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ABSTRACT
Graph Neural Networks (GNNs) have gained signi�cant attention
in recent years due to their ability to learn representations of graph-
structured data. Two common methods for training GNNs are mini-
batch training and full-graph training. Since these two methods
require di�erent training pipelines and systems optimizations, two
separate classes of GNN training systems emerged, each tailored
for one method. Works that introduce systems belonging to a par-
ticular category predominantly compare them with other systems
within the same category, o�ering limited or no comparison with
systems from the other category. Some prior work also justi�es its
focus on one speci�c training method by arguing that it achieves
higher accuracy than the alternative. The literature, however, has
incomplete and contradictory evidence in this regard.

In this paper, we provide a comprehensive empirical comparison
of representative full-graph and mini-batch GNN training systems.
We �nd that the mini-batch training systems consistently converge
faster than the full-graph training ones across multiple datasets,
GNN models, and system con�gurations. We also �nd that mini-
batch training techniques converge to similar to or often higher
accuracy values than full-graph training ones, showing that mini-
batch sampling is not necessarily detrimental to accuracy. Our work
highlights the importance of comparing systems across di�erent
classes, using time-to-accuracy rather than epoch time for perfor-
mance comparison, and selecting appropriate hyperparameters for
each training method separately.
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1 INTRODUCTION
Graph neural networks (GNNs) are a class of machine learning
models that reached state-of-the-art performance in many tasks
related to the analysis of graph-structured data, including social
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Figure 1: Di�erent data management pipelines in two ex-
ample systems: PipeGCN (full-graph) and DGL (mini-batch).
The diagrams omit gradient synchronization.

network analysis, recommendations, and fraud detection [15, 40,
78]. They are often used to process large graphs that have millions
of vertices and billions of edges [17, 30, 68]. A large volume of
recent work, both in academia and industry, has been dedicated to
scaling GNN training to support such large graphs using multi-GPU
systems. This is a challenging problem because GNNs run multiple
rounds of message passing across neighboring vertices, which is an
irregular computation.

Two classes of GNN systems: Full-graph and mini-batch.
GNNs can be trained using either a mini-batch or a full-batch
(typically called full-graph) approach, much like other machine
learning models. In standard deep neural network (DNN) train-
ing, the dataset consists of individual training examples that can
be processed independently and have no structural dependencies.
In GNNs, in contrast, the training data is composed of vertices
that are interconnected through edges, forming a graph structure
where vertices cannot be treated as independent training examples.
Full-graph and mini-batch training deal with these dependencies
with di�erent data management pipelines to partition data and
parallelize computation and communication when scaling to large
graphs. This resulted in the development of two distinct classes of
GNN training systems, each designed to support either mini-batch
or full-graph training.
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Full-graph GNN training performs message-passing across the
entire graph at each epoch. To scale to large graphs that do not �t in
the memory of a single GPU, multi-GPU full-graph training systems
use model parallelism: they partition the graph, process di�erent
partitions at di�erent GPUs, and exchange hidden vertex features
across partitions [21, 32, 49]. For example, the PipeGCN [55] full-
graph training system partitions the input graph and keeps each
partition in a di�erent GPU (see Figure 1(a)). The black dotted
lines show the communication of hidden vertex features across
GPUs at each GNN layer in the forward and backward pass. The
communication happens through either a fast cross-GPU bus such
as NVLink, if available, or PCIe.

Mini-batch training breaks up the training set into mini-batches.
Each training epoch now consists of multiple iterations, one per
mini-batch. Mini-batch training is popular in production systems
because it is amenable to scaling through data parallelism [75–77].
A unique challenge when applying data parallelism to GNNs is
that preparing mini-batches requires expensive pre-processing at
each iteration. At each iteration, data-parallel mini-batch training
systems sample a subset of the k-hop neighbors of the vertices in
the mini-batch, load each sample into a di�erent GPU, and perform
local message passing only within each sample, without passing
message across GPUs. For example, Figure 1(b) shows a training
iteration in the popular DGL system. First, each GPU obtains a
sample for a subset of the vertices in themini-batch. Graph sampling
is preferably executed using the GPU since it is a computationally
expensive step in itself [20]. Next, the sample and the input features
of its vertices are loaded to the GPUs. Finally, each GPU performs
a forward and backward pass on the local sample independently.

These di�erent data management pipelines result in a di�erent
set of optimizations. Full-graph training systems must deal with ex-
pensive and irregular computation and high communication costs
at each epoch. In mini-batch training systems, instead, computa-
tion at each iteration is much more lightweight and there is no
cross-GPU exchange of hidden features at each layer. However,
pre-processing is a major bottleneck. Samples are typically large,
so sampling them and loading them into GPUs is expensive.

The common rationale for using full-graph GNN training is to
ensure that the training algorithm sees all the required dependent
data in the graph, which is assumed to be the key to achieving high
accuracy [4, 32, 35, 38, 48, 49, 51, 53, 55, 57, 66]. Mini-batch GNN
training introduces additional variability in the gradient estimation,
even compared to regular mini-batch DNN training. Speci�cally,
in regular DNN training, the stochasticity in gradient estimation
primarily arises from using mini-batches, which are random subsets
of the training data, in each iteration. In mini-batch GNN training,
the graph sampling used to form micro-batches is an additional
source of stochasticity beyond the sampling of vertices in the mini-
batch, because the training algorithm is not exposed to all the
required dependent data in the graph.

Motivation: What is the state of the art? Despite their di�erent
approaches and bottlenecks, full-graph and mini-batch training
systems share the same goal: e�cient and accurate training of
Graph Neural Networks (GNNs). It is therefore important to estab-
lish which GNN training systems, be they full-graph or mini-batch
systems, converge faster and to a higher accuracy under di�erent

scenarios. There is, however, no clear answer to this question in
the literature. We performed an exhaustive review of the existing
literature and found that prior works that propose systems in one
class compare them with other systems in the same class, with
limited or no performance evaluation of systems in the other class.
We report a detailed discussion of the evidence in the literature in
Section 2. Overall, the existing literature makes it di�cult to get a
clear picture of the state-of-the-art of the �eld.

Performance evaluation. In this paper, we address this open issue
by performing a thorough performance comparison of representa-
tive state-of-the-art GNN training systems across the two classes.
For full-graph training, we consider PipeGCN [55], BNS-GCN [53],
and AdaQP [52]. For mini-batch training, we consider DGL [58],
DistDGL [75], and Quiver [47], and three sampling algorithms:
Neighborhood Sampling [16], ClusterGCN [9], and GraphSaint [70].

Our results show that mini-batch systems consistently achieve
faster time-to-target-accuracy than full-graph counterparts across all
datasets, models, and hardware deployments we considered. These
results are consistent with the evidence in the literature. Several
papers that propose full-graph training systems use epoch time,
which is the average time needed to execute one epoch, as the main
metric to compare with mini-batch training systems, and show
that mini-batch systems have a larger epoch time [6, 33, 57, 61].
Our evaluation con�rms these results. However, our results also
highlight that time-to-accuracy is a better metric for comparison.
Mini-batch training typically requires fewer epochs to converge
because it updates the model parameters multiple times per epoch,
once at each iteration, whereas full-graph training performs only
one update per epoch. Therefore, even if mini-batch training sys-
tems perform more work per epoch than full-graph training ones
to run multiple iterations, their overall time-to-accuracy is lower.
Our empirical results show that this holds consistently across all
systems, deployments, models, and datasets we consider. We report
our performance results in Section 4 and support and generalize
our empirical observations with an analysis in Section 6.

Performance vs. accuracy. Using a system with a longer time-
to-accuracy can be justi�able if a model can converge to a higher
accuracy. This is an important factor when navigating the perfor-
mance trade-o�s of using di�erent GNN training systems.

Our results show that, with proper hyperparameter tuning,mini-
batch training can reach a similar accuracy as, if not higher accuracy
than, full-graph training across di�erent datasets and models. In our
evaluation, we matched or exceeded all the test accuracy results
for the GNN models we considered in the literature we reviewed.
We observed that hyperparameters yielding high accuracy for one
method perform poorly for the other; this explains contradictory
results found in the literature and emphasizes the need for distinct
hyperparameter tuning for each training approach. These empirical
�ndings also imply that �ltering information during graph aggre-
gation is not necessarily detrimental to accuracy, which is against
the assumption made by works advocating full-graph training ap-
proaches. We discuss these results in Section 5.

Lessons learned. Our results show that the mini-batch training
systems we consider consistently achieve better performance than
the full-graph training ones and have similar accuracy. We stress,
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however, that the goal of this study is not to establish the inher-
ent superiority of one class of systems over the other. Our study
is an empirical evaluation and the �eld is continuously evolving.
Mini-batch training also has limitations, such as a slightly higher
variance in accuracy between training runs and a high variance
across di�erent sampling algorithms.

Overall, our work highlights that existing algorithmic optimiza-
tions such as sampling or asynchrony can improve e�ciency with
no or minimal accuracy degradation, representing a promising
research direction to achieve further performance and accuracy
improvements. From a methodological perspective, our work high-
lights the importance of comparing GNN training systems across
di�erent classes and it also indicates a set of principles on how to
perform this comparison. The source code, data, and other artifacts
used for this evaluation are publicly available [3].

2 BACKGROUND AND MOTIVATION
This section provides the necessary background on GNN and GNN
training systems to follow the rest of the paper. It then discusses
the existing evidence in the literature.

2.1 Graph Neural Networks
Given a graph ⌧ (+ , ⇢), where each node E 2 + is represented with
a feature vector⌘0E (input feature of vertex E) and the edges between
any two vertices D and E is 4DE 2 ⇢. A GNN at ;C⌘ layer performs
the following computation to get the hidden features of a vector:

⌘;E = �
; (⌘;�1E , ; (⌘;�1D ,8D 2 # [ E),, ; ), (1)

where ⌘;E are the ;C⌘ layer features for vertex E , # represents the
incoming neighbor vertices of vertex E ,, ; is the model weight
matrix,  ; is any aggregation function and �; is an update function.

2.2 Full-Graph vs. Mini-Batch Training:
Di�erent Systems for Di�erent Pipelines

Full-graph and mini-batch training systems use di�erent data man-
agement pipelines for multi-GPU training, leading to two di�erent
system categories. We focus our evaluation on GPU-based training
on multi-GPU systems. We consider system-level optimizations
of the vanilla full-graph and mini-batch training pipelines that
improve performance and support any GNN model, as de�ned in
Section 2.1. We show the classes of optimizations we consider and
the related baselines in Figure 2. For a comprehensive discussion
on distributed GNN training systems, see also [28, 42].

Full-graph training systems. The key idea of full-graph training
is to execute the GNN layers for all vertices in the graph, as shown
in Eqn. 1. To scale to large graphs, distributed full-graph training
systems partition the graph into multiple subgraphs such that each
can �t into the memory of one GPU. They use a model-parallel
approach to train across GPUs that requires exchanging vertex
features across partitions. The main focus of work on full-graph
training systems has been on reducing the cost of vertex feature
communication. We now discuss existing work on full-graph GNN
training systems in terms of two design dimensions: training data
management and algorithmic optimizations (see Figure 2).

Full-graph

Training data
management (P)

Algorithmic
optimizations
(P + A)

Full distributed GPU caching (all FG baselines)

None (Full-Graph)
Asynchrony (PipeGCN)
Sampling (BNS-GCN)
Message quantization (AdaQP)

Mini-batch GPU caching (P)

Sampling
algorithms
(P + A)

Sampling
implementation (P)

CPU-based (DistDGL)
GPU-based (DGL, Quiver)

Local, full (DGL, Quiver)
Distributed, partial (Quiver)

Neighborhood sampling (all MB baselines),
ClusterGCN (DGL), GraphSaint (DGL), ...

GPU-host transfers

Figure 2: Classes of optimizations that impact performance
(P) and accuracy (A), and representative systems evaluated
in this work.

Some full-graph training systems focused on optimizing the
management of training data without introducing approximations
that can potentially impact accuracy. If there are not enough GPUs
to store each partition in a di�erent GPU, it is necessary to transfer
data between the host memory and GPU memory. Prior works
such as NeuGraph [32], RoC [21], G3 [57], and HongTu [60] have
proposed techniques to optimize host-GPU communication. When
there are enough GPUs to distribute all the partitions of the graph
in GPU memory, these optimizations are not required and training
proceeds as depicted in Figure 1(a) [4, 49, 57, 61].

Some recent works improve performance by further introduc-
ing algorithmic optimizations that can impact accuracy, unlike the
work we described previously. Sancus [38], PipeGCN [55], and
GNNPipe [6] introduce asynchrony and allow GPUs to operate on
stale vertex features. This enables GPUs to overlap communication
with computation instead of having to wait at each layer for fresh
vertex features coming from other GPUs. An alternative research
direction has been to use sampling. BNS-GCN samples boundary
nodes with edges across partitions at each epoch and exchanges
vertex features only for those vertices [53]. ADGNN proposes an
aggregation-di�erence sampling algorithm [44]. Finally, the AdaQP
system proposed message quantization to reduce the communica-
tion cost, together with new partitioning algorithms [51].

Mini-batch training systems. Mini-batch training systems break
up the training dataset into mini-batches and train and update the
model on one mini-batch at a time. They use data parallelism to
scale to multiple GPUs. Each GPU computes the hidden features
of a subset of the vertices in the mini-batch, which is called the
micro-batch. In principle, to execute : GNN layers without loss
of information as shown in Eqn. 1, each GPU would need to load
all the vertices in the :-hop neighborhood of the vertices in the
micro-batch. The resulting subgraph, however, is often too large to
be loaded into one GPU, inducing the so-called neighborhood ex-
plosion problem. Mini-batch training systems use sampling to load
only a subset of the :-hop neighborhood. This sample-load-train
pipeline is depicted in Figure 1(b). Compared to full-graph training,
data parallelism eliminates the need to exchange hidden vertex
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Table 1: Review of literature reporting claims of how mini-batch and full-graph training compare. (Notation: TTA - time to
accuracy, ACC - accuracy, FG - Full graph, MB - mini-batch, ET - Epoch time)

Proposes System / Paper Main FG vs. MB Claims Experimental
Evidence Year Evaluation Setup

Full-graph

GNNPipe [6] FG lower ET ET 2023 Multi-host multi-GPU
Betty [66] FG higher ACC ACC 2023 Single-host single-GPU

HongTu [60] MB information loss, MB lower
ACC ACC, TTA 2023 Single-host multi-GPU, distributed CPU-only

ADGNN [44] FG higher ACC, FG better
convergence 7 2023 Multi-host CPU, Multi-host single-GPU

G3 [57] FG higher ACC, lower ET ACC, ET 2023 Multi-host multi-GPU
AdaQP [51] MB information loss 7 2023 Multi-host multi-GPU
PipeGCN [55] FG higher ACC ACC 2022 Multi-host multi-GPU
BNS-GCN [53] FG higher ACC, lower ET ACC, ET 2022 Multi-host multi-GPU
NeutronStar [61] FG lower ET ET 2022 Multi-host single-GPU
Sancus [38] MB information loss 7 2022 Multi-host multi-GPU
SAR [35] MB noisy gradients 7 2022 Multi-host CPU
Dorylus [48] FG higher ACC ACC 2021 Multi-host CPU, Multi-host single-GPU
DistGNN [33] FG lower ET ET 2021 Multi-host CPU
DGCL [4] MB ACC loss 7 2021 Multi-host multi-GPU
CAGNET [49] FG higher ACC 7 2020 Multi-host multi-GPU
ROC [21] FG lower TTA TTA 2020 Multi-host multi-GPU
NeuGraph [32] FG convergence guarantee 7 2019 Single-host multi-GPU

Mini-batch

BGL [30] MB and FB same performance 7 2023 Multi-host CPU, Multi-host multi-GPU

NeutronOrch [1] FG impractical, limited GPU
memory 7 2023 Single-host multi-GPU

DistDGLv2 [76] MB higher ACC, lower TTA ACC, TTA 2022 Multi-host CPU, Multi-host multi-GPU
SALIENT [23] MB lower ET, higher ACC ACC, ET 2022 Multi-host multi-GPU
GNNLab [65] FG hard to scale 7 2022 Single-host multi-GPU
ByteGNN [74] FG not practical for large graphs 7 2022 Multi-host CPU
CM-GCN [73] MB lower TTA ACC, TTA 2021 Multi-host CPU

Blocking based [67] FG higher memory and
computational complexity 7 2021 -

DistDGL [75] MB lower TTA 7 2020 Multi-host CPU, multi-host multi-GPU
PaGraph [29] MB and FB same performance 7 2020 Single-host multi-GPU

Cluster-GCN [9] FG - memory: bad; time per epoch:
good; convergence: bad 7 2019 -

LADIES [79] MB higher ACC ACC 2019 -

Other papers

Rethinking [27] FG not scalable ACC 2024 -

RDM [26] FG ACC higher or equal, MB faster
convergence ACC, TTA 2023 -

EXACT [31] FG - higher ACC for small graphs ,
MB - higher ACC for large graphs ACC 2021 -

OGB [18] MB higher ACC ACC 2020 -

features across partitions. The pipeline, however, introduces two
di�erent bottlenecks: sampling and data loading. We now discuss
systems-level optimizations that mitigate these bottlenecks with-
out impacting accuracy and then discuss the choice of sampling
algorithms (see Fig 2).

Initial mini-batch systems ran CPU-based sampling, but this can
represent a major performance bottleneck, motivating the need
for GPU-based sampling [20, 41]. Several systems-level optimiza-
tions have been proposed to run sampling algorithms on GPUs
e�ciently [5, 14, 20, 37, 59].

In terms of management of the training data, loading the training
data to the GPUs can be a signi�cant performance bottleneck. To
address it, prior work proposed caching training data in GPU mem-
ory, such as the input features [29] or the graph structure [5, 65, 72].
In local GPU caching, each GPU only accesses its local cache [29, 65].
In distributed GPU caching GPUs can directly access data cached
in the main memory of other GPUs, which is faster than accessing
data from the host memory when GPUs are connected through a
fast bus like NVLink [5, 43, 47, 63]. Mini-batch training systems
can leverage GPU caching also when only a subset of the training

dataset is cached (partial caching). They load data from the host
memory in case of cache misses [5, 30, 34, 46, 47, 65].

In terms of algorithmic optimizations that can impact accuracy,
mini-batch training systems can run di�erent sampling algorithms.
The seminal work that proposed mini-batch GNN training, Graph-
Sage, proposed a simple neighborhood sampling approach [16].
Subsequent work proposed many di�erent algorithms such as Fast-
GCN [7], ClusterGCN [9], LADIES [79], or GraphSaint [70].

2.3 Motivation
The motivation for this work is that prior work on GNN training
systems makes it di�cult to establish the state of the art in the �eld.
A signi�cant amount of work on GNN training do not compare or
evaluate their systems against systems using a di�erent training
approach and training pipeline (full-graph or mini-batch) [5, 7, 8, 12,
13, 16, 19, 22, 25, 46, 59, 70, 71, 77]. Some prior work focused on the
mini-batch training pipeline of Figure 1(b), evaluating the impact of
using di�erent data partitioning algorithms, con�gurations of the
neighborhood sampling algorithm, and data loading optimizations
within the same system [69]. In the following, we review 33 papers
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Table 2: Dataset statistics. (*) The input features and the train-
ing data for Orkut are synthetic.

Datasets Nodes Edges Classes Features Train/Val/Test
Pubmed 19k 108k 3 500 18k/0.5k/1k
Arxiv 169k 1.1M 40 128 91k/29k/48k
Reddit 232k 11.6M 41 602 152k/23k/55k
Products 2.4M 61.9M 47 100 196K/49K/2.2M
Orkut 3M 117M 2* 128* 1.8M/614k/614k*
Papers100M 111M 1.6B 172 128 1.2M/125k/214k

on GNN training that make claims comparing systems in the two
classes. We summarize the claims in these papers in Table 1.

Of 33 papers reviewed, 17 propose full-graph training (10 with
experimental evidence, 7 with claims of superior accuracy, epoch
time, and convergence and support the claims by only citing other
papers), 12 propose mini-batch training (4 with evidence showing
full-graph’s scaling di�culties and high memory requirements and
mini-batch’s better time-to-accuracy), and 4 papers propose nei-
ther approach. Overall, we �nd the following shortcomings in the
existing literature, which motivate our work.

Con�icting claims about how the two approaches compare.
Several papers proposing full-graph systems [4, 44, 48, 49, 53, 55, 57,
60, 66] demonstrate that their systems achieve higher accuracy and
lower epoch time compared to mini-batch systems. Some papers
mention that mini-batch causes information loss, noisy gradients,
and does not guarantee convergence [32, 35, 38, 44, 51, 60] However,
papers proposing mini-batch systems [23, 73, 75, 76, 79] and some
other works [18] present contradicting evidence and claims show-
ing that mini-batch training leads to higher accuracy and faster
convergence to the target accuracy level. Other works claim full-
graph training is impractical, requires high memory, and is hard
to scale [1, 9, 65, 67, 74]. Some argue that no approach is clearly
superior and assessing their e�ectiveness requires a comprehensive
evaluation which is out of the scope of their work [26, 29–31, 45, 60].

Comparing performance only in terms of epoch time. Certain
works compare full-graph and mini-batch training systems based
only on epoch time [6, 33, 57, 61]. As we will show, a comparison in
terms of time-to-accuracy is more informative given the di�erences
in the two training approaches. Our observations indicate that
although mini-batch training exhibits higher epoch time, it still
takes less time to reach a target accuracy level (Section 4.1).

Experiment design. Some works [21, 23, 27, 31] do not always
use the same GNN model (e.g., GraphSAGE or GAT) for the two
approaches as a basis of comparison. This con�ates the e�ect of
the training approach with the GNN model choice, since di�er-
ent models may exhibit varying performance even when trained
with the same technique. Some papers do not mention explicitly
whether they perform separate hyperparameter tuning for each
method [23, 48, 53, 55, 57, 73]. As we show in our experimental
evaluation of Section 5, given a dataset and GNN model, it is pos-
sible to �nd hyperparameter settings where one method achieves
higher accuracy than another and vice versa. Using hyperparameter
tuning is necessary to perform a fair comparison.

3 EXPERIMENTAL METHODOLOGY
Hardware setup.We run our experiments using two types of hosts.
The �rst is a lower-end one, which we call PCIe. It has 2 Intel Xeon
E5-2620 v3 CPUs with 12 cores each, 256GB of host memory, and 4
NVIDIA Tesla m40 GPUs, each having 24GB of memory, connected
via PCIe. These servers are connected with a 1 Gbps network. The
second host type is higher end and we call it NVLink. It has 2 Intel
Xeon Platinum 8480+ CPUs with 56 cores each, 256 GB of host
memory, and 4 A100 GPUs, each with 80GB of memory. These
servers are connected with a 25 Gbps network. By default, all our
experiments use 4 GPUs per host.

Datasets and models. Our experiments use six datasets: pubmed
[36], ogbn-arxiv [18], reddit [16], ogbn-products [18], orkut [64] and
ogbn-papers100m [18] (see Table 2). These datasets vary in average
degrees (5.6 to 60), input feature sizes and fraction of vertices in
the training set: in pubmed, this includes most vertices, whereas in
papers it includes only 1.1% of the vertices. All datasets except orkut
include features for GNN accuracy evaluation. Orkut, containing
only graph topology, is used solely to measure epoch time for
the scalability experiments. We consider the three standard GNN
models: GraphSAGE [16], GAT [50], and GCN [25].

Representative GNN training systems. To compare across full-
graph and mini-batch distributed GNN systems, we select repre-
sentative systems that have publicly available and stable imple-
mentations and incorporate the main design choices discussed in
Section 2.2, as summarized in Figure 2. We run all systems on top
of PyTorch 2.0.1 and Python 3.8.10.

For full-graph training, in the training data management dimen-
sion of Figure 2, our evaluation only considers the more favorable
situation where the entire training data is fully cached in the mem-
ory of the GPUs since they can entirely avoid the overhead of
GPU-host communication. All systems adopt a pipeline similar to
the one of Figure 1(a). The Full-Graph baseline is synchronous and
does not use any optimization that can impact accuracy [56]. In the
dimension of algorithmic optimization, we consider three baselines
representing three classes of algorithmic optimizations: PipeGCN
for asynchronous training [55, 56], BNS-GCN for sampling [53, 54],
and AdaQP for message quantization [51, 52].

For mini-batch training, we consider three baselines: DGL [10,
58], its distributed version DistDGL [10, 75], and Quiver [39, 47].
These cover the system-level optimizations discussed in Section 2.2
(see Figure 2). All systems adopt a pipeline similar to the one of
Figure 1(b). In terms of sampling implementations, DistDGL uses
CPU-based sampling, while both DGL and Quiver support GPU-
based sampling. DistDGL partitions the training dataset across
multiple hosts. All systems use GPU caching whenever possible.
DGL only supports local GPU caching while Quiver also supports
distributed GPU caching, which is necessary to cache the Orkut
and Papers100M datasets. Mini-batch training can use di�erent
sampling algorithms to select a subset of the k-hop neighbors of
the vertices in the mini-batch. We consider the standard Neighbor-
hood Sampling (NS) algorithm, which is available for both DGL
and Quiver, ClusterGCN [9], and GraphSaint [70].

Hyperparameter search.We run an extensive hyperparameter
tuning.We validated our search bymatching the best test accuracies
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Figure 3: Convergence curve for GraphSAGE (NVLink host).

we found in the literature on GNN training systems we reviewed. To
manage the large search space, we iterate multiple times over three
phases, where we tune a set of hyperparameters and �x all others
until we don’t observe any more improvements in accuracy. In the
�rst phase, we use grid search for the architectural hyperparameters,
namely the number of layers or the hidden feature size, which have
a limited number of discrete values. In the second phase, we run
a random search for the remaining hyperparameters, such as the
learning rate. Mini-batch training requires tuning the micro-batch
size and additional sampling hyperparameters compared to full-
graph training. We tune these in a third phase using Bayesian
optimization, reducing the search space by considering only a few
commonly used discrete values. In the extended version of this
paper, we report our hyperparameter space and show that mini-
batch training is less sensitive than full-graph training to the tuning
of the architectural hyperparameters [2].

4 PERFORMANCE EVALUATION
We evaluate the performance of our representative GNN training
systems and answer two questions: Q1) How long do representative
systems take to reach the same target accuracy? (Section 4.1), and
Q2) How do these systems scale with a varying number of GPUs and
hosts? (Section 4.2).

4.1 Time-to-Accuracy

Methodology Time-to-accuracy is the time taken by any system
to train to a target accuracy. To measure it, we select the target
accuracies by leveraging hyperparameter tuning. Given a dataset
and a GNN model, we �rst �nd a model architecture on which
both training approaches (full-graph and mini-batch) converge to a
similar and close-to-best accuracy, which we call convergence accu-
racy. We select the target accuracy as the minimum convergence
accuracy across the two training approaches. We then use the same
model architecture across all GNN training systems and measure
their time to reach the target accuracy. The time-to-accuracy con-
siders only the �nal training phase and not the hyperparameter
search. For mini-batch systems, we consider the common Neigh-
borhood Sampling algorithm as default because it is available on
all baselines and it consistently achieves an accuracy close to the
full-graph training methods. We report the hyperparameters in the
extended version of this paper [2]. These experiments consider the
two host types described in Section 3: a higher-end NVLink host
and a lower-end PCIe host.

Table 3: Time to accuracy (TTA) and epoch time (ET) for
GraphSAGE (NVLink host).

System pubmed ogbn- reddit ogbn- ogbn-
arxiv products papers100m

ET
(s)

Full-Graph 0.009 0.057 1.845 2.086 1.094
PipeGCN 0.008 0.011 0.370 0.341 0.644
BNS-GCN 0.012 0.017 0.483 0.473 0.846
AdaQP 0.027 0.029 0.830 0.312 0.471
DGL 0.007 0.110 2.262 1.335 3.428
Quiver 0.005 0.131 1.994 2.117 1.878

TTA
(s)

Full-Graph 0.87 11.03 202.95 479.81 984.33
PipeGCN 1.02 3.44 103.47 122.64 553.75
BNS-GCN 1.59 4.51 144.98 217.66 262.11
AdaQP 0.81 19.86 41.5 53.04 160.41
DGL 0.44 0.55 6.78 40.05 75.42
Quiver 0.33 0.65 5.98 63.52 41.31

NVLink host. Table 3 and Figure 3 show the time to accuracy when
training GraphSAGE on a single NVLink host with 4 GPUs. Full-
graph training systems have a consistently lower epoch time (ET)
than mini-batch training systems because they perform only one
training iteration per epoch. However, their time-to-accuracy (TTA)
is substantially higher compared to mini-batch systems. For exam-
ple, on the largest graph we consider, ogbn-papers100m, Quiver
is 3.9⇥ faster than AdaQP. Similarly, for pubmed, Quiver is 2.5⇥
faster than AdaQP; for arxiv, DGL is 6.3⇥ faster than PipeGCN;
for reddit, Quiver is 6.9⇥ faster than AdaQP (highest speed-up we
observed); for products, DGL is 33% faster than AdaQP (lowest
speed-up we observed). Results on other models are shown in the
extended version of this paper [2].

Comparing the performance of systems in the same class shows
the impact of the systems optimizations introduced in previous
work (see Figure 2). All full-graph systems we consider bene�t
from fully caching the graph in GPU memory. PipeGCN can sub-
stantially decrease ET and TTA compared to Full-Graph. By using
asynchronous training and overlapping communication with com-
putation, PipeGCN can mitigate the cost of synchronous cross-GPU
vertex feature communication at each layer, which is high even
when NVLink. Boundary-node sampling, as proposed by BNS-GCN,
is less e�ective than asynchronous training on the smaller graphs,
but it yields the fastest TTA among all full-graph training systems
on ogbn-papers100M. The use of of synchronous communication
in BNS-GCN results in larger ET than PipeGCN for all datasets, but
using fresh training data contributes to achieving a shorter number
of epochs to convergence with papers100M. AdaQP also combines
synchrony with reduced communication costs thanks to message
quantization. It speeds up ET signi�cantly compared to Full-Graph,
but not compared to other full-graph optimizations. Nonetheless,
AdaQP can have faster TTA than other full-graph graph systems,
since for some datasets it requires fewer epochs to converge.

Among mini-batch systems, DGL supports local full caching and
can cache all the graphs in Table 3 except papers100m. When full
local caching is possible, DGL does not need to transfer input vertex
features to the GPUs, maximizing GPU utilization. Quiver also uses
full local caching, achieving a similar ET and TTA. However, Quiver
implements a partial distributed cache across multiple GPUs that
can also cache ogbn-papers100m. With distributed caching, some
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Table 4: Time to accuracy (TTA) and epoch time (ET) for
GraphSAGE (PCIe host).

System pubmed ogbn-
arxiv reddit ogbn-

products

ET (s)
Full-Graph 0.024 0.188 5.602 5.835
PipeGCN 0.020 0.067 3.278 2.526
BNS-GCN 0.031 0.072 3.399 2.915
DGL 0.019 0.314 9.416 7.081
Quiver 0.019 0.216 10.272 9.246

TTA (s)
Full-Graph 2.40 36.16 616.25 1341.95
PipeGCN 2.35 20.75 917.80 909.43
BNS-GCN 2.91 19.33 1019.64 1340.80
DGL 1.25 1.57 28.25 247.83
Quiver 1.22 1.08 30.82 323.61

input vertex features may still be transferred among GPUs using
NVLink buses, which is cheaper than loading the features from the
host memory over the slower PCIe bus. This is why Quiver has a
much lower time-to-accuracy than DGL for papers100M.

PCIe host. Table 4 reports the results for single-host training with
GraphSAGE using a lower-end host setup, where NVLink is not
available and all cross-GPU communication must occur over a
slower PCIe bus. The 4 GPUs are computationally less powerful
and have less memory. The papers100M graph is too large to be
fully cached in a single host by our full-graph training systems. We
cannot run AdaQP since its implementation is not compatible with
our lower-end GPUs.

Like in the previous hardware setups, mini-batch training sys-
tems show a larger ET (with the exception of pubmed) but a shorter
TTA on all datasets. Full-graph training systems must run cross-
GPU vertex feature exchange over the slow PCIe bus. Optimizations
that reduce the communication cost, like asynchrony (PipeGCN)
and sampling (BNS-GCN), can reduce TTA, but the cost remains
high. DGL and Quiver avoid vertex feature communication by repli-
cating the training data on all GPUs so the advantage over the
full-graph training systems is larger than with the NVLink host,
reaching 32⇥ for Reddit.

The impact of dataset characteristics. Di�erent datasets have
an impact on the performance of di�erent systems. While the im-
pact on TTA is hard to understand due to the stochastic nature of
training, the impact on ET can be more easily analyzed.

The communication cost of full-graph training systems is deter-
mined by the number of boundary vertices across partitions. Reddit
and products, for example, have a large number of boundary ver-
tices, so the ET of the Full-Graph baseline is much larger compared
to DGL and Quiver. Optimizations that reduce this communication
cost used by PipeGCN and BNS-GCN can reduce this gap signi�-
cantly. For mini-batch training, the training cost is determined by
the size of the micro-batches assigned to each GPU. Datasets that
require a larger number of GNN layers, such as products and reddit
which requires 5 and 4 layers respectively, result in a larger ET
for mini-batch training systems compared to the other full-graph
training systems. In contrast, papers100M only requires 2 layers so
the gap in ET is smaller.

Di�erentmini-batch sampling algorithms. Finally, we combine
DGL with di�erent mini-batch sampling algorithms than Neighbor-
hood Sampling (NS). ClusterGCN achieves on average 2.8⇥ faster
TTA than NS across datasets, ranging from 0.14⇥ slower to 12.3⇥
faster depending on the dataset, and its ET is 6.4⇥ faster on aver-
age. GraphSaint has 3.2⇥ faster TTA than NS on average, ranging
from 0.5⇥ slower to 16.1⇥, and faster ET by 9.3⇥ on average (see
extended version of this paper [2]).

Takeaway.Mini-batch training systems converge faster than full-
graph training ones because they require fewer epochs to reach
a target accuracy, despite having longer epochs. We observe this
across all models, datasets, and hardware con�gurations we con-
sider. Avoiding data transfers by caching input data in GPUmemory
has a strong impact on the performance of mini-batch training. For
full-graph training, asynchrony (PipeGCN) and sampling (BNS-
GCN) can reduce communication cost and thus ET, resulting in
faster TTA. AdaQP can achieve even faster TTA even if its ET is
larger than other full-graph methods, showing the importance of
using algorithmic optimizations besides system-level optimizations.
For mini-batch training, using di�erent sampling algorithms can
speed up TTA signi�cantly in many cases.

4.2 Scalability
Next, we answer Q2: How do systems scale with a varying number
of GPUs and a varying number of hosts? For each dataset, we pick a
GNN architecture that �ts in a single GPU and use the single GPU
training performance to calculate the scalability speedups.

Single-host scalability (NVLink). We now measure single-host
scalability by varying the number of GPUs. We report the hyperpa-
rameters in the extended version of this paper [2]. For the orkut
dataset, we do not report TTA since it has synthetic input features
and target labels.

Table 5 presents the results for GAT models. Like we observed
previously, the full-graph training systems have a much lower ET
than the mini-batch ones but a higher TTA in all con�gurations.

Mini-batch systems have a lower TTA than full-graph ones also
in a single GPU setting, indicating that they have a lower com-
putation cost to start with. The mini-batch systems scale almost
linearly, up to 3.9⇥. When scaling to multiple GPUs, one important
advantage of mini-batch training systems is that they can keep the
amount of work per GPU constant by increasing the mini-batch
size. This is not possible in full-graph training systems since the
total amount of work per epoch is constant. As the number of
GPUs increases, the amount of work per GPU decreases but the
communication cost increases, hindering scalability. This explains
why full-graph training systems that optimize communication scale
better than the Full-Graph baseline. PipeGCN has much better scal-
ability because it overlaps communication and computation using
asynchronous training, scaling to up to 3.4⇥. Sampling of boundary
nodes in BNS-GCN also enables good scaling, up to 3.5⇥, since the
cross-GPU communication is avoided.

Results on GraphSAGE models are shown in the extended ver-
sion [2]. The Full-Graph baseline does not scale at all, PipeGCN
scales up to 3.3⇥ and BNS-GCN scales up to 2.7⇥. In contrast, DGL
and Quiver are able to scale up to ⇡ 4.0⇥ and 3.8⇥ respectively.
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Table 5: Single-host scalability for GAT (NVLink host). ET - Epoch time (s), TTA - Time to Accuracy (s).

Dataset ogbn-arxiv reddit ogbn-products orkut

System # of GPUs ET TTA TTA
Speed-up ET TTA TTA

Speed-up ET TTA TTA
Speed-up ET ET

speed-up

Full-Graph
1 1.293 569.01 1.0x 4.265 4094.59 1.0x 2.058 823.36 1.0x 1.898 1.0x
2 0.868 381.74 1.5x 2.566 2463.65 1.7x 1.341 536.20 1.5x 1.873 1.0x
3 0.763 335.90 1.7x 2.587 2483.90 1.6x 1.129 451.64 1.8x 1.594 1.2x
4 0.625 275.04 2.1x 1.801 1728.58 2.4x 1.033 413.28 2.0x 1.442 1.3x

PipeGCN
1 1.292 581.27 1.0x 4.268 4267.70 1.0x 2.060 782.76 1.0x 1.898 1.0x
2 0.777 349.83 1.7x 2.309 2309.20 1.8x 1.135 431.34 1.8x 1.149 1.7x
3 0.589 265.10 2.2x 2.309 2309.20 1.8x 0.810 307.61 2.5x 0.920 2.1x
4 0.469 211.14 2.8x 1.312 1312.15 3.3x 0.614 233.24 3.4x 0.720 2.6x

BNS-GCN
1 1.309 471.06 1.0x 4.189 4188.60 1.0x 2.171 455.95 1.0x 2.173 1.0x
2 0.764 274.93 1.7x 2.315 2315.30 1.8x 1.213 254.73 1.8x 1.284 1.7x
3 0.532 191.56 2.5x 1.724 1723.60 2.4x 0.857 179.99 2.5x 0.984 2.2x
4 0.420 151.20 3.1x 1.395 1395.40 3.0x 0.629 132.13 3.5x 0.713 3.0x

DGL
1 15.006 150.06 1.0x 24.006 360.09 1.0x 10.554 158.31 1.0x 14.791 1.0x
2 7.290 72.90 2.1x 12.794 191.91 1.9x 5.827 87.40 1.8x 7.668 1.9x
3 5.550 61.04 2.5x 8.949 134.24 2.7x 3.894 58.42 2.7x 4.940 3.0x
4 3.871 42.58 3.5x 6.510 97.65 3.7x 2.730 40.95 3.9x 3.980 3.7x

Quiver
1 13.813 138.13 1.0x 26.427 396.41 1.0x 11.212 168.19 1.0x 13.718 1.0x
2 6.575 65.75 2.1x 13.764 206.46 1.9x 5.797 86.95 1.9x 7.447 1.8x
3 4.979 49.79 2.8x 8.703 130.55 3.0x 3.993 59.90 2.8x 5.058 2.7x
4 3.596 35.96 3.8x 6.779 101.68 3.9x 2.974 44.61 3.8x 3.855 3.6x

Table 6: Distributed scalability for GraphSage (NVLink hosts).
ET - Epoch time (s), TTA - Time to Accuracy (s).

orkut ogbn-papers100m

System # Hosts ET ET
Speed-up ET TTA TTA

Speed-up

Full-Graph 1 4.769 1.0x 3.556 924.46 1.0x
2 4.588 1.0x 3.566 927.13 1.0x
3 4.351 1.0x 3.933 1022.63 0.9x

PipeGCN 1 0.454 1.0x 0.759 197.57 1.0x
2 0.341 1.3x 0.464 120.67 1.6x
3 0.227 2.0x 0.361 93.96 2.1x

BNS-GCN 1 0.810 1.0x 0.997 209.38 1.0x
2 0.608 1.3x 0.762 160.10 1.3x
3 0.405 2.0x 0.542 113.88 1.8x

DistDGL 1 9.83 1.0x 11.56 80.93 1.0x
2 7.31 1.3x 10.75 75.24 1.1x
3 6.82 2.0x 6.61 46.28 1.7x

Quiver 1 7.33 1.0x 2.63 18.41 1.0x
2 4.67 1.6x 1.96 13.72 1.3x
3 3.78 1.9x 1.66 11.62 1.6x

Multi-host scalability (NVLink).We now consider scaling the
training of larger graphs (orkut and ogbn-papers100m) in a dis-
tributed setting of NVLink hosts, where each host has 4 GPUs. For
this experiment, we replace DGL with DistDGL, its distributed ver-
sion. We report the hyperparameters in the extended version of
this paper [2]. We consider the GraphSAGE model because it is the
only one implemented in the DistDGL distribution. We run Quiver
with data parallelism across multiple hosts.

Table 6 and Figure 4 show the results for distributed scalability
with NVLink-enabled devices. Also, in this case, we observe that
full-graph training systems consistently have lower epoch time
but larger time-to-accuracy compared to DistDGL. Going from
single-host to multi-host training impacts di�erent systems in a
di�erent way. Full-graph training systems must use the network
to exchange vertex features across hosts, which is much slower

than NVLink. The Full-Graph baseline actually has a slower epoch
time than a single-host setup. Optimizing communication using
asynchrony (PipeGCN) and boundary node sampling (BNS-GCN)
is even more crucial to scaling than in the single-host scalability
experiments. DistDGL partitions the dataset across multiple hosts
and performs distributed sampling, which introduces an additional
communication cost compared to a single-host implementation.
When running on multiple hosts, the DistDGL baseline has a much
larger epoch time than Quiver because it uses distributed CPU-
based sampling and does not use caching.

Scalability with the PCIe host. We run single-host scalability
experiments on the PCIe host, from 1 to 4 GPUs. Like for the previ-
ous experiments, mini-batch training systems have a lower time-
to-accuracy than full-graph training ones despite having a larger
epoch time. The results show that all the full-graph training systems
have lower scalability since they must not communicate over the
slower PCIe bus instead of NVLink. This slowdown compared to
the NVLink case is particularly evident for the Full-Graph baseline,
which can only scale up to 2.0⇥. PipeGCN async can scale up to at
most 3.1⇥ and BNS-GCN up to at most 3.0⇥. Mini-batch training
systems have better scalability because they replicate most graphs
in the cache and require less cross-GPU communication. DGL scales
up to 3.8⇥ and Quiver up to 3.5⇥.

We also run all systems using 3 PCIe hosts for the ogbn-papers100m
graph. Compared to the distributed NVLink setup, hosts are con-
nected by a much slower network (1 Gbps instead of 25 Gbps). Like
in the previous experiments, DistDGL has a lower time-to-accuracy
than the other full-graph training systems, but the di�erence is
smaller than with the distributed NVLink setup because of the
cost of distributed sampling and feature loading over a very slow
network. DistDGL outperforms the BNS-DGL system by only 12%.
The distributed sampling implementation of DistDGL is not opti-
mized for very slow network links. The full results are shown in
the extended version of this paper [2].
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Figure 4: Convergence curve for GraphSage (3 NVLink hosts).

Memory scalability. In terms ofmemory usage, full-graph training
systems must keep the entire graph and the related training state
partitioned in GPU memory. Mini-batch systems only need to store
a micro-batch and the related state in the memory of each GPU.
In our experiments, full-graph training systems have a larger peak
memory utilization in all the con�gurations we considered, up to
7.4⇥, but the gap decreases when using more GPUs (since mini-
batch training systems must store more micro-batches in total),
deeper GNNs with more layers, or larger sampling fanouts (since
each micro-batch is larger).

Takeaway.Mini-batch training systems have lower time-to-accuracy
than full-graph training ones for all models, datasets, and hardware
con�gurations we consider. They also have better scalability in
most cases. One important scalability advantage for mini-batch
training systems is that they can tune the mini-batch size to keep
the work per GPU constant. In full-graph training systems, algorith-
mic optimizations such as asynchrony and sampling are essential
to achieve high scalability. The full-graph systems cannot scale
well when they use slower cross GPU interconnects because their
communication cost is ampli�ed.

5 ACCURACY EVALUATION
Even though a system takes longer than another to reach the same
target test accuracy, it could still be preferable to use it if it can
converge to a higher test accuracy. Indeed, some works on GNN
systems assert that full-graph training achieves higher accuracy
and that mini-batch training does not guarantee convergence [4, 32,
35, 38, 48, 49, 51, 53, 55, 57, 66], while others claim that mini-batch
training achieves higher accuracy [23, 73, 75, 76, 79].

Figure 5 summarizes the test accuracy values reported in the
literature we reviewed for di�erent GNN models and datasets. Each
point in the graph represents the test accuracy reported for a speci�c
GNN model-dataset pair in one of the papers we reviewed. The
�gure illustrates a wide distribution of accuracy values for the same
dataset and model combination.

In this Section, we shed light onto this apparent contradiction
and answer two questions: Q3) What is the best test accuracy we
can achieve using full-graph and mini-batch training? Q4) What
test accuracy can we achieve when using a training method with the
best hyperparameters found for the other method? Di�erent training
systems have di�erent optimizations (see Figure 2), so Q5: What is
the impact of the optimizations on accuracy?

Methodology. To compare maximum test accuracies among full-
graph and mini-batch training, we use the methodology depicted

Figure 5: Test accuracy reported in previous work on GNN
training [8–11, 13, 16, 18, 21, 25, 27, 33, 45, 48, 50, 53, 55, 62,
66, 67, 67, 70, 79] .

Figure 6: Methodology of our accuracy comparison between
full-graph (FG) and mini-batch (MB) training.

in Figure 6. Given a dataset and a GNN model, we conduct two
separate hyperparameter searches, one using full-graph training
and one using mini-batch training. This is because the two training
methods can have di�erent sets of best hyperparameters for the
same dataset and model, using the method described in Section 3.
We consider vanilla baselines for full-graph andmini-batch training:
the Full-Graph baseline and DGL with the default Neighborhood
Sampling algorithm, respectively. The best hyperparameter settings
we obtained using the two training methods are denoted as FG�
������ and MB�������. We then run full-graph and mini-batch
training on both settings, measure the test accuracy, and denote it
as FG������ and MB������ respectively. This yields a total of four
test accuracy combinations per dataset and GNN model. We report
the hyperparameter settings we found in the extended version [2].

We validate our results by verifying that given a dataset, model,
and training method, our hyperparameter search achieves accuracy
values that are equal to or better than the best accuracy value
reported in the literature reviewed in Section 2.3.

Accuracy with the best setting. We start by answering ques-
tion Q3: What is the best test accuracy we can achieve using vanilla
full-graph and mini-batch training? The accuracy results for the
GraphSAGE model are shown in Table 7. Given a dataset, we must
compare the accuracies obtained for two combinations: (FG�������,
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Table 7: Accuracy (%) of GraphSage using hyperparameter tuning method in Figure 6.

Pubmed Ogbn-arxiv Reddit Ogbn-products Ogbn-papers100M

FG-search MB-search FG-search MB-search FG-search MB-search FG-search MB-search FG-search MB-search

FG-train 77.40 ± 00.04 76.10 ± 00.67 71.76 ± 00.16 67.21 ± 00.9 96.94 ± 00.01 90.28 ± 00.63 79.29 ± 00.15 76.60 ± 00.32 62.82 ± 00.01 61.74 ± 00.13
MB-train 77.00 ± 00.39 78.20 ± 00.32 70.73 ± 00.38 71.67 ± 00.30 96.52 ± 00.14 96.82 ± 00.04 78.72 ± 00.07 78.84 ± 00.12 62.52 ± 00.04 62.77 ± 00.02

FG������) for full-graph training and (MB�������, MB������) for
mini-batch training. The results are averaged after 5 runs.

The results show that the accuracies are similar across training
methods. For the GraphSAGE model, each method can yield higher
accuracy than the other, depending on the dataset. Accuracy tends
to have lower variance with full-graph training generally than
with mini-batch training. The largest gap between the accuracies
obtained with the two methods is less than 0.9% in favor of full-
graph training and averaging around 0.3%. We ran a similar analysis
for the GCN and GAT model, and we report the results in the
extended version of this paper [2]. With the GAT model, the largest
gap is slightly higher, up to 1.1% in favor of full-graph training and
the average is around 0.6%. Gaps are higher for GCN, which is a
simpler model and turns out to be more sensitive to the choice of
hyperparameters. The largest gap in this case is 3.6% in favor of
mini-batch training and the average is around 1.27%.

Accuracy with sub-optimal setting.We now answer question
Q4: What test accuracy can we achieve when using a vanilla training
method with the best hyperparameters found for the other method?

To answer this question for the case of the GraphSAGE model,
we still look at Table 7. Given a dataset, the FG������� column
reports the accuracy achieved with the two training methods using
the hyperparameter setting where full-graph training works best.
Mini-batch training performs worse than full-graph training, but
only by a small margin. The largest gap between MB������ and
FG������ is for the ogbn-arxiv graph (1.03%).

The MB������� column compares the two training methods
using the best hyperparameters we found for mini-batch training.
Full-graph training has lower accuracy than mini-batch training
and the gap between the two methods is larger, reaching 6.22% for
the reddit dataset.

Our evaluation of GAT and GCN is reported in the extended
version [2] and leads to similar conclusions. For GAT, the largest
di�erence between FG-train and MB-train is 2.85% in favor of MB-
search for arxiv and 1.9% in favor of FG-search for pubmed. For
GCN, it is 1.36% in favor of FG-search for reddit and 5.5% in favor
of MB-search for pubmed.

These results motivate the use of separate hyperparameter tun-
ing for the two methods since good hyperparameter settings do
not transfer well across methods.

Impact of optimizations on accuracy.Many performance opti-
mizations we consider can result in a di�erent accuracy than the
vanilla methods (see Figure 2). This section answers the question
Q5: What is the impact of the optimizations on accuracy? In this anal-
ysis, we use the best-found hyperparameters for each system class:
FG�S����� and MB�S����� models for full-graph and mini-batch
training systems, respectively. For full-graph training, we consider

Table 8: Accuracy (%) impact of di�erent optimizations -
GraphSAGE.

Pubmed Ogbn-
arxiv Reddit Ogbn-

products
Ogbn-

papers100M

Full-Graph 77.40±
0.04

71.76 ±
0.16

96.94±
0.01

79.29 ±
0.15 62.82±0.01

PipeGCN 77.40±
0.45

71.27 ±
0.66

96.93±
0.11

78.58 ±
0.32 61.74±0.13

BNS-GCN 77.20±
0.16

71.72 ±
0.27

96.95±
0.08

78.40 ±
0.22 62.79±0.10

AdaQP 77.42±
0.59

63.73 ±
0.07

96.85±
0.002

78.79 ±
0.004 62.54±0.00

NS 78.20±
0.32

71.67 ±
0.30

96.82±
0.04

78.84 ±
0.12 62.77±0.02

ClusterGCN 79.72±
0.22

65.72 ±
0.18

95.07±
0.03

79.50 ±
0.17 49.79±0.00

GraphSaint 84.03±
0.61

73.80 ±
0.13

98.40±
0.03

77.85 ±
0.07 50.32±0.27

the impact of asynchrony (PipeGCN), sampling (BNS-GCN), and
message quantization (AdaQP). For mini-batch training, besides
Neighborhood Sampling (NS), we also consider the ClusterGCN
and GraphSaint sampling algorithms.

The results for GraphSage are shown in Table 8. Among full-
graph training systems, our results show that asynchrony and sam-
pling have minimal impact on accuracy compared to FG, within 1%
in all the cases we considered. Message quantization has a stronger
negative impact only on arxiv.

Mini-batch training shows a very di�erent trend. Formost datasets,
there is some sampling algorithm that achieves higher accuracy
than all full-graph training approaches. The relative performance of
each sampling algorithm shows large variations depending on the
dataset. Both GraphSaint and ClusterGCN achieve the best and the
worst accuracy among all sampling algorithms for some datasets.
These results show that the regularization e�ect of sampling is
key to achieving high accuracy, focusing the training on nodes
that have the highest in�uence on each other [70]. Neighborhood
Sampling (NS) shows a more stable behavior: on all datasets, it
achieves similar accuracy as FG. This justi�es its popularity as the
default sampling method for mini-batch training. We repeated the
experiment on GAT and GCN and obtained similar trends, as shown
in the extended version of this paper [2].

Takeaway. When comparing vanilla full-graph and mini-batch
training, no method consistently guarantees higher accuracy than
the other and the gap between the two methods is not larger than
3.6%. Good hyperparameter settings do not perform as well across
both full-graph and mini-batch training, motivating the need for
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Figure 7: FG/MB ratio of communication cost. (Left: Hyper-
parameters in the extended version [2]. Right: 4 partitions)

separate tuning processes. The algorithmic optimizations for full-
graph training we considered achieve very similar accuracies as the
vanilla full-graph method in most cases, making them attractive
choices given their performance bene�ts. For mini-batch training,
using the right sampling algorithm can achieve higher accuracy
than the full-graph training methods for most datasets and models.
However, some sampling algorithms show widely di�erent accura-
cies based on the dataset and sometimes converge to much lower
accuracies. This indicates that trying di�erent algorithms during
hyperparameter tuning is essential.

Overall, these results challenge the common rationale for using
full-graph training over mini-batch training, suggesting that the
expected bene�ts of avoiding sampling and its associated informa-
tion loss to achieve higher accuracy do not materialize in practice.

6 COST ANALYSIS
To support and generalize our empirical observations beyond the
speci�c hardware con�gurations and software implementations
we evaluated empirically, in this section we answer the following
questionQ6:What are the analytical performance costs of vanilla full-
graph and mini-batch training? We model the communication and
computation costs of training analytically and then evaluate the cost
of pre-processing (sampling) in mini-batch training experimentally
to complement the analysis.

Communication cost. Our analysis considers a model of GNN
training where the training workload is partitioned among a set of
workers, , each accessing a local memory. The communication cost
� is the volume of vertex feature data exchanged among theworkers.
We ignore gradient synchronization costs since GNN models have
relatively few parameters. We measure the cost to convergence
rather than per epoch for the reasons discussed in Section 4.1.

In full-graph training, at each layer, workers must receive the
features of all remote vertices that are neighbors of local vertices,
so the communication cost is:

�fg = =5

!’
;=1

’
F2,

’
E2'F

|⌘;E |

where =5 is the number of epochs to convergence, 'F the set of
vertices that are remote neighbors of vertices inF , ⌘;E is the feature
vector for vertex E at layer ; .

In mini-batch training, we model a scenario where the input
features cannot �t in the local memory of one worker and are

Figure 8: FG/MB ratio of computation cost for GraphSage.

partitioned among workers. At each iteration, each worker must
gather the input features of all the vertices at the bottom layer of
its micro-batch. The communication cost to convergence is:

�mb = =<

�’
8=1

’
F2,

’
E2 ("8,F\%F )

|⌘0E |

where =< is the number of epochs to convergence using vanilla
mini-batch training, � is the number of iterations in an epoch,"8,F
is the set of vertices in the micro-batch assigned to worker F at
iteration 8 , and %F is the partition of vertices assigned to workerF .

We calculate the ratio between �fg and �mb by considering the
same hyperparameters for both approaches, which are the same
we used for evaluating the time-to-accuracy in Section 4.1. We use
Metis to partition the datasets [24] and run Neighborhood Sampling
for one epoch to obtain"8

F .
Figure 7 shows the ratio between �fg and �mb for di�erent datasets.

The communication cost of full-graph training is higher than that
of mini-batch training in most cases. The gap mostly depends on
the number of boundary nodes and, for mini-batch training, on
the size of the last layer of the micro-batches. In practice, mini-
batch training does not need to partition the dataset since it can
replicate commonly accessed input features in the local memory
of multiple workers. In our experimental evaluation of Section 4,
all datasets except orkut and papers100M are fully replicated, but
partial replication is often almost as e�ective [43].

In general, larger graphs can have a larger edge cut when they are
partitioned. This results in larger'F , increasing the communication
cost of full-graph training �fg. In contrast, the communication cost
of mini-batch training, �mb, grows with ("8,F \%F), which is upper
bounded by the size of the sampled micro-batches, not by the size of
the graph. A similar e�ect is observed by increasing the number of
partitions with �xed datasets, as shown in Figure 7. This increases
the relative cost of �fg over �mb.

Computation cost. We now analyze the computational cost of
training with vanilla full-graph (⇥fg) and mini-batch training (⇥fg).
A GNN training layer ; computes the features of vertices at layer ;
based on the features of their neighbors at layer ;�1 (see section 2.1).
The computational cost to the convergence of full-graph training
can be expressed as:

⇥fg = =5

!’
;=1

( |⇢; | · 24 + |+ ; | · 2E) (1 + [)
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where the summation expresses the cost of the forward pass: 24
is the cost of generating and aggregating a message sent over one
edge, 2E is the cost of computing a new representation of a vertex,
+ ; is the set of all vertices processed at layer ; in the epoch, and ⇢;

is the set of all edges between + ;�1 and + ; processed in the epoch.
The factor (1 + [) accounts for the cost of the backward pass.

The values of 24 and 2E are independent of the choice of full-
graph or mini-batch training. They depend on the GNN model
(e.g. GraphSage or GAT) and its hyperparameters and they can be
calculated analytically in terms of FLOPS.

The computational cost for mini-batch training is similar:

⇥mb = =<

�’
8=1

’
F2,

!’
;=1

( |⇢; ("8,F) | · 24 + |+ ; ("8,F) | · 2E) (1 + [)

where ⇢; ("8,F) and+ ; ("8,F) are the number of edges and vertices
at layer ; in the micro-batch"8,F .

We calculate the ratio of ⇥fg and ⇥mb using the same hyper-
parameters as in the communication cost analysis and show it in
Figure 8. The results reveal a large di�erence in terms of computa-
tional cost between mini-batch and full-graph training, especially
with the largest graph, papers100M. In full-graph training, ⇥fg de-
pends on |⇢; | and |+ ; |, which grow as the size of the graph grows.
Mini-batch training performs message passing only on a sample of
the graph, unlike full-graph training, reducing computation cost
substantially. The computation cost ⇥mb is upper-bounded by the
size of"8,F , which depends on the number of layers in the GNN
and the sampling algorithm rather than on the size of the graph.

As the number of workers grows, the gap between full-graph
and mini-batch training decreases in Figure 8. This is because the
same vertex can appear in multiple micro-batches, so its hidden
features are computed multiple times in an epoch. This redundant
computation does not happen with full-graph training.

Cost of sampling in mini-batch training.Mini-batch training
requires two pre-processing steps: sampling and data loading. Data
loading costs are included in the communication costs. Modeling
sampling costs in terms of FLOPS, as we did for the training costs
⇥mb, is challenging because sampling is a sparse and irregular
computation, not a dense computation like matrix multiplication.
Therefore, to put the previous results in context, we measure the
relative computational cost of sampling over training in mini-batch
training using DGL and Neighborhood Sampling (see Figure 9).
We run both sampling and training in CPU memory to factor out
the overhead of transferring data to the GPUs. The computational
cost of sampling is noticeable but is still lower than the training
cost in most cases. It decreases when we increase the number of
workers/partitions because each epoch requires fewer iterations.

Takeaway. This analysis shows that vanilla full-graph training has
a higher communication cost than vanilla mini-batch training when
the GNN model is not very deep. Furthermore, mini-batch training
systems can replicate input features across multiple workers to
eliminate or reduce communication costs.

Much prior work on full-graph training has focused on reducing
the communication cost, as discussed in Section 2.2. Our analysis
shows that mini-batch training can also achieve a substantially
lower computation cost, thanks to sampling.

Figure 9: Fraction of epoch time spent performing sampling
in mini-batch training for GraphSage.

7 CONCLUSION
Our work has evaluated various full-graph and mini-batch systems,
encompassing a wide range of optimizations (see Figure 2). A com-
mon rationale for using full-graph instead of mini-batch training
is to achieve higher accuracy by avoiding the information loss re-
sulting from sampling. In our evaluation, we did not observe these
expected bene�ts. Mini-batch training systems achieve not only a
lower time-to-accuracy across all models, datasets, and hardware
con�gurations we consider, but also a comparable or even higher
accuracy with proper hyperparameter tuning.

Among the optimizations we considered for mini-batch training,
GPU-based sampling and GPU caching should be used whenever
feasible. The choice and con�guration of the sampling algorithm
is critical for performance and accuracy. The common Neighbor-
hood Sampling (NS) algorithm is able to consistently achieve good
accuracy although it shows a slightly larger variance than vanilla
full-graph training. Other sampling algorithms can outperform NS
but they are not always able to converge to a high accuracy. We
found that multi-host sampling can become a bottleneck when the
network is slow. GPU-based runtimes that expose high-level APIs
to design new sampling algorithms can support future innovations
in e�cient sampling [14, 20, 37, 59].

For full-graph training systems, the algorithmic optimizations
we considered can substantially improve performance with min-
imal or no impact on accuracy. Our performance evaluation and
cost model analysis reveal that in addition to the well-known com-
munication bottleneck addressed by much previous work, future
optimizations should also reduce the computation cost gap with
mini-batch training. A natural open question is whether combining
sampling with a full-batch training pipeline similar to Figure 1(a)
can be bene�cial. Our hyperparameter search found that the accu-
racy of mini-batch training typically peaks with batch sizes around
1024/4096, so the advantage of using larger batches is not obvious.
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