not hold on the whole dataset but only
on partial data specified by binding semantically related data val-
ues. A discovery method for conditional INDs is presented in [4].
Algorithm FAIDA [28] adopts a strategy that sacrifices correctness
for efficiency in exact IND discovery; it guarantees completeness
of the discovery result but may provide some false-positive INDs.
Algorithms for maintaining the discovered INDs in response to
data updates are studied in [43, 45]. The concept of temporal INDs
and a discovery method are proposed in [8], aiming to find INDs
that have consistently existed throughout the long-term history of
Wikipedia tables. A recent study [22] introduces similarity inclu-
sion dependencies (SINDs), which relax the requirement of equality
to similarity in value comparison. SINDs can address minor errors
at the character-level or token-level, but are not suitable for han-
dling errors resulting from more complex causes. In Example 1,
the notion of SIND can be used to tackle the error in “Taxas" by
considering “Taxas” and “Texas” as the same, but cannot handle
the data incompleteness problem that exists in Table 2. We contend
that AINDs can treat different dirty data problems in a unified ap-
proach and are more general than SINDs. The discovery method of
SINDs [22] mainly focuses on the integration of similarity indexes
to speed up the calculation of value differences, while the key of
AIND discovery is to quantify AIND violations. Consequently, novel
techniques are required for efficiently discovering AINDs.

Discovery of other approximate dependencies. To deal with
real-life dirty data, methods for discovering approximate dependen-
cies have been studied for, e.g., functional dependencies [27], denial
constraints [31, 39, 49] and order dependencies [20, 21, 23, 46]. As
opposed to INDs, these dependencies are violated by tuple pairs and
only tuple deletions (but not insertions) can eliminate the violations.
These distinctions give rise to entirely different discovery methods.

3 PRELIMINARIES
In this section, we present two definitions of AIND and formalize
their discovery problems.

For two relational instances (tables) 𝑟1 and 𝑟2 of schema 𝑅1 and
𝑅2 respectively, we use 𝑡 and 𝑠 to denote tuples of 𝑟1 and 𝑟2, and
𝐴 and 𝐵 to represent attributes of 𝑅1 and 𝑅2, respectively. Specifi-
cally, tuples in 𝑟1 are 𝑡1, 𝑡2, . . . , 𝑡 |𝑟1 | and the set of attributes of 𝑅1 is
{𝐴1, 𝐴2, . . . , 𝐴 |𝑅1 | } respectively, where |𝑟1 | (resp. |𝑅1 |) denotes the
number of tuples (resp. attributes) of 𝑟1 (resp. 𝑅1). We denote by
𝑡 [𝐴] the value of 𝑡 in 𝐴. Similarly for 𝑟2 and 𝑅2.

Inclusion dependency. A unary inclusion dependency (IND) 𝜆
from 𝑅1 to 𝑅2 is defined as 𝑅1 .𝐴 ⊆ 𝑅2 .𝐵. 𝜆 is satisfied by 𝑟1 and 𝑟2,
iff ∀𝑡 ∈ 𝑟1, ∃𝑠 ∈ 𝑟2 such that 𝑡 [𝐴] = 𝑠 [𝐵].

We now present the definitions of AIND, to tolerate real-life dirty
data. In particular, we introduce a new definition of AIND based on
deletion semantics, as a complement to existing definition of AIND
based on insertion semantics [6, 33].

Approximate INDwith the insertion semantics.We use AINDi
to represent approximate IND with the insertion semantics. An
AINDi is in the form of 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵, where 𝜖 is a given error
threshold. It is satisfied by 𝑟1 and 𝑟2 if, in 𝑟1, the proportion of
distinct values 𝑡 [𝐴] that are not present in attribute 𝐵 of 𝑟2 falls
below the given threshold. Specifically, 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 holds, iff

| {𝑡 [𝐴] |𝑡 ∈ 𝑟1 ∧ ∀𝑠∈𝑟2, 𝑠 [𝐵] ≠ 𝑡 [𝐴] } |
|𝜋𝐴 (𝑟1) | ≤ 𝜖

In the formula, |𝜋𝐴 (𝑟1) | represents the number of distinct values
in attribute 𝐴, for the tuples of 𝑟1.
Example 2: Recall the IND 𝑅1 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ⊆ 𝑅2 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 stud-
ied in Example 1. The existence of 𝑡7 and 𝑡8 in Table 1 makes
the IND invalid. It can be seen that the AINDi 𝑅1 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ⊆𝑖𝜖
𝑅2 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 has an error rate of 1

7 , as “Artificial Intelligence” is
the only one of the 7 distinct values for attribute Department in
Table 1 that does not appear in Table 2. If a threshold 𝜖 no less than
1
7 is used, then the AINDi is considered as valid.
The satisfaction of AINDi is measured based on the minimum

number of tuple insertions to make the original IND hold true; the
insertion of one tuple with the value of “Artificial Intelligence” in its
attributeDepartment into Table 2 suffices. Note that the satisfaction
of AINDi considers the number of distinct values. □

Approximate INDwith the deletion semantics.We use AINDd
to represent approximate IND with the deletion semantics. An
AINDd is in the form of 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵, where 𝜖 is a given error
threshold. It is satisfied by 𝑟1 and 𝑟2 if, in 𝑟1, the proportion of tuples
whose value in 𝐴 that is not present in attribute 𝐵 of 𝑟2 is below
the given threshold. Specifically, 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵 holds, iff

| {𝑡 |𝑡 ∈ 𝑟1 ∧ ∀𝑠 ∈ 𝑟2, 𝑠 [𝐵] ≠ 𝑡 [𝐴] } |
|𝑟1 | ≤ 𝜖

1212

Example 3: Recall the IND 𝑅1 .𝑂𝑟𝑖𝑔𝑖𝑛 ⊆ 𝑅3 .𝑆𝑡𝑎𝑡𝑒 investigated in
Example 1. This IND is invalid due to an error in tuple 𝑡5 of Table 1.
It can be verified that the AINDd 𝑅1 .𝑂𝑟𝑖𝑔𝑖𝑛 ⊆𝑑𝜖 𝑅3 .𝑆𝑡𝑎𝑡𝑒 has an
error rate of 1

9 , as 𝑡5 is the only one of the 9 tuples of Table 1 whose
value in Origin is absent from the values of State of Table 3.

AINDd adopts a measurement that considers the occurrence
frequency of values, which is related to the number of required tuple
deletions to recover the validity of the original IND; the deletion of
𝑡5 from Table 1 suffices to make 𝑅1 .𝑂𝑟𝑖𝑔𝑖𝑛 ⊆ 𝑅3 .𝑆𝑡𝑎𝑡𝑒 valid. Note
that the satisfaction of AINDd concerns the number of tuples. □

AIND discovery problem. With a set of relational instances (ta-
bles) {𝑟1, . . . , 𝑟𝑚 } and an error threshold 𝜖 , the problem of AINDi
(resp. AINDd) discovery is to find all AINDis (resp. AINDds) that
are satisfied by 𝑟𝑖 and 𝑟 𝑗 , where 𝑖, 𝑗 ∈ [1,𝑚].

Please note that 𝜖 is a user-defined parameter that indicates the
level of violations that can be tolerated. However, using the same
value of 𝜖 has different meanings in the two semantics. In AINDi,
it represents the maximum allowable proportion of distinct values
that are absent from the RHS. ForAINDd, it represents themaximum
allowable proportion of tuples containing attribute values that do
not appear on the RHS. In the following sections, we present a
discovery method that can be configured for AINDi discovery or
AINDd discovery. Users can choose either of the two semantics and
set the corresponding threshold based on their needs.

4 PARTITIONING DATA
In this section, we first review the data partitioning techniques
employed by exact IND discovery methods [38, 42, 44]. We then
highlight the challenges of adapting partitioning to AIND (AINDi
and AINDd) discovery, and finally present our solutions.

4.1 Bucket, Partition and Bucket Fragment
IND discovery methods are commonly applied in scenarios involv-
ing a huge number of tables, e.g., data lakes. To address the issue
of too many tables that are impossible to accommodate in mem-
ory, data partitioning techniques have been introduced by previous
exact IND discovery methods [38, 42, 44].

Bucket and partition. For each attribute of each table, the values
in it are partitioned into a specified number of mutually exclusive
parts, where each part is referred to as a bucket and identified
by a bucket number. We denote the 𝑖-th bucket for attribute 𝐴 of
table 𝑟 by 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖). By using the same partitioning method
on all attributes, the same values appearing in different attributes
of different tables will be placed in buckets with the same number.
A partition is a collection of buckets with the same bucket number
from all attributes of all tables.

Formally, for a table 𝑟 of schema 𝑅, and a specified number 𝑁
of buckets, the 𝑖-th bucket for 𝑟 on an attribute 𝐴 ∈ 𝑅 is defined
as: 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) = {𝑡 [𝐴] | PartiFunc(𝑡 [𝐴]) = 𝑖 , 𝑡 ∈ 𝑟 }, where 𝑖 ∈
[0, 𝑁 − 1]. Herein, PartiFunc is the partitioning function, and a
commonly used function is to first calculate the hash value for
𝑡 [𝐴], and then take the modulus of the hash value by 𝑁 . Note that
only distinct values are stored in buckets and buckets are disjoint.
The number of values in a bucket is referred to as the size of the

Table 4: relation table 𝑟1

A B C
𝑡1 1 1 6
𝑡2 2 2 5
𝑡3 1 3 6
𝑡4 4 4 6
𝑡5 1 5 1

Table 5: relation table 𝑟2

D E
𝑡1 1 9
𝑡2 1 9
𝑡3 3 1
𝑡4 3 12
𝑡5 1 2

Figure 1: Partitioning Result

bucket. The 𝑖-th partition, denoted by 𝑃𝑖 , is { 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) } for
each attribute 𝐴 of each table 𝑟 considered in the discovery.
Example 4: For 𝑟1 and 𝑟2 shown in Table 4 and Table 5, assuming
we use modulo division by three as the partitioning method, the
resulting buckets and partitions are shown in Figure 1. We have 𝑃0
= {𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 0),𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐵, 0),𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐶, 0),𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟2 .𝐷, 0),
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟2 .𝐸, 0) }. Note that the same values in different attributes
are placed in buckets with the same number. □

Exact IND discovery with partitions. Not all partitions need to
be kept in memory at the same time; when memory is limited, some
buckets can be stored on disk in files. Exact IND discovery can be
easily performed by processing partitions one by one, because the
validity of INDs can be checked within each partition. It is clear
that an IND holds true if and only if it holds true inside every
partition. By handling partitions sequentially, only those candidate
INDs that have been verified to hold true on previous partitions will
be considered on subsequent partitions.
Example 5: (Example 4 continued.) 𝑅1 .𝐴 ⊆ 𝑅2 .𝐷 remains a can-
didate IND after processing partition 𝑃0, as no violations of it are
found in 𝑃0. But this candidate is pruned after processing 𝑃1 and
no longer considered on 𝑃2, as it is found to be violated in 𝑃1. □

Fragment.When partitioning data, the process is to load a table
into memory, then enumerate all the tuples of the table and place
each attribute value into the corresponding bucket. Before all the
tuples of a table are processed, some buckets of that table may
be forced to be written to disk due to limited memory. Suppose
a bucket is written to disk and the bucket in memory is cleared.
When subsequent tuples of that table are processed, chances are
that another value needs to be placed in that empty bucket. This
situation results in fragments of the same bucket on disk and in
memory; for each bucket, there may be several fragments on disk
and at most one fragment in memory. It is important to note that
in this case duplicate values may appear in these fragments, while
they never exist in a bucket without fragmentation.

Some modifications to exact IND validation are needed to handle
bucket fragmentation. To validate 𝑅1 .𝐴 ⊆ 𝑅2 .𝐵, it now requires to
check whether every value in each fragment of 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 𝑖) is
contained in a fragment of 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟2 .𝐵, 𝑖), for all 𝑖 ∈ [0, 𝑁 − 1].

1213

4.2 Partitioning Data for AIND Discovery
Partitioning techniques are essential for handling large datasets, and
limiting validations within partitions also helps improve efficiency.
This paper aims to perform AIND discovery with partitions for the
first time. We find that this leads to some new challenges.
(1) Validating AINDs with partitions differs significantly from vali-
dating exact INDs. As the satisfaction of an AIND is relaxed, viola-
tions found on a partition does not necessarily lead to the invalidity
of the AIND. A more complex situation is that before accessing all
partitions, an AIND may be determined as valid if the number of
violations it causes is guaranteed to be no more than the maximum
allowed number of violations.
(2) Fragmentation poses a new challenge forAINDi discovery. Recall
the number of distinct values in the LHS attribute is needed when
checking the validity of an AINDi. When no bucket fragmentation
exists, this number is equal to the total size of all buckets in that
attribute. However, in the case of bucket fragmentation, duplicate
values may exist in different fragments of the same bucket, making
counting the distinct values for an attribute difficult.
Example 6: (Example 4 continued.) When processing table 𝑟1, as-
sume that memory limit has been reached after processing 𝑡4, and
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 1) is selected to be written to disk. After that, a new
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 1) is needed in memory for 𝑡5 [𝐴]. After processing 𝑟1,
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 1) has two fragments, which are {1, 4} and {1} respec-
tively. Since there are duplicate values in them, the total size of
fragments is larger than the number of distinct values in that bucket.
Without loading all fragments into memory, we cannot determine
the actual number of distinct values in the bucket, thus making it
impossible to know the number of distinct values in attribute 𝐴. □

AIND discovery with partitions. We incorporate partitioning
techniques intoAIND discovery by storing newmetadata during par-
titioning and presenting specially designed validation and pruning
strategies. This section focuses on data partitioning methods and
metadata design, while other techniques are discussed in Section 5.

In the partition-wise strategy for AIND validation, the number
of violations is accumulated sequentially on partitions. Only when
the number exceeds (or can never exceed) the maximum allowed
number, a candidate AIND can be determined as invalid or valid.
The calculation of the number and the maximum allowed number
of violations involves measurement methods for AINDd and AINDi.
(1) For an AINDd 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵, (a) the number of violations is the
number of values in𝐴 that are not present in 𝐵. Buckets containing
only distinct values are not sufficient to compute this number, as it
involves the occurrence frequency of values. We propose to save
the frequency of each distinct value within bucket. The structure
of elements within bucket is now in the form of <value, frequency>.
In the sequel, we denote the frequency of value by value.frequency.
(b) The maximum allowed number of violations is the product of
the number of tuples and the error threshold 𝜖 . It can be easily
calculated, as the number of tuples in a table can be obtained when
partitioning the table.
(2) For an AINDi 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵, (a) the number of violations is the
number of distinct values in 𝐴 that are not present in 𝐵. It can be
computed based on buckets (or bucket fragments) containing only
distinct values. (b) The maximum allowed number of violations

is the product of the number of distinct values in 𝐴 and the error
threshold 𝜖 . Obtaining the number of distinct values in 𝐴 becomes
difficult in case of fragmentation, because the number can only be
determined when all bucket fragments in 𝐴 are read into memory.
It is prohibitively expensive to do so, as this does not align with our
memorymanagement based on partitions and can lead to significant
memory-to-disk swapping. To this end, we present the notion of
bounds of buckets to effectively estimate the number.

Bounds of buckets. Suppose there are 𝑘 fragments of a bucket
𝑏, denoted by 𝑏1, . . . , 𝑏𝑘 , respectively. We denote by b.size (resp.
𝑏𝑖 .size) the size of 𝑏 (resp. 𝑏𝑖). Due to the possible element overlap
between the 𝑘 fragments, we have the following result for 𝑖 ∈ [1, 𝑘]:

𝑚𝑎𝑥 (𝑏𝑖 .𝑠𝑖𝑧𝑒) ≤ 𝑏.𝑠𝑖𝑧𝑒 ≤ 𝑠𝑢𝑚(𝑏𝑖 .𝑠𝑖𝑧𝑒)

The left equal sign holds when the largest fragment contains all
the elements of 𝑏, while the right equal sign holds when all the frag-
ments have no overlapping elements. With the formula, the actual
size of 𝑏 can be estimated within a range of upper and lower bounds,
which will be used for estimating the maximum allowed number
of violations to help validate candidate AINDis. The bounds are
initially established in data partitioning when fragmentation occurs
(Algorithm 1 in this Section), and will be updated as fragments are
read into memory during AIND validation (Section 5).
Example 7: (Example 6 continued.) Before writing the first frag-
ment {1, 4} of 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 1) to disk, we know the bucket size is
at least 2. After bucket fragmentation occurs, the second fragment
of the bucket in memory is {1}. Since the first fragment is now in
the form of a disk file, we cannot determine the overlap between
the two fragments. Instead, we know the bucket size is at least 2,
which is the largest fragment size, and the bucket size is at most 3,
which is the total size of all fragments. □

Algorithm. We provide an algorithm, called PAR (Algorithm 1),
for partitioning all the tables in a given dataset 𝑈 . It enumerates
all tables, enumerates all tuples for each table, and for each at-
tribute value of each tuple, employs the same partitioning func-
tion to determine the bucket containing the value. PAR generates
all metadata required for AIND discovery while partitioning ta-
bles (AINDi (or AINDd) discovery only utilizes part of them). This
includes the number of tuples in a table 𝑟 (r.size), and the meta-
data associated with each bucket, such as the size of the bucket
in memory (𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒) and bounds (𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖).𝑙𝑏𝑜𝑢𝑛𝑑
and 𝑢𝑏𝑜𝑢𝑛𝑑); note 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒 is the size of the fragment in
memory in case of fragmentation. The occurrence frequency of
each value (t[A].frequency) is also stored. Along the same lines as
prior work, NULL values are discarded. But the number of NULLs
in each attribute (r.A.null) is saved, which enables possible early
termination of AIND validations (illustrated in Section 5).

When memory is running low (the ratio of used memory to total
available memory is above a threshold 𝛼1), Procedure WritetoDisk
is called to continuously select the largest bucket for writing to disk
until the ratio falls below another threshold 𝛼2 (we set 𝛼1 = 80%
and 𝛼2 = 60%). The largest bucket is identified using a max-heap
each time. When a bucket is written to disk, a fragment of it is
generated on the disk, the upper and lower bounds on the bucket
size are updated based on the size of the fragment, and the size of
the bucket in memory (the next fragment) is set to 0.

1214

Algorithm 1: Partitioning Data Algorithm (PAR)
Input: a set U of relations {𝑟1, . . . , 𝑟𝑚 } with schemas {𝑅1, . . . , 𝑅𝑚 }
Output: buckets for all tables

1 foreach 𝑟 ∈ 𝑈 do
2 r.size← 0
3 foreach 𝐴 ∈ 𝑅 do r.A.null← 0
4 foreach 𝑡 ∈ 𝑟 do
5 r.size← r.size + 1
6 foreach 𝐴 ∈ 𝑅 do
7 if 𝑡 [𝐴] is NULL then
8 r.A.null← r.A.null + 1
9 continue

10 𝑖 ← PartiFunc(𝑡 [𝐴])
11 if 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) is generated for the first time then
12 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .{𝑠𝑖𝑧𝑒, 𝑙𝑏𝑜𝑢𝑛𝑑,𝑢𝑏𝑜𝑢𝑛𝑑 } ← 0
13 if 𝑡 [𝐴] is contained in 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) then
14 t[A].frequency← t[A].frequency + 1
15 else
16 add 𝑡 [𝐴] into 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖)
17 t[A].frequency← 1
18 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒 ← 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒 + 1
19 if usedMemory/MaxMemory > 𝛼1 then
20 WritetoDisk()
21

22 Procedure WritetoDisk()
23 while usedMemory/MaxMemory > 𝛼2 do
24 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) ← 𝐹𝑖𝑛𝑑𝑀𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡 ()
25 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑙𝑏𝑜𝑢𝑛𝑑 ←

𝑚𝑎𝑥 (𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑙𝑏𝑜𝑢𝑛𝑑,𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒)
26 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑢𝑏𝑜𝑢𝑛𝑑 ←

𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑢𝑏𝑜𝑢𝑛𝑑 + 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒
27 write 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) to disk and clear it in memory
28 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) .𝑠𝑖𝑧𝑒 ← 0

5 AIND DISCOVERY METHOD
In this section, we first introduce a novel three-layer filtering struc-
ture for quantifying AIND violations (Section 5.1) and several rules
that can potentially prune invalid candidate AINDs and identify
valid AINDs before processing all partitions (Section 5.2). Combining
them together, we finally give our discovery method (Section 5.3).

5.1 A Three-layer Filtering Structure
Validations of AIND candidates are carried out partition-wise. To
quantify the violations of 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 (or 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵), a basic
building block is to calculate the number of violations of the AIND
in the 𝑖-th partition, involving 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 𝑖) and 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟2 .𝐵, 𝑖).
We introduce a novel filtering structure to address the problem.

A filtering structure.We build a three-layer filter for each bucket.
For a bucket with fragmentation, all the fragments are read into
memory to build the filter. This is not a limitation because we only
needmultiple fragments of a bucket to be inmemory, not all buckets
for a particular attribute. Duplicate values in different fragments
are removed once all fragments are merged, and the frequency of
each distinct value is saved for the deletion semantics.

Every filter has𝑀 positions in each layer, and a hash function
is utilized to map values in the bucket corresponding to the filter
to the positions. The same hash function is used by all filters, and

hence, same values in different buckets will have the same positions
in their corresponding filters. We refer to 𝑀 as the filter size; 𝑀
should be an exponential power of 2, which enables efficient bitwise
operations. (a) At the first layer, a bit-array with𝑀 bits (positions)
is used, and “1” is set on a position if there exists at least one value
that is mapped to the position. (b) At the second layer, a count array
is used to save the number of distinct values that are mapped to
each position. In case of the deletion semantics, in each position,
the frequency of the value with the minimum frequency among
all values mapped to the position is also stored. (c) At the third
layer, the set of values mapped to a position is save in the position,
together with the frequency of each value for deletion semantics.
Example 8: We showcase two sample buckets for insertion and
deletion semantics in Figure 2a and Figure 2b, respectively. By
setting the filter size 𝑀 as 16, the filters for the two buckets are
given in Figure 3a and Figure 3c respectively. Suppose values 4
and 20 are mapped to the fourth position within the two filters.
In the filter for insertion semantics, at this position, (a) the value
at the first layer is set to be 1; (b) the value at the second layer
is set to be 2; and (c) the value at the third layer is the set {4, 20}.
In contrast, in the filter for deletion semantics, (a) a pair <2, 3> is
saved at the second layer, where 2 is the number of values mapped
to the position, and 3 is the smaller of the frequencies of values 4
and 20 (as shown in Figure 2b); and (b) at the third layer, values are
stored with their frequencies. □

Quantifying AIND violations. By leveraging our structure, the
calculation for the number of violations (violation count) is divided
into two parts: a rough calculation of the lower bound at first and
then an exact calculation.

We consider 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 (or 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵). To simplify the
presentation, we denote the filter for 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 𝑖) by 𝑓 and the
filter for 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟2 .𝐵, 𝑖) by 𝑓 ′. For 𝑓 , we denote its 𝑘-th layer (𝑘 ∈
[1, 3]) by 𝑓𝑘 , and the 𝑗-th element (𝑗 ∈ [0, 𝑀 − 1]) at the 𝑘-th
layer by 𝑓𝑘 [𝑗]; similarly for 𝑓 ′. Recall that 𝑓1 [𝑗] = 1 if some values
are mapped to the 𝑗-th position, and 𝑓2 [𝑗] denotes the number
of distinct values mapped to the 𝑗-th position. For the deletion
semantics, we use 𝑓2 [𝑗].minFreq to denote the saved minimum
frequency. At the third layer, 𝑓3 [𝑗] is the set of values mapped to
position 𝑗 . For each value 𝑣 , we denote by v.freq the frequency of it.

Rough calculation. In the rough calculation component, we only
utilize the first two layers.
Insertion semantics.We find all the bit-array positions that are set
to 1 in 𝑓1. For each such position 𝑗 , if 𝑓2 [𝑗] is larger than 𝑓 ′2 [𝑗],
even in the best-case scenario where 𝑓3 [𝑗] includes all the values in
𝑓 ′3 [𝑗], there are still 𝑓2 [𝑗]− 𝑓

′
2 [𝑗] violations. The following equation

calculates the lower bound on the violation count:

𝑀−1∑︂
𝑗=0

𝑚𝑎𝑥 (𝑓2 [𝑗] − 𝑓 ′2 [𝑗], 0), 𝑤ℎ𝑒𝑟𝑒 𝑓1 [𝑗] = 1 (1)

Deletion semantics. The computation is more complex for deletion
semantics, involving the occurrence frequencies of values. For a
position 𝑗 where 𝑓1 [𝑗] = 1, there are at least 𝑓2 [𝑗] − 𝑓 ′2 [𝑗] values
that are absent, and each value occurs at least 𝑓2 [𝑗].minFreq times.
The lower bound on the violation count is calculated as follows:

1215

(a)
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 𝑖)
for insertion

(b)
𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟1 .𝐴, 𝑖)
for deletion

Figure 2: Sample Buckets

(a) 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟1 .𝐴, 𝑖) with insertion semantic (b) 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟2 .𝐵, 𝑖) with insertion semantic

(c) 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟1 .𝐴, 𝑖) with deletion semantic (d) 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟2 .𝐵, 𝑖) with deletion semantic

Figure 3: Sample Filters

𝑀−1∑︂
𝑗=0

𝑚𝑎𝑥 ((𝑓2 [𝑗] − 𝑓 ′2 [𝑗]) · 𝑓2 [𝑗] .minFreq, 0), 𝑤ℎ𝑒𝑟𝑒 𝑓1 [𝑗] = 1 (2)

Example 9: (Example 8 continued.) We give sample 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟2 .𝐵, 𝑖)
under insertion and deletion semantics in Figure 3b and Figure 3d
respectively. Consider Figure 3a and Figure 3b for checking 𝑅1 .𝐴 ⊆𝑖𝜖
𝑅2 .𝐵. The lower bound on the violation count is (1 - 0) + (2 - 0) +
(3 - 3) + (1 - 1) = 3. Consider Figure 3c and Figure 3d for checking
𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵. The lower bound on the violation count is (1 - 0) ×
2 + (2 - 0) × 3 + (3 - 3) × 1 + (1 - 1) × 15 = 8. □

Through rough calculation, we obtain a lower bound on the
violation count for each candidate AIND in the current partition.
By adding this to the total number of violations detected in prior
partitions, we have a lower bound on the current violation count.
If this lower bound is already enough to determine an AIND as
invalid (details in Section 5.2), the exact calculation can be skipped.
Otherwise, we proceed to the exact calculation stage.

Exact calculation. The third layer is also needed when calculating
the exact violation count of a candidate AIND.
Insertion semantics. The violation count equals the total number
of values that belong to 𝑓3 [𝑗] but do not belong to 𝑓 ′3 [𝑗], for all
positions 𝑗 where 𝑓1 [𝑗] = 1. It is computed as follows:

𝑀−1∑︂
𝑗=0
|𝑓3 [𝑗] \ 𝑓 ′3 [𝑗] |, 𝑤ℎ𝑒𝑟𝑒 𝑓1 [𝑗] = 1 (3)

Deletion semantics. The violation count under the deletion seman-
tics is the sum of the occurrence frequencies of all values that belong
to 𝑓3 [𝑗] but do not belong to 𝑓 ′3 [𝑗], for all positions 𝑗 where 𝑓1 [𝑗]
= 1. It is computed with the following equation:

𝑀−1∑︂
𝑗=0

∑︂
𝑣∈𝑆

𝑣 .𝑓 𝑟𝑒𝑞, 𝑤ℎ𝑒𝑟𝑒 𝑓1 [𝑗] = 1 𝑎𝑛𝑑 𝑆 = 𝑓3 [𝑗] \ 𝑓 ′3 [𝑗] (4)

Example 10: Consider Figure 3a and Figure 3b when checking
𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵. The exact violation count is 1 + 2 + 1 + 0 = 4 accord-
ing to Equation 3. Consider Figure 3c and Figure 3d for checking
𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵. According to Equation 4, the exact number of viola-
tions is 2 + (3 + 4) + 2 + 0 = 11. □

Complexity. (1) Building the filter of a bucket takes linear time in
the bucket size, and the storage for the filter is also linear in the
bucket size, as every position at the first or second layer requires
limited storage. (2) Each rough calculation takes 𝑂 (𝑀) where𝑀 is
the filter size. This cost is irrelevant of the bucket size and usually
very low. The exact calculation for 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 (or 𝑅1 .𝐴 ⊆𝑑𝜖
𝑅2 .𝐵) in partition 𝑃𝑖 takes linear time in the size of 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) at
worst. (3) Rough calculation is much more cost-effective than exact
calculation, and exact calculation is only necessary when rough
calculation is insufficient to confirm a candidate as invalid.

5.2 Rules to Determine Validity and Invalidity
We provide a set of rules to determine whether a candidate AIND is
valid or invalid based on the number of violations already found and
metadata information of the buckets, without necessarily process-
ing all partitions. This enables early termination of some candidate
AINDs, as only candidates that are not confirmed as valid or invalid
will be processed on subsequent partitions. These rules illustrate
the significant differences between AIND and exact IND validations.
We consider 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 (or 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵) in this subsection.

Rules for determining validity. A candidate AIND is confirmed
as valid if its violation count can never exceed themaximum allowed
number of violations. The rules applicable to insertion and deletion
semantics are different, as presented below.
Insertion semantics. The number of distinct values is considered
for insertion semantics. Assume for the buckets in 𝐴 that have
been processed, the number of distinct values is 𝑏, and a total of 𝑎
violations have been detected. If the remaining buckets in 𝐴 do not
have fragmentation, then the total size of these buckets equals the
number of remaining distinct values, denoted as 𝑐 . Otherwise, 𝑐 is
defined as the sum of the upper bounds of these buckets. We have
the following result for determining the validity.
Proposition 1: 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 is valid, if 𝑎 + 𝑐 ≤ (𝑏 + 𝑐) · 𝜖 .
Proof: Assume the actual number of distinct values in the remain-
ing buckets is 𝑥 , where 𝑥 ≤ 𝑐 . Based on the fact that 𝜖 < 1 and
𝑥−𝑐 ≤ 0, we have the following starting from the given assumption:

𝑎 + 𝑐 ≤ (𝑏 + 𝑐) · 𝜖

1216

𝑎 + 𝑐 + 𝑥 − 𝑐 ≤ (𝑏 + 𝑐) · 𝜖 + 𝑥 − 𝑐
𝑎 + 𝑥 ≤ (𝑏 + 𝑐) · 𝜖 + 𝑥 − 𝑐 ≤ (𝑏 + 𝑐) · 𝜖 + (𝑥 − 𝑐) · 𝜖
𝑎 + 𝑥 ≤ (𝑏 + 𝑥) · 𝜖
That is, even if the remaining distinct values are all absent, the

violation count is still less than the maximum allowed number. □
Deletion semantics. The number of values (not distinct values) is
considered for deletion semantics. Assuming that in the buckets in
𝐴 that have been processed, the number of values is 𝑏 (this number
is known as the frequency of each distinct value is saved), total
violations detected is 𝑎, and the total number of NULL values in 𝑟1
is 𝑛, we have the following result.
Proposition 2: 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵 is valid, if 𝑎 + |𝑟1 | − 𝑛 − 𝑏 ≤ |𝑟1 | · 𝜖 .
Rules for determining invalidity.A candidateAIND is confirmed
as invalid if the violation count already exceeds the maximum al-
lowed number of violations. Different from the previous case for
establishing the validity of AINDs, we can first use the lower bound
on the violation count obtained from rough calculation for confirm-
ing the invalidity of AINDs, and proceed with the exact violation
count only when necessary. We present the rules for insertion and
deletion semantics respectively.
Insertion semantics. Assume that the number of distinct values that
have been processed in previous buckets is 𝑏, total violations de-
tected is 𝑎, and the number (or the upper bound on the number in
case of fragmentation) of distinct values in remaining buckets is 𝑐 .
We have the following result.
Proposition 3: 𝑅1 .𝐴 ⊆𝑖𝜖 𝑅2 .𝐵 is invalid, if 𝑎 > (𝑏 + 𝑐) · 𝜖 .
Deletion semantics. Assuming in the buckets that have been pro-
cessed, the total number of detected violations is 𝑎, we have the
following result for confirming the invalidity of an AINDd. The
rule is directly based on the definition.
Proposition 4: 𝑅1 .𝐴 ⊆𝑑𝜖 𝑅2 .𝐵 is invalid, if 𝑎 > |𝑟1 | · 𝜖 .

5.3 AIND Discovery Method
Putting our techniques together, we presentAIND discoverymethod.

Algorithm. Our discovery method, referred to as AINDD (Algo-
rithm 2), takes as inputs the buckets built with Algorithm PAR
(Section 4.2) and the error threshold 𝜖 . It can be configured to iden-
tify all AINDis (or AINDds) satisfied by 𝑟𝑖 and 𝑟 𝑗 from a given set
of tables, by setting the semantics mode to insertion (or deletion).

AINDD utilizes a matrix to store the violation count detected
for each AIND, and Σ to save the result set (lines 1-2). AINDD iter-
ates through each partition in increasing order of the number of
buckets with fragments in the partition. As AINDD enjoys the early
termination property, not all partitions are necessarily needed for
validating AINDs. Prioritizing partitions with a greater number of
buckets entirely in memory may reduce disk operations and facili-
tate memory release, as all buckets in a partition can be released
once the partition is processed. For each bucket, a three-layer filter
is built as studied in Section 5.1 (line 8). All the fragments within the
bucket are merged before constructing the filter (lines 6-7), which
results in the adjustment of the bounds on the total bucket size in
the attribute (not shown). Note that the exact total bucket size is
still unknown if there are more buckets with fragments.

AINDD first tries to confirm the validity of candidates based on
the known violation counts (lines 12-19). If unsuccessful, it then

Algorithm 2: AIND Discovery (AINDD)
Input: buckets for all tables, error threshold 𝜖 and semantics mode
Output: the set Σ of all valid AINDs

1 𝑀𝑎𝑡𝑟𝑖𝑥 [·] [·] ← 0
2 Σ← ∅
3 Sort the partitions in ascending order based on the number of

buckets containing fragments
4 foreach partition 𝑝𝑖 do
5 foreach 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) ∈ 𝑝𝑖 where 𝑟 .𝐴.𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 do
6 foreach fragment frag of 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖) do
7 merge frag into 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖)
8 BuildFilter(𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟 .𝐴, 𝑖),mode)
9 foreach 𝑓 = 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟 .𝐴, 𝑖) where 𝑟 .𝐴.𝐿𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 do
10 foreach 𝑓 ′=𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟 ′.𝐵, 𝑖) where 𝑟 ′.𝐵.𝑅𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 do
11 if 𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵] < 0 then continue
12 cnt←𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵]
13 if mode= insertion then
14 flag← Check(𝑟 .𝐴, 𝑟 ′.𝐵, 𝑐𝑛𝑡) with Proposition 1
15 else flag← Check(𝑟 .𝐴, 𝑟 ′.𝐵, 𝑐𝑛𝑡) with Proposition 2
16 if flag = true then
17 Σ← Σ ∪{𝑟 .𝐴 ⊆mode

𝜖 𝑟 ′.𝐵 }
18 𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵] ← −2
19 continue
20 cnt← RoughCalc(𝑓 , 𝑓 ′,𝑚𝑜𝑑𝑒) +𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵]
21 if mode = insertion then
22 flag← Prune(𝑟 .𝐴, 𝑟 ′.𝐵, 𝑐𝑛𝑡) with Proposition 3
23 else flag← Prune(𝑟 .𝐴, 𝑟 ′.𝐵, 𝑐𝑛𝑡) with Proposition 4
24 if flag = true then
25 𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵] ← −1
26 continue
27 cnt← ExactCalc(𝑓 , 𝑓 ′,𝑚𝑜𝑑𝑒) +𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵]
28 repeat lines 21-26 with cnt as the new input
29 𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵] ← cnt
30 free all the memory for buckets or filters in 𝑝𝑖

31 update 𝐿𝐴𝑐𝑡𝑖𝑣𝑒 , 𝑅𝐴𝑐𝑡𝑖𝑣𝑒 and 𝐴𝑐𝑡𝑖𝑣𝑒 flags for all attributes
32 foreach valid 𝑟 .𝐴 ⊆mode

𝜖 𝑟 ′.𝐵 according to𝑀𝑎𝑡𝑟𝑖𝑥 [𝑟 .𝐴] [𝑟 ′.𝐵] do
33 Σ← Σ ∪{𝑟 .𝐴 ⊆mode

𝜖 𝑟 ′.𝐵 }

tries to prune invalid candidates based on rough and exact calcula-
tions respectively (lines 20-28). Candidate AINDs that are confirmed
as valid or invalid have their positions in the matrix set to negative
values (lines 18 and 25), enabling them to be quickly skipped in
subsequent operations (line 11), and valid ones are collected in
Σ (line 17). For a candidate whose validity and invalidity are not
confirmed, the current violation count is saved in the matrix (line
29). AINDD utilizes additional flags to help improve efficiency. For
each attribute, it keeps track of LActive and RActive flags, indicating
whether there are still candidate AINDs with that attribute as the
LHS or RHS attribute. The Active flag is set to true if either LActive
or RActive is true. If the Active flag for an attribute is false, then it
is safe to discard all the buckets in that attribute in all subsequent
partitions. After processing a partition, AINDD updates these flags
based on the newly determined valid and invalid AINDs (line 31).
After processing all partitions, AINDD further collects valid results
based on the violation counts saved in the matrix (lines 32-33).
Note that if all flags are set to false after processing a partition,
subsequent partitions will be promptly skipped.

1217

Table 6: Dataset Information

tables size
(MB)

max # tuples
per table

total
attribute
number

max #
distinct values
per attribute

average #
distinct values
per attribute

CENSUS 4 112 199,524 42 99,800 2,462
WIKIPEDIA 2 615 14,024,428 11 5,475,188 649,330
TPC-H 8 1,257 6,001,215 61 4,580,667 236,137
BTC 22 2,988 523,808 375 523,808 396,491
GENOME 7 4,166 28,490,116 27 2,619,419 143,427
EEG 4 5,291 71,856 4,100 11,965 6,574
TPC-DS 25 8,748 85,610,088 419 1,920,800 129,310
IMDB 21 11,579 36,244,344 94 36,244,344 1,082,082

Example 11: For 𝑟1 and 𝑟2 in Table 4 and Table 5, AINDD considers
all attribute pairs across the two tables as candidate AINDs. A candi-
date cannot be immediately discarded when some violations occur.
Instead, the violation count is incremented. AINDD tries to confirm
candidates as valid or invalid after processing each partition. Once
all partitions have been processed, AINDD terminates and checks
the violation counts to finalize the set of valid AINDs, in addition to
those already identified during the processing. □

6 EXPERIMENTAL STUDY

Experimental setting. We first give the experimental setting.
Datasets.We use 8 datasets in our experiments. CENSUS,WIKIPEDIA,
BTC, GENOME, EEG and IMDB are real datasets, while TPC-H and
TPC-DS are commonly-used synthetic benchmark datasets. The
properties of them are given in Table 6. These datasets exhibit
significant differences in terms of the maximum number of tuples
in a single table, total number of attributes, and the maximum as
well as average number of distinct values per attribute.
Algorithms. All the following algorithms are implemented in Java
and integrated into the Metanome system [37] for comparison.
(1) We develop methods AINDDi and AINDDd for discovering
AINDis and AINDds respectively, based on Algorithm 2 by setting
different semantics modes. Recall that method PAR (Algorithm 1)
is employed to partition data to facilitate the discovery process. We
totally need to set three parameters: the number 𝑁 of partitions for
method PAR, the filter size 𝑀 for our filtering structure, and the
error threshold 𝜖 . We use the following formula to determine 𝑁 :

𝑁 =𝑚𝑎𝑥 (
⌊︃∑︁

𝑟 ∈𝑈
∑︁
𝐴∈𝑅 |𝜋𝐴 (𝑟) |

𝛾 ·∑︁
𝑟 ∈𝑈 |𝑅 |

⌋︃
, 10) (5)

This formula first calculates the average of the number of distinct
values across all attributes in a dataset𝑈 . It then divides this average
by 𝛾 to determine 𝑁 , and also ensures 𝑁 is at least 10. We estimate
|𝜋𝐴 (𝑟) | using the HyperLogLog method [15], and set 𝛾 to 10,000 as
large tables are anticipated.𝑀 is set to 1,024 through experiments.
Unless otherwise stated, we set 𝜖 to 0.01.
(2) We develop two baseline methods for discovering AINDis based
on Demarchi [33] and SPIDER [5, 6], called as A-DeMarchi and A-
SPIDER. Although such extensions have been briefly mentioned in
the literature, we are not aware of previous implementations.
(3) Our method is used to discover exact INDs by setting 𝜖 to 0. This
version, referred to as AINDD∗, is compared with one of the state-
of-the-art exact IND discovery methods, known as BINDER [38]1.
1http://hpi.de/en/naumann/projects/repeatability/data-profiling/ind (last accessed
2025/1/26).

CENSUS WIKIPEDIA TPC-H BTC GENOME EEG TPC-DS IMDB

1.6min 5.1min 8.9min 6.7h 5.4min 1.6h 1.9h 8.7h

0%

20%

40%

60%

80%

100%

ru
n

 t
im

e

longest run:
64GB RAM

er
ro

r:
 o

p
en

 t
o
o
 m

a
n

y
 f

il
es

CENSUS WIKIPEDIA TPC-H BTC GENOME EEG TPC-DS IMDB

1.6min 5.1min 8.9min 6.7h 5.4min 2.0h 2.0h 8.7h

0%

20%

40%

60%

80%

100%

ru
n

 t
im

e

longest run:
8GB RAM

m
em

o
ry

 l
im

it
 e

x
ce

ed
ed

m
em

o
ry

 l
im

it
 e

x
ce

ed
ed

 AINDD
i
 A-DeMarchi A-SPIDER

er
ro

r:
 o

p
en

 t
o
o
 m

a
n

y
 f

il
es

Figure 4: Comparison Of AINDi Discovery Methods

(4) Our method is compared to Algorithm SAWFISH [22]2 in terms
of the ability to identify valid INDs from dirty data. As noted in
Section 2, SAWFISH discovers SINDs, which relax the requirement
of equality to similarity in value comparison.
Measurement & Running environment. For each algorithm, the re-
ported runtime comprises disk I/O resulting from data partitioning
and memory limitation (if applicable), as well as dependency discov-
ery. The average of three runs is presented here. All the experiments
are run on a machine powered by an Intel Xeon Bronze 3204 1.90G
CPU, with 128GB of memory and CentOS Linux.

Experimental results.We next report our findings.

Exp-1: AINDi discovery methods. We compare AINDDi against
A-DeMarchi and A-SPIDER in Figure 4. We use the longest algorithm
time on each dataset as a baseline and present the proportion of
other algorithm time relative to this baseline time. AINDDi and
A-SPIDER can deal with large datasets that cannot be fully kept
in memory, while A-DeMarchi is a completely memory-based algo-
rithm. To also test different disk and memory scheduling strategies,
two sets of experiments are conducted by limiting the available
memory of Metanome [37] to 8GB and 64GB respectively, where the
8GB setting can be used to simulate discovery situations on large-
scale real-world datasets. Similar settings are adopted in [11, 22, 38].
(1) When the available memory is 64GB, the only failure case occurs
in A-SPIDER for the dataset EEG. This is because A-SPIDER creates
a file for each attribute, and as EEG has 4,100 attributes, this ulti-
mately leads to the file opening failure. AINDDi performs the best.
It is on average 28X and up to 76X faster than A-SPIDER, and on
average 2.3X and up to 7.1X faster than A-DeMarchi. Note that the
complexity of AINDi validation depends on the number of distinct
values, and the number of candidate AINDis is related to the num-
ber of attributes. The combined influence of these factors implies
that larger datasets do not necessarily lead to longer time.
(2) When the available memory is limited to 8GB, it is impossible
to fully keep some large datasets in memory. Since A-SPIDER al-
ways creates a disk file for each attribute regardless of the available
memory, its performance is largely not affected by the memory lim-
itation. A-DeMarchi cannot handle situations of insufficient memory,
2https://github.com/HPI-Information-Systems/Sawfish (last accessed 2025/1/26).

1218

http://hpi.de/en/naumann/projects/repeatability/data-profiling/ind
https://github.com/HPI-Information-Systems/Sawfish

 Disk I/O Garbage collection AINDDi % of (I/O+GC)/AINDD i

8G 12G 16G 20G 24G 28G
0

5

10

15

20

25

ru
n
 t

im
e
[m

in
]

0%

20%

40%

60%

80%

100%

(a) BTC
8G 10G 12G 14G 16G 18G

0

4

8

12

16

ru
n
 t

im
e
[m

in
]

0%

20%

40%

60%

80%

100%

(b) IMDB

Figure 5: AINDDi with Varying Memory Settings

 AINDD
i
 A-DeMarchi A-SPIDER #AIND

i

20% 40% 60% 80% 100%
0.1

1

10

100

1000

ru
n
 t

im
e
[m

in
]

20% 40% 60% 80% 100%
0

100

200

300

400

500

600

700

(a) BTC: varying |𝑟 |
20% 40% 60% 80% 100%

1

10

100

1000

ru
n
 t

im
e
[m

in
]

1000

1100

1200

1300

1400

1500

(b) IMDB: varying |𝑟 |

67 114 178 229 307 419
0

20

40

60

80

100

120

ru
n
 t

im
e
[m

in
]

0

2000

4000

6000

8000

10000

(c) TPC-DS: varying |𝑅 |
14 21 28 36 45 61

1

10

100

1000

ru
n
 t

im
e
[s

e
c
]

0

20

40

60

80

100

(d) TPC-H: varying |𝑅 |

0.0001 0.0005 0.001 0.005 0.01
0

100

200

300

400

ru
n
 t

im
e
 [

m
in

]

600

650

700

750

(e) BTC: varying 𝜖

0.0001 0.0005 0.001 0.005 0.01
0

50

100

150

ru
n
 t

im
e
 [

m
in

]

6000

7000

8000

9000

10000

(f) TPC-DS: varying 𝜖

Figure 6: Scalability of AINDi Discovery Methods

making it fail on BTC and IMDB. Although memory limitation may
incur additional disk operations and negatively affect the perfor-
mance of AINDDi (for instance, the runtime of AINDDi on IMDB
increases from 8.8 minutes to 14.1 minutes), AINDDi can well sched-
ule memory and disk usage and efficiently handle all datasets.
(3) Insufficient memory can lead to more disk I/O operations (where
some buckets are written back to disk and subsequently read back)
and memory cleanup (garbage collection). In Figure 5, we present
the time spent on them, along with their proportions in the total
time of AINDDi, using datasets BTC and IMDB. The results indicate
that when memory is severely limited, these two components can
account for the vast majority of the total time. Their proportions
decrease with the increase of the available memory, as expected.
When memory is sufficient, forced memory cleanup no longer
occurs, and the disk I/O overhead is limited to the reading of the
dataset. Disk I/O consistently comprises a considerable portion of
the processing in the dataset IMDB due to its large size.

Exp-2: Scalability. Using 64GB of memory, we study the scala-
bility. Besides the runtime, the number of AINDis discovered is
reported. We present results on some datasets due to space lim-
itation. For the experiments involving |𝑟 | and 𝜖 , the trends are
generally similar across all datasets. For the experiments involv-
ing |𝑅 |, we select datasets where the increase in |𝑅 | significantly
impacts the discovery results.
Varying |𝑟 |. We first test the impact of |𝑟 |, where |𝑟 | is the number
of all tuples in the tables of a dataset.
(1) By varying the proportion of tuples in BTC, the runtime of
different algorithms is depicted in Figure 6a. As the proportion
varies from 20% to 100%, AINDDi takes 42s to 4min9s, as opposed to
3min44s to 19min28s taken by A-DeMarchi, and 1h18min to 6h42min
taken by A-SPIDER. All algorithms demonstrate good scalability
with respect to |𝑟 |.
(2) We vary |𝑟 | on dataset IMDB and report the results in Figure 6b.
As the proportion varies from 20% to 100%, the number of AINDis
discovered only slightly increases from 1,349 to 1,421. All algorithms
scale well with |𝑟 |, which confirms our observations on BTC.
Varying |𝑅 |.We then study the impact of |𝑅 |, which is the number
of all attributes in the tables of a dataset.
(1) The runtime of all methods on TPC-DS is shown in Figure 6c,
where |𝑅 | is varied by dropping tables. As the number of candidate
AINDis is the square of the number of attributes, all methods are
very sensitive to |𝑅 |. Specifically, as |𝑅 | varies from 67 to 419, the
number of AINDis discovered grows from 272 to 8,995, and the time
of AINDDi increases by 31.8X, as opposed to that of A-DeMarchi
increases by 52X and that of A-SPIDER increases by 41X. Different
from the other two methods, AINDDi enjoys the early termination
property and shows better scalability w.r.t. |𝑅 |.
(2) We vary |𝑅 | on dataset TPC-H in Figure 6d. As |𝑅 | increases from
14 to 61, the number of AINDis discovered grows from 13 to 93,
and the runtime of AINDDi increases by 10.4X, while A-DeMarchi
and A-SPIDER increase by 12X and 21.1X, respectively.
Varying 𝜖 .We finally study the impact of the error threshold 𝜖 .

(1) By varying 𝜖 on BTC, the results are shown in Figure 6e. The run-
time of A-DeMarchi and A-SPIDER is nearly unaffected by changes
of 𝜖 . Due to the absence of pruning rules, they simply calculate the
number of violations for each candidate AINDi across the entire
dataset and finally identify valid ones that meet the requirement
specified by 𝜖 . In contrast, the impact of 𝜖 on AINDDi is more intri-
cate. Increasing 𝜖 allows for more tolerance of violations, helping
the early identification of valid AINDis but hindering the early iden-
tification of invalid ones. With the increase of 𝜖 , the number of valid
AINDis increases from 677 to 715, thereby causing the runtime of
AINDDi to increase from 3.4 minutes to 4.2 minutes.
(2) By varying 𝜖 , the results on TPC-DS are given in Figure 6f, which
are similar to those in Figure 6e. As 𝜖 varies from 0.0001 to 0.01, the
number of valid AINDis increases from 7,912 to 8,995, while the
runtime of AINDDi slightly increases from 11min32s to 11min43s.

Exp-3: Insertion and deletion semantics. With 64GB of mem-
ory, we compare the efficiency of AINDDi and AINDDd, as well
as the result sizes (including the intersection of their results), as
shown in Figure 7.

1219

 #AIND
i
 #AIND

d
 #intersection

Figure 7: Comparison of AINDDi and AINDDd

(1) AINDDd consistently takes more time than AINDDi, which is
reasonable as AINDDd needs to consider the occurrence frequency
associated with each distinct value. AINDDi is on average 21.5%
faster thanAINDDd. The performance gap becomes notably evident
on EEG, as EEG contains a much larger number of attributes (4,100)
compared to other tested datasets.
(2) On the tested datasets, the result set of AINDDd is always not
smaller than that of AINDDi. The two result sets exhibit a con-
tainment relationship on most datasets, although the difference is
usually not significant. On certain datasets, such as TPC-DS and
GENOME, the results of AINDDi and AINDDd are complementary.
(3) We manually check the results on GENOME [48], which con-
tains attributes with clear semantic information. With 𝜖 = 0.01, 22
AINDis and 27 AINDds are discovered, and among them, 17 AINDis
and 21 AINDds are identified as meaningful INDs. As an example,
ratings.item_id ⊆𝑑𝜖 metadata.item_id is valid only under the deletion
semantics. We find that the values present in the LHS attribute but
absent in the RHS attribute occur with low frequency. As a result,
the error rate calculated based on insertion semantics is notably
higher than that based on deletion semantics, and surpasses 𝜖 .

Exp-4: Parameter settings.We study the setting of partition num-
ber 𝑁 and filter size𝑀 , using 64GB of memory. To better analyze
the results, we only consider the discovery part (Algorithm 2).
(1) In Figure 8a, we report the time of AINDDi on three datasets by
fixing𝑀 = 1,024 and varying 𝑁 . As 𝑁 increases from 5 to 20, the
runtime on TPC-H reduces by about 33%, while the gains on BTC
and GENOME are less significant. The size of each bucket (filter)
decreases with the increase of 𝑁 , which usually favors the effective-
ness of the filtering. With further growth in 𝑁 , the improvement
becomes less significant. A too large 𝑁 can cause performance to
decrease, as further reducing the filter size no longer brings no-
table benefits, but instead increases the overhead of initialization.
AINDDi can achieve good performance when 𝑁 is in a large range,
making the setting of 𝑁 relatively easy. It can also be verified that
Equation 5 can be used to obtain a reasonable setting for 𝑁 .
(2) In Figure 8b, we use the parameter 𝑁 calculated according to
Equation 5 on each dataset and report the time of AINDDi by vary-
ing 𝑀 . The time remains stable when 𝑀 is in a relatively wide
range. Specifically, when 𝑀 ranges from 512 to 4,096, the standard
deviation of time values in a single dataset is at most 0.75. The per-
formance degrades when𝑀 is too large, which results in decreased

 TPC-H BTC GENOME

5 20 35 50 65 80 95 110

0

5

10

15

20

25

30

35

ru
n
 t

im
e
[s

e
c
]

(a) Varying partition number 𝑁

512 1024 2048 4096 8192 16384 32768

0

10

20

30

40

50

60

ru
n
 t

im
e
[s

e
c
]

(b) Varying filter size𝑀

confirmed by RoughCalc confirmed by ExactCalc valid AINDs

(c) Rough and exact calculations

confirmed in 10% partitions 10%-40% 40%-100% valid AINDs

(d) Candidate pruning with partitions

Figure 8: Parameter Settings and Optimizations

efficiency of rough calculation, without being able to further en-
hance the pruning power. The results show that after setting 𝑁 , a
wide range of𝑀 settings can achieve satisfactory performance.

Exp-5: Optimizations.We verify our optimization techniques.
(1) Among all the candidate AINDis, we report the proportions
confirmed invalid through rough calculation and exact calculation
respectively, as well as the proportion of valid AINDis. The results
in Figure 8c indicate that rough calculation can effectively prune the
vast majority of candidates; as mentioned earlier, rough calculation
has a very low computational complexity.
(2) After the invalidity of a candidate is confirmed in a partition,
it does not need to be reconsidered in subsequent partitions. We
illustrate in Figure 8d the proportion of candidate AINDis that are
confirmed across different proportions of partitions. The results
show that after processing only 10% of the partitions, the proportion
of candidates found invalid exceeds 60% across all datasets, and it
even surpasses 90% in several datasets. This clearly demonstrates
the effectiveness of using data partitioning techniques in discovery.

Exp-6: Exact IND discovery. We compare AINDD∗ against exact
IND discovery method BINDER in Figure 9.
(1) AINDD∗ outperforms BINDER on all tested datasets when the
available memory is 64GB, and is on average 2X and up to 2.3X
faster.We findAINDD∗ has advantages overBINDERmainly in two
aspects. (a) In data partitioning, AINDD∗ employs an adaptive strat-
egy, writing buckets to disk only when memory is about to run out.
In contrast, BINDER uses an eager strategy to write more buckets
to disk because it expects large datasets. When memory is actually
sufficient, the eager strategy results in more disk operations than
the adaptive strategy. (b) The three-layer filtering structure used in
AINDD∗ also proves effective for exact IND validation. In particular,
the rough calculation component yields significant pruning power
with low computational complexity on certain datasets.
(2) With a memory capacity of 8GB, the advantage of the adaptive
strategy over the eager strategy degrades on datasets requiring
additional disk I/O. Hence, the superiority of AINDDi decreases

1220

 AINDD* BINDER

8GB RAM

Figure 9: Comparison Of Exact Discovery Algorithms

on BTC, and BINDER performs better in IMDB. We find that this
is because the filtering structure of AINDDi takes into account
the need for quantifying violations, resulting in a larger memory
footprint compared to the indexing structure used by BINDER,
which hinders AINDDi in case of limited memory. Additionally,
when the exact calculation component of AINDDi is used to verify
an IND, its performance is slightly weaker than the structure of
BINDER, which is designed specifically for exact IND validation.

Exp-7: Effectiveness.We verify the effectiveness of our approach.
(1) We show AIND discovery can identify hidden INDs from real-life
dirty data. In GENOME [48], the table metadata contains informa-
tion on 84,661 movies, where attribute 𝑖𝑡𝑒𝑚_𝑖𝑑 serves as a unique
identifier for each movie. It is expected that values in 𝑖𝑡𝑒𝑚_𝑖𝑑 in
other tables all come from the metadata table, but data errors hin-
der exact INDs. We manually identify 38 meaningful INDs, and only
10 out of them are actually valid in GENOME. We perform AIND
discovery and measure the discovery result by precision, recall and
F1-score, where precision is defined as the proportion of the discov-
ered AINDs that are among the 38 INDs, and recall is the proportion
of the 38 INDs that are discovered. We compare our approach with
SAWFISH [22]. SAWFISH uses edit distance (ED) or Jaccard simi-
larity (JAC) to measure the similarity of strings, and treat strings
with a distance smaller than the given threshold as equal. We set
0.4 (the default parameter used in [22]) or 0.8 as the JAC threshold,
and 1 (the minimum distance) or 3 as the ED threshold.

We see the following from the results reported in Table 7. The
precision of AINDDi and AINDDd first decreases but then almost
stabilizes as 𝜖 increases, while the recall continuously increases.
This leads to an overall improvement in the F1-score. Except for
the setting of JAC = 0.8, SAWFISH has much lower precision, higher
recall, and much lower F1-score compared to AINDDi and AINDDd;
this is because the result set of SAWFISH is always much larger
than those of AINDDi and AINDDd (not shown). Even using the
smallest ED threshold, SAWFISH may still generate a large number
of false positives. The setting of JAC = 0.8 implies a strict similarity
measure, resulting in a very low recall. AINDDi and AINDDd are
not only more effective but also more efficient. Under the tested
settings, SAWFISH takes at least 2 minutes and up to 227 minutes,
while AINDDi and AINDDd take at most 1.8 minutes.
(2) We verify that AIND discovery can effectively handle various
types of errors. We consider 3 valid exact INDs and their related

Table 7: Finding hidden INDs from GENOME

AINDDi AINDDd SAWFISH
𝜖 0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 JAC=0.4 JAC=0.8 ED=1 ED=3

precision 0.92 0.82 0.77 0.76 0.92 0.77 0.78 0.74 0.21 1.00 0.32 0.18
recall 0.29 0.37 0.45 0.58 0.29 0.34 0.55 0.66 0.90 0.21 0.55 0.92

F1-score 0.44 0.51 0.57 0.66 0.44 0.47 0.65 0.69 0.34 0.35 0.41 0.30

Table 8: Handling Errors on CENSUS

threshold all-errors left-insert left-modify right-delete right-modify
𝑃 𝑅 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅

SAWFISH

ED=1 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.67 0.67
ED=3 0.00 0.00 0.00 0.00 0.21 1.00 - - 0.21 1.00
ED=6 0.04 1.00 0.04 1.00 - - - - - -

JAC=0.8 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.67
JAC=0.4 0.12 0.67 0.04 0.33 0.19 1.00 - - 0.18 1.00
JAC=0.2 0.01 1.00 0.06 1.00 - - - - - -

AINDDd
𝜖 = 0.001 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00
𝜖 = 0.01 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00 1.001.001.00

attributes in CENSUS. After introducing noise, we study the preci-
sion and recall of AIND and SIND discovery. Three types of noise
injection methods are used: (a) insertion, placing a randomly gener-
ated new value of length one to six on an attribute related to exact
INDs while setting other attributes to NULL; (b) deletion, setting
the value of an attribute related to INDs to NULL; and (c) modifi-
cation, adding a randomly generated suffix of length one to three
to the original value. Insertion and deletion are applied to the LHS
and RHS attributes of exact INDs respectively, and modification can
be applied to any attribute of INDs. All noise injections will not
introduce new valid exact INDs. We set the noise rate to 1

1000 of the
number of tuples. Besides a single noise type, we also use a mixed
injection method of all types.

The experimental results are presented in Table 8 (𝑃 for pre-
cision and 𝑅 for recall). We report the results of AINDDd, since
most attributes in CENSUS have a small number of distinct val-
ues. AINDDd can effectively handle all cases by finding and only
finding the expected INDs, and its discovery results show good
stability with respect to changes of the threshold. For SAWFISH,
by gradually increasing the ED threshold or decreasing the JAC
threshold, constraints on string similarity are continuously relaxed
until all original INDs are discovered (𝑅 = 1); further adjustment
of the thresholds will only result in lower precision. In order to
discover all INDs, SAWFISH often results in very low precision be-
cause a large number of meaningless SINDs are discovered as string
similarity constraints are relaxed.

7 CONCLUSION
We have provided the first comprehensive study on AIND discov-
ery, by introducing a new definition of AINDs based on deletion
semantics and developing a method that can be configured to iden-
tify AINDs based on insertion or deletion semantics. Our method
employs novel data structures and techniques to improve efficiency.
An extensive experimental study has been conducted to verify the
efficiency and effectiveness of our approach.

We aim to adapt our method to diverse settings, including dis-
tributed [41], conditional [32] and incremental discovery [40, 45].

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of
China 62172102, 61925203 and U22B2021. For any correspondence,
please refer to Zijing Tan and Shuai Ma.

1221

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A

Tutorial. In SIGMOD 2017. 1747–1751.
[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.

2018. Data Profiling. Morgan & Claypool Publishers.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.
[4] Jana Bauckmann, Ziawasch Abedjan, Ulf Leser, Heiko Müller, and Felix Naumann.

2012. Discovering conditional inclusion dependencies. In CIKM. 2094–2098.
[5] Jana Bauckmann, Ulf Leser, and Felix Naumann. 2010. Efficient and exact

computation of inclusion dependencies for data integration. Technical Report
(2010). https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/
PDFs/2010_bauckmann_efficient.pdf

[6] Jana Bauckmann, Ulf Leser, Felix Naumann, and Veronique Tietz. 2007. Efficiently
Detecting Inclusion Dependencies. In ICDE. 1448–1450.

[7] Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. 2022. The complexity
of dependency detection and discovery in relational databases. Theor. Comput.
Sci. 900 (2022), 79–96.

[8] Leon Bornemann, Tobias Bleifuß, Dmitri V. Kalashnikov, Fatemeh Nargesian,
Felix Naumann, and Divesh Srivastava. 2024. Efficient Discovery of Temporal
Inclusion Dependencies in Wikipedia Tables. In EDBT. 399–411.

[9] Loreto Bravo, Wenfei Fan, and Shuai Ma. 2007. Extending Dependencies with
Conditions. In VLDB. 243–254.

[10] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In ICDE. 456–467.

[11] Falco Dürsch, Axel Stebner, Fabian Windheuser, Maxi Fischer, Tim Friedrich,
Nils Strelow, Tobias Bleifuß, Hazar Harmouch, Lan Jiang, Thorsten Papenbrock,
and Felix Naumann. 2019. Inclusion Dependency Discovery: An Experimental
Evaluation of Thirteen Algorithms. In CIKM. 219–228.

[12] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022.
MATE: Multi-Attribute Table Extraction. Proc. VLDB Endow. 15, 8 (2022), 1684–
1696.

[13] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in
Data Lakes: State-of-the-art and Future Directions. In SIGMOD. 69–75.

[14] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers.

[15] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-
loglog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
mathematics & theoretical computer science (2007).

[16] Jarek Gryz. 1998. Query Folding with Inclusion Dependencies. In ICDE. 126–133.
[17] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary

Roth. 2005. Clio grows up: from research prototype to industrial tool. In SIGMOD.
805–810.

[18] Oktie Hassanzadeh, Ken Q. Pu, Soheil Hassas Yeganeh, Renée J. Miller, Lucian
Popa, Mauricio A. Hernández, and Howard Ho. 2013. Discovering Linkage Points
over Web Data. Proc. VLDB Endow. 6, 6 (2013), 444–456.

[19] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.
[20] Yifeng Jin, Zijing Tan, Jixuan Chen, and Shuai Ma. 2023. Discovery of Approxi-

mate Lexicographical Order Dependencies. IEEE Trans. Knowl. Data Eng. 35, 4
(2023), 3684–3698.

[21] Yifeng Jin, Zijing Tan, Weijun Zeng, and Shuai Ma. 2021. Approximate Order
Dependency Discovery. In ICDE. 25–36.

[22] Youri Kaminsky, Eduardo H. M. Pena, and Felix Naumann. 2023. Discovering
Similarity Inclusion Dependencies. Proc. ACM Manag. Data 1, 1 (2023), 75:1–
75:24.

[23] Reza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, and
Jaroslaw Szlichta. 2021. Efficient Discovery of Approximate Order Dependencies.
In EDBT. 427–432.

[24] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932–945.

[25] A. Koeller and E.A. Rundensteiner. 2003. Discovery of high-dimensional inclusion
dependencies. In ICDE. 683–685.

[26] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data dependen-
cies for query optimization: a survey. VLDB J. 31, 1 (2022), 1–22.

[27] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. PVLDB 11, 7 (2018), 759–772.

[28] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,
Manuel Hegner, Martin Zabel, Christian Zöllner, and Felix Naumann. 2017. Fast
Approximate Discovery of Inclusion Dependencies. In BTW. 207–226.

[29] Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2015. Scaling Out
the Discovery of Inclusion Dependencies. In BTW, Vol. P-241. 445–454.

[30] Mark Levene and Millist W. Vincent. 2000. Justification for Inclusion Dependency
Normal Form. IEEE Trans. Knowl. Data Eng. 12, 2 (2000), 281–291.

[31] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695.

[32] Shuai Ma, Wenfei Fan, and Loreto Bravo. 2014. Extending inclusion dependencies
with conditions. Theor. Comput. Sci. 515 (2014), 64–95.

[33] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2009. Unary and n-ary
inclusion dependency discovery in relational databases. J. Intell. Inf. Syst. 32, 1
(2009), 53–73.

[34] Fabien De Marchi and Jean-Marc Petit. 2003. Zigzag: a new algorithm for mining
large inclusion dependencies in database. In ICDM. 27–34.

[35] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan,
C. T. Howard Ho, Ronald Fagin, and Lucian Popa. 2001. The Clio Project: Manag-
ing Heterogeneity. SIGMOD Rec. 30, 1 (2001), 78–83.

[36] Shaabani Nuhad and Christoph Meinel. 2016. Detecting Maximum Inclusion
Dependencies without Candidate Generation. In Database and Expert Systems
Applications. 118–133.

[37] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. 2015. Data Profiling with Metanome. Proc. VLDB Endow. 8, 12 (2015),
1860–1863.

[38] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & Conquer-based Inclusion Dependency Discovery. Proc.
VLDB Endow. 8, 7 (2015), 774–785.

[39] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.
Discovery of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019),
266–278.

[40] Chaoqin Qian, Menglu Li, Zijing Tan, Ai Ran, and Shuai Ma. 2023. Incremental
discovery of denial constraints. VLDB J. 32, 6 (2023), 1289–1313.

[41] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. 2019. Distributed Implementa-
tions of Dependency Discovery Algorithms. PVLDB 12, 11 (2019), 1624–1636.

[42] Nuhad Shaabani and Christoph Meinel. 2015. Scalable Inclusion Dependency
Discovery. In DASFAA. 425–440.

[43] Nuhad Shaabani and Christoph Meinel. 2017. Incremental Discovery of Inclusion
Dependencies. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management, Chicago, IL, USA, June 27-29, 2017. ACM,
2:1–2:12.

[44] Nuhad Shaabani and Christoph Meinel. 2018. Improving the Efficiency of Inclu-
sion Dependency Detection. In CIKM. 207–216.

[45] Nuhad Shaabani and Christoph Meinel. 2019. Incrementally updating unary
inclusion dependencies in dynamic data. Distributed Parallel Databases 37, 1
(2019), 133–176.

[46] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivas-
tava. 2018. Effective and complete discovery of bidirectional order dependencies
via set-based axioms. VLDB J. 27, 4 (2018), 573–591.

[47] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. Detecting
Inclusion Dependencies on Very Many Tables. ACM Trans. Database Syst. 42, 3
(2017), 18:1–18:29.

[48] Jesse Vig, Shilad Sen, and John Riedl. 2012. The Tag Genome: Encoding Commu-
nity Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst. 2,
3 (2012), 13:1–13:44.

[49] Renjie Xiao, Zijing Tan, Haojin Wang, and Shuai Ma. 2022. Fast approximate
denial constraint discovery. Proc. VLDB Endow. 16, 2 (2022), 269–281.

[50] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In SIGMOD. 1951–1966.

[51] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–
1196.

1222

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/PDFs/2010_bauckmann_efficient.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/PDFs/2010_bauckmann_efficient.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Partitioning Data
	4.1 Bucket, Partition and Bucket Fragment
	4.2 Partitioning Data for AIND Discovery

	5 AIND Discovery Method
	5.1 A Three-layer Filtering Structure
	5.2 Rules to Determine Validity and Invalidity
	5.3 AIND Discovery Method

	6 Experimental Study
	7 Conclusion
	References

