
RCRank: Multimodal Ranking of Root Causes of SlowQueries
in Cloud Database Systems

Biao Ouyang
East China Normal University, China

bouyang@stu.ecnu.edu.cn

Yingying Zhang
Alibaba Cloud Computing, China
congrong.zyy@alibaba-inc.com

Hanyin Cheng
East China Normal University, China

hanyinch@gmail.com

Yang Shu∗
East China Normal University, China

yshu@dase.ecnu.edu.cn

Chenjuan Guo
East China Normal University, China

cjguo@dase.ecnu.edu.cn

Bin Yang
East China Normal University, China

byang@dase.ecnu.edu.cn

Qingsong Wen
Squirrel Ai Learning, USA
qingsongedu@gmail.com

Lunting Fan
Alibaba Cloud Computing, China

lunting.fan@taobao.com

Christian S. Jensen
Aalborg University, Denmark

csj@cs.aau.dk

ABSTRACT
With the continued migration of storage to cloud database systems,
the impact of slow queries in such systems on services and user
experience is increasing. Root-cause diagnosis plays an indispens-
able role in facilitating slow-query detection and revision. This
paper proposes a method capable of both identifying possible root
cause types for slow queries and ranking these according to their
potential for accelerating slow queries. This enables prioritizing
root causes with the highest impact, in turn improving slow-query
revision effectiveness. To enable more accurate and detailed diag-
noses, we propose the multimodal Ranking for the Root Causes
of slow queries (RCRank) framework, which formulates root cause
analysis as a multimodal machine learning problem and leverages
multimodal information from query statements, execution plans,
execution logs, and key performance indicators. To obtain expres-
sive embeddings from its heterogeneous multimodal input, RCRank
integrates self-supervised pre-training that enhances cross-modal
alignment and task relevance. Next, the framework integrates root-
cause-adaptive cross Transformers that enable adaptive fusion of
multimodal features with varying characteristics. Finally, the frame-
work offers a unified model that features an impact-aware training
objective for identifying and ranking root causes. We report on
experiments on real and synthetic datasets, finding that RCRank is
capable of consistently outperforming the state-of-the-art methods
at root cause identification and ranking according to a range of
metrics.

PVLDB Reference Format:
Biao Ouyang, Yingying Zhang, Hanyin Cheng, Yang Shu, Chenjuan Guo,
Bin Yang, Qingsong Wen, Lunting Fan, and Christian S. Jensen. RCRank:
Multimodal Ranking of Root Causes of Slow Queries
in Cloud Database Systems. PVLDB, 18(4): 1169 - 1182, 2024.
doi:10.14778/3717755.3717774

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717774

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/decisionintelligence/RCRank.

1 INTRODUCTION
Companies and individuals are increasingly migrating their data-
base services to the cloud. At the same time, poor cloud database
system performance in the form of slow queries causes economic
losses to users and decreases user trust in cloud-based data man-
agement. For example, every 0.1-second increase in Amazon’s page
load time causes a 1% drop in sales, and a 0.5-second increase in
Google’s search latency causes a 20% drop in traffic [18]. Thus, ac-
celerating slow queries is essential for ensuring high-performance
cloud database systems.

Slow queries may be attributed to database system internal fac-
tors, such as the absence of relevant indexes or poorly written SQL
statements, and external factors, such as I/O bottlenecks and net-
work issues. In this paper, we aim at providing a framework to
enable users to address slow queries while focusing on root causes
deriving from internal factors. This is because external factors are
often beyond the control of users and require the intervention of
cloud database service providers. In contrast, internal factors can be
controlled by cloud database users, such as by modifying indexes
or rewriting queries.

Identifying root causes, i.e., factors that cause slow queries, al-
lows for performance improvement through corresponding revision
methods. Thus, root cause analysis identifies the causes of slow-
query types through root cause classification [23, 51, 52]. While
methods exist that target slow-query identification, two limitations
remain:
Identification of Root Causes Mainly. Existing methods [23, 44,
52] focus on identifying root causes, as shown in Figure 1. This
does not fully support the need to focus on addressing the “most
significant” root causes. Revising slow queries based on root causes
is costly, and making revisions according to every root cause can
result in substantial expenses. Therefore, it is attractive to take
into account the impact of root causes (i.e., how much runtime
can be saved if a root cause is addressed) when choosing which
one to address. Root Cause Identification (RCI) fails to quantify the

1169

https://doi.org/10.14778/3717755.3717774
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717774
https://github.com/decisionintelligence/RCRank
https://www.acm.org/publications/policies/artifact-review-and-badging-current

potential impact of addressing identified root causes, thus limiting
the practical utility.
Incomplete Observability of Cloud Database Systems. As
shown in Figure 1, most methods [23, 44] rely on single-modal
information, e.g., key performance indicators, such as CPU or mem-
ory use time series, to identify root causes, disregarding other data
sources that can offer insight into internal factors related to slow
query processing. For example, query statements and execution
plans contain information about query objectives and estimated
execution processes; and execution logs contain information about
resources consumed during query execution and execution status.
Aiming for full observability by taking all these data sources into
account offers a better foundation for understanding slow queries
and their causes, thereby enabling more accurate root cause identi-
fication.

To eliminate the two limitations, we propose ranking the impact
of the root causes using multimodal observability data.

Ranking the impact of root causes. We propose a model to
estimate the impact of root causes, thus providing a ranked list
of identified root causes. To unify identification and ranking, we
propose a training objective for ranking root causes by estimating
their impact. Two impact-aware regularizations are utilized in the
training objective to enhance the identification of valid root causes
and preserve the order of their impacts. Specifically, we collect
slow queries from the cloud database system that encompass query
statements, execution plans, execution logs, and key performance
indicators. We then revise the queries according to potential root
causes and record the relative improvement of the revised queries
as the impact of each root cause. For instance, the runtime of a given
slow query may drop by 14.8%, after updating Outdated Statistics.
Then we associate 14.8% with the “Outdated Statistics” root cause
for the query. The multimodal information about queries, along
with the impact of root causes are used for training a model. During
inference, the model (i) diagnoses slow queries to identify root
causes that lead to the slow queries and (ii) ranks the root causes
according to their potential impact.

Encoding multimodal representations. We encode the avail-
able multimodal information into a unified embedding to support
root cause ranking. The information encompasses query statements
in text form, execution plans represented as graphs, logs in key-
value format, and key performance indicators (KPIs) as time series.
To integrate this information, we first use different encoders to
encode each modality into embeddings. Then we employ a fusion
embedding module to encode the heterogeneous embeddings of
the different modalities into a shared embedding space for further
feature extraction. We propose self-supervised pre-training to en-
hance cross-modal alignment and task relevance to obtain more
expressive embeddings. To enable effective fusion of multimodal
features, we propose a multimodal fusion model that uses root-
cause-adaptive cross Transformers, capable of adaptively fusing
multimodal features for the diagnosis of root causes with varying
characteristics.

To the best of our knowledge, this is the first multimodal method
for ranking the root causes of slow queries for root cause diagnosis.
The contributions are summarized as follows.

(a) Root Cause Identification (RCI)

(b) Root Cause Ranking (RCR)

Figure 1: Root cause identification (RCI) vs. root cause rank-
ing (RCR). (i) RCI often utilizes partial observability, whereas
RCR utilizes multimodal, full observability. (ii) RCI only
identifies possible root causes, whereas RCR ranks root
causes according to their potential impact, enabling users to
identify the most significant root causes.

• We propose means to automatically collect root cause impact
labeled data, which provides a data foundation for multimodal
root cause diagnosis.

• We propose a multimodal representation method that is capable
of harnessing full observability by implementing expressions
for embedding heterogeneous modalities, modality alignment,
and task relevance, while effectively and adaptively fusing mul-
timodal features.

• We propose a root cause impact ranking method that enables
unified identification and ranking of root causes.

• We consider datasets from the Alibaba Hologres system as well
as synthetic datasets. Experimental results show that our method
is capable of outperforming existing approaches in terms of root
cause identification and ranking according to a range of metrics.

2 RELATEDWORK
2.1 Slow Query Analyses
We classify slow-query analysis methods in Table 1 from two per-
spectives: root cause identification vs. ranking for slow queries and
single-modality vs. multi-modality modeling.

Existing Root Cause Identification (RCI) methods [11, 15, 23, 44,
52] use clustering, attribution, or predictionmethods to identify root
causes. However, these methods cannot estimate or rank the impact
of root causes (RCR). For example, when diagnosing root causes
of slow queries, multiple root causes can contribute to an issue, so

1170

Table 1: Categorization of slow query diagnosis.

Root Cause
Identification (RCI)

Root Cause
Ranking (RCR)

Single-Modality
Observability

iSQUAD [23]
ExplainIt! [11]
DBSherlock [44]

-

Multi-Modality
Observability

OpenGauss [15]
D-BOT [52] RCRank (ours)

that addressing each can lead to different levels of performance
improvement. Users are interested primarily in root causes that can
bring the most significant performance gains.

Previous studies primarily focus on slow-query analysis through
single-modal input, e.g., key performance indicators. DBSher-
lock [44] focuses on the precise values of KPIs. A specific KPI
value can only suggest whether or not an indicator is anomalous.
iSQUAD [23] focuses on the root causes of intermittently slow
queries and can effectively inform DBAs of the specific category
of an anomaly. However, when iSQUAD encounters root causes
outside its clustering, manual analysis of the anomaly types of KPIs
is required. ExplainIt! [11] employs a probabilistic graphical model
facilitating causal reasoning to analyze root causes. Interpretable
ML methods [9, 23, 44] focus on root cause analysis through KPIs
and offer reasonable interpretations.

Two existing methods fusemultimodal input encompassing
systemmetrics and query information to identify root causes. Open-
Gauss [15] discovers time-consuming operators in SQL by fusing
execution plans and system KPI metrics. D-Bot [52] leverages large
language models [29, 39, 43, 53, 54] alongside maintenance knowl-
edge to analyze monitoring and query information, facilitating
the identification of root causes of slow queries. However, in our
scenario, additional observable information sources are available.
Since users prioritize addressing root causes of slow queries with
high impact, we not only identify the root causes but also rank
these according to their impact to facilitate effective slow-query
resolution. Our study considers query statements, execution plans,
execution logs, and time series to rank root causes of slow queries
according to their impact.

2.2 Multimodal Learning
Previous multimodal learning methods [34, 50] focus on the fusion
of text, images, and audio. The fusion typically involves feature
fusion and alignment through concatenation and cross-attention.
Tokens from multiple modalities are concatenated directly, adding
positional information to distinguish the modality of each input.
The aim is to understand the context of other modalities. However,
this approach comes with high computational complexity. Instead,
we use the cross-attention mechanism to reduce computational
complexity. Cross-Attention [16, 17, 20, 21, 28] exchanges informa-
tion between modalities. However, the large number of modalities
may still result in an increase in computational complexity when
pairwise calculations are involved. We thus use the primary modal-
ity to avoid pairwise interactions between all modalities.

When fusing text, images, and audio, existing methods extract
commonalities and specificities across the modalities [10, 45, 46].
The methods achieve this by using shared modules for extracting

common features across text, images, and audio, while using indi-
vidual modules to capture modality-specific characteristics. AnoFu-
sion [47] models the failure instance detection problem by capturing
the relationship between time series, graphs, and text. Our method
focuses on the complex correlations among text, graphs, and time
series [3–5, 31, 37, 40, 41, 48] to rank the root causes of slow queries.

Additionally, some methods focus on improving query perfor-
mance, with deep learning representation methods pre-training on
SQL and query plans [36, 49], and encoding plan methods [1, 25,
26, 49]. Some methods encode SQL for cost estimation [12, 35, 36]
and query optimization [2, 13, 22, 24, 55], and some method [30]
encodes metrics for autoscaling. Some methods focus on enhanc-
ing query performance through the automatic adjustment of in-
dexes [6, 8, 14, 32, 33]. In contrast, we utilize more extensive infor-
mation for identifying and ranking root causes of slow queries.

3 PROBLEM SETTING AND FORMULATION
3.1 Query Formalization
A query 𝑋𝑖 = (𝑆, 𝑃, 𝐿, 𝐼) is a four-tuple composed of a query state-
ment 𝑆 , an execution plan 𝑃 , an execution log 𝐿, and KPIs 𝐼 . We
define this as follows.
• Query Statement (SQL): A query statement is the SQL state-

ment of the query, which is a sequence 𝑆 = ⟨𝑠1, 𝑠2, ..., 𝑠𝑛⟩, where
𝑠𝑖 is an SQL text token (e.g., “Select”). This captures the intent of
the query and relevant database information, e.g., table names.

• Execution Plan (Plan): An execution plan is a DirectedAcyclic
Graph (DAG) 𝑃 = (𝑉 , 𝐸), where 𝑉 is a set of operators and a
directed edge 𝑒𝑘 from 𝑣𝑖 to 𝑣 𝑗 exists if operator 𝑣 𝑗 is the next
operation of 𝑣𝑖 .

• Execution Log (Log): Log files record information related to
queries, e.g., the query duration and number of rows read by
the execution of the query. In our setting, logs are represented
as vectors 𝐿 = (𝑙1, 𝑙2, ..., 𝑙𝑚), where 𝑙𝑖 is a record related to the
query.

• Key Performance Indicators (KPIs): The execution times
of query statements are influenced by the current performance
state of the database. KPIs 𝐼 = (𝐼1, 𝐼2, ..., 𝐼𝑞) are composed of 𝑞
multi-dimensional time series, each of length t, that are employed
for evaluating database performance. Here 𝑞 is the number of
evaluated metrics. These include memory usage percentages,
CPU utilization percentages, and I/O counts.

3.2 Root Causes for Slow Queries
Many factors can lead to slow queries, including external factors
such as CPU and memory depletion, resource contention leading to
deadlocks, and instance node crashes. Internal factors such as sub-
optimal database structures and poorly-written query statements
also contribute to slow queries. While extensive research exists
on diagnosing the root causes of slow queries related to external
factors, database users are often interested primarily in the revisions
they can make in terms of database structures and query statements
to speed up query execution.

We define a root cause as an internal factor within the database,
e.g., a slow query caused by sub-optimal database structures or
poorly-written query statements. For example, the root cause of
missing indexes means that, in scenarios with a large volume of

1171

data, queries without indexes result in full table scans, consuming
substantial computational resources and time. Adding appropriate
indexes can enhance query efficiency. By employing suitable solu-
tions to address root cause issues, we can improve the execution
time of slow queries. After revising slow queries using revision
methods corresponding to different root causes, the query perfor-
mance is improved. Users are particularly concerned with root
causes whose revision methods can contribute the most to improv-
ing query performance, e.g., the root cause that, when addressed,
improve query execution time the most.

The impact of a root cause captures how much a slow query is
influenced by the root cause. More precisely, consider a slow query
𝑋𝑖 and potential root causes 𝑅𝐶 = {𝑅𝐶1, 𝑅𝐶2, ..., 𝑅𝐶𝑟 }, where 𝑟 is
the total number of root cause types. We define an impact value
𝑦𝑖 𝑗 that captures how much the performance of the query can be
improved when revised according to root cause 𝑅𝐶 𝑗 :

𝑦𝑖 𝑗 =
runtime(𝑋𝑖) − runtime(revise(𝑋𝑖 , 𝑅𝐶 𝑗))

runtime(𝑋𝑖)
(1)

Here, revise(𝑋𝑖 , 𝑅𝐶 𝑗) denotes the original slow query 𝑋𝑖 revised ac-
cording to root cause 𝑅𝐶 𝑗 . As an example, the original runtime
of 𝑋𝑖 is 1.5 seconds, and 𝑅𝐶 𝑗 indicates missing indexes. Then
revise(𝑋𝑖 , 𝑅𝐶 𝑗) involves creating relevant indices for query 𝑋𝑖 , and
the revised runtime 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (𝑟𝑒𝑣𝑖𝑠𝑒 (𝑋𝑖 , 𝑅𝐶 𝑗) becomes 0.67 seconds.
Therefore, the impact 𝑦𝑖 𝑗 of 𝑅𝐶 𝑗 on 𝑋𝑖 , is (1.5 − 0.67)/1.5 = 55.3%,
meaning that after revision w.r.t. root cause 𝑅𝐶 𝑗 , the runtime of
the slow query 𝑋𝑖 is improved by 55.3%.

Valid root causes A root cause 𝑅𝐶 𝑗 is valid for slow query 𝑋𝑖
if 𝑦𝑖 𝑗 exceeds a threshold 𝜖 .

3.3 Problem Formulation
Given a root cause impact dataset𝐷 = {(𝑦𝑖 𝑗 , 𝑋𝑖 , 𝑅𝐶 𝑗)} consisting of
impacts of root causes for different slow queries, we aim at learning
a model 𝑓 that can estimate the impact 𝑦𝑘 𝑗 for an unseen query 𝑋𝑘
for each root cause 𝑅𝐶 𝑗 . This can be formulated as follows.

𝑦𝑘 𝑗 = 𝑓𝜃 (𝑋𝑘 , 𝑅𝐶 𝑗), (2)

where 𝜃 represents the learnable parameters for the estimation
model 𝑓 and 1 ≤ 𝑗 ≤ 𝑟 .

4 MULTIMODAL DIAGNOSIS FRAMEWORK
4.1 Overview
We propose a multimodal diagnosis framework for identifying root
causes of slow queries and ranking them by their impact. As shown
in Figure 2, the framework consists of two main modules: a slow
query and root cause collection module, and a multimodal root
cause diagnosis module.

The slow query and root cause collection module includes
cloud database system monitoring, slow query collection, and root
cause collection. The module collects slow queries and the impacts
of root causes on the slow queries, which serves as a data foundation
for the second module. The multimodal root cause diagnosis
module learns a mapping from unseen slow queries 𝑋𝑘 and root
causes 𝑅𝐶 𝑗 to the estimated impact 𝑦𝑘 𝑗 of 𝑅𝐶 𝑗 on 𝑋𝑘 , thus facil-
itating the construction of lists of root causes according to their
estimated impact.

Figure 2: Overview of the multimodal diagnosis framework
for root causes of slow queries.

4.2 Slow Query and Root Cause Collection
We collect slow queries and the impact of their corresponding root
causes as {(𝑦𝑖 𝑗 , 𝑋𝑖 , 𝑅𝐶 𝑗)}. As shown in Figure 2, slow query col-
lection involves continuous monitoring of queries and database
instances through a cloud database monitoring system, collecting
queries that exceed the slow query threshold 𝛿 . Root cause collec-
tion involves obtaining slow query root causes through analysis
by a rule-based method and a large language model (LLM) based
method.

Slow query collection continuously monitors the execution
times of queries through the cloud database monitoring system,
collecting the query statements (SQL), execution plans (Plan), and
execution logs (Log) of the queries. The performance monitoring
system continually gathers instancemetric information (KPIs), such
as the memory usage percentage and CPU utilization percentage,
thereby obtaining the status. We collect all monitored queries {𝑄𝑖 }
for pre-training, with queries exceeding the slow query threshold
𝛿 considered as slow queries.

Root cause collection involves analyzing slow queries and re-
vising slow queries according to different root causes. Therefore, we
design two types of automated methods: rule-based and LLM-based
methods. For root causes that can be addressed easily by employing
predefined SQL templates, we choose rule-based methods. For the
remaining cases, we use LLM-based methods.

Rule-based methods.As shown in Figure 2, the rule-based method
includes three steps. First, according to a specific root cause 𝑅𝐶 𝑗 ,
we employ corresponding rules to revise the slow query using
predefined SQL templates. Second, we re-execute the slow query
𝑋𝑖 to obtain the execution time after revision. Third, we calculate
the impact 𝑦𝑖 𝑗 according to Equation 1. We detail the rule-based
methods for two specific root causes for illustration.

★ Statistics. Unsynchronized statistical information can result in
the generation of sub-optimal execution plans, thus causing slow
queries. For a slow query, we extract all tables involved in the query

1172

and then update the statistics by executing the SQL “ANALYZE
tablename” for these tables. After updating the statistics, we re-
execute the query and use Equation 1 to compute the impact of the
root cause “Statistics.”

★ Join-Order. When SQL join relationships are complex or in-
volve many tables, the optimizer spends considerable time select-
ing the optimal join order. To collect slow queries that require
adjusted join strategies, we re-execute the slow queries by modi-
fying the execution strategy. For example, we can utilize “set opti-
mizer_join_order = greedy;” in SQL to adjust the execution strategy.
Alternatively, we can use the “exhaustive” or “query” strategies. We
record the runtime of the best join order, i.e., the join order with
the shortest runtime. Based on this, we then compute the impact of
the root cause “Join-Order.”

LLM-basedmethods.As shown in Figure 2, the LLM-basedmethod
encompasses four steps. First, we input query information, data-
base information, and root cause types, and then we generate a
prompt [19] based on the prompt template shown in Figure 3. Sec-
ond, based on the generated prompt, the LLM recommends slow-
query revisions. Third, we re-execute the revised query to obtain
the execution time after revising the query according to root cause
𝑅𝐶 𝑗 . Fourth, we calculate the impact 𝑦𝑖 𝑗 according to Equation 1.
The three root causes addressed using LLM-based methods are
handled as follows.

★ Index. With no indexes available, the database stem executes
queries by scanning entire tables row by row to find matching
rows. On the other hand, too many indexes can result in index
inefficiency. We employ the LLM approach to recommend indexes
that yield the shortest execution time. First, we provide the original
query statement, execution plan, execution logs, and table structure
information as a prompt; see Figure 3. Then, the LLM recommends
indexes based on the prompt. We compare the execution times
when using the indexes recommended by the LLM and those when
using the original indexes to determine the impact of the root cause
“Index.”

★ Distribution-key. The distribution key facilitates the partition-
ing of data into shards, and a uniform distribution helps prevent
data skew. We provide the original query statement, execution plan,
execution logs, and table structure information as a prompt; again,
see Figure 3.We compare the execution time of the distribution keys
recommended by the LLM with those of the original distribution
keys to determine the impact of the root cause “Distribution-key.”

★ Query. Queries written by users may contain redundant oper-
ators, nested subqueries, etc., so that reduced execution times can
result from rewriting the queries into equivalent queries. We pro-
vide the original query statement, execution plan, execution logs,
and table structure information as a prompt; again, see Figure 3.
The LLM recommends rewritten queries based on the prompts.
Considering that the LLM may output incorrect queries, we inform
the LLM about erroneous queries along with the corresponding
error messages to get better recommendations. We compare the ex-
ecution times of rewritten queries with those of the original query
to determine the impact of the root cause “Query.”

By collecting slow queries and revising them according to meth-
ods associated with corresponding root causes, we construct a
dataset𝐷 = {(𝑦𝑖 𝑗 ;𝑋𝑖 , 𝑅𝐶 𝑗)} for identifying and ranking root causes
of slow queries.

Figure 3: Prompt template with context and revision sections
for LLM-based slow-query revision.

4.3 Multimodal Root Cause Diagnosis Model
We propose a multimodal diagnosis model for identifying the root
causes of slow queries and ranking the impact of different root
causes based on dataset 𝐷 = {(𝑦𝑖 𝑗 , 𝑋𝑖 , 𝑅𝐶 𝑗)}. A overview of the
framework and its three main modules is shown in Figure 4

The input embeddingmodule incorporates an encoder for each
input modality. Given the multimodal input data 𝑋𝑖 consisting of
a query statement 𝑆 , an execution plan 𝑃 , an execution log 𝐿, and
key performance indicators 𝐼 , the encoders output the embeddings
of each modality E(𝑋𝑖) = (𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼). The module determines
how we encode the heterogeneous inputs of different modalities
into a shared embedding space for further feature extraction. Note
that the proposed pre-training processes are self-supervised [42],
which reduces the amount of root-cause-annotated data needed for
supervised training and enables the utilization of unlabeled query
data for obtaining more expressive embeddings. In Section 4.3.1,
we describe the design of the input embedding module. To improve
the quality of embeddings for better cross-modal alignment and
task relevance and to reduce the amount of root-cause-annotated
data needed for training, we employ self-supervised multimodal
pre-training for the input embeddings.

The multimodal fusion module takes the encoded embed-
dings of each modality as input. The module learns to fuse in-
formation from these embeddings to extract the features 𝐸𝐹 =

𝑓fusion (𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼) for root cause diagnosis. To facilitate feature
extraction in the module, we propose a cross-modal Transformer
architecture in Section 4.3.2. We design feature decomposition and
adaptive gating mechanisms to enable adaptive multimodal fusion
for different root causes.

The root cause estimation module leverages the extracted
multimodal fusion features to obtain the final estimations 𝑌𝑅𝐶 =

𝑓pred (𝐸𝐹) regarding the root causes. This module’s training and
inference processes are designed to identify and rank the impacts
of root causes. It includes a learning objective for estimating the
impacts of different root causes to identify and rank root causes in
a unified model. The estimation accuracy is enhanced by impact-
aware regularization for valid and highly impactful root causes.
This is covered in Section 4.3.3.

4.3.1 Self-supervised Pre-trained Embeddings.
Input Embeddings. The input embedding module encodes inputs
with different modalities. Given the multimodal input data 𝑋𝑖 , we
employ different encoders tailored for the different modalities in
the input (denoted as Enc) to obtain an embedding for each single

1173

Figure 4: Overview of the multimodal learning model for root cause diagnosis, which is composed of three main modules: (1)
input embedding module, (2) multimodal fusion module, and (3) root cause estimation module.

modality in a common embedding space:

(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼) = E𝜙 (𝑋𝑖)
= (Enc𝑆 (𝑆), Enc𝑃 (𝑃), Enc𝐿 (𝐿), Enc𝐼 (𝐼)) .

(3)

More specifically, we employ BERT [7] as the encoder of query
statements 𝑆 , QueryFormer [49] as the encoder of execution plans
𝑃 , a multi-layer perceptron as the encoder of execution logs 𝐿, and
a 2DCNN model as the encoder of KPIs 𝐼 .

Self-supervised Multimodal Pre-training. In the multimodal
data inputs, partial correspondence exists among the different
modalities. For example, field names, table names, and filter condi-
tions in query statements also occur in nodes in the execution plan
tree. Likewise, some data in execution logs has corresponding data
in the root nodes of plans. Inspired by such correspondences in the
multimodal query data, we propose self-supervised pre-training to
align the different modalities and enhance the expressiveness of
the data embeddings.

As shown in Figure 5, to align query statements, execution plans,
and execution logs, we propose to mask critical information within
each modality and then learn to predict the masked information
jointly using the other modalities. We first match the information
of query conditions, join conditions, table names, column names,
and operations between the query statement and execution plan.
Additionally, we match specific numerical information between the
execution log and the execution plan. Then, we randomly select
some matched parts as the critical information and mask the infor-
mation in one of the modalities. Specifically with a 50% probability,
we choose to mask tokens in either the query statement or the exe-
cution plan. The corresponding tokens will be masked and serve as
reference prediction information. For the execution logs, we mask
parts of the logs and utilize information from query statements
and execution plans to predict the masked parts of the logs. This
approach enables the model to align query statements, execution
plans, and execution logs at the encoding level. For example, we
replace the table name "user" in the query statement with "<mask>"

Figure 5: Illustration of self-supervised pre-training for mul-
timodal encoders 𝐸𝑛𝑐𝑆 , 𝐸𝑛𝑐𝑄 , 𝐸𝑛𝑐𝐿 , and 𝐸𝑛𝑐𝐼 .

while keeping the "user" unchanged in the execution plan. By using
the masked query statement, execution plan, and execution logs, we
predict the masked token. Following this, we employ a transformer
module 𝐴 to aggregate the three modalities and jointly predict the
masked content. Take the SQL modality as an example and let 𝑆 de-
note its masked content and 𝑆−𝑆 denote its remaining content. The
joint prediction objective for self-supervised pre-training is applied
to each modality to achieve fine-grained cross-modal alignment:

LSQL =

𝑆 −𝐴 (
Enc𝑆 (𝑆 − 𝑆), Enc𝑃 (𝑃), Enc𝐿 (𝐿)

)2
2

LPLAN =

𝑃 −𝐴 (
Enc𝑆 (𝑆), Enc𝑃 (𝑃 − 𝑃), Enc𝐿 (𝐿)

)2
2

LLOG =

�̃� −𝐴 (
Enc𝑆 (𝑆), Enc𝑃 (𝑃), Enc𝐿 (𝐿 − �̃�)

)2
2

(4)

1174

Figure 6: Architecture of the cross-modal Transformer.

The KPIs modality contains information about the current data-
base state. Considering the impact of the database state on query
execution, it is crucial to capture both temporal features of the data-
base state and the patterns of interaction between different metrics
of the database instance. KPIs represent the database state, and we
explore their temporal characteristics. To capture patterns in met-
rics, we pre-train the embeddings of metrics separately. Inspired by
this property, we propose to employ an auto-encoding structure and
reconstruction of the KPI time series as the pre-training objective:

LKPIs = ∥Dec𝐼 (Enc𝐼 (𝐼)) − 𝐼 ∥22 , (5)

where Dec𝐼 is the decoder that is to reconstruct the original KPI
input from its embeddings. Through this pre-training process, we
can obtain better embeddings for KPIs related to anomaly detection,
which are very relevant to the downstream task of slow queries,
i.e., estimating the impact of root causes.

Pre-training with large quantities of queries: As the pretraining of
the encoders is self-supervised and only uses the queries themselves,
not their root cause impact, we can use all queries, not only the
slow queries, in the root cause impact dataset 𝐷 . Thus, we use a
large quantity of queries collected from the cloud database system
to facilitate the pre-training.

4.3.2 Root-Cause-Adaptive Cross Transformer.
Cross-modal Transformer. To more fully utilize complementary
information from the diverse modalities, the multimodal fusion
module learns to fuse them to extract features for root cause diagno-
sis. We employ the Transformer [38] architecture and cross-modal
attention to integrate information from multiple modalities.

Cross-attention (𝐶𝐴) [17] uses the same computational method
as self-attention to process the relationship between different input
data A and B:

𝐶𝐴(𝐴, 𝐵) = softmax

(
𝐴𝑊

𝑄

𝐴
𝐵𝑊𝐾

𝐵√︁
𝑑𝑞

)
𝐵𝑊𝑉

𝐵
, (6)

where𝑊𝑄

𝐴
is the query projection layer of A,𝑊𝐾

𝐵
is the key pro-

jection matrix of B, and𝑊𝑉
𝐵

is the value projection matrix of B.
Computing cross-attention for each pair of modalities incurs

large computational costs and introduces redundancy in the fused

features. As shown in Figure 6, we thus instead design the cross-
modal Transformer to have the query statement as the main modal-
ity and to serve as the query in cross-attention, while other modali-
ties serve as the keys and values in attention. The choice of the main
modality is based on the insight that the SQL modality is directly
related to a diagnosed slow query. Later, we report on experiments
that validate this design.

Take the cross-modal attention between the query statement 𝑆
and the execution plan 𝑃 as an example and let 𝐸𝑆 and 𝐸𝑃 denote
the embeddings of the two modalities. We capture cross-modal
dependencies between these two and then extract the cross-modal
feature ℎ𝑃 from the plan modality:

𝑄𝑆 = 𝐸𝑆𝑊
𝑄

𝑆
, 𝐾𝑃 = 𝐸𝑃𝑊

𝐾
𝑃 ,𝑉𝑃 = 𝐸𝑃𝑊

𝑉
𝑃
, ℎ𝑃 = softmax(

𝑄𝑆𝐾
𝑇
𝑃√
𝑑
)𝑉𝑃 ,

(7)
where𝑊𝑄

𝑆
,𝑊𝐾

𝑃
,𝑊𝑉

𝑃
∈ R𝑑×𝑑 are learnable feature projection and 𝑑

is the dimension of the input embeddings. Applying similar calcula-
tions, we can obtain the cross-attention features from all the modal-
ities: ℎ𝑆 , ℎ𝑃 , ℎ𝐿 , ℎ𝐼 . Having extracted the multimodal features that
capture cross-modal relationships, the cross-modal Transformer
(CMT) finally concatenates these along the feature dimension and
obtains the fused representation through a feed-forward network
(FFN):

CMT(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼) = FFN([ℎ𝑆 ;ℎ𝑃 ;ℎ𝐿 ;ℎ𝐼]) (8)
Root-Cause-Adaptive Fusion. Features from multimodal fu-

sion give a more comprehensive view of the slow queries, which
helps the more accurate diagnosis of their root causes. In prac-
tice, as the query becomes more complex (e.g., with longer query
statements, more nodes in the execution plan, larger numbers of
returned rows, and longer execution time), only some parts of the
information are highly related to the slow query and should be fo-
cused on in diagnosis. Furthermore, different root causes may have
diverse relationships with different parts of multiple modalities. For
example, when the root cause is a bad index, more attention should
be given to the number of rows in the indexed field and the indexing
method. This inspires us to fuse multimodal embeddings adaptively
for diagnosing distinct root causes, as illustrated in Figure 4.

To distinguish the commonality and specificity of multimodal
fusion among root causes, we decompose the features into two
parts. One part involves features related to the commonality of
the root causes, which are shared by all root causes. The other
part involves features related to the specificity of each root cause,
which are determined by their unique characteristics. We employ
the Common Cross-Modal Transformer (denoted as C-CMT) to
extract the fused representation 𝐸𝐶

𝐹
of the common features:

𝐸𝐶𝐹 = C-CMT(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼) (9)

To extract specific features for each root cause, we employ an Adap-
tive Cross-Modal Transformer (denoted as A-CMT) that adaptively
fuses multimodal embeddings based on distinct root causes. For
each root cause 𝑅𝐶 𝑗 , we propose a gating mechanism to control
the embedding of each modality during fusion. Take the query
statement 𝐸𝑆 as an example: the gating unit 𝐺 𝑗

𝑆
outputs the gating

value as the weight and then selects more relevant information for
fusion:

𝐺
𝑗

𝑆
(𝐸𝑆) = sigmoid (FC(𝐸𝑆)) ⊙ 𝐸𝑆 , (10)

1175

where sigmoid is the activation function, ⊙ is the element-wise
product, and FC is the submodule that output the gating value;
we use a linear neural network layer for simplicity. Embeddings
controlled by the gating unit then go through the cross-modal
Transformer to extract specific multimodal features of the root
cause 𝑅𝐶 𝑗 :

𝐸
𝑗

𝐴
= A-CMT

(
𝐺
𝑗

𝑆
(𝐸𝑆),𝐺 𝑗𝑃 (𝐸𝑃),𝐺

𝑗

𝐿
(𝐸𝐿)𝐺 𝑗𝐼 (𝐸𝐼)

)
. (11)

The final adaptive-fusion feature 𝐸 𝑗
𝐹
for estimating the root cause

𝑅𝐶 𝑗 is computed as the sum of the common feature 𝐸𝐶 and the
root-cause-adaptive feature 𝐸 𝑗

𝐴
:

𝐸
𝑗

𝐹
= 𝐸𝐶 + 𝐸 𝑗𝐴 (12)

4.3.3 Unified Identification and Ranking.
Estimation of root cause impacts. In order to identify and rank
valid root causes according to their influence on the slow query in
a unified framework, we propose a training objective for estimating
the impact of each potential root cause.

Given themultimodal input data𝑋𝑖 , the input embeddingmodule
and the multimodal fusion module extract the multimodal feature
𝐸𝐹 =

{
𝐸
𝑗

𝐹

}𝑟
𝑗=1

as detailed in Sections 4.3.1 and 4.3.2, where 𝐸 𝑗
𝐹
is

the adaptively extracted feature for the root cause 𝑅𝐶 𝑗 and 𝑟 is the
total number of all potential root causes. With 𝐸 𝑗

𝐹
as input, the root

cause estimation module estimates the impact of each root cause
𝑅𝐶 𝑗 as 𝑦𝑖 𝑗 :

𝑦𝑖 𝑗 = MLP(𝐸 𝑗
𝐹
) (13)

During training, we minimize the mean squared error (MSE) be-
tween the estimated and the annotated impacts of all the potential
root causes:

Lpred =

𝑟∑︁
𝑗=1
∥𝑦𝑖 𝑗 − 𝑦𝑖 𝑗 ∥22 (14)

Recall that we regard root causes as valid if their impact exceeds
a threshold 𝜖 . Here, we use the same threshold 𝜖 to apply the es-
timated impacts to obtain valid root causes and then rank them
based on the estimated impacts.

Impact-aware Regularization. To further improve the accu-
racy of root cause identification and ranking, we propose two
impact-aware regularizations to combine with the MSE training
loss to obtain the overall training loss of the framework. The identi-
fication of root causes may be influenced by noise in the estimated
impact, especially noise near the threshold 𝜖 . Motivated by this, we
propose the valid regularization:

Lvalid =

𝑟∑︁
𝑗=1

max(0, I(𝑦𝑖 𝑗 < 𝜖) · (𝑦𝑖 𝑗 − 𝜖) + 𝜂), (15)

where 𝜂 is a margin, I(𝑦𝑖 𝑗 < 𝜖) is an indicator function that returns
1 if 𝑦𝑖 𝑗 < 𝜖 and −1, otherwise. This encourages the estimated
impact to be larger or smaller than threshold 𝜖 by at least a margin
of 𝜂, depending on whether or not the root cause is valid. This
regularization enhances the ability to distinguish between valid
and invalid impacts in root cause identification.

Optimizing the model with only the MSE loss may not ensure
an accurate ranking of the root causes due to the imperfect fit and
estimations. We propose an order regularization to constrain the

rankings of root causes. With {𝑧𝑖 𝑗 }𝑟𝑗=1 denoting sorted root causes
according to ground truth impacts 𝑦𝑖 𝑗 and {𝑧𝑖 𝑗 }𝑟𝑗=1 denoting sorted
root causes according to estimated impacts 𝑦𝑖 𝑗 , the regularization
is:

Lorder =
𝑟−1∑︁
𝑗=1

max(0,
(
(𝑧𝑖 𝑗 − 𝑧𝑖 (𝑗+1)) − (𝑧𝑖 𝑗 − 𝑧𝑖 (𝑗+1))

)
) (16)

The regularization constrains estimated orders to at least follow
the margins between the ground truth orders, thereby preserving
the impact ranking of the root causes. For example, given two root
causes that have adjacent rankings, if the distance 𝑧𝑖 𝑗 − 𝑧𝑖 (𝑗+1)
between the estimated results is 6.5% and the ground truth distance
𝑧𝑖 𝑗 − 𝑧𝑖 (𝑗+1) is 9.6%, we must update the estimated impact to be
closer to the ground truth distance. This is so because the estimated
distance is less than the ground truth distance, which affects the
estimation of important root causes and even changes the order of
root causes. Conversely, if the distance 𝑧𝑖 𝑗 − 𝑧𝑖 (𝑗+1) between the
estimated results is 10.1, which exceeds the ground truth distance
𝑧𝑖 𝑗 −𝑧𝑖 (𝑗+1) of 9.6, we does not perform any adjustment as this does
not lead to incorrect estimation of important root causes or their
order. The overall training loss of the framework is formulated as
follows.

L = Lpred + 𝜆(Lvalid + Lorder), (17)
where 𝜆 is a trade-off hyper-parameter between the estimation loss
and the impact-aware regularization losses.

4.3.4 Inference. We design an estimation model to estimate root
cause impacts and rank them to determine the key root causes. As
shown in Algorithm 1, given a slow query 𝑋𝑖 , they are processed
individually through the pre-trained models ENC𝑆 , ENC𝑃 , ENC𝐿 ,
and ENC𝐼 to obtain 𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿 , and 𝐸𝐼 . Using C-CMT, we extract
the common features shared by each root cause. Then, we utilize
a gating mechanism to capture the different parts of the query
statement, execution plan, execution log, and KPIs that each root
cause focuses on. For each root cause, we use A-CMT to extract its
specific features. We combine the common and specific features of
each root cause and employ a Linear layer to estimate the impact of
each individual root cause. Finally, we sort all root causes by their
impact 𝑦𝑖 𝑗 and eliminate those that are below impact threshold 𝜖
to obtain a list of valid root causes and their impact.

5 EXPERIMENTS
5.1 Experimental Design
5.1.1 Datasets. We collect five datasets, Hologres1, Hologres2,
TPC-DS, TPC-C, and TPC-H, with the slow query threshold 𝛿 set
to 1 second and the valid root cause threshold 𝜖 set to 10%. We con-
sider 5 types of root causes in Hologres1, Hologres2, and TPC-DS:
1. outdated statistical information; 2. under-optimized join order
algorithm; 3. missing or redundant indexes; 4. inappropriate distri-
bution keys; 5. poorly written queries. In TPC-C and TPC-H, we
consider 10 types of root causes: 1. outdated statistical information;
2. under-optimized join order; 3. inappropriate distribution keys;
4. missing indexes; 5. redundant indexes; 6. repeatedly executing
subqueries; 7. complex table joins; 8. updating an entire table; 9.
inserting large data; 10. unknown root causes. We provide detailed
statistics of the datasets in Table 2, including the total number of

1176

Algorithm 1: Pseudo-code of RCRank
Pre-training:
Input: All queries used for pre-training {𝑄𝑖 |𝑖 ∈ [𝑁]}
Initialize the encoder E𝜙 ;
𝑆, 𝑃, �̃�←Mask 𝑆, 𝑃, 𝐿 in 𝑄𝑖 ;
for 𝑖 ← 1 to 𝑁 do

for 𝑇 ∈ {𝑆, 𝑃, �̃�} do
Encode 𝑇 and other original inputs using E𝜙 ;

Reconstruct 𝐼 in 𝑄𝑖 using encoder E𝜙 ;

Update 𝜙 based on Eqs. 4 and 5;

Training:
Input: A root cause impact dataset
𝐷 = {(𝑦𝑖 𝑗 , 𝑋𝑖 , 𝑅𝐶 𝑗) |𝑖 ∈ [𝑀], 𝑗 ∈ [𝑟]}
Initialize the weights 𝜃 of the whole estimation model
with its encoder’s weights 𝜙 initialized as the
pre-trained weights;
for 𝑖 ← 1 to𝑀 do

𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼 ← Encode 𝑆, 𝑃, 𝐿, 𝐼 in 𝑋𝑖 ;
𝐸𝐶
𝐹
← Extract common features based on Eq. 9;

for 𝑗 ← 1 to 𝑟 do
FuseFeatures(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼 , 𝐸

𝐶
𝐹
);

𝑦𝑖 𝑗 ← Estimate impact of root cause 𝑅𝐶 𝑗 ;

Update 𝜃 ← argmin𝜃 (L(𝑦𝑖 𝑗 , 𝑦𝑖 𝑗)) using Eq. 17;

Inference:
Input: A new slow query 𝑋𝑖
𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼 ← Encode 𝑆, 𝑃, 𝐿, 𝐼 in 𝑋𝑖 ;
𝐸𝐶
𝐹
← Extract common features based on Eq. 9;

for 𝑗 ← 1 to 𝑟 do
FuseFeatures(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼 , 𝐸

𝐶
𝐹
);

𝑦𝑖 𝑗 ← Estimate impact of root cause 𝑅𝐶 𝑗 ;
Return: Validate the root cause using 𝑦𝑖 𝑗 and sort 𝑦𝑖 𝑗 in
descending order

Function FuseFeatures(𝐸𝑆 , 𝐸𝑃 , 𝐸𝐿, 𝐸𝐼 , 𝐸
𝐶
𝐹
):

Calculate the gate value using Eq. 10;
Extract specific features based on Eq. 11;
Return: Fuse the common and specific features using
Eq. 12;

queries (#Queries) that we monitored, the number of slow queries
(#Slow Queries), and the number of tables (#Tables).

(1) Hologres 1 & 2: We collect two datasets of slow queries
from Alibaba’s production cloud database system Hologres, which
contains a large number of real-world queries. The root cause distri-
bution in datasetHologres1 tends to lean towards lacking indexes,
while the root cause distribution in Hologres2 is uniform. The
slow queries come from routine executions of Alibaba’s internal
activities, involving databases with millions of records and complex
conditions. We employ the rule-based and LLM-based methods
outlined in Section 4.2 to collect the impacts of root causes.

Table 2: Details of datasets.

Dataset #Queries #Slow Queries #Tables
Hologres1 12631 2209 136
Hologres2 13544 2701 84
TPC-DS 12196 7246 24
TPC-C 9980 5764 10
TPC-H 7638 4279 8

(2) TPC-DS, TPC-C, and TPC-H: These are standard bench-
marks for evaluating the performance of database management
systems. TPC-DS simulates a retail enterprise’s decision support
environment, encompassing complex queries, data mining, and
business intelligence functionalities. TPC-C simulates the activities
of a wholesale supplier. TPC-H is a decision support benchmark
designed for the retail industry. It is possible to generate databases,
tables, and specific mock data of chosen sizes. Although TPC-DS,
TPC-C, and TPC-H offer query generation, only about a hundred
generation templates is insufficient for our experimental needs.
We thus use LLMs to generate more complex queries based on
the relevant table structures in Postgres. Specifically, we use table
structures such as table names and column names as prompts and
require the LLM to generate complex query statements. After a
selection process, we use the revision methods from Section 4.2
to perform root cause annotation on the slow queries, thereby
producing synthetic datasets.

5.1.2 Baseline Approaches. (1) OpenGauss [15]: The SQL-level
Diagnosis component in OpenGauss is similar to our task, which
uses execution plans, and key performance indicators as input to
find a time-consuming SQL operator. However, OpenGauss cannot
rank the root causes. To enable OpenGauss to estimate an impact
of the root cause, we fuse its execution plan and KPI features and
use a fully connected layer for impact estimation. (2) D-BOT [52]:
D-BOT collects diagnostic files and utilizes an LLM to automatically
extract knowledge from these to diagnose the root causes of slow
queries. (3) Only-SQL, Only-Plan, Only-KPI, Only-Log: We use
the embedding module of our proposal to learn representations of
a single modality and then estimate the impact of the root cause
through a fully connected layer. (4) Concat: We use the embedding
modules of our proposal to learn the representation of eachmodality
and then concatenate them and estimate the impact of the root cause
through a fully connected layer.

5.1.3 EvaluationMetrics. Weevaluate the effectiveness of themeth-
ods based according to four metrics: impact error, root cause accu-
racy, root cause order, and key root cause.

First, we evaluate whether the estimated root cause impact values
are accurate compared to ground truth impact values. We compute
MSE error for each estimated impact values and then report the
mean and standard deviation of the estimated impact values in the
whole test set.

Second, we evaluate the accuracy of the valid root causes (V-ACC)
and the most important valid root causes (Top1-ACC). Recall that
a root cause is valid if its impact value exceeds the root cause
threshold 𝜖 . Specifically, V-ACC calculates the accuracy of valid
root causes by computing the ratio of correctly estimated root

1177

causes to the total number of root causes.Top1-ACC calculates the
accuracy of the root cause with the highest impact value.

Third, we evaluate the root cause orders obtained by the esti-
mated vs. the ground truth impacts. We employ the multi-cause
accuracy (MC-ACC) and Kendall’s Tau (Tau) metrics.MC-ACC mea-
sures the accuracy of estimating the list of valid root causes sorted
by the impact of each root cause for individual queries. Specifi-
cally, MC-ACC =

Order𝑅𝐶
𝑚 , where Order𝑅𝐶 is the number of lists

of estimated valid root causes that are ordered consistently with
the ground truth. Tau evaluates the performance in terms of order
accuracy: 𝑇𝑎𝑢 (𝑅𝐶) = 𝑛𝑐−𝑛𝑑√

(𝑛0−𝑛𝑎) (𝑛0−𝑛𝑏)
, where 𝑛𝑐 is the number of

concordant pairs where the estimated impact values are consistent
with the actual values in their order; 𝑛𝑑 is the number of discor-
dant pairs. 𝑛𝑎 and 𝑛𝑏 represent the number of tied rankings in the
ordered lists of estimated root causes and ground truth root causes,
respectively; and 𝑛0 = 𝑛 (𝑛−1)

2 , where n is the length of the list. In
practical applications, the negative impact of providing incorrect
root causes exceeds the negative impact of under-estimated root
causes.

Finally, to measure the improvement the estimated top-1 root
cause can bring, we use Top1-IR to evaluate the performance gain
after revising queries according to the top-1 root cause. Specifically,
Top1-IR calculates the impact value of the estimated top-1 root
cause for each slow query on average. In the process of revising
slow queries, users prioritize revising slow queries according to
the root cause with the greatest impact, i.e., the top-1 root cause.
Higher Top1-IR values indicate that the top-1 root cause yields a
larger performance improvement. Thus, the higher the Top1-IR, the
better.

In Tables 3, 4, 5, 6, and 9, ↑ indicates that higher values represent
better performance, while ↓ indicates that lower values represent
better performance.

5.1.4 Implementation. We split the root cause impact dataset 𝐷
into 8:1:1 for training, validation, and testing. We use all queries,
except the validation and testing part of the slow queries, for pre-
training encoders. We conduct training on an NVIDIA GeForce RTX
3090 GPUwith a batch size of 64 and train for 50 epochs. We employ
bert-base-uncased [7] for encoding queries, Queryformer [49] for
encoding plans, a multi-layer perceptron for encoding logs, and a
2DCNN for encoding KPIs. The bert-base-uncased uses pre-trained
parameters and the multi-layer perceptron consists of three fully
connected layers with 13, 64, and 32 dimensions for the three layers.
In the Cross Transformer, we set the number of blocks to 3 and the
dropout rate to 0.1. We utilize the Adam optimizer with 𝛽1 = 0.9,
𝛽2 = 0.999, and a learning rate of 𝑙𝑟 = 0.0003. The trade-off for the
losses is set to 𝜆 = 7, with further considerations of the value of 𝜆
in Section 5.2.5.

5.2 Experimental Results
5.2.1 Overall Performance. Tables 3, 4, and 5 show a comparative
analysis of the proposed method and the baseline methods across di-
verse evaluationmetrics on two real datasets and a synthetic dataset.
Overall, RCRank outperforms baseline methods at root cause identi-
fication and ranking, providing evidence that RCRank is effective.
Specifically, we observe the following.

(1) The single-modal approach performs relatively well on Only-
SQL and Only-Plan, indicating that the estimation of root cause
impact is more dependent on SQL and Plan. However, the single-
modal approach lacks other crucial information; thus, these meth-
ods do not have a comprehensive understanding of slow queries.
The query statement contains table structure information, the exe-
cution plan includes details like execution order and operations, the
execution log provides information on actual resource consumption
during execution, and KPIs reflect the current state of the system.

(2) OpenGauss, based on the concatenation fusion of execution
plan and KPIs, only integrates information from the execution plan
and KPIs, lacking details from query statements and useful informa-
tion from execution logs for identifying root causes. In contrast, our
approach utilizes information from query statement, execution plan,
execution logs, and KPIs, fusing features through a Cross-modal
Transformer across these four modalities. This allows us to make
use of additional information relevant to root causes. The table
shows that paying attention to information such as the semantic
content in query statements and actual execution information in
execution logs can enhance the diagnosis of slow query root causes
and the estimation of their impact.

(3) Due to the insensitivity of LLMs to numbers, D-Bot cannot
estimate the impact of root causes. Therefore, in D-Bot, we focus
on the accuracy of single root cause estimation. Due to privacy con-
cerns, we could not use GPT as the underlying LLM on Hologres.
Instead, we opt for the open-source vicuna-13B-1.5k model, which
we deploy locally. In scenarios where the use of GPT is not possi-
ble, D-Bot exhibits lower accuracy at single root cause estimation.
This indicates that for root cause determination, LLMs still require
more knowledge and the support of powerful language models as
a foundation. On the TPC-DS, we use GPT-3.5 for our large model.
We find that the trained model performs better a identifying the
root causes of slow queries.

(4) For the task of identifying and ranking root causes, we focus
on the performance improvement of slow queries after applying
the revision methods based on root causes. To reduce revision costs,
we focus on whether addressing estimating the top-1 root cause can
bring substantial improvement. We observe that RCRank outper-
forms the other methods on the Top1-IR metric, providing evidence
that integrating query statements, execution plans, execution logs,
and KPIs is effective at estimating root causes and impacts.

5.2.2 Ablation Studies. To study the effect of different components,
we create four variants of RCRank and conduct several experiments
on both the Hologres and Postgres to compare their performance:

(1) w/o gate unit: To assess the importance of the Root Cause
Gating Unit a providing attention to different parts of the input
for different root causes, we remove the gating unit component
from the RCRank. As shown in Figure 6, we observe that when
not using the gate unit, performance is the worst. This suggests
that different root causes focus on different parts of the input, e.g.,
diagnosing different root causes focuses on partial tokens in the
query statement, partial operations in the execution plan, partial
values in the logs, and partial KPIs in the KPIs.

(2) use concatenation: To assess the importance of the Cross-
modal Transformer at fusing different features, we replace the Cross-
modal Transformer with concatenation. This causes a decrease in

1178

Table 3: Overall root cause diagnosis results in Hologres.

Modality Hologres1 Hologres2
Method SQL Plan Log KPIs V-ACC ↑ Top1-ACC ↑ MSE±std ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑ V-ACC ↑ Top1-ACC ↑ MSE±std ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑
Concat ! ! ! ! 0.7482 0.5071 0.1847±0.1813 0.2132 0.3074 0.1751 0.7254 0.4240 0.2274±0.1793 0.3253 0.3319 0.2364

Only-SQL ! 0.6898 0.4067 0.3595±0.1953 0.1955 0.2269 0.1632 0.6989 0.3696 0.1056±0.1954 0.2659 0.1748 0.1508
Only_Plan ! 0.7340 0.4743 0.2236±0.1899 0.2281 0.2429 0.1680 0.6973 0.3803 0.4166±0.1987 0.2925 0.2059 0.1584
Only-Log ! 0.6666 0.2900 1.8796±1.2394 0.1613 0.1636 0.1592 0.6883 0.3590 0.1747±0.2045 0.2659 0.2165 0.1422
Only-KPI ! 0.7058 0.3921 0.3989±0.1854 0.1773 0.2230 0.1557 0.6922 0.3723 0.1522±0.1923 0.2686 0.2093 0.1410

D-BOT (Vicuna) ! ! ! ! 0.3769 - - - - - 0.3518 - - - - -
OpenGauss ! ! 0.7354 0.5032 0.4362±0.1870 0.2019 0.2740 0.1789 0.7149 0.4069 0.2335±0.1847 0.3058 0.2518 0.1919
RCRank ! ! ! ! 0.7628 0.5384 0.1226±0.1752 0.2371 0.3518 0.1988 0.7420 0.4335 0.0896±0.1645 0.3563 0.3611 0.2764

Improvement 1.95% 6.17% 33.62% 3.95% 14.44% 11.12% 2.29% 2.24% 15.15% 9.53% 8.80% 16.92%

Table 4: Overall root cause diagnosis results in TPC-C and TPC-H.

TPC-C TPC-H
Method V-ACC ↑ Top1-ACC ↑ MSE±std ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑ V-ACC ↑ Top1-ACC ↑ MSE±std ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑
Concat 0.8340 0.5619 0.1814±0.1438 0.4917 0.4722 0.1413 0.8277 0.5743 0.1943±0.1855 0.4253 0.4944 0.1677

Only-SQL 0.7602 0.5281 0.2794±0.1774 0.4464 0.3965 0.1203 0.7425 0.5399 0.2914±0.2216 0.4587 0.3492 0.1375
Only_Plan 0.7808 0.5307 0.2681±0.2349 0.4791 0.4177 0.1294 0.7714 0.5344 0.2731±0.1841 0.4757 0.4430 0.1294
Only-Log 0.7422 0.4711 0.3105±0.2847 0.4359 0.4207 0.1176 0.7235 0.4933 0.3142±0.2763 0.4188 0.3241 0.1025
Only-KPI 0.8054 0.5402 0.2347±0.1547 0.4224 0.4796 0.1227 0.7827 0.5277 0.2467±0.2164 0.4579 0.4428 0.1103

D-BOT(GPT-3.5) 0.6503 - - - - - 0.6108 - - - - -
OpenGauss 0.8216 0.5416 0.2103±0.1697 0.4715 0.5176 0.1374 0.8146 0.5633 0.2120±0.1977 0.4187 0.4703 0.1522
RCRank 0.8611 0.6417 0.1221±0.1378 0.5247 0.5574 0.1564 0.8523 0.6512 0.1496±0.1672 0.5718 0.5125 0.1712

Improvement 3.25% 14.20% 32.69% 6.71% 7.69% 10.69% 2.97% 13.39% 23.01% 20.20% 3.66% 2.09%

Table 5: Overall root cause diagnosis results in TPC-DS.

TPC-DS
Method V-ACC ↑ Top1-ACC ↑ MSE±std ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑
Concat 0.7836 0.5566 0.7133±0.1732 0.4547 0.4873 0.1201

Only-SQL 0.7381 0.5241 0.6133±0.2677 0.4216 0.3224 0.1005
Only_Plan 0.7644 0.5142 0.4162±0.2115 0.4331 0.4574 0.1014
Only-Log 0.6984 0.4869 0.9899±0.4122 0.3824 0.3163 0.0973
Only-KPI 0.7713 0.5074 0.5849±0.2413 0.4032 0.4130 0.0989

D-BOT(GPT-3.5) 0.5813 - - - - -
OpenGauss 0.7683 0.5243 0.3147±0.1472 0.3926 0.4241 0.1142
RCRank 0.8466 0.6321 0.1732±0.1440 0.5431 0.5391 0.1477

Improvement 8.04% 13.56% 44.96% 19.44% 10.63% 22.98%

performance, showing that cross-modal Transformers are more
effective at learning integrated features. Cross-fused features can
better understand query information, aiding in determining the
types and impacts of root causes.

(3) usingMSE loss: To assess the effect of Impact-aware Regular-
ization, we replace the training loss with the MSE loss. We find that
Lorder and Lvalid play crucial roles in the ordering and accuracy of
identifying and ranking the root causes of slow queries. Imposing
constraints on the ordering and validity of root causes can enhance
the identification of effective and critical root causes. The MSE loss
fails to distinguish root causes near the validity threshold. Since the
MSE loss only calculates the mean square error, it cannot ensure
the correct order of root causes when estimation errors exist.

(4) w/o pre-train: To assess the effect of the alignment pre-
training method, we compare the performance with and without
pre-training. We observe that the pre-training yields an improve-
ment at estimating root causes and their impacts, indicating that
using additional queries and aligning query statements, execution
plans, and execution logs using the masking method and capturing
patterns of KPIs using reconstructing method effectively capture
the features of queries.

(a) Hologres (b) TPC-DS

Figure 7: Sensitivity to parameter 𝜆 on Hologres and TPC-DS.

5.2.3 Efficiency. Table 7 shows the training time (per epoch) and
inference time (per slow query) of RCRank, OpenGauss, and D-Bot,
where we report the average runtime across 5 runs. In the training
phase, D-Bot does not require training, since it leverages exter-
nal knowledge, tools, and the internal knowledge of pre-trained
LLMs for diagnosis. Therefore, we only compare the training time
of RCRank and OpenGauss. We find that RCRank and OpenGauss
have similar training times. The additional multimodal inputs do
not incur significant computational overhead but result in better
estimating the impact of root causes. In the inference phase, the
machine learning methods with RCRank and OpenGauss are sig-
nificantly faster than D-Bot. This is because D-Bot uses its LLM
to make multiple calls to its dialogue model for multi-agent joint
diagnosis to generate root causes, while RCRank and OpenGauss
only require one call to output root causes and their impacts.

5.2.4 Original vs. Improved Run Time of Slow Queries. Our goal
is to improve query efficiency by reducing the runtimes of slow
queries, rather than completely revising them into non-slow queries.
As shown in Figure 8, in most cases, the execution times of the
revised slow queries are shorter than those of the original slow

1179

Table 6: Ablation studies on Hologres and TPC-DS.

Dataset Hologres TPC-DS
Method V-ACC ↑ Top1-ACC ↑ MSE ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑ V-ACC ↑ Top1-ACC ↑ MSE ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑

w/o gate unit 0.7328 0.4400 0.1876 0.2340 0.2688 0.1954 0.8141 0.5907 0.1864 0.4766 0.4998 0.1351
use concat 0.7355 0.4548 0.2342 0.2688 0.3025 0.1923 0.8154 0.5942 0.2126 0.5074 0.5043 0.1403

use MSE loss 0.7238 0.4533 0.2624 0.2441 0.2805 0.1712 0.8014 0.5981 0.2867 0.4871 0.5114 0.1389
w/o pre-train 0.7360 0.4746 0.1119 0.2718 0.3269 0.2264 0.8179 0.6014 0.1931 0.5266 0.5161 0.1412
pre-train 0.7465 0.4985 0.1164 0.2732 0.3303 0.2360 0.8466 0.6321 0.1732 0.5431 0.5391 0.1477

Table 7: Training and inference running times on Hologres.

Training time
(per epoch)

Inference time
(per slow query)

RCRank 1.76 m 0.018 s
OpenGauss 1.44 m 0.015 s

D-Bot - 5.17 m

Figure 8: Original vs. improved run time of slow queries in
Hologres.

Table 8: End-to-end run time improvement.

Database Original
run time (s)

Revised
run time (s) Improvement

Hologres1 1736.52 1226.68 29.36%
Hologres2 1297.86 901.49 30.54%
TPC-DS 1852.54 1363.66 26.39%
TPC-C 1501.74 1092.22 27.27%
TPC-H 1030.33 781.202 24.18%

queries, to varying extents. As shown in Table 8, RCRank identifies
root causes that lead to substantial speedups in both Hologres and
TPC datasets.

5.2.5 Sensitivity Analysis. To study the impact of different 𝜆 on per-
formance, we investigate the average performance of the Hologres
datasets and the performance of the TPC-DS dataset with values of
𝜆 in [1, 3, 5, 7, 10]. As shown in Figure 7, the performance changes
only little across different 𝜆 settings. Because Lorder constrains
both the order of the root causes and the gap between root cause
impacts, we obtain more accurate estimates of root cause impacts.

5.2.6 Main Modality Study. To investigate which data modality
is most important for determining root cause impacts, we use SQL,
Plan, Log, and KPIs as the main modalities, each fused with the

Table 9: Main modality studies.

Modality V-ACC ↑ Top1-ACC ↑ MSE ↓ MC-ACC ↑ Tau ↑ Top1-IR ↑
SQL 0.7360 0.4746 0.1119 0.2718 0.3269 0.2264
Plan 0.7263 0.4680 0.1077 0.2601 0.2490 0.1831
Log 0.7088 0.4241 0.1401 0.2165 0.2216 0.1663
KPI 0.7178 0.4552 0.1357 0.2296 0.2305 0.1721

other modalities. We evaluate the performance of using different
modalities as the main modality on Hologres across all metrics.

Table 9 shows that using SQL as the main modality yields the best
performance, not only in Top1-IR but also across other metrics. The
database instance information contained in the KPIsmodality plays
an auxiliary role in determining root causes and their impact. Using
KPIs that contain less information about the queries themselves as
the main modality. The performance of using the Plan modality
as the main modality is very similar to using SQL as the main
modality because execution plans contain the columns involved in
the queries and their execution orders. However, it is worth noting
that execution plans in Plan do not reflect the actual execution plan
during query execution. SQL benefits from using the pre-trained
text encoder BERT, although the encoder is not specifically trained
using SQL statements. However, table and column names in queries
often contain semantic information, which can be captured by the
text encoder, thereby reflecting the characteristics of the query.

6 CONCLUSION
This paper aims to identify root cause types and to rank them ac-
cording to their impact on slow queries. We propose a multimodal
Ranking framework for the Root Causes of slow queries (RCRank),
which formulates diagnosis as a multimodal machine learning prob-
lem, leveraging multimodal information from query statements, ex-
ecution plans, execution logs, and key performance indicators. We
propose a multimodal diagnosis model, which enables expressive
embeddings of heterogeneous modalities with modal alignment and
task relevance, effective and adaptive fusion of multimodal features,
and unified identification and ranking of root causes. Experimental
results show that our method is capable of outperforming exist-
ing methods regarding root cause identification and ranking. In
future research, it is of interest to study how to best make a revi-
sion plan w.r.t. a set of slow queries, and study how to efficiently
incrementally [27] train RCRank to include new root causes.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation of China (62406112, 62372179) and Alibaba Innovative
Research Program.

1180

REFERENCES
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.

2012. Learning-based Query Performance Modeling and Prediction. In ICDE.
390–401.

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD. 1009–1024.

[3] David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S.
Jensen. 2023. LightTS: Lightweight Time Series Classification with Adaptive
Ensemble Distillation. Proc. ACM Manag. Data 1, 2 (2023), 171:1–171:27.

[4] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong
Wen, Bin Yang, and Chenjuan Guo. 2024. Pathformer: Multi-scale Transformers
with Adaptive Pathways for Time Series Forecasting. In ICLR.

[5] Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang,
and Christian S. Jensen. 2023. Weakly Guided Adaptation for Robust Time Series
Forecasting. Proc. VLDB Endow. 17, 4 (2023), 766–779.

[6] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit
Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In SIGMOD. 666–679.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171–4186.

[8] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In SIGMOD. 1241–1258.

[9] Dejan Dundjerski and Milo Tomasevic. 2022. Automatic Database Troubleshoot-
ing of Azure SQL Databases. IEEE Trans. Cloud Comput. 10, 3 (2022), 1604–1619.

[10] Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. 2020. MISA:
Modality-Invariant and -Specific Representations for Multimodal Sentiment
Analysis. In MM. 1122–1131.

[11] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kulshreshtha,
Weifei Zeng, and Navindra Yadav. 2019. ExplainIt! - A Declarative Root-cause
Analysis Engine for Time Series Data. In SIGMOD. 333–348.

[12] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[13] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In CIDR.

[14] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[15] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo
Li, Tianqing Wang, and Shifu Li. 2021. openGauss: An Autonomous Database
System. Proc. VLDB Endow. 14, 12 (2021), 3028–3041.

[16] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. 2022. BLIP: Boot-
strapping Language-Image Pre-training for Unified Vision-Language Under-
standing and Generation. In ICML. 12888–12900.

[17] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Gotmare, Shafiq R. Joty, Caiming
Xiong, and Steven Chu-Hong Hoi. 2021. Align before Fuse: Vision and Language
Representation Learning with Momentum Distillation. In NeurIPS. 9694–9705.

[18] Greg Linden. 2006. Akamai online retail performance report: Milliseconds are
critical. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

[19] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9
(2023), 195:1–195:35.

[20] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In NeurIPS. 13–23.

[21] Pengfei Luo, Tong Xu, Shiwei Wu, Chen Zhu, Linli Xu, and Enhong Chen. 2023.
Multi-Grained Multimodal Interaction Network for Entity Linking. In SIGKDD.
1583–1594.

[22] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems. In SIGMOD. 631–645.

[23] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, Feifei Li, Changcheng
Chen, and Dan Pei. 2020. Diagnosing Root Causes of Intermittent Slow Queries
in Large-Scale Cloud Databases. Proc. VLDB Endow. 13, 8 (2020), 1176–1189.

[24] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD. 1275–1288.

[25] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[26] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for
Join Order Enumeration. In SIGMOD. 3:1–3:4.

[27] Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Zheng Kai, Feiteng Huang,
Jiandong Xie, and Christian S. Jensen. 2024. A Unified Replay-based Continuous
Learning Framework for Spatio-Temporal Prediction on Streaming Data. ICDE
(2024).

[28] Vishvak Murahari, Dhruv Batra, Devi Parikh, and Abhishek Das. 2020. Large-
Scale Pretraining for Visual Dialog: A Simple State-of-the-Art Baseline. In ECCV,
Vol. 12363. 336–352.

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, LukeMiller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with human feedback. In NeurIPS.

[30] Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng,
Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang
Zhou, Chengcheng Yang, Aoying Zhou, and Bin Yang. 2023. MagicScaler:
Uncertainty-aware, Predictive Autoscaling. Proc. VLDB Endow. 16, 12 (2023),
3808–3821.

[31] Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang,
Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang.
2024. TFB: Towards Comprehensive and Fair Benchmarking of Time Series
Forecasting Methods. Proc. VLDB Endow. 17, 9 (2024), 2363–2377.

[32] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. In ICDE. 1238–1249.

[33] Karl Schnaitter and Neoklis Polyzotis. 2012. Semi-Automatic Index Tuning:
Keeping DBAs in the Loop. Proc. VLDB Endow. 5, 5 (2012), 478–489.

[34] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.
2019. VideoBERT: A Joint Model for Video and Language Representation Learn-
ing. In ICCV. 7463–7472.

[35] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019), 307–319.

[36] Xiu Tang, Sai Wu, Mingli Song, Shanshan Ying, Feifei Li, and Gang Chen. 2022.
PreQR: Pre-training Representation for SQL Understanding. In SIGMOD. 204–
216.

[37] Jindong Tian, Yuxuan Liang, Ronghui Xu, Peng Chen, Chenjuan Guo, Aoying
Zhou, Lujia Pan, Zhongwen Rao, and Bin Yang. 2025. Air quality prediction with
physics-guided dual neural odes in open systems. ICLR (2025).

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998–6008.

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In NeurIPS.

[40] Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu,
Jilin Hu, Zhenli Sheng, and Christian S. Jensen. 2024. AutoCTS++: zero-shot
joint neural architecture and hyperparameter search for correlated time series
forecasting. VLDB J. 33, 5 (2024), 1743–1770.

[41] Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S.
Jensen. 2023. AutoCTS+: Joint Neural Architecture and Hyperparameter Search
for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1, 1 (2023),
97:1–97:26.

[42] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, and Bin Yang. 2021. Unsu-
pervised Path Representation Learning with Curriculum Negative Sampling. In
IJCAI. 3286–3292.

[43] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving with
Large Language Models. In NeurIPS.

[44] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A Perfor-
mance Diagnostic Tool for Transactional Databases. In SIGMOD. 1599–1614.

[45] Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021. Learning Modality-Specific
Representations with Self-Supervised Multi-Task Learning for Multimodal Senti-
ment Analysis. In AAAI. 10790–10797.

[46] Yi Zhang, Mingyuan Chen, Jundong Shen, and Chongjun Wang. 2022. Tailor
Versatile Multi-Modal Learning for Multi-Label Emotion Recognition. In AAAI.
9100–9108.

[47] Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan, Xiao
Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, Dan Pei, Qingwei Lin,
and Dongmei Zhang. 2023. Robust Multimodal Failure Detection forMicroservice
Systems. In SIGKDD. 5639–5649.

[48] Kai Zhao, Chenjuan Guo, Yunyao Cheng, Peng Han, Miao Zhang, and Bin Yang.
2023. Multiple Time Series Forecasting with Dynamic Graph Modeling. Proc.
VLDB Endow. 17, 4 (2023), 753–765.

[49] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[50] Renjie Zheng, Junkun Chen, Mingbo Ma, and Liang Huang. 2021. Fused Acoustic
and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation.

1181

http://glinden.blogspot.com/2006/11/ marissa-mayer-at-web-20.html

In ICML, Vol. 139. 12736–12746.
[51] Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Shifu Li, Tianqing

Wang, Kun Li, and Luyang Liu. 2021. DBMind: A Self-Driving Platform in
openGauss. Proc. VLDB Endow. 14, 12 (2021), 2743–2746.

[52] Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming
Wu, Jiesi Liu, Ruohang Feng, andGuoyang Zeng. 2024. D-Bot: Database Diagnosis
System using Large Language Models. Proc. VLDB Endow. 17, 10 (2024), 2514–
2527.

[53] Jun-Peng Zhu, Peng Cai, Boyan Niu, Zheming Ni, Kai Xu, Jiajun Huang, Jianwei
Wan, Shengbo Ma, Bing Wang, Donghui Zhang, et al. 2024. Chat2Query: A

Zero-Shot Automatic Exploratory Data Analysis System with Large Language
Models. In ICDE. 5429–5432.

[54] Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun, Shuai Zhou, Haihuang Su,
Liu Tang, and Qi Liu. 2024. AutoTQA: Towards Autonomous Tabular Question
Answering through Multi-Agent Large Language Models. PVLDB 17(12) (2024),
3920 – 3933.

[55] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479.

1182

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Slow Query Analyses
	2.2 Multimodal Learning

	3 Problem Setting and Formulation
	3.1 Query Formalization
	3.2 Root Causes for Slow Queries
	3.3 Problem Formulation

	4 Multimodal Diagnosis Framework
	4.1 Overview
	4.2 Slow Query and Root Cause Collection
	4.3 Multimodal Root Cause Diagnosis Model

	5 Experiments
	5.1 Experimental Design
	5.2 Experimental Results

	6 Conclusion
	Acknowledgments
	References

