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ABSTRACT
Ranking indicators are essential tools for comparing the importance

of various entities such as cities or scientists.While extensively used

in fields like econometrics and scientometrics, many other domains

lack systematic approaches for developing these indicators. In this

paper, we introduce a novel method for automatically discovering

ranking indicators from very large knowledge graphs. To this end,

we formalize the notion of counting graph pattern (CG) as a special

SPARQL query, and the concept of ideal ranking indicator as a CG
whose result induces a strict total order on a set of entities. To

assess the interestingness of ranking indicators, we employ the

proportion of covered entities along with an inequality measure,

namely the Gini coefficient. We further present Algorithm Ranking
Indicator Pattern Miner (RIPM), to efficiently identify interesting

ranking indicators for a given field, thanks to pruning techniques for

handling the very large search space. Our experimental study shows

the effectiveness of our optimizations. It also validates that RIPM
extracts transparent, diverse, and understandable indicators through
a user survey and a comparison with two baselines. This work has

significant implications for fields lacking dedicated communities

working on ranking tasks, providing a robust tool to automatically

produce ranking indicators, and the associated rankings.

PVLDB Reference Format:
Hassan Abdallah, Béatrice Markhoff, and Arnaud Soulet. Ranking Indicator

Discovery from Very Large Knowledge Graphs. PVLDB, 18(4): 1183 - 1195,

2024.

doi:10.14778/3717755.3717775

PVLDB Artifact Availability:
The source code, data, and results have been made available on Zenodo:

https://zenodo.org/records/14181263

1 INTRODUCTION
Ranking indicators are very common to compare the importance of

different entities (like cities or scientists) based on targeted criteria

(in the case of cities, the comparison may concern the economy or

culture), in particular, to drive public policy [5] or scientific policy

[50]. Even if caution is called for [8, 27, 34], the use of numeri-

cal indicators objectively establishes a ranking, making it easy to

compare entities. Some fields, such as economics or epistemology,

even have their own community dedicated to the construction of

these ranking indicators, with econometrics and scientometrics. For
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instance, bibliometric indicators help measure the impact and influ-

ence of scientific research, leading to the identification of emerging

trends and influential research areas. Unfortunately, many fields

do not have a comparable community, even though the needs have

been identified. For example, it would be interesting to produce

ranking indicators in artistic fields to study the influence of artists

and their works to answer questions as simple as “How to compare

painters?”. In fact, some flawed rankings are available on websites,

such as those shown in Table 1 (a)-(c). These three rankings of

the 10 most important painters are ultimately very different, with

only four painters in common (highlighted in bold). It is not their

diversity of viewpoint that’s troublesome, but rather their lack of

explainability. Indeed, they are based on subjective data (a), on

aggregated subjective data (b), or on unavailable usage data (c).

More generally, there is a high demand from knowledge workers,

such as journalists, for understandable rankings to help them in

decision-making [16, 49].

The vast knowledge graphs available on the Web, like DBpe-

dia [4], YAGO [42] or Wikidata [47] could serve as an essential

knowledge source to produce ranking indicators. Typically, Wiki-

data contains several hundred million entities linked by billions

of facts. Firstly, these crowdsourced knowledge graphs, that can

be considered as mirrors of reality, are publicly available, which

guarantees the transparency of the ranking indicators. Interestingly,

crowdsourcing also makes it possible to describe entities with suffi-

ciently varied relationships to ensure the diversity of the ranking

indicators. Of course, crowdsourcing also means that they are not

exempt from shortcomings regarding correctness, completeness,

and representativity, but there are methods for assessing these qual-

ity criteria [25, 36, 39]. Secondly, knowledge graphs are data with

semantics [6] that enable the construction of understandable rank-
ing indicators. Entities are very varied in nature (objects, concepts,

people, events, and so on) and they are linked by relationships with

a specific meaning. Let us come back to the example of painters,

with Table 2 that provides two distinct rankings extracted from

Wikidata, based on two distinct criteria: the first considers their

number of art exhibitions and the second considers their number of

paintings. The two rankings are very different as there is no inter-

section in the top 10 painters, although both are understandable and

relevant for ranking painters. To the best of our knowledge, there

is no method for automatically discovering transparent, diverse,

and understandable ranking indicators for a given field.

The major challenge in the automatic discovery of ranking in-

dicators is to design a generic method that works for any field

but returns indicators meaningful to each field. Indeed, knowledge

graphs like Wikidata are trans-disciplinary, covering a wide range

of fields: the arts, biology, linguistics, history, geography, religion

and so on. Firstly, a ranking indicator relevant for a target field

must be based on quantities that reflect the characteristics of this
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Table 1: Four rankings of most important painters

(a) theartwolf.com

# Painter

1 Picasso
2 di Bondone

3 da Vinci
4 Cézanne

5 Rembrandt
6 Velázquez

7 Kandinsky

8 Monet
9 Caravaggio

10 van Eyck

(b) ranker.com

# Painter

1 Rembrandt
2 van Gogh

3 Caravaggio

4 Michelangelo

5 da Vinci
6 Monet
7 Vermeer

8 Raphael

9 Picasso
10 Velázquez

(c) artcyclopedia.com

# Painter

1 Picasso
2 van Gogh

3 da Vinci
4 Monet
5 Dali

6 Matisse

7 Rembrandt
8 Warhol

9 O’Keeffe

10 Michelangelo

(d) Wikidata pop.

# Painter

1 Tagore

2 Shi

3 Rubens

4 J. M. W. Turner

5 N. Bose

6 van der Heijden

7 Gavarni

8 Daumier

9 Diederen

10 J. I. Kraszewski

Table 2: Ranking indicators on Wikidata

(a) Art exhibitions

# Painter Nb.

1 Picasso 315

2 Matisse 241

3 Miró 197

4 Klee 166

5 J. Johns 154

6 Léger 145

7 Rauschenberg 143

8 Braque 134

9 Ernst 127

10 Cézanne 122

(b) Paintings

# Painter Nb.

1 N. Bose 3,511

2 Rubens 2,043

3 K. Palsa 1,940

4 Munch 1,797

5 van Dyck 1,674

6 Teniers the Y. 1,360

7 Sluijters 1,267

8 Diederen 1,208

9 P.-A. Renoir 1,199

10 Monet 1,141

field, unlike some information retrieval measures that work identi-

cally for all entities [10, 11, 13]. For example, simply counting the

number of facts associated with a painter (see Table 1 (d)) is too

vague to rank the painter, as these facts encompass a varied range

of knowledge, some of which may not be related to the field of

painting (e.g., spouses or children). In this ranking, which measures

popularity more than anything else, Rabindranath Tagore, better

known as a poet and philosopher, finds himself ranked as the best

painter. Secondly, the heterogeneity of fields makes it illusory to

build offline a set of ranking indicators for all possible sets of en-

tities. For this reason, the extraction of a ranking indicator must

depend on a user query targeting the entities to be ranked. This

raises the problem of on-demand extraction with limited response

time, which we propose to perform from a public SPARQL endpoint

directly, to avoid downloading a costly dump and to guarantee data

freshness. But, as these endpoints do not use preemption [26], they

implement fair use policies that prevent the execution of overly

complex queries and limit the frequency of querying. Moreover, the

need to simplify queries is all the greater given the sheer volume

of data involved, and the need to maintain response times that are

acceptable to the end-user.

This paper overcomes the previous challenges to automatically

discover which related items to count for entities, so that they can

be compared according to different complementary meaningful

criteria. More specifically, our contributions are as follows:

• We formalize the notion of ranking indicators from knowl-

edge graphs. We define the shape of graph patterns, named

counting graph patterns, corresponding to SPARQL queries

counting items. These queries enable the building of the

corresponding rankings from the knowledge graph for the

user.

• We show that a ranking indicator should cover a large

proportion of entities (tending towards a strict total order),

and should lead to an unequal distribution. We measure the

unequality using the Gini coefficient, that we approximate

using a complex network model for the sake of efficiency.

• We detail an efficient algorithm for extracting ranking in-

dicators from a SPARQL public endpoint, named Ranking
Indicator PatternMiner. Despite the sheer number of pos-

sible ranking indicators in the search space, this is made

possible by restricting their syntax and by pruning relation-

ships whose Gini coefficient is too low.

Guernica Painter

Marie-Guillemine
Benoist

Pablo PicassoPainting

Innocence between 
Vice and Virtue

Hercules as the Persecuted 
Innocent? A Female Subject 
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…
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Figure 1: An example of a small KG extracted fromWikidata

• We showwith extensive experiments onWikidata, DBpedia,

and YAGO that our method is effective for discovering rank-

ing indicators thanks to our Gini approximation, which is

faster than the exact calculation with a minor loss of preci-

sion. On several occupations, we also show the diversity of

the ranking indicators extracted, as well as the agreement

with the best indicators chosen by human raters. Finally,

we compare these indicators with an information retrieval

measure and with ChatGPT4.

The remainder of this paper is organized as follows. Section 2

provides definitions related to KGs, that are used to define the con-

cept of ranking indicators in Section 3. In Section 4, we show how to

effectively evaluate the interestingness of a ranking indicator with

the proportion and the Gini coefficient. In Section 5, we present

the key optimizations leading to RIPM. Section 6 presents the re-

sults of applying RIPM to Wikidata, DBpedia, and YAGO. Section 7

discusses related work and finally, Section 8 concludes the paper.

2 PRELIMINARIES
We rely on the notations and definitions provided by [20, 33].

Knowledge graph Considering distinct infinite sets 𝐼 and 𝐿 (IRIs [14]

and literals, respectively), a knowledge graph K ⊆ 𝐼 × 𝐼 × (𝐼 ∪ 𝐿)
is a set of facts. Each fact is a triple ⟨s, p, o⟩ ∈ K , where 𝑠 , 𝑝 and

𝑜 denote respectively the subject, the predicate (or relationship)

1184



and the object. For example, ⟨Guernica, creator, Picasso⟩ is a fact
meaning that P. Picasso created the painting Guernica. Figure 1

provides a small excerpt of Wikidata with 6 relationships (e.g.,

instance of or creator) describing several kinds of entities (e.g.,

persons or paintings).

Basic graph patternWe now consider knowledge graph querying

by introducing an infinite set 𝑉 for the variables. A triple pattern 𝑡
is a triple ⟨s, p, o⟩ ∈ (𝐼 ∪𝑉 ) × (𝐼 ∪𝑉 ) × (𝐼 ∪𝑉 ∪ 𝐿) allowing vari-
ables in any position. For instance, ⟨?item, creator, M.-G. Benoist⟩
is a triple pattern to return subjects of the relationship creator

for M.-G. Benoist. Thereby, evaluating this triple pattern to the

knowledge graph shown in Figure 1 returns the 38 items created by

her (including the painting Psyche Bidding Her Family Farewell).

A basic graph pattern (or simply graph pattern) combines triple

patterns by conjunction: (𝑃1 ∧ 𝑃2) forms a basic graph pattern if

𝑃𝑖 are triples or basic graph patterns themselves. Assuming that 𝑃1
and 𝑃2 are respectively the basic graph pattern ⟨?p, creator, ?ent⟩
and ⟨?item, main subject, ?p⟩, then 𝑃1 ∧ 𝑃2 forms a basic graph

pattern that queries for all paintings ?𝑝 created by painters ?𝑒𝑛𝑡

that are main subject of scholarly articles ?𝑖𝑡𝑒𝑚, along with these

articles for each painting. We denote the set of variables in 𝑃 as

𝑣𝑎𝑟 (𝑃). We denote 𝑃 (?𝑣, 𝑖) the function that replaces ?𝑣 by the

IRI 𝑖 in the graph pattern 𝑃 . Using the same previous example,

𝑣𝑎𝑟 (𝑃1 ∧ 𝑃2) returns three variables: ?𝑖𝑡𝑒𝑚, ?𝑝 , and ?𝑒𝑛𝑡 . Conse-

quently, 𝑃 (?𝑒𝑛𝑡, P. Picasso) replaces the variable ?𝑒𝑛𝑡 to restrict

the query to ask only for paintings and scholarly articles corre-

sponding to Picasso.

EvaluationWenow formalize the evaluation of a basic graph pattern

𝑃 on a knowledge graph K . A mapping 𝜇 is expressed as a partial

function 𝜇 : 𝑉 → (𝐼 ∪ 𝐿). The triple obtained by replacing the

variables in a triple 𝑡 according to 𝜇 is denoted as 𝜇 (𝑡). The domain

of 𝜇, represented by dom(𝜇), is the subset of 𝑉 where 𝜇 is defined.

Two mappings, 𝜇1 and 𝜇2, are considered compatible if, for every

variable ?𝑥 ∈ dom(𝜇1) ∩ dom(𝜇2), 𝜇1 (?𝑥) = 𝜇2 (?𝑥). In simpler

terms, 𝜇1 and 𝜇2 are compatible when 𝜇1 can be expanded with 𝜇2
to create a new mapping, and vice versa. It is important to observe

that two mappings with non-overlapping domains are inherently

compatible. Additionally, the empty mapping 𝜇∅ (with an empty

domain) is compatible with any other mapping. Let Ω1 and Ω2 be

sets of mappings. The join of Ω1 and Ω2 is defined as Ω1 ⊲⊳ Ω2 =

{𝜇1 ∪ 𝜇2 | 𝜇1 ∈ Ω1, 𝜇2 ∈ Ω2 and 𝜇1, 𝜇2 are compatible mappings}.
The evaluation of a basic graph pattern 𝑃 over a knowledge graph

K , denoted by [[𝑃]]K , is recursively defined as follows:

(1) If 𝑃 is a triple pattern 𝑡 , then [[𝑃]]K = {𝜇 | dom(𝜇) =

var(𝑡) and 𝜇 (𝑡) ∈ K}.
(2) If 𝑃 is (𝑃1 ∧ 𝑃2), then [[𝑃]]K = [[𝑃1]]K ⊲⊳ [[𝑃2]]K .

Continuing with the previous example, by applying 𝑃 = 𝑃1 ∧ 𝑃2 to
the knowledge graphK depicted in Figure 1, in [[𝑃]]K two scholarly

articles and their corresponding painting are returned: the “Girl in a

Chemise c.1905 by P. Picasso” article and theGirl in a Chemise paint-
ing for P. Picasso, and the “Hercules as the Persecuted Innocent? A

Female Subject Design of the Enlightenment by Marie Guillemine

Benoist” article and the Innocence between Vice and Virtue painting
for M.-G. Benoist. We define 𝑣𝑎𝑙 (𝑃, ?𝑣) = {𝜇 (?𝑣) : 𝜇 ∈ [[𝑃]]K }
which returns the set of IRIs that match the variable ?𝑣 of the

graph pattern 𝑃 in K , and 𝑣𝑎𝑙𝑑 (𝑃, ?𝑣) which ensures the returned

?item ?ent?p
main subject creator
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P

Figure 2: The counting graph pattern𝐶𝐺𝑠𝑝 with its path𝐶𝑃𝑠𝑝
with a range pattern 𝑃

results are devoid of duplication. For instance, by applying 𝑃 to

the graph in Figure 1, 𝑣𝑎𝑙 (𝑃, ?𝑒𝑛𝑡) will several times include the

painters P. Picasso and M.-G. Benoistwhile 𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡) will con-
tain exactly one of each of these painters.

3 RANKING INDICATORS
This section formalizes the problem of ranking indicator discovery.

More precisely, we introduce a specific form of basic graph pattern,

named counting graph pattern, that associates a number of items

with each entity (see Section 3.1). Then, we define a ranking indi-

cator as a counting graph pattern inducing an (almost) total order

over the entities to be ranked (see Section 3.2).

3.1 Counting graph patterns
For an entity, a ranking indicator corresponds to a count of the

items associated with it. For example, it may be interesting to count

the number of scholarly works devoted to an artist’s paintings.

On the one hand, the items counted must be linked to the corre-

sponding entity by a path of relationships (here, the relationships

main subject and creator). On the other hand, not all items need

to be counted, restrictions should be added (for example, restricting

creations to only paintings via ⟨?𝑖𝑡𝑒𝑚, instance of, painting⟩). We

formalize these intuitions by introducing the notions of counting
path pattern (Definition 3.1) and counting graph pattern (Defini-

tion 3.2). The following definition introduces the notion of counting
path pattern (which is the simplest form of property path [22]):

Definition 3.1 (Counting path pattern). A counting path pattern

𝐶𝑃 is a conjunction of triple patterns {⟨?𝑣1, 𝑝1, ?𝑣2⟩∧⟨?𝑣2, 𝑝2, ?𝑣3⟩∧
· · · ∧ ⟨?𝑣𝑛−1, 𝑝𝑛, ?𝑣𝑛⟩} such that ?𝑣𝑖 =?𝑣 𝑗 ⇒ 𝑖 = 𝑗 for 𝑖, 𝑗 ∈
{1, . . . , 𝑛}.

This definition means that a counting path pattern is a set

of triple patterns forming an acyclic path. For example, 𝐶𝑃𝑠𝑝 =

⟨?𝑖𝑡𝑒𝑚, main subject, ?𝑝⟩ ∧ ⟨?𝑝, creator, ?𝑒𝑛𝑡⟩ is the counting path
pattern that links ?𝑖𝑡𝑒𝑚 with ?𝑒𝑛𝑡 by the fact that the item’s main

subject is something created by ?𝑒𝑛𝑡 . We define 𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝑃) (resp.
𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝑃)) as the function returning the unique variable appear-
ing only as subject (resp. object) within a counting path pattern𝐶𝑃 .

Note that Definition 3.1 ensures that 𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝑃) ≠ 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝑃).
With the counting path pattern𝐶𝑃𝑠𝑝 , we get 𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝑃𝑠𝑝 ) =?𝑖𝑡𝑒𝑚
and 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝑃𝑠𝑝 ) =?𝑒𝑛𝑡 . Thereafter, without loss of generality,
we choose to denote 𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝑃) and 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝑃) by ?𝑖𝑡𝑒𝑚 and

?𝑒𝑛𝑡 respectively.
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Clearly, the evaluation of the counting path pattern 𝐶𝑃𝑠𝑝 will

mix paintings and sculptures for ?𝑝 and scholarly works and novels

for ?𝑖𝑡𝑒𝑚. Consequently, this leads to a ranking that confuses items

of various kinds. In order to count only scholarly works devoted

to an artist’s paintings, we need to use more complicated patterns

than paths. To this end, we define the notion of counting graph
patterns as follows:

Definition 3.2 (Counting graph pattern). A counting graph pat-

tern, denoted by 𝐶𝐺 , is a basic graph pattern such that there exists

one and only one counting path pattern 𝐶𝑃 ⊆ 𝐶𝐺 with 𝑣𝑎𝑟 (𝐶𝑃) =
𝑣𝑎𝑟 (𝐶𝐺) and no variable as relationship. The unique counting path
pattern 𝐶𝑃 of 𝐶𝐺 is denoted by ˜︂𝐶𝐺 .

In the following, CG denotes the set of counting graph patterns.

Definition 3.2 means that triple patterns of 𝐶𝐺 not belonging to˜︂𝐶𝐺 are of the form ⟨?𝑣, 𝑝, 𝑜⟩ or ⟨𝑠, 𝑝, ?𝑣⟩, where ?𝑣 ∈ 𝑣𝑎𝑟 (˜︂𝐶𝐺),
𝑠 ∈ 𝐼 , 𝑝 ∈ 𝐼 , 𝑜 ∈ (𝐼 ∪ 𝐿). With Definition 3.2, it is now possible to

target the counting precisely. For example, the counting graph

pattern 𝐶𝐺𝑠𝑝 = 𝐶𝑃𝑠𝑝 ∧ ⟨?𝑖𝑡𝑒𝑚, instance of, scholarly work⟩ ∧
⟨?𝑝, instance of, painting⟩ can be used to count scholarly articles

about paintings of creators. Figure 2 depicts 𝐶𝐺𝑠𝑝 (solid line) with

its counting path pattern 𝐶𝑃𝑠𝑝 (dashed line).

Now we can specify how to associate a score with an entity,

based on a counting graph pattern:

Definition 3.3 (Counting for an entity). The counting of the entity
𝑒 for the counting graph pattern𝐶𝐺 , denoted by #𝐶𝐺 (𝑒), is defined
as: #𝐶𝐺 (𝑒) = |𝑣𝑎𝑙 (𝐶𝐺 (?𝑒𝑛𝑡, 𝑒), ?𝑖𝑡𝑒𝑚) |.

Let us consider the ranking based solely on the number of paint-

ings (as in the right part of Table 2) with the counting graph pat-

tern𝐶𝐺𝑝 = ⟨?𝑖𝑡𝑒𝑚, creator, ?𝑒𝑛𝑡⟩ ∧ ⟨?𝑖𝑡𝑒𝑚, instance of, painting⟩.
Then, by applying it to the knowledge graph illustrated in Figure 1,

we get #𝐶𝐺𝑝 (𝑃𝑖𝑐𝑎𝑠𝑠𝑜) = 818 corresponding to the number of paint-

ings created by P. Picasso. Applying the previous counting graph

pattern 𝐶𝐺𝑠𝑝 , it gives that #𝐶𝐺𝑠𝑝 (𝑃𝑖𝑐𝑎𝑠𝑠𝑜) = 1 since in this graph,

there is only one painting created by P. Picasso which is declared to

be the subject of a scholarly article. With a counting graph pattern,

it is easy to define a partial order on entities: the ranking induced

by𝐶𝐺 , denoted by ≤𝐶𝐺 , over the entities 𝑣𝑎𝑙𝑑 (𝐶𝐺, ?𝑒𝑛𝑡) is defined
as 𝑒1 ≤𝐶𝐺 𝑒2 ⇔ #𝐶𝐺 (𝑒1) ≤ #𝐶𝐺 (𝑒2).

In this way, it is possible to induce a ranking for any count-

ing graph pattern, but not all of them are relevant. Typically, it

would be possible to count the number of children to rank painters,

but this is not very meaningful. We have computed that there are

over 10 thousand possible counting graph patterns in Wikidata

for painters alone. For this purpose, we explain in the next section

which properties a counting graph pattern needs to satisfy in order

to be meaningful for ranking entities.

3.2 Range pattern and ideal ranking indicator
User-specified range pattern. Our goal is to automatically find

good ranking indicators specific to a user-specified subset of entities

(e.g., painters or teachers). For example, it seems natural to rank

painters according to their number of paintings, but this indicator

makes no sense for ranking teachers. For this purpose, we propose

that the end-user targets the entities to be ranked with a basic graph

pattern, named range pattern:

Definition 3.4 (Range pattern). A range pattern is a basic graph

pattern 𝑃 such that 𝑣𝑎𝑟 (𝑃) = {?𝑒𝑛𝑡} is a singleton. The entities in
𝑃 are the valuations of its unique variable: 𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡). When the

context is clear, we use only 𝑃 to denote these valuations.

A range pattern 𝑃 characterizes the entities on which the end-

user wants to build a ranking, based on a counting graph pattern

𝐶𝐺 such that 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝐺) = 𝑣𝑎𝑟 (𝑃). The user can specify an

occupation or a class, as in our experiments (see Section 6), but it is

also possible to add other, more specific filters to the range pattern

(e.g., citizenship or period for artists). This paves the way for a high

degree of interactivity, so that ranking indicators can be designed

to best meet the desired objective. For instance, in Figure 3, the

end-user uses the range pattern 𝑃 = {⟨?𝑒𝑛𝑡, occupation, painter⟩}
for the question “How to compare painters in Wikidata?”.

Intuitively, a ranking is an order on a set: the range pattern 𝑃

specifies this set, while the order is defined by the counting graph

pattern 𝐶𝐺 , more precisely by #𝐶𝐺 (𝑒), for each entity 𝑒 in 𝑃 . For

instance, in Figure 2, 𝑃 = {⟨?𝑒𝑛𝑡, occupation, painter⟩} selects the
painters among all the objects of the creator property in 𝐶𝐺𝑠𝑝 .

Evaluated on the graph in Figure 1, this range pattern returns

𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡) = {P. Picasso, M.-G. Benoist} (which is a very small

subset of the real 291, 617 painters stated in Wikidata).

Relevant ranking indicator. There are numerous works in the lit-

erature proposing measures for ranking entities (see Section 7), but

to the best of our knowledge, there is no formal definition of what

a ranking indicator is. Intuitively, a ranking relies on a numerical

function that outputs a different value for two different entities.

For example, it is easier to distinguish two painters by comparing

their number of paintings (different in 84% of cases in Wikidata)

than their number of children (different in only 8% of cases). This

intuition echoes several works in the field of multi-criteria decision

making, highlighting the interest of having numerical indicators

leading to a total order on the objects to be ranked [31]. Following

this direction, we claim that ideally, a ranking indicator 𝑅𝐼 for the

entities of 𝑃 would allow to obtain the count #𝑅𝐼 that induces a

strict total order on the entities of a range pattern 𝑃 .

Definition 3.5 (Ideal ranking indicator). Given a range pattern 𝑃 ,

an ideal ranking indicator 𝑅𝐼 for entities in 𝑃 is a counting graph

pattern such that 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝑅𝐼 ) = 𝑣𝑎𝑟 (𝑃) and #𝑅𝐼 (𝑒1) ≠ #𝑅𝐼 (𝑒2)
for all entities (𝑒1, 𝑒2) ∈ 𝑃 × 𝑃 .

This definition means that the order ≤𝑅𝐼 induced by an ideal

ranking indicator 𝑅𝐼 must be a strict total order. In practice, some

entities may be ex aequo, especially for low-count entities (e.g.,

although the number of paintings is discriminating, the order is far

from total, with 21,834 painters having a single painting, 9,714 hav-

ing two paintings and so on). For this reason, there is little chance

of identifying ideal ranking indicators in real-world knowledge

graphs. Then, we aim at automatically finding ranking indicators

that allow us to rank as many entities as possible within a given

set of entities. Problem 1 formalizes this intuition:

Problem 1. Given a knowledge graph K and a range pattern 𝑃 ,
we aim at finding the ranking indicator 𝑅𝐼 for the entities in 𝑃 maxi-
mizing the number of entity pairs in 𝑃 that are strictly comparable:

argmax𝑅𝐼 ∈CG |{(𝑒1, 𝑒2) ∈ 𝑃 × 𝑃 : #𝑅𝐼 (𝑒1) ≠ #𝑅𝐼 (𝑒2)}|
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Figure 3: Overview of Algorithm RIPM

Since we want to answer this problem on demand, there are two

major challenges to address:

(1) Costly interestingness evaluation: Calculating the num-

ber of pairs of incomparable entities is costly to compute

from a public SPARQL endpoint since you need to have the

count #𝑅𝐼 (𝑒) for each entity 𝑒 in 𝑃 .

(2) Huge search space: The search space for counting graph

patterns CG is very large making naive enumeration of

individual patterns impossible.

To address these two challenges, (1) we reformulate the inter-

estingness of a ranking indicator to simplify its computation, by

relying on the Gini coefficient (see Section 4), and (2) we prune the

search space by successively exploring the set of relationships and

classes (see Section 5), as depicted by Figure 3.

4 FAST INTERESTINGNESS EVALUATION
In order to assess the quality of a 𝑅𝐼 indicator, Problem 1 proposes

to calculate the number of entity pairs that are comparable with

𝑅𝐼 requiring the score #𝑅𝐼 (𝑒𝑖 ) for each entity 𝑒𝑖 ∈ 𝑃 , which is very

costly. Rather than calculating this number of pairs, this section

shows how it is possible to evaluate the interest of a ranking in-

dicator with only 3 values: the number of entities to be ranked

(i.e., 𝑛𝑃 = |𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡) |), the number of entities with a non-zero

score (i.e., 𝑛𝑒 = |𝑣𝑎𝑙𝑑 (𝐶𝐺, ?𝑒𝑛𝑡) |) and the total number of items (i.e.,

𝑛 = |𝑣𝑎𝑙 (𝐶𝐺, ?𝑖𝑡𝑒𝑚) |). To do this, we decompose the interesting-

ness of a ranking indicator with two measures: the proportion of

entities that can be ranked (see Section 4.1) and the Gini coefficient
to measure the dispersion between these entities (see Section 4.2).

4.1 Proportion
Intuitively, a ranking for entities in 𝑃 is all the more interesting as it

covers many entities (i.e., where #𝑅𝐼 (𝑒𝑖 ) > 0), because this enables

more entities to be compared with each other. For example, the

number of children does not allow us to distinguish many painters,

as 96% of painters have no children stated inWikidata.We introduce

the notion of proportion to take this factor into account:

Definition 4.1 (Proportion). Given a range pattern 𝑃 , the propor-

tion of entities in 𝑃 covered by a ranking indicator 𝑅𝐼 such that

𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝑅𝐼 ) = 𝑣𝑎𝑟 (𝑃) is defined as 𝑃𝑟𝑜𝑝 (𝑅𝐼 ) = 𝑛𝑒/𝑛𝑃 where

𝑛𝑒 = |𝑣𝑎𝑙𝑑 (𝑅𝐼, ?𝑒𝑛𝑡) | and 𝑛𝑃 = |𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡) |.

As 𝑣𝑎𝑙𝑑 (𝑅𝐼, ?𝑒𝑛𝑡) ⊆ 𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡), the proportion is necessarily

between 0 and 1. For example, for 𝑃 representing painters, the

proportion for the number of paintings is 61% (= 178, 126/291, 617)

while the proportion for the number of sculptures is only 7% (=

19, 576/291, 617). In order to have a ranking covering more painters,

it is more interesting to count the number of paintings than the

number of sculptures. The fact that a painter has both paintings and

sculptures, as Picasso in Figure 1, distinguishes him from others, as

M.-G. Benoist who has paintings but no sculptures. Nevertheless, it

is not the best criteria for not only comparing them but for ranking
them as painters.

Increasing the proportion is necessary to ensure that as many

pairs of entities as possible are strictly comparable with each other.

The below property states that for an ideal ranking indicator the

proportion must be close to 1:

Property 1 (Proportion maximization). Given a knowledge
graph K , the proportion of an ideal ranking indicator 𝑅𝐼 approaches
1 when the number of entities approaches infinity:

𝑃𝑟𝑜𝑝 (𝑅𝐼 ) −−−−−→
|𝑃 |→∞

1

Due to the lack of space, we omit the proofs of properties, but

they are provided with the code, sources and results. Property 1

considers the extreme case of ideal ranking indicators, which re-

quires the proportion to be maximized. More generally, a very high

proportion is needed to guarantee that the ranking is discriminating

(i.e., with many pairs of strictly comparable entities).

4.2 Gini coefficient
Definition. Ideally, a ranking indicator should lead to a total or-

der where 𝑒𝑖 is ranked in i-th place. This means that the difference

between the two counts of entities 𝑒𝑖 and 𝑒 𝑗 would be at least 𝑗 − 𝑖
items (corresponding to the number of ranks separating them):

#𝑅𝐼 (𝑒𝑖 ) − #𝑅𝐼 (𝑒 𝑗 ) ≥ 𝑗 − 𝑖 for 𝑖 ≤ 𝑗 . Besides, the greater the gap

#𝑅𝐼 (𝑒𝑖 ) − #𝑅𝐼 (𝑒 𝑗 ) between two entities, the more significant the

ranking would be, since the best ranked would be ranked more

highly. In other words, we are looking for a very unequal distribu-

tion between the entities in 𝑃 . To measure this level of inequality of

a distribution, we resort to a measure of concentration [9]. We opt

for the Gini coefficient [18] which is a measure of concentration

regularly used in economics to estimate income inequalities, but

also in bibliometrics [35, 37]
1
. More precisely, the Gini coefficient

is a statistical measure evaluating the level of inequality of the

distribution of a variable in a population:

Definition 4.2 (Gini coefficient). The Gini coefficient of a ranking

indicator 𝑅𝐼 for 𝑛𝑒 entities ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛𝑒 ⟩ in 𝑃 where #𝑅𝐼 (𝑒𝑖 ) ≥
#𝑅𝐼 (𝑒𝑖+1) is calculated as follows :

𝐺𝑖𝑛𝑖 (𝑅𝐼 ) =
2 × ∑︁𝑛𝑒

𝑖=1
(𝑛𝑒 − 𝑖 + 1) × #𝑅𝐼 (𝑒𝑖 )

𝑛𝑒 ×
∑︁𝑛𝑒

𝑖=1
#𝑅𝐼 (𝑒𝑖 )

− 𝑛𝑒 + 1
𝑛𝑒

It increases between 0 and 1 with the level of inequality, where

0 means perfect equality and 1, perfect inequality. The Gini coeffi-

cient can also be represented graphically as twice the area between

the identity and the Lorenz curve. Figure 4 represents the Lorenz

curve for 𝐶𝐺𝑝 in blue (i.e., for 𝑘 entities among the painters, the

ordinate represents

∑︁𝑘
𝑖=1 #𝑅𝐼 (𝑒𝑖 ) in percentage). In this representa-

tion, perfect equality corresponds to the identity (solid black line)

and the strongest inequality to the curve {(0, 0), (1, 0), (1, 1)}.
1
The same methodology can be applied with other inequality measures such as the

Atkinson index [3] or the generalized entropy index [38].
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Figure 4: Lorenz curve of the distribution derived from 𝐶𝐺𝑝

Fast Gini coefficient computation. Using Definition 4.2 to compute

the Gini coefficient is resource-intensive, particularly when aiming

to identify ranking indicators for fields extensively represented in

knowledge graphs (e.g., painters). This method requires retrieving

all entities 𝑒𝑖 (e.g., P. Picasso) and, for each one, counting the number

of items #𝑅𝐼 (𝑒𝑖 ). Besides, in order to find ranking indicators, we

need to consider a lot of counting graph patterns (because the

search space CG is large). Instead of measuring all the counts, it

would be better to directly approximate the area A of Figure 4 using

a model of the data. For this purpose, we benefit from our previous

work [2] showing that the distribution of items for entities follows

a power law of exponant 𝛼 = 1+ 1

1−𝑛𝑒/𝑛 . Based on this distribution,

we prove the main important theoretical result of this paper by

approximating the Gini coefficient:

Theorem 4.3 (Gini approximation). Given a ranking indicator
𝑅𝐼 , the Gini coefficient of 𝑅𝐼 is approximated by the following formula:̃︄𝐺𝑖𝑛𝑖 (𝑛𝑒 , 𝑛) =

1 − 𝑛𝑒/𝑛
1 + 𝑛𝑒/𝑛

where 𝑛𝑒 = |𝑣𝑎𝑙𝑑 (𝑅𝐼, ?𝑒𝑛𝑡) | and 𝑛 = |𝑣𝑎𝑙 (𝑅𝐼, ?𝑖𝑡𝑒𝑚) |.

Proof. Let us consider that the distribution of items for entities

follows a power law of exponant 𝛼 = 1+ 1

1−𝑛𝑒/𝑛 . [28] demonstrates

that the fraction𝑊 of the wealth in the hands of the richest 𝑃 of

the population is 𝑃 (𝛼−2)/(𝛼−1) . We benefit from this result on the

Lorenz curve (see Figure 4) by transposing the ordinate axis as𝑊

and the abscissa axis as 𝑃 . We can then calculate the area C (above

the identity which is equal to 0.5) and the area A (between the

identity and the Lorenz curve) with the following integral:

𝐴 + 0.5 =
∫

1

0

𝑊 𝑑𝑃 =

∫
1

0

𝑃 (𝛼−2)/(𝛼−1) 𝑑𝑃

Evaluating this integral, we get 𝐴 = 1/(4𝛼 − 6). Geometrically, the

Gini coefficient𝐺𝑖𝑛𝑖 is equal to𝐴/(𝐴 + 𝐵) where 𝐵 is the area below

the Lorenz curve. Since the Lorenz curve ranges from 0 to 1 on both

axes, we have𝐴+𝐵 = 0.5 leading to𝐺𝑖𝑛𝑖 = 2×𝐴. Therefore, we get
𝐺𝑖𝑛𝑖 = 1/(2𝛼 − 3). Finally, by injecting the exponant 𝛼 = 1+ 1

1−𝑛𝑒/𝑛
in this formula, we prove that Theorem 4.3 is correct.

□

Theorem 4.3 is central to effectively assessing the value of a rank-

ing indicator with little loss of quality compared with an assessment

that would cover the whole distribution. For instance, for the rank-

ing indicator 𝐶𝐺𝑝 computed on Wikidata, 𝐺𝑖𝑛𝑖 (𝐶𝐺𝑝 ) = 0.763 is

approximated by ˜︃𝐺𝑖𝑛𝑖 (62724, 672581) = 0.829. In practice, this ap-

proximation is frequently good and it reduces considerably the

execution times as shown in the experimental section (see Sec-

tion 6.2).

4.3 Problem reformulation
Maximizing the proportion and the Gini coefficient tends to improve

the quality of the ranking. Interestingly, these two measures can

be calculated by using only the 3 values of 𝑛𝑃 , 𝑛𝑒 and 𝑛, making it

inexpensive to evaluate the interestingness of a ranking indicator

in order to select the most interesting ones, even on very large-scale

knowledge graphs. We therefore propose to reformulate Problem 1

as follows:

Problem 2. Given a knowledge graph K and a range pattern
𝑃 , we aim at finding the ranking indicator 𝑅𝐼 for the entities in 𝑃

maximizing 𝐺𝑖𝑛𝑖 (𝑅𝐼 ) × 𝑃𝑟𝑜𝑝 (𝑅𝐼 ):
argmax𝑅𝐼 ∈CG𝐺𝑖𝑛𝑖 (𝑅𝐼 ) × 𝑃𝑟𝑜𝑝 (𝑅𝐼 )

Starting from a range pattern 𝑃 , Problem 2 focuses on only one

ranking indicator 𝑅𝐼 whose interestingness maximizes 𝐺𝑖𝑛𝑖 (𝑅𝐼 ) ×
𝑃𝑟𝑜𝑝 (𝑅𝐼 ) (for maximizing at the same time the Gini and the pro-

portion). As mentioned in Introduction, it is important not to limit

ourselves to a single ranking. The following section shows how to

apply this problem formulation to select 𝑘 ranking indicators based

on different relationships.

5 OPTIMIZING RANKING INDICATOR
EXTRACTION

Before presenting Algorithm RIPM, we explain how to reduce the

search space CG in a two-step process as shown in Figure 3, by

exploring only one promising relationship at a time (see Relation-

ship exploration in Section 5.1) and by syntactically restricting

ourselves in order to get the 𝑘 most frequent classes of items (see

Class exploration in Section 5.2).

5.1 Relationship exploration
Unfortunately, the number of candidate counting graph patterns in

CG is very high, making it impossible to enumerate them naively

to select the right ranking indicators. To cope with this problem,

we propose restricting ourselves to patterns (i) whose path length

is 1 and (ii) whose Gini is greater than a minimum threshold 𝛾 .

At first sight, restricting ourselves to counting graph patterns

whose path length is 1 could appear as a strong limitation, as longer

paths allow us to target relevant information (e.g., the counting

graph pattern 𝐶𝐺𝑠𝑝 requires two relationships: main subject and

creator). However, it is possible to apply our approach repeatedly

to recombine patterns thanks to the following property:

Property 2 (Concatenation). Given two counting graph pat-
terns 𝐶𝐺1 and 𝐶𝐺2 such that 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝐺1) = 𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝐺2) and
𝑣𝑎𝑟𝑖𝑡𝑒𝑚 (𝐶𝐺1) ≠ 𝑣𝑎𝑟𝑒𝑛𝑡𝑖𝑡𝑦 (𝐶𝐺2), 𝐶𝐺1 ∧ 𝐶𝐺2 is also a counting
graph pattern.

Property 2 essentially derives from the fact that putting two

paths end-to-end results in a new path. For example, our approach

will return for painters the ranking indicator 𝐶𝐺𝑝 and for paint-

ings the ranking indicator 𝐶𝐺𝑠 = ⟨?𝑖𝑡𝑒𝑚, main subject, ?𝑒𝑛𝑡⟩ ∧

1188



⟨?𝑖𝑡𝑒𝑚, instance of, scholarly work⟩. It is then possible to concate-

nate them to obtain the more complex ranking indicator 𝐶𝐺𝑠𝑝 =

𝐶𝐺𝑠 ∧ 𝐶𝐺𝑝 (by renaming the entity of 𝐶𝐺𝑠 and the item of 𝐶𝐺𝑝

with the new variable name ?𝑝).

Limiting ourself to a single relationship greatly reduces the

search space, especially as it is possible to avoid exploring un-

promising ones. As already mentioned, the relationship father,

which is not interesting for ranking painters, has a Gini coefficient

equal to 0.269. As a reminder, an ideal ranking indicator has a pro-

portion close to 1. Similarly, the following property states that an

ideal indicator must have a Gini coefficient greater than 1/3:
Property 3. Given a knowledge graph K , the Gini coefficient of

an ideal ranking indicator 𝑅𝐼 for a range pattern 𝑃 is greater than
1/3 when the number of entities in 𝑃 approaches infinity.

This property follows from the fact that the Gini coefficient of

an ideal ranking indicator is at least greater than that of a uni-

form distribution. In Figure 4, the Lorenz curve corresponding to

the uniform distribution is shown in red dashed line. The curve

corresponding to the 𝐶𝐺𝑝 ranking indicator is clearly under it.

Once again, we want to extract ranking indicators that are not

necessarily ideal. Nevertheless, it is clear that this theoretical thresh-

old is relevant for eliminating less relevant relationships, which

motivates the introduction of a minimum Gini threshold 𝛾 in RIPM
(see Figure 3 and Algorithm 1).

5.2 Class exploration
Using only relationships often leads to insufficiently precise rank-

ings. For example, counting the number of creations of an entity

remains vague. If we want to explore Picasso’s contribution to art,

it makes sense to count paintings and sculptures separately. More

generally, we consider items subjects of the single relationship, but

only those belonging to a specific class. To achieve this, we must

specify the class to which the items should belong. Since a class

encompasses items that share certain characteristics, these charac-

teristics are also likely to be shared with the entities of the target

field. To do this, we choose to consider, for each candidate relation-

ship, the top 𝑘 most frequent classes for its subjects (i.e., classes that

encompass the greatest number of subjects). This method is based

on the intuition that for an entity type, the most frequent classes

should logically be the most relevant ones. Note that maximizing

frequency means maximizing 𝑛, which also maximizes the Gini

coefficient (see Definition 4.3). For instance, considering the creator

relationship with painters as a range pattern, painters have created

more paintings than photographs, with 673,198 and 2,524 respec-

tively in Wikidata. The variable 𝑘 indicates how many classes need

to be considered per relationship, and it is configurable based on

user needs. As with the path-length constraint of the previous sec-

tion, this does not call into question the generality of our method.

Indeed, as the 𝑘 classes are extracted in parallel, it is possible to

merge two patterns with a union. In the case of Picasso, for example,

we can find out his art work by combining paintings and sculptures.

5.3 Algorithm RIPM
Ranking Indicator PatternMiner, or RIPM (see Algorithm 1), gen-

erates from a knowledge graph K the set of (length 1) ranking

indicators RI for entities in 𝑃 , with at most 𝑘 item’s classes per

Algorithm 1 Ranking Indicator PatternMiner

Require: A knowledge graph K , a range pattern 𝑃 where 𝑣𝑎𝑟 (𝑃 ) =

{?𝑒𝑛𝑡 }, a minimum Gini threshold 𝛾 , a maximum number of counting

patterns per relationship 𝑘

Ensure: The set RI of ranking indicators with Gini and support for 𝑃

(with at most 𝑘 patterns per relationship)

1: RI ← ∅
2: 𝐺𝑃 ← ⟨?𝑖𝑡𝑒𝑚, ?𝑟, ?𝑒𝑛𝑡 ⟩ ∧ 𝑃
3: 𝑛𝑃 = |𝑣𝑎𝑙𝑑 (𝑃, ?𝑒𝑛𝑡 ) |
4: for 𝑟𝑒𝑙 ∈ 𝑣𝑎𝑙𝑑 (𝐺𝑃, ?𝑟 ) do ⊲ Relationship exploration

5: 𝐶𝐺 ← 𝐺𝑃 (?𝑟, 𝑟𝑒𝑙 )
6: 𝑛𝑒 ← |𝑣𝑎𝑙𝑑 (𝐶𝐺, ?𝑒𝑛𝑡 ) |
7: 𝑛 ← |𝑣𝑎𝑙 (𝐶𝐺, ?𝑖𝑡𝑒𝑚) |
8: if ̃︄𝐺𝑖𝑛𝑖 (𝑛𝑒 , 𝑛) ≥ 𝛾 then
9: 𝐶𝐺 ← 𝐶𝐺 ∧ ⟨?𝑖𝑡𝑒𝑚, instance of, ?𝑐𝑙𝑎𝑠𝑠 ⟩
10: 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑡 ← ∅
11: for 𝑐𝑙𝑎𝑠𝑠 ∈ 𝑣𝑎𝑙𝑑 (𝐶𝐺, ?𝑐𝑙𝑎𝑠𝑠 ) do ⊲ Class exploration

12: 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑡 ← 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑡 ∪
{ (𝑐𝑙𝑎𝑠𝑠, |𝑣𝑎𝑙𝑑 (𝐶𝐺 (?𝑐𝑙𝑎𝑠𝑠, 𝑐𝑙𝑎𝑠𝑠 ), ?𝑖𝑡𝑒𝑚) | ) }

13: end for
14: Keep the 𝑘 most frequent classes from 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑡

15: for class ∈ 𝐶𝑙𝑎𝑠𝑠𝑆𝑒𝑡 do ⊲ Ranking indicator evaluation

16: 𝑅𝐼 ← 𝐶𝐺 (?𝑐𝑙𝑎𝑠𝑠, 𝑐𝑙𝑎𝑠𝑠 )
17: 𝑛𝑐𝑙𝑎𝑠𝑠𝑒 ← |𝑣𝑎𝑙𝑑 (𝑅𝐼, ?𝑒𝑛𝑡 ) |
18: 𝑛𝑐𝑙𝑎𝑠𝑠 ← |𝑣𝑎𝑙 (𝑅𝐼, ?𝑖𝑡𝑒𝑚) |
19: RI ← RI ∪ { (𝑅𝐼,̃︄𝐺𝑖𝑛𝑖 (𝑛𝑐𝑙𝑎𝑠𝑠𝑒 , 𝑛𝑐𝑙𝑎𝑠𝑠 ), 𝑛𝑐𝑙𝑎𝑠𝑠𝑒 /𝑛𝑃 ) }
20: end for
21: end if
22: end for
23: return RI

relationship having a Gini coefficient greater than 𝛾 . Note that it

is quite easy for users to set the number of rankings 𝑘 they want

for each relationship selected by the Gini threshold 𝛾 (𝑘 = 5 in

our experiments). For the threshold 𝛾 , the user can set it to 1/3 by
following Property 3, or slightly below, to be sure of not missing

anything.

In lines 1-3 of Algorithm 1, we initialize several variables: the

set of ranking indicators RI is set to the empty set, a basic graph

𝐺𝑃 is created to find the compatible relationships with entities in

the range pattern 𝑃 , and 𝑛𝑃 gets the number of entities in 𝑃 . Sub-

sequently, the main loop (lines 4-22) iterates over all relationships

𝑣𝑎𝑙𝑑 (𝐺𝑃, ?𝑟 ), replacing the variable ?𝑟 in 𝐺𝑃 with the current re-

lationship 𝑟𝑒𝑙 . Lines 6 and 7 respectively compute the number of

entities and items. Proceeding with only relationships that have a

Gini coefficient greater than 𝛾 , a simple triple pattern is concate-

nated onto the current 𝐶𝐺 , containing a restriction on the variable

?𝑖𝑡𝑒𝑚 to be an instance of a ?𝑐𝑙𝑎𝑠𝑠 (line 9). The next task in lines

10-14 is to identify the most frequent classes to rank the entities

in 𝑃 . For each class 𝑐𝑙𝑎𝑠𝑠 , line 12 counts the number of items and

appends the result to 𝑐𝑙𝑎𝑠𝑠𝑆𝑒𝑡 . We then select the 𝑘 most frequent

classes from this list (line 14). To evaluate their interest, the loop

(lines 15-20) iterates over these 𝑘 classes, replacing the variable

?𝑐𝑙𝑎𝑠𝑠 with the value 𝑐𝑙𝑎𝑠𝑠 leading to the ranking indicator 𝑅𝐼 (line

16). We calculate its Gini coefficient, as well as its proportion (line

19). For this purpose, the number of entities 𝑛𝑐𝑙𝑎𝑠𝑠𝑒 (resp. items

𝑛𝑐𝑙𝑎𝑠𝑠 ) covered by the ranking indicator 𝑅𝐼 is computed at line 17

(resp. line 18). Note that the proportion also requires the initial
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Table 3: Main statistics of the three KGs

KG DBpedia Wikidata YAGO4

#rel. | R | 15,100 1,484 85

#facts 1,082,635,010 2,404,397,928 282,056,110

#subjects 245,113,095 431,875,708 48,957,049

#objects 93,130,240 136,870,611 19,214,906

number 𝑛𝑃 of entities in 𝑃 computed at line 3. Thus, we append

the computed measures along with their corresponding ranking

indicator in the list RI. Finally, the algorithm returns the final list

of ranking indicators with their Gini and proportion at line 23. Thus,

RIPM has a complexity of 𝑂 (𝑟 · (𝑐 log 𝑐 + 𝑘)), assuming that 𝑟 is

the total number of possible relations (line 4), 𝑐 is the total number

of possible classes (line 11), and 𝑘 is the number of selected most

frequent classes.

6 EXPERIMENTAL STUDY
Our experiments aim to evaluate the following aspects: the prun-

ing influence of the minimum Gini threshold (Section 6.1), the

Gini coefficient approximation (Section 6.2), the diversity of the

extracted ranking indicators (Section 6.3), the agreement between

the Gini-proportion interestingness and human raters (Section 6.4)

and finally, a comparison of RIPM with two baselines: ranking by

popularity and ChatGPT4 (Section 6.5).

Protocol Experiments were performed on Wikidata [47], DBpedia

[4], and YAGO [32] via their public SPARQL endpoints
2
in June

2024. Table 3 indicates the main statistics of these three crowd-

sourced KGs: number of relationships |R |, number of facts, num-

ber of distinct subjects, and number of distinct objects. We use

a personal machine equipped with an Intel Core i7-8650U CPU

1.90GHz with 32GB of RAM. RIPM is implemented in Python

language with multithreading to parallelize SPARQL query exe-

cutions. The source code, data, results, and all materials needed

to reproduce the findings, is publicly available on the Git reposi-

tory https://scm.univ-tours.fr/habdallah/RIPM/ and Zenodo https:

//zenodo.org/records/14181263.

We apply RIPM with the number of classes 𝑘 set to 5 and the

minimum Gini threshold 𝛾 set to 0.1
3
(except for Section 6.1) on

two sets of range patterns:

• occupations: The top 100 largest occupations in

Wikidata, DBpedia, and YAGO are used (e.g.,

⟨?𝑒𝑛𝑡, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, 𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ⟩). Leading to 21,235, 19,249, and

3,402 ranking indicators for Wikidata, DBpedia, and YAGO,

respectively.

• classes: The classes appearing in the ranking indicators dis-

covered for occupations were in turn used as range patterns.

For instance, ⟨?𝑒𝑛𝑡, instance of, painting⟩ is considered be-
cause it occurs in 𝐶𝐺𝑝 extracted above.

Interestingly, it is then possible to combine patterns extracted with

occupations andwith classes using Property 2 to generate 1,231,352,
2,459,452, and 19,750 potential ranking indicators for Wikidata,

2
query.wikidata.org ; dbpedia.org/sparql ; yago-knowledge.org/sparql/query

3
We use 0.1 instead of 1/3 (see Property 3) to evaluate the algorithm’s behavior more

widely (see Section 6.2), and to obtain lower-quality rankings useful for the human

survey (see Section 6.4).

Table 4: Statistics for occupations and classes

KG Type #𝑃 #𝑅𝐼 #Filtered
RI

Avg. #RI
per 𝑃

#Dist.
rel.

Avg. dist.
rel. per 𝑃

occ. 100 21,235 1,576 212.4 269 71.4

Wikidata classes 1,304 45,401 1,054 35.2 748 12.9

all 1,404 66,636 2,630 48.0 818 17.1

occ. 100 19,249 606 192.5 357 40.2

DBpedia classes 153 84,267 7,155 550.8 3,946 119.2

all 253 103,516 7,761 409.2 3,962 87.9

occ. 100 3,402 173 34.4 30 7.9

YAGO classes 145 2,050 75 14.2 45 3.9

all 245 5,452 248 22.4 46 5.5

DBpedia, and YAGO, respectively. In Table 4, the third and fourth

two columns provide the number of range patterns and the total

number of ranking indicators for each knowledge graph.

Baselines To the best of our knowledge, no method exists in the

literature that is directly comparable to RIPM. Therefore, we have

compared the results of our approach with two other baselines:

(1) Popularity: An information retrieval baseline that ranks

entities based on the total number of facts associated with

them, without distinguishing between fact types [13]. As

the number of facts is the same regardless of the range

pattern, it reflects a general popularity (see Table 1 (d) for

painters where the highest-ranked entity is a philosopher).

(2) ChatGPT4: We use this famous and widely used large

language model [29] (i) to rank given indicators from

best to worst (see Section 6.4) and (ii) to generate rele-

vant ranking indicators of the form ⟨?𝑖𝑡𝑒𝑚, 𝑃𝑅𝑂𝑃, ?𝑒𝑛𝑡⟩ ∧
⟨?𝑖𝑡𝑒𝑚, instance of,𝐶𝐿𝐴𝑆𝑆⟩ (see Section 6.5).

6.1 Impact of the minimum Gini threshold
We first measure the impact of the minimumGini threshold𝛾 on the

pruning of the search space. The primary objective of this threshold

in RIPM is to optimize computation by pruning relationships that

are evidently not relevant to ranking a specific range pattern (see

line 8 of Algorithm 1). Figure 5 plots the percentage of remaining

relationships after pruning (averaging accross all range patterns)

with 𝛾 ranging from 0 to 0.9. This experiment was conducted on

Wikidata, DBpedia, and YAGO. As expected, the curves generally

show a downward slope since increasing the threshold restricts

the condition for the relationships to continue in the algorithm.

Interestingly, at the threshold of a uniform distribution, which

equals 1/3 (see Property 3), 45%, 50%, and 42.5% of relationships are

pruned on average for Wikidata, DBpedia, and YAGO, respectively.

This drastic reduction of the search space shows the interest of this

optimization.

6.2 Evaluation of the Gini coefficient
approximation

In this section, we check whether our Gini approximation is suf-

ficiently accurate in practice, whether it is faster, and whether it

contributes to reducing the number of queries needed. To evalu-

ate our approximation of the Gini coefficient, we focused on the

rankings that concern at least 500 entities (see column “# filtered
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Figure 5: Proportion of relevant relationships with 𝛾

Table 5: Gini evaluation

KG Type MAE MSE Time-
Gain (%)

Queries-
Avoided (%)

Avg. response
time (sec.)

occ. 0.062 0.005 90.3 34.4 0.100

Wikidata classes 0.078 0.012 88.5 36.7 0.426

all 0.068 0.008 88.9 36.1 0.404

occ. 0.137 0.031 97.3 27.0 0.041

DBpedia classes 0.072 0.012 99.2 22.0 0.060

all 0.077 0.014 99.1 22.5 0.053

occ. 0.069 0.007 78.9 35.3 0.041

YAGO classes 0.064 0.009 63.9 28.4 0.093

all 0.068 0.008 74.3 32.4 0.074

RI” in Table 4). For example, 1,576 rankings verify this for Wikidata

occupations.
First, for each filtered ranking indicator, we compare the dif-

ferences of Gini coefficients in their values. To measure the er-

ror between the two distributions, we utilized two common sta-

tistical metrics: Mean Absolute Error (MAE) and Mean Squared

Error (MSE). Here, MAE computes the average absolute differ-

ence between the Gini coefficient and our approximation: MAE =
1

𝑛

∑︁𝑛
𝑖=1 |𝐺𝑖𝑛𝑖𝑖 − ˜︃𝐺𝑖𝑛𝑖𝑖 | where 𝑛 represents the number of ranking

indicators. Similar to MAE, MSE calculates the average squared dif-

ference: MSE = 1

𝑛

∑︁𝑛
𝑖=1 (𝐺𝑖𝑛𝑖𝑖 − ˜︃𝐺𝑖𝑛𝑖𝑖 )2. However, it places greater

focus on larger errors due to the squaring operation leading to

greater penalization of larger errors. Overall, we can see that the

values are very low for Wikidata, DBpedia, and YAGO for both

MAE (with 0.068, 0.077, and 0.068, respectively) and MSE (with

0.008, 0.014, and 0.008, respectively), since the range of the Gini

coefficient is between 0 and 1. Table 5 shows these measures also

after separating occupations and classes. Furthermore, Figure 6-a,

b, and c plot the ranking indicators for Wikidata, DBpedia, and

YAGO respectively, considering ˜︃𝐺𝑖𝑛𝑖 as the x-axis and 𝐺𝑖𝑛𝑖 as the
y-axis. Additionally, we plot the identity line, indicating where the

Gini coefficient and its approximation are equal. We see that the

behavior is the same for occupations (in blue) and classes (in red).

Given the low MAE and MSE, it is no surprise that the points gen-

erally follow the identity line. For some points (below the identity),

the approximation is disappointing (especially for DBpedia), as the

underlying model proposed in [2] has an average accuracy of 72.5%.

We now evaluate the runtime performance of the Gini coeffi-

cient approximation. For this purpose, we consider the time gain

achieved by employing the ˜︃𝐺𝑖𝑛𝑖: Time-Gain = 𝑇−𝑇̃
𝑇

where 𝑇 (resp.

𝑇̃ ) is the average computation time using the𝐺𝑖𝑛𝑖 (resp. ˜︃𝐺𝑖𝑛𝑖). This

measure calculates the percentage difference in computation time

between the two methods. A positive value indicates a reduction in

computation time (i.e., time gain) achieved by the ˜︃𝐺𝑖𝑛𝑖 compared

to the 𝐺𝑖𝑛𝑖 . Interestingly, Figure 7-a, b, and c depicts points each

representing the total number of seconds required to generate pos-

sible rankings for a specific range pattern for Wikidata, DBpedia,

and YAGO respectively, where the computation times of ˜︃𝐺𝑖𝑛𝑖 and
𝐺𝑖𝑛𝑖 are respectively on the abscissa axis and on the ordinate axis.

It is clear that the𝐺𝑖𝑛𝑖 requires significantly more time compared

to ˜︃𝐺𝑖𝑛𝑖 since most points are above the identity line. Consequently,

Time-Gain of the approximation is 88.9% for Wikidata, 99.1% for

DBpedia, and 74.3% for YAGO. For example, in extreme cases, for

Wikidata the standard Gini requires 47.35 minutes to discover rank-

ings for the Business class while our approximation only requires 0.5

minutes. Additionally, Table 5 presents the average time in seconds

to obtain the first response, i.e., the time to return the first rank-

ing indicator for a range pattern. The times are 0.404 seconds for

Wikidata, 0.053 seconds for DBpedia, and 0.074 seconds for YAGO.

These results indicate a very fast initial response, emphasizing the

potential for developing an efficient, and automatically interactive,

on-demand application. Lastly, we evaluate the optimization in the

number of queries. To compute the percentage of queries avoided

when using the approximation rather than the standard formula,

we use the following formula: Queries-Avoided =
𝑄−𝑄̃
𝑄

, where 𝑄

(resp. 𝑄̃) is the average needed query number using the 𝐺𝑖𝑛𝑖 (resp.˜︃𝐺𝑖𝑛𝑖). Overall, 36.1%, 22.5%, and 32.4% of queries needed using the

standard formula are avoided by using the approximation for Wiki-

data, DBpedia, and YAGO, respectively. In conclusion, ˜︃𝐺𝑖𝑛𝑖 enables
us to design an on-demand application returning rankings due to

the simultaneous minimization of the number and complexity of

queries required for calculations.

6.3 Evaluation of the diversity
This section focuses on Wikidata to assess whether our approach

introduces diversity or, on the contrary, tends to always produce

the same ranking indicator and to reduce a set of entities to a single

ranking (the results of DBpedia and YAGO are available in the sup-

plementary materials). For the same range pattern, we first observe

in Table 4 that the ranking indicators obtained are numerous: 212.4

ranking indicators on average for occupations and 35.2 on average

for classes. We also note that the relationships used to count vary

(globally and for the same range pattern), bringing diversity to the

way entities are compared. Among the 818 relationships, the 3 most

used in the rankings indicators are part of (P361) with 2,723 rank-

ing indicators, main subject (P921) with 2,664 ranking indicators

and depicts (P180) with 1,673 ranking indicators.

Now we want to measure the impact of these different patterns

on the ranking of entities for the same range pattern. For this experi-

ment, we selected the 8 occupations among the largest occupations

in Wikidata involving ranking indicators with several relation-

ships. For each occupation, Table 6 gives the number of extracted

ranking indicators. We retained the 4 best ranking indicators w.r.t

𝐺𝑖𝑛𝑖 × 𝑃𝑟𝑜𝑝 while ensuring covering different relationships. For

each ranking indicator, we then considered the first 500 entities of

the induced ranking. Note that the below observations remain true
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Figure 6: Comparison of the values between the Gini coefficient 𝐺𝑖𝑛𝑖 and its approximation ˜︃𝐺𝑖𝑛𝑖

Figure 7: Comparison of the computation time needed between the Gini coefficient 𝐺𝑖𝑛𝑖 and its approximation ˜︃𝐺𝑖𝑛𝑖
Table 6: Ranking diversity of RIPM and Popularity

Pair with
maximum
inter.

All pair-
wise com-
parisons

Ranking by
popularity

Occupation #RIs Inter.
(%)

𝜏 Avg. in-
ter.(%)

Avg.
𝜏

Inter. (%) 𝜏

Writers 519 30.8 0.332 6.7 0.030 0.306 0.313

Univ. teachers 390 13.8 0.019 3.7 0.094 0 -

Singers 291 63.8 0.635 15.9 -0.046 0.344 0.182

Journalists 380 27.2 0.246 8.8 -0.109 0.306 0.358

Poets 341 29.4 0.094 13.0 0.051 0.356 0.390

Actors 388 29.4 0.180 7.5 -0.168 0.166 0.255

Painters 389 19.2 0.129 5.2 0.115 0.604 0.516

Composers 345 15.4 0.055 7.9 0.049 0.344 0.180

when thresholds 4 and 500 are varied. To measure the degree of

agreement between two different rankings, we use Kendall’s tau,

denoted by 𝜏 (also known as Kendall’s rank correlation coefficient).

Kendall’s tau quantifies the resemblance between two rankings by

assessing the proportion of pairwise agreements and disagreements

between the ranks. It is a non-parametric measure, meaning it does

not assume any specific distribution of the data, and it is suitable

for ordinal data. It can be computed using the following formula:

𝜏 = C−D
C+D where 𝐶 is the number of concordant pairs, and 𝐷 is

the number of discordant pairs. Kendall’s tau ranges from -1 (i.e.,

perfect disagreement) to 1 (i.e., perfect agreement). In practice, for

a pair of rankings, we apply the Kendall’s tau to the intersection

(i.e., the common entities appearing in both rankings).

For each occupation, Table 6 presents the average intersection

and Kendall’s tau for all pairwise comparisons within the four

selected ranking indicators and the results for the pair with the

maximum intersection. We note that the ranking indicators do not

cover the same entities in the top 500. The intersection between

two rankings is always below 63.8%, and on average below 15.9%.

This clearly shows the complementarity of the different rankings

of the entities involved. For example, counting the number of films

and the number of television series does not rank the same actors

(with only 3.4% as an intersection). We also observe that the entities

common to two rankings are ranked in distinct orders. Indeed, even

if Kendall’s tau are mostly positive, they are always below 0.635

and on average below 0.115. There are even 3 occupations where

the values are negative, indicating strong divergences. For example,

the actors who have written the most screenplays are not the ones

who have acted in the most films leading to -0.091 as Kendall’s tau

between these two rankings. Once again, these results demonstrate

the diversity of the extracted ranking indicators.

Table 6 also presents results regarding the ranking by popu-

larity baseline. For each occupation, we compare the ranking of

Popularity with that induced by the best ranking indicator identi-

fied by RIPM (highlighted in bold in Table 7). We retain the top 500

entities from each ranking and compute the intersection percentage

and Kendall’s tau of common entities (see the last two columns).

This results in an average entity intersection percentage of 0.303%

and an average Kendall’s tau of 0.313, indicating low overlap and

low agreement respectively. This result shows that confusing all

facts leads to very different rankings from those obtained with our

indicators based on precise semantics.

Additionally, Table 7 (resp. Table 8) provides the three best rank-

ing indicators (w.r.t ˜︃𝐺𝑖𝑛𝑖 × 𝑃𝑟𝑜𝑝) discovered per occupation (resp.

class). These two tables show the specificity and the understand-

ability of the ranking indicators produced by the method for each

range pattern (occupation or class). In particular, our method auto-

matically discovers the ranking indicators used in scientometrics.

For example, on one hand, it indicates that to rank a university

teacher, we can count the number of times they were a doctoral

advisor of a PhD student, the number of their scholarly articles,
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Table 7: Best discovered ranking indicators for occupations

Occupation Property Class Gini Prop.

author version, edition or translation 0.683 0.101
Writer author literary work 0.646 0.094

main subject encyclopedia article 0.338 0.051

doctoral advisor human 0.949 0.159
Univ. teacher author scholarly article 0.688 0.085

author review article 0.768 0.034

performer album 0.698 0.145
Singer performer single 0.698 0.083

performer musical work/composition 0.637 0.071

author version, edition or translation 0.723 0.058
Journalist author literary work 0.593 0.048

screenwriter film 0.540 0.023

author version, edition or translation 0.797 0.082
Poet author literary work 0.797 0.075

author poem 0.936 0.026

cast member film 0.755 0.370
Actor cast member television series 0.464 0.166

cast member television film 0.395 0.068

creator painting 0.829 0.308
Painter creator print 0.863 0.027

creator drawing 0.861 0.024

composer musical work/composition 0.792 0.094
Composer composer film 0.786 0.090

producer album 0.759 0.040

Table 8: Best discovered ranking indicators for classes

Classes Property Class Gini Prop.

position held human 0.825 0.790
Position subclass of position 0.951 0.011

office contested public election 0.884 0.003

Scientific

journal

cites work scholarly article 0.930 0.071
main subject scholarly article 0.981 0.005

has written for human 0.714 0.002

employer human 0.589 0.073
Business owned by United States patent 0.942 0.028

owned by business 0.284 0.023

mouth of the watercourse river 0.564 0.053
River mouth of the watercourse stream 0.551 0.008

crosses road bridge 0.464 0.006

Association

football clubs

member of sports team human 0.954 0.462
participating team sports season 0.755 0.112

winner sports season 0.596 0.126

participant in human 0.857 0.040
Sports season participant in national sports team 0.654 0.007

participant in association football club 0.738 0.006

performer album 0.621 0.274
Musical group performer single 0.667 0.076

performer musical work/compo. 0.560 0.045

educated at human 0.983 0.557
University employer human 0.971 0.545

part of academic department 0.678 0.068

or their review articles. On the other hand, to rank a university,

we can count the number of humans educated there, the number

of humans they employ, or the number of their academic depart-

ments which indicates the size of the university, also the number

of academic journals they published, which provides insight into

their scientific quality has been considered as a ranking indicator

(not among the top three). Of course, other ranking indicators are

also discovered, 390 (resp. 190) ranking indicators are discovered

for university teachers (resp. university), but here we mention only

the best three. In some cases, certain indicators may be too general

(e.g., the best ranking for poets is based on the number of editions

rather than the number of poems) or too specific (e.g., the number

of “association football club” participation to rank “sports season”).

For this reason, it is important to offer users several rankings, so

that they can choose the one they prefer.

Table 9: Agreement of interestingness on the user survey and
baseline comparison

Occupation Users
𝜏

Users-

RIPM 𝜏

ChatGPT-

RIPM 𝜏

RIPM Popularity ChatGPT4
Gini Prop. Gini Prop. Gini Prop.

Writers* 0.610 1 1 0.683 0.101 0.780 0.807 0.347 0.01

Univ. teachers 0.454 1 1 0.949 0.159 0.822 0.728 0.785 0.161

Singers 0.236 1 1 0.698 0.145 0.759 0.903 0.606 0.144

Journalists 0.252 1 1 0.723 0.058 0.749 0.861 0.803 0.009

Poets* 0.555 1 0.333 0.797 0.082 0.816 0.830 0.868 0.026

Actors* 0.587 1 1 0.755 0.370 0.719 0.808 0.655 0.374

Painters* 0.360 1 1 0.829 0.308 0.792 0.806 0.753 0.307

Composers* 0.454 0.333 1 0.792 0.094 0.773 0.845 0.639 0.071

Average 0.438 0.917 0.917 0.778 0.165 0.776 0.824 0.682 0.138

6.4 Interestingness evaluation based on a user
survey

There is no method for extracting ranking indicators automati-

cally (see Section 7). Due to this absence, we chose to conduct a

user survey using a questionnaire on the occupations selected in

the previous section, which are fairly well-recognized and then,

understandable. For each occupation, we presented three ranking

indicators expressed in natural language corresponding to 3 levels

of interest (best/medium/bad) w.r.t our approach.We order the rank-

ing indicators according to the measure𝐺𝑖𝑛𝑖 × 𝑃𝑟𝑜𝑝 . Then, the best
ranking indicator is selected (see Table 7), themedium one is drawn

from the 45th to the 55th percentile of the ordered list and the bad
one is drawn from the last 10% of the ordered list. For instance,

when ranking a painter, our protocol considers factors such as the

number of paintings they have created (best ranking), the number

of prints derived from their work (medium ranking), or the number

of art museums named after them (bad ranking penalized by its

low cover of entities). We selected a group of 19 raters of current

university students or graduates in the field of computer science.

Next, each rater ordered the three ranking indicators associated

with the specific occupation, based on their opinion about their

relevance for ranking entities having the occupation.

As shown in Table 9, firstly, we calculated Kendall’s tau for the

rankings provided by each pair of raters for each occupation. We

then computed the average 𝜏 per occupation, which ranged from

0.236 to 0.610, with a total average of 0.438 across occupations,

indicating moderate agreement [23]. We also identified the ground

truth from the user ratings using majority voting. In other words,

for each occupation, we selected the ranking that occurred most

frequently among the users. Note that (*) in Table 9 means that the

majority voting is statistically significant. More precisely, the first

choice of the population would be the same as that of our study

with a probability greater than 99% based on Bennett’s inequality

[24]. Besides, the last choice is significantly the worst for the whole

population, with a probability greater than 85%. For three occupa-

tions (university teacher, singer and journalist), the first choice is

not completely certain, but increasing the sample size would not

be enough to remove the measured intrinsic disagreement between

first and second choice. For example, the choice for university teach-

ers is subjective: 11 (resp. 6) raters considered that the number of

doctoral students (resp. PhD defense committee member) was more

important. We computed the 𝜏 between this ground truth and the

results of RIPM (see the third column). Interestingly, we observe

that our approach has a perfect agreement with the ground truth
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(i.e., 𝜏 = 1), except for composers (𝜏 = 0.333). The average 𝜏 across

the occupations is very high with 0.916. This implies agreement

between the results of our method and the subjective opinion of

humans, indicating the efficacy of our approach in discovering rele-

vant rankings. Finally, we used ChatGPT4 to evaluate the 3 ranking
indicators. It agrees with the ground truth, with an accuracy compa-

rable to RIPM. This indicates the meaningfulness of the𝐺𝑖𝑛𝑖×𝑃𝑟𝑜𝑝
measure w.r.t ChatGPT4.

6.5 Comparison with baselines
We queried ChatGPT4 to find 3 ranking indicators directly for the

8 occupations, providing it with the form of the expected pattern to

guide it. 12 out of the 24 results provided were hallucinations, with

erroneous classes and relationships that made it impossible to con-

struct the ranking. For example, for journalists, it proposed the re-

lationship “affiliation” with the class “media compagny” (Q378427),

but this Wikidata identifier corresponds to “literary Awards”. Ta-

ble 9 shows, for each occupation, the Gini and Proportion of the

best ranking indicator generated by RIPM, by Popularity, and by

ChatGPT4 (after correcting its hallucinations except in 2 cases

where the proposed class did not exist in Wikidata). First, RIPM
has a Gini coefficient as good as that of Popularity. The latter has
a higher proportion value than RIPM because it mixes all ranking

criteria together, resulting in broader coverage of more entities. But,

as already illustrated with painters, some criteria may not be rele-

vant for ranking the specific domain leading to incorrect ranking

of entities. Second, we observe that RIPM outperforms ChatGPT4
with a Gini of 0.778 compared to 0.682. Regarding the proportion,

RIPM (= 0.165) also surpasses ChatGPT4 (= 0.138), indicating that

the quality of indicators discovered by RIPM is better than those

generated by ChatGPT4 (even after correcting its errors).

7 RELATEDWORK
The semantics introduced by knowledge graphs deserve to be more

directly usable by humans. A great deal of work has been done to

facilitate the exploration and analysis of knowledge graphs. Our

contribution clearly differs from these in its focus on the ranking

task. However, we can cite some approaches that are comparable

to ours in their reliance on specific graph patterns. For example,

in [15] the authors define the notion of facet as a property path

that can serve as a filter for graph exploration. They propose an

algorithm for selecting the most relevant facets for a given set of

entities. In a similar spirit, authors of [48] define graph patterns to

measure how important, or central, nodes are in a graph, with the

aim of generating snippets from keywords. As the objectives are

different, the graph patterns we define are obviously different too:

they are intended to compute ranking indicators.

Our approach to discovering ranking indicators in knowledge

graphs is inspired by various proposals from the science of mea-

surements in the field of information (informetrics). Pioneers are in

the field of bibliometrics [35, 37], providing measures that are often

used in a reductive way for evaluation purposes [17]. Furthermore,

the rise of altmetrics offers a new dimension of impact measure-

ment, capturing the broader societal and online engagement with

scholarly work [7, 44]. Yet these measures can also be used to as-

sess the importance of certain scientific results and the influence

of certain authors, for an epistemological or sociological analysis

of sciences. Compared with these approaches, our contribution has

a much broader scope, since it does not apply solely to information

specifically related to science, along with the automatic discovering

and extracting of measures.

As several authors have shown [41, 43, 45], bibliometrics has

adapted to the Web, evolving into Webometrics. Webometrics is

presented more generally in [45] as the quantitative study of Web-

related phenomena, initiated at the end of the previous century, and

focusing on the analysis of web page links or search engine logs.

More generally, interest in ranking methods and tools is particu-

larly strong when the objective is information retrieval [21, 30], and

many measures have been devised in this field including [10–13].

However, in line with the baseline Popularity, these proposals only
consider graphs whose links are all identical and carry no seman-

tics other than the fact of existing or not (with rare exceptions,

e.g. [40]). In contrast, our contribution consists of evaluating the

different types of relationships to determine which ones should

be considered for a ranking task, and we show how diverse the

choices are to perform a ranking task. Finally, while existing works

on rankings (e.g., [8, 16, 34]) study predefined ranking functions,

Algorithm RIPM automatically discovers fresh, transparent, diverse,

and understandable ranking functions from knowledge graphs.

8 CONCLUSION
This paper presents the first method for automatically discovering

ranking indicators from knowledge graphs. We have formalized the

notion of ranking indicator, which is a counting graph pattern that

covers the entities to be ranked as widely as possible, inducing a dis-

tribution with high inequality. We present an efficient algorithm for

extracting ranking indicators from a public SPARQL endpoint using

a Gini approximation as inequality measure and several prunings

of the search space. Extensive experiments show the algorithm’s

speed, the diversity of the ranking indicators extracted, and their

high relevance to the target domain in agreement with human

raters. The ability to extract transparent, diverse, understandable

ranking indicators on demand paves the way for the analysis of

domains that do not already have indicators [49].

In future work, we would like to explore combinations of ranking

indicators in order to build finer ones to go beyond the countings

proposed in this paper. More precisely, it would be possible to

construct indicators comparable to the h-index used in bibliometrics

[19] (which combines both the number of citations and the number

of papers). For example, for painters, it is possible to combine the

number of paintings with the number of items referring to each

of these paintings. Furthermore, multicriteria analysis [1, 46] can

be performed by combining and weighting ranking indicators. For

instance, in the case of painters, a combination of the number of

paintings and the number of art exhibitions can be used. Finally,

we also plan to implement these indicators in an online tool to

enable any knowledge worker to interactively analyze any field of

Wikidata.
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