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ABSTRACT
Flink clusters often suffer from hotspot issues where the monitored
job delay and CPU usage keep rising and remain high. This necessi-
tates the detection of anomalous time series to pinpoint the hotspot
machines. However, the state-of-the-art unsupervised time series
anomaly detection (UTAD) methods are ineffective in this scenario.
We identify two main reasons for this. First, the hotspot scenario re-
quires us to pay particular attention to Flink-specific anomalies, e.g.,
slow-rising and high-level anomalies, which the existing methods
struggle to address. Second, the state-of-the-art anomaly detection
methods often assume that training datasets do not contain anom-
alies, but the data collected from the running Flink clusters contains
noise, which causes these methods to learn anomalous patterns
as normal patterns. In this paper, we first conduct experiments to
analyze why existing methods fail in the Flink scenario. To tackle
these challenges, we propose a cross-contrastive approach to learn
the context information for each timestamp to enable Flink-specific
anomaly detection. Then, to address noisy anomalies, we incorpo-
rate prior knowledge to set an anomaly boundary to prevent the
model from learning anomalous patterns. Extensive experiments
show that our method not only outperforms existing methods in the
Flink scenario but also achieves state-of-the-art results on public
benchmark datasets.
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1 INTRODUCTION
Apache Flink is a stream and batch processing framework for big
data processing and analytics. It is designed to efficiently process
large volumes of data in real-time and batch processing modes, and
it is suitable for a wide range of use cases in the field of big data
analytics. Flink is deployed in a distributed manner across multiple
nodes, where each node runs user-defined operators. Data transfer
from one operator to another among the nodes and sink to a final
result. Due to the streaming nature of the data, a certain node may
encounter performance bottlenecks where a significant amount of
data is waiting in the buffer and cannot be processed promptly due
to factors, such as the complexity of operators, machine efficiency,
or data volume. This brings in a problem of data delay on these
nodes. As a result, the affected node may either reject or slowly
allow data in from its upstream nodes, thus consequently affecting
the normal operation of the upstream nodes, which is referred to
as a hotspot anomaly node.

Alibaba Cloud offers computing services to companies and in-
dividual users, which requires efficient processing of various com-
puting jobs. To ensure efficient data transfer among distributed
nodes, there is a need to detect hotspot nodes and then employ
scheduling algorithms to migrate jobs from these hotspot nodes
to other nodes where no data is delayed. Therefore, it is urgent
to detect if there is a hotspot anomaly node. Based on our on-site
reliability engineering experience, we monitor job delay and CPU
usage as time series and report a hotspot anomaly node if its CPU
usage rises sharply in a short period, concurrently accompanied
by increasing delays in multiple jobs that run on the node. Thus,
in addition to the point-level anomalies exhibited in benchmark
datasets [2, 13, 17, 21, 31], our Flink scenario also shows its specific
anomalies, such as slow-rising patterns or a piece of time series that,
after sharp rising, maintains high without descending, as shown
in Figure 1. We need to identify both point-level and Flink-specific
time series anomalies.

In the Alibaba Cloud scenario, we collect the CPU usage and job
latency information for thousands and thousands of nodes every 20
seconds. In this problem, due to the vast amount of time series data,
supervised methods are not feasible because manual labeling is im-
practical and not cost-effective. Therefore, unsupervised anomaly
detection methods become crucial in this setting. Existing unsuper-
vised anomaly detection methods can be categorized into different
types, including density estimation-based methods [3, 15, 18, 33],
clustering-based methods [14, 25, 34], reconstruction-based [22,
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31, 47] methods, auto-regressive methods [13], association-based
method [39], forecasting-based method [4, 5, 8, 9, 24, 37, 38, 46]
and so on. Recently, the method [42] based on contrastive learning
is proposed that aims to learn two view representations for each
timestamp and calculate the difference between the two views of the
same timestamp. The underlying idea is that the two views of a nor-
mal timestamp should be similar, while conversely, the two views of
an anomaly timestamp differ significantly. Although these methods
have shown good detection accuracy on benchmark datasets, they
fall short in our scenarios. We summarize the challenges as follows.

Challenge 1: In addition to the existing point-level anomalies,
our Flink scenario sets a requirement to detect its specific anomalies.
For example, when the latency of multiple jobs on a node contin-
ues to rise or rises and remains at a high level, it often indicates
the occurrence of anomalies on that node. However, state-of-the-
art anomaly detection methods are not sensitive to such kinds
of anomalies. Reconstruction-based approaches [47] often exhibit
relatively small reconstruction errors between the Flink-specific
anomalies and the normal data and thus fail to identify such anom-
alies. Association-based [39, 42] methods, which compare different
views of the same timestamp, overlook the contextual information
of each timestamp, making it challenging to discover the Flink-
specific anomalies as well.

Challenge 2: We are facing a very large time series data that
originates from running Flink clusters. This leads to the inclu-
sion of numerous anomalies and noises in the collected training
dataset. Most of the traditional unsupervised anomaly detection
methods [13, 22, 32, 39, 42, 47] are built on the assumption that the
training dataset is rather clean and noise-free, where they overlook
the presence of actual anomalies and noises. Thus, the effectiveness
of these methods is susceptible due to the influence of anomalies
and noises and is unsatisfactory.

In Section 3, we first benchmark the state-of-the-art methods
on our Flink dataset collected from Alibaba Cloud platforms, to
show the flaws of these methods. Different from these methods, we
propose a novel representation learning method for unsupervised
anomaly detection that effectively addresses the above challenges.

For Challenge 1, instead of calculating a reconstruction error at
each timestamp [22, 32, 47] or calculating the discrepancy between
the two views of each timestamp [39, 42], we propose a novel cross
contrastive learning to pay additional attention to the Flink-specific
anomalies. We first utilize an attention mechanism to learn repre-
sentations from global and local perspectives, based on which we
then conduct cross-contrastive learning. The intuition is that ob-
servations of adjacent timestamps in normal time series are not far
from each other, and therefore, their latent representations should
be similar. In contrast, for the observations of adjacent timestamps,
where Flink-specific anomalies, e.g., slow-rising trend, happens,
we should learn to enlarge the difference among their representa-
tions. This gives rise to a different anomaly detection mechanism,
where the representation distances among adjacent timestamps are
measured, and an anomaly is detected if the distances are much
distinguishable from each other.

For Challenge 2, we propose a novel loss function that incorpo-
rates prior knowledge to co-guide the optimization process, such
that the model could treat anomalous and normal timestamps dif-
ferently even if their labels are unknown. Specifically, we set an

anomaly boundary for each timestamp that is the normalization
score of its observation, and use it as the prior knowledge to reflect
the deviation of the anomalous from the normal. The intuition is
that the training loss of normal timestamps that have smaller anom-
aly boundaries, indicating that these timestamps do not deviate
significantly from their normalization, could be optimized as small
as possible. In contrast, the training loss of anomalies that have
higher anomaly boundaries should not be well optimized as the nor-
mal timestamps, such that we could assign larger anomaly scores
to anomalous timestamps. Therefore, we only optimize their loss
close to their anomaly boundaries. In this way, we effectively take
noisy training data into account and mitigate the influence of anom-
alies and noises during the training process, thereby improving the
accuracy of anomaly detection.

(a) NIPS-TS-SWAN (b) Slow-rising pattern(c) High-level pattern

Figure 1: Different types of anomalies. (a) shows point-level
anomalies from NIPS-TS-SWAN dataset; (b) and (c) are anom-
alies from our Flink dataset.

In this paper, we propose ContraAD a cross-contrastive approach
to detect anomalies in the Flink scenario. We first utilize a repre-
sentation network under global and local views to learn a represen-
tation for each timestamp. After obtaining these representations,
we conduct cross contrastive learning to compare each pair of
timestamps using their representations for optimization. During
the optimization, we set an anomaly boundary to prevent the model
from learning anomalies induced by noise. Our contributions can
be summarized as follows:
• We propose a novel representation network and use the cross-

contrastive distances among the representations of different
timestamps to detect anomalies.

• For each timestamp, we calculate its deviation from the original
time series and set it as the anomaly boundary for the optimiza-
tion to prevent learning anomalous patterns.

• Extensive experiments show that our method not only effec-
tively addresses the challenges in the Flink scenarios but also
achieves state-of-the-art results on anomaly detection bench-
mark datasets.

2 RELATEDWORK
In this section, we will introduce the relevant works on unsuper-
vised time series anomaly detection, contrastive learning, and learn-
ing with noise data.

Unsupervised Time Series Anomaly Detection. There has
been a lot of research on UTAD. For example, the classical density-
based anomaly detection method e.g., LOF [3], classical machine
learning methods includes Deep SVDD [25] and THOC [28]. There
are lots of deep learning based methods. LSTM-VAE [22] utilizes
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Figure 2: The effectiveness of BeatGAN and DCdetector on
Flink-specific anomalies.

LSTM to extract temporal features and then uses VAE for reconstruc-
tion in the context of time series data. OmiAnomaly [32] utilizes
the reconstruction probability that comes from VAE for anomaly
detection. BeatGAN [47] introduces the discriminator’s loss as a
regularization mechanism for the reconstruction network. How-
ever, these methods fail to address the Flink-specific anomalies and
assume that the training data does not contain anomalies, as shown
in Section 3.

Contrastive Learning. Both DACAD [10] and NCAD [6] inject
the anomalies into training set and then construct the constrastive
pair for training. DCdetector [42] involves contrasting the rep-
resentations of the same timestamp from different perspectives.
However, these method not effective to our Flink-specific anomaly,
and they also highly rely on a noise-free training dataset. Thus,
these methods fail in our Flink scenario.

Learning with Noise Data. Learning with noise data [7, 12, 19,
29, 36, 43, 44], especially in computer vision, has been extensively
researched in various domains. Noise in the training set can be
addressed by designing a loss function [7, 36, 43] in such a way
that the minimization of this loss function is tolerable to noise.
Some methods [12, 19, 44] also utilize the joint training of two
networks to effectively combat noisy labels. However, there is a lack
of research addressing this aspect in time series anomaly detection.
Although RAE [16] decomposes the original sequence into a noisy
and a clean sequence through an autoencoder model, it only can
be considered as a smoothing operation and is effective only for
handling small perturbations from the noise not for the anomalies
in training dataset. Thus, dealing with a noisy training dataset is
still a challenge.

3 MOTIVATION
In this section, we use experiments to show that the state-of-the-art
methods fall short in our cases.
Experiment 1: Impact of Flink-specific anomalies. This ex-
periment aims to investigate whether state-of-the-art methods can
detect the Flink-specific anomalies correctly.

We highlight some key difference of the Flink scenario and other
anomaly detection scenes as follows. First, our Flink dataset in-
cludes common anomaly types as existing anomaly datasets, such
as point-level anomalies and seasonal anomalies. Besides, our Flink
dataset contains more segment-level anomalies specific to Flink
semantics, such as high-level patterns and slow-rising patterns. A
high-level anomaly pattern refers to a situation where a metric
transitions from a normal range to an abnormal range and remains
in that elevated range for a long time. For example, CPU usage
might increase from 50% to 95% and then fluctuate within the 95%
range, indicating an abnormal state. A slow-rising pattern anomaly
refers to an abnormal pattern where a machine metric shows a
gradual upward trend with fluctuations over a period of time, indi-
cating a slow but steady increase in the metric’s value. Figure 1(a)
represents the time series where point-level anomalies happened
as selected from the NIPS-TS-SWAN dataset [2, 17]. Figure 1(b)
shows a piece of slow-rising anomaly. Figure 1(c) represents the
scenario where job latency rises and remains at a high level for
a period. In the Flink dataset, these anomalies indicate a hotspot
node. We select the reconstruction-based method BeatGAN [47]
and contrastive-based method DCdetector [42] to evaluate their
effectiveness on our Flink dataset. All settings are taken from their
original papers, and we carefully tune all hyperparameters based
on our scenario to achieve the best test results.

We evaluate the effectiveness of detecting slow-rising and high-
level anomalies that are shown in Figure 1(b) and (c). To illustrate
their bad performance, we visualize the original time series, the re-
constructed time series, the reconstruction errors, and the anomaly
threshold as used in the paper for BeatGAN in Figure 2(a) and (b).
We also visualize the original time series, the anomaly scores, and
the anomaly threshold which is determined by the anomaly score
of each timestamp with a predefined anomaly ratio for DCdetector
in Figure 2(c) and (d). Notes that if the reconstruction error or the
anomaly score of a certain timestamp is higher than the threshold
then this timestamp is considered as an anomaly.

It can be observed from Figure 2(a) that, in the slow-rising time
series, the reconstructed series is almost the same as the normal
time series, as BeatGAN treats the slow-rising time series as the
normal time series, and therefore it fails to detect the slow-rising
anomalies. Similarly, Figure 2(c) shows that DCdetector fails either,
as in the slow-rising trend the contrastive difference between two
views for each timestamp does not vary significantly. Figure 2(b)
and (d) show that BeatGAN and DCdetector do not demonstrate
the ability to detect the high-level pattern either. BeatGAN exhibits
a significant drop in its reconstructed series, and the DCdetector
can detect only one anomaly in a piece of high-level anomalies. Our
interpretation of this phenomenon is that the training dataset may
include some high-level anomalies, thus leading to the production
of such incorrect outputs.

This indicates that the existing methods have limited capabil-
ity in identifying Flink-specific anomalies and cannot meet our
requirements.
Experiment 2: Impact of noisy training datasets. This experi-
ment aims to show whether the state-of-the-art models are robust
to noisy training data occurring in our Flink dataset.

Our Flink dataset is collected from several running flink clusters,
and inevitably, it contains many abnormal anomalies as shown
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Table 1: Comparison on Flink data. *indicates a relatively
clean training dataset.

Flink dataset Flink dataset*
methods P R F1 P R F1
Statistical 10.00 38.12 15.83 - - -
DCdetector 35.73 11.21 17.07 42.85 13.12 20.09
BeatGAN 38.89 6.19 10.68 32.39 20.35 24.99

in Figure 1. We continue to use BeatGAN and DCdetector in this
experiment. We also use a rule-based statistical anomaly detection
method which is based on a season decomposition algorithm and
usesmany prior rules. Further, we remove a proportion of anomalies
from the training dataset manually, such that the two baselines
could be trained on a relatively clean dataset, indicated by * in
Table 1. We report the precision, recall, and F1-score to show their
anomaly detection performance.

Based on the experimental results mentioned above, we conclude
that the state-of-the-art unsupervised anomaly detection methods
fall short in discovering the Flink-specific anomalies and noisy
training datasets, which significantly influences their final effec-
tiveness.

4 METHODOLOGY
4.1 Problem Definition
Amultivariate time seriesX ∈ ℝN×C is composed of a sequence of
observation ⟨𝑥1, 𝑥2, ..., 𝑥𝑁 ⟩ of lengthN , where 𝑥𝑖 ∈ ℝC denotes the
data collected or observed at timestamp 𝑖 with C channels. For time
series anomaly detection, we aim to obtain a model D where X𝑡𝑒𝑠𝑡

is the particular time series from which we aim to detect anomalies
andY𝑝𝑟𝑒𝑑 = {𝑦1̂, 𝑦2̂, ..., 𝑦𝑛̂}where𝑦𝑖̂ ∈ {0(𝑁𝑜𝑟𝑚𝑎𝑙), 1(𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙)}
is the output of the detection model D.

Y𝑝𝑟𝑒𝑑 = D(X𝑡𝑒𝑠𝑡 )

Unsupervised anomaly detection refers to the scenario where we
only have unlabeled data X𝑡𝑟𝑎𝑖𝑛 to train the detection model D.
The essence of unsupervised time series anomaly detection is to as-
sign an anomaly score for each timestamp 𝑥𝑖 . Based on the anomaly
score and in combination with certain threshold selection meth-
ods [40], we can determine whether a timestamp is anomalous or
not.

4.2 Overall Architecture
Figure 4 shows our overall architecture, which consists of four main
modules: the preprocessing, the representation network, the cross
discrepancy, and the optimization modules.

In the pre-processing module, we apply the normalization to the
input time series data X, as shown in Equation 1.

X𝑛𝑜𝑟𝑚 = 𝑁𝑜𝑟𝑚(X) = 𝛾𝑖 ( X𝑖 − 𝔼(X𝑖 )√︁
𝑉𝑎𝑟 (X𝑖 ) + 𝜖

) + 𝛽𝑖 ,where

𝔼(X𝑖 ) = 1
N

N∑︂
𝑗=1

𝑥𝑖𝑗 , 𝑉𝑎𝑟 (X𝑖 ) = 1
N

N∑︂
𝑗=1

(𝑥𝑖𝑗 − 𝔼(X𝑖 ))2 .
(1)

Specifically, X𝑛𝑜𝑟𝑚 ∈ ℝN×C denotes the normalized time series,
andX𝑖 ∈ ℝN denotes the 𝑖-th channel ofX, where each 𝑥𝑖

𝑗
denotes

the observation in the 𝑖-th channel at the 𝑗-th timestamp. 𝛽𝑖 and 𝛾𝑖
are learnable affine parameters.

In the representation network, we learn the representation for
each timestamp by summing the representations obtained from
two perspectives: the attention in a global view and the attention
in a local view with its neighboring timestamps. This enables the
representation network to learn representations under different re-
ceptive fields. After we have the representation for each timestamp,
we pass it to the cross discrepancy module where we calculate the
cross distance among the representations of different timestamps,
which yields a distance matrix. In the optimization module, to ac-
count for noises in the training data, given the distance matrix from
the cross discrepancy module, we calculate the deviation of each
timestamp from the input time series as the anomaly boundary, in
order to guide the optimization process.

Figure 3: Difference between our work and previous study
on the channel aspect

4.3 Representation Network
4.3.1 Channel Fusion. Previous work on representation learning []
often assumed independence betweenmultivariate time series chan-
nels, implying no correlation. However, this assumption may not
align with the real-world relationships between data. In our ap-
proach, we default to the assumption that there is a connection
between data in different dimensions.

Figure 3 provides an intuitive illustration of the specific differ-
ences between the two assumptions. The main difference lies in
their assumption of channel independence, where they learn a rep-
resentation for each channel’s timestamps based on this assumption
and concatenate these representations. In contrast, we first fuse
the channels, enabling us to derive the representation of a point at
a specific moment in one step. In previous research, it finds that
Instance Normalization performs better for time series data. There-
fore, we initially apply Instance Normalization to preprocess the
data where X ∈ ℝB×S×C is the raw input time series with batch
size B window size S and channel dimension C , X𝑖 denotes the
𝑖 − 𝑡ℎ channel of X,W𝑓 ∈ ℝC×𝑑𝑚𝑜𝑑𝑒𝑙 is weight matrix to fuse all
channel into embedding dimension and X𝑒𝑚𝑏 ∈ ℝB×S×𝑑𝑚𝑜𝑑𝑒𝑙 is
the embedding of fused channel. Besides 𝛽𝑖 ∈ ℝC×1and 𝛾𝑖 ∈ ℝC×1

are learnable affine parameters.

𝔼(X𝑖 ) = 1
S𝑖

S𝑖∑︂
𝑗=1

X𝑖
𝑗 , 𝑉𝑎𝑟 (X𝑖 ) = 1

S𝑖

S𝑖∑︂
𝑗=1

(𝑥𝑖𝑗 − 𝔼(X𝑖 ))2

X𝑒𝑚𝑏 = [𝛾𝑖 ( X𝑖 − 𝔼(X𝑖 )√︁
𝑉𝑎𝑟 (X𝑖 ) + 𝜖

) + 𝛽𝑖 ] ×W𝑓
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Figure 4: The overall architecture of the proposed ContraAD method.

4.3.2 Two views of attention. Wepropose an effective attention [35]
mechanism as the representation network [41] to capture relation-
ships among different timestamps. Our method calculates an atten-
tion score for each timestamp from the global and local perspectives
to make the representation network have sights of different recep-
tive fields. Besides, instead of using channel independence which
fails to capture correlations among multivariate time series, we use
a linear mapping to fuse the channels to capture the correlations.

4.3.3 Global view. The use of global attention is intended to enable
the model to learn the connections among timestamps from the
time series. Given a normalized time series X𝑛𝑜𝑟𝑚 ∈ ℝN×C , we
first fuse all channels with a linear mapping and yield X0

𝑔𝑙𝑜𝑏𝑎𝑙
∈

ℝN×𝑑𝑚𝑜𝑑𝑒𝑙 . Next, we calculate the association between each of N
timestamps and all other timestamps. We utilize Rotary Position
Embedding [30] to enhance the model’s ability to capture relation-
ships in long sequences. A basic transformer block typically consists
of an attention layer, a feedforward layer, and two Normalization
layers, and multiple blocks are stacked to form 𝐿 blocks. We take
the 𝑙-th transformer block for example.

Q𝑙 ,K𝑙 ,V𝑙 = W𝑙
QX

𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

,W𝑙
KX𝑙−1

𝑔𝑙𝑜𝑏𝑎𝑙
,W𝑙

VX𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

, (2)

Q𝑙 ,K𝑙 = 𝑅𝑜𝑡𝑎𝑟𝑦 (Q𝑙 ,K𝑙 ), (3)

X𝑙
𝑎𝑡𝑡𝑛 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( Q

𝑙 (K𝑙 )𝑇√︁
𝑑𝑚𝑜𝑑𝑒𝑙

)V𝑙 , (4)

X𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

= 𝐹𝑒𝑒𝑑 ⊕ 𝑁𝑜𝑟𝑚(X𝑙
𝑎𝑡𝑡𝑛) . (5)

Specifically, X𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

denotes the output of 𝑙 − 1 layers and W𝑙
Q ,

W𝑙
K ,W𝑙

V are learnable projection matrices. 𝐹𝑒𝑒𝑑 ⊕𝑁𝑜𝑟𝑚 denotes
the layers composed by the FeedForward layer and the LayerNorm

with a residual sum. The final representation is equal to the output
of the final layer in the L layers which is X𝑔𝑙𝑜𝑏𝑎𝑙 = X𝐿

𝑔𝑙𝑜𝑏𝑎𝑙
.

4.3.4 Local view. To focus on the adjacent information, we intro-
duce the local attention. Given a normalized time series X𝑛𝑜𝑟𝑚 ∈
ℝN×C , we first take a slide operation as defined in Equation 6.
We pad 𝑘 zeros to the left and right sides of X𝑛𝑜𝑟𝑚 to align the
shape to X𝑝𝑎𝑑 ∈ ℝ(N+2𝑘 )×C . And then, we use a window of size
2𝑘 + 1 to slide over the padded sequence X𝑝𝑎𝑑 with step size 1
and pile the slides together, thus producing X𝑠𝑙𝑖𝑑𝑒 ∈ ℝN×(2𝑘+1)×C .
After sliding, we fuse all C channels together using a linear map-
ping which yields X0

𝑙𝑜𝑐𝑎𝑙
∈ ℝN×(2𝑘+1)×𝑑𝑚𝑜𝑑𝑒𝑙 . Next, the attention

scores for each timestamp in the window of size 2𝑘 + 1 are calcu-
lated. The embeddings for all timestamps are aggregated to obtain
the representation for the (𝑘 + 1)-th timestamp.

X𝑝𝑎𝑑 = 𝑃𝑎𝑑 (X, 0, 𝑘), X𝑠𝑙𝑖𝑑𝑒 = 𝑠𝑙𝑖𝑑𝑒 (X𝑝𝑎𝑑 ) . (6)
We also take the 𝑙-th transformer block for example where

W𝑙
Q , W

𝑙
K , W𝑙

V are learnable projection matrices and X𝑙
𝑙𝑜𝑐𝑎𝑙

∈
ℝN×(2𝑘+1)×𝑑𝑚𝑜𝑑𝑒𝑙 is the attention output of 𝑙-th layer.

Q𝑙 ,K𝑙 ,V𝑙 = W𝑙
QX

𝑙−1
𝑙𝑜𝑐𝑎𝑙

,W𝑙
KX𝑙−1

𝑙𝑜𝑐𝑎𝑙
,W𝑙

VX𝑙−1
𝑙𝑜𝑐𝑎𝑙

, (7)

X𝑙
𝑎𝑡𝑡𝑛 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( Q

𝑙 (K𝑙 )𝑇√︁
𝑑𝑚𝑜𝑑𝑒𝑙

)V𝑙 , (8)

X𝑙
𝑙𝑜𝑐𝑎𝑙

= 𝐹𝑒𝑒𝑑 ⊕ 𝑁𝑜𝑟𝑚(X𝑙
𝑎𝑡𝑡𝑛) . (9)

Finally, we conduct a reduced operation on the last layer’s output
X𝐿
𝑙𝑜𝑐𝑎𝑙

to get the final representation of local attention for each
timestamp. The process is shown in Equation 10.

X𝑙𝑜𝑐𝑎𝑙 = X𝐿
𝑙𝑜𝑐𝑎𝑙

W𝛼 . (10)
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X𝑙𝑜𝑐𝑎𝑙 denotes the output of local attention and W𝛼 is a learned
vector introducing to reduce the embedding representation of local
window to a single temporal token.We initializeW𝛼 with a softmax
Gaussian kernel as shown in Equation 11,

W𝑖
𝛼 =

𝑒𝑥𝑝 ( 1√
2𝜋

𝑒𝑥𝑝 (− |𝑖−(𝑘+1) |2
2 ))∑︁2𝑘+1

𝑗=0 𝑒𝑥𝑝 ( 1√
2𝜋

𝑒𝑥𝑝 (− | 𝑗−(𝑘+1) |2
2 ))

, (11)

where 𝑖 denotes the index of a timestamp, to incorporate posi-
tional information during the reduction process. The intuition is
that neighbors should be given more weight during the reduction
process.

After computing the embeddings for both global and local views,
we add them together to obtain the final representation X𝑒𝑚𝑏 for
each timestamp.

X𝑒𝑚𝑏 = X𝑔𝑙𝑜𝑏𝑎𝑙 + X𝑙𝑜𝑐𝑎𝑙 . (12)

4.4 Optimization
The state-of-the-art unsupervised anomaly detection method DCde-
tector [42] is based on contrastive learning, which minimizes the
distance between different representations of the same timestamp
from patch-wise and in-patch views. However, minimizing the dis-
crepancy of a single timestamp at different views overlooks the
information among all timestamps. Besides, this approach still can-
not address the issue we raised, namely overfitting on datasets with
noise, as anomaly points would also receive equal optimization. In
contrast, we first calculate the representation of each timestamp,
which is the summation of global and local attention, and it can
enhance the intra-channel information. Then we compare discrep-
ancies among all timestamps using the representations, which can
help to detect the slow-rising and high-level anomalies by utilizing
the context information. Meanwhile, we use prior knowledge of
raw time series to alleviate the impact of noise in the training set.

4.4.1 Cross discrepancy. Here, we optimize from the views of all
timestamps. Figure 5 intuitively illustrates the differences between
our approach and the existing methods [39, 42]. The intuition is that
if a piece of time series does not contain anomaly timestamps, then
the piece is harmonious and consistent, meaning that the difference
between any two of its timestamps should be small. However, if
there are anomalies exist, the overall consistency of the time series
is affected by these anomalies. Therefore, naturally, we measure the
consistency between observations 𝑥𝑖 and 𝑥 𝑗 at any two timestamps
using the p-norm of their representation vectors which are the 𝑖-th
and 𝑗-th indices of X𝑒𝑚𝑏 respectively. Thus, we have a symmetric
distance matrix DM ∈ ℝN×N .

DM𝑖, 𝑗 = | |X𝑒𝑚𝑏 [𝑖] − X𝑒𝑚𝑏 [ 𝑗] | |𝑝 ∀𝑖, 𝑗 ∈ N . (13)

We sum the upper triangle of the distance matrix as the loss
function of the representation network. Based on this loss, we can
update the representation network.

L =
1
2

N∑︂
𝑖=1

N∑︂
𝑗=1

DM𝑖, 𝑗 . (14)

Figure 5: Difference between ours and existing work on con-
trastive strategy.

4.4.2 Incorporate prior knowledge. We notice that the reason for
the model overfitting on datasets with noise is that the state-of-
the-art models treat all timestamps as normal timestamps during
optimization, and they ignore anomalies and noises in the training
set. In such a scenario, their optimization process treats normal and
anomalous timestamps equally, and targets to minimize the loss
for all timestamps as small as possible. Thus, they lead to the over-
fitting issue of the noisy data. To address this problem and relieve
the impact of noisy data, we set an anomaly boundary for each
timestamp that reflects the deviation of each timestamp from the
normal timestamps in the time series. Given the normalized input
time series X𝑛𝑜𝑟𝑚 ∈ ℝN×C , we calculate its anomaly boundary
(A𝑛𝑜B) as follows.

A𝑛𝑜B =

C∑︂
𝑖=1

|︁|︁|︁|︁|︁X𝑖
𝑛𝑜𝑟𝑚 − 𝔼(X𝑖

𝑛𝑜𝑟𝑚)√︁
𝑉𝑎𝑟 (X𝑖

𝑛𝑜𝑟𝑚) + 𝜖

|︁|︁|︁|︁|︁ . (15)

The reason for using this as the anomaly boundary is that we aim
to employ a prior metric that measures the consistency of a certain
timestamp in the given window, indicating whether a timestamp
deviates from the given window. The standard deviation of the
mean is a general way to achieve this. Therefore, we include the
absolute value in the standard deviation to reflect the prior anomaly
boundary. Finally, we define the final loss of representation network
as:

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2

N∑︂
𝑖=1

N∑︂
𝑗=1

DM𝑖, 𝑗 , A𝑛𝑜B ≤ 1
2

N∑︂
𝑖=1

N∑︂
𝑗=1

DM𝑖, 𝑗

A𝑛𝑜B − 1
2

N∑︂
𝑖=1

N∑︂
𝑗=1

DM𝑖, 𝑗 , A𝑛𝑜B >
1
2

N∑︂
𝑖=1

N∑︂
𝑗=1

DM𝑖, 𝑗

(16)
By considering A𝑛𝑜B as a boundary in the final loss, the model

does not assume that all timestamps have a normal pattern during
optimization. There is more optimization space for normal times-
tamps in the training data, and less optimization space for abnormal
timestamps. When optimizing the model, the optimizer will take all
timestamps into account to take a step to minimize the loss. As a
result, the loss function more likely focuses on the timestamps with
a larger optimization space rather than optimizing all timestamps
towards A𝑛𝑜B.

4.5 Anomaly Criterion
Given a test time series X𝑡𝑒𝑠𝑡 ∈ ℝN×C , to obtain the final re-
sults, we assign an anomaly score to each timestamp. Based on
this anomaly score, we then filter anomalies from normal instances.
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Table 2: Performance results of the model. We evaluated Precision (P), Recall (R), and F1-score on five datasets. All results are
presented in percentages. The best F1 score is highlighted in bold, and the second is underlined.

Dataset Flink SMD SMAP SWaT PSM MSL
Metric P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
LOF 69.35 15.45 25.27 56.34 39.86 46.68 58.93 56.33 57.60 72.15 65.43 68.62 57.89 90.49 70.61 47.72 85.25 61.18

Matrix Profile 8.30 13.52 10.58 55.36 15.49 24.21 93.18 73.81 82.37 77.21 47.20 58.58 - - - 92.70 57.12 70.68
TS-CP2 24.32 31.69 27.52 87.42 66.25 75.38 87.65 83.18 85.36 81.23 74.10 77.50 82.67 78.16 80.35 86.45 68.48 76.42
U-Time 19.83 23.27 21.41 65.95 74.75 70.07 49.71 56.18 52.75 46.20 87.94 60.58 82.85 79.34 81.06 57.20 71.66 63.62

GrammarViz 23.12 18.91 20.08 4.26 1.0 8.18 39.78 22.60 28.83 94.65 72.38 82.03 90.94 81.35 85.88 14.47 44.10 21.79
OCSVM 3.39 31.82 6.13 44.34 76.72 56.19 53.85 59.07 56.34 45.39 49.22 47.23 62.75 80.89 70.67 59.78 86.87 70.82
IForest 39.63 80.30 53.07 42.31 73.29 53.64 52.39 59.07 55.53 49.29 44.95 47.02 76.09 92.45 83.48 53.94 86.54 66.45

Deep-SVDD 13.64 12.93 13.28 78.54 79.67 79.10 89.93 56.02 69.04 80.42 84.45 82.39 95.41 86.49 90.73 91.92 76.63 83.58
LSTM-VAE 23.56 67.64 34.95 75.76 90.08 82.30 92.20 67.75 78.10 76.00 89.50 82.20 73.62 89.92 80.96 85.49 79.94 82.62
BeatGAN 38.39 6.19 10.68 72.90 84.09 78.10 92.38 55.85 69.61 64.01 87.46 73.92 90.30 93.84 92.04 89.75 85.42 87.53
NCAD 11.23 60.05 18.92 - - 80.16 - - 94.45 - - 95.28 - - - - - 95.60

AnomalyTrans 12.50 12.31 12.40 88.47 92.28 90.33 93.59 99.41 96.41 89.10 99.28 94.22 96.94 97.81 97.37 91.92 96.03 93.93
DCdetector 35.73 11.21 17.07 83.59 91.10 87.18 94.32 98.64 96.43 93.22 99.77 96.38 97.24 98.11 97.67 92.37 97.69 94.96

ContraAD (Ours) 60.98 70.16 65.25 86.73 98.39 92.19 96.02 98.71 97.35 96.27 98.96 97.60 98.27 98.70 98.49 93.07 98.55 95.73

According to our trained model, we calculate the p-norm for each
timestamp’s representation in X𝑡𝑒𝑠𝑡 , and derive DM to measure
the consistency of timestamps in the time series. We calculate the
anomaly score for the 𝑘-th timestamp 𝑥𝑘 as the sum of the 𝑘-th
column in DM.

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒 (𝑥𝑘 ) =
N∑︂
𝑖=1

DM [𝑖, 𝑘] , (17)

After obtaining an anomaly score for each timestamp, we use a
threshold filtering method [39, 42] to determine whether a times-
tamp is an anomaly. If the anomaly score for a timestamp is greater
than the threshold 𝜎 , then that timestamp is considered anoma-
lous; conversely, if the anomaly score is less than the threshold 𝜎 ,
then the timestamp is considered normal. The 𝜎 is a pre-defined
parameter that should be tuned for each dataset.

𝑦𝑖̂ =

{︃1 : 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒 (𝑥𝑖 ) ≥ 𝜎

0 : 𝑁𝑜𝑟𝑚𝑎𝑙𝑦 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒 (𝑥𝑖 ) < 𝜎
. (18)

5 EXPERIMENTS
We conducted extensive experiments to validate our approach. For
implementation details please refer to Appendix ?? [48].

5.1 Settings
5.1.1 Datasets. To show the scalability of ourmethod, we validated
the performance of our approach not only on our Flink dataset but
also on seven benchmark datasets including SMD [31], SMAP [13],
SWaT [20], PSM [1], NIPS-TS-GECCO [17], NIPS-TS-SWAN [2] and
MSL [13]. Due to page limitation, please refer to Appendix [48] for
details of all datasets.

5.1.2 Baselines and Metrics. We compare our model with a total of
ten baseline methods, please refer to Appendix ?? [48]. including
Matrix Profile [45], U-Time [23], TS-CP2 [11], GrammarViz [27],
LSTM-VAE [22], BeatGAN [47], Anomaly Transformer [39], LOF [3],
Deep-SVDD [25], OCSVM [26], IForest [18], NCAD [6] and DCde-
tector [42]. In addition, we also validated our model on various
metrics as used by previous work does [42].

5.2 Result Analysis
Table 2 shows the overall results on six datasets, including Flink,
SMD, SMAP, SWaT, MSL, and PSM, and report Precision (P), Recall
(R), and F1-score. To fairly compare with the state-of-the-art meth-
ods of DCdetector and Anomaly Transformer, we report results
on the NIPS-TS-GECCO and NIPS-TS-SWAN datasets with more
metrics. Results are reported in Appendix [48] Table ??.

Key observations are summarized as follows. First, in our Flink
dataset, all existing methods, especially those based on deep learn-
ing, do not perform well. These methods fail to predict the anom-
alies due to the noise in the training dataset and the disadvantage
of detecting the Flink-specific anomalies. However, our method
demonstrates better performance, indicating that our approach is
effective in detecting Flink-specific anomalies and handling noisy
training datasets. Second, on public datasets, our method has also
achieved the state-of-the-art results which outperform the previ-
ous method, e.g., DCdetector. This indicates that our approach is
capable of detecting point-level anomalies as well. Last, we notice a
significant improvement in our model across traditional metrics (P,
R, F1), e.g., a 23.53% increase over DCdetector and a 43.18% increase
over AnomalyTransformer in F1-score on NIPS-TS-GECCO dataset.
At the same time, our model exhibits excellent performance on new
metrics, and it outperforms previous models in almost all of the
metrics. These observations collectively indicate that our method is
not only effective in addressing the Flink hotspot detection problem
but also demonstrates versatility and robustness by adapting well
to existing anomaly patterns. Here, we would like to provide an
intuitive explanation for the performance and generality of Con-
traAD. We calculate the distance of a specific timestamp with the
rest timestamp and using the summation of the distances as the
anomaly score to distinguish the anomaly. This capability holds true
for both Flink and other anomaly detection scenarios. Besides, we
assign a soft label for each timestamp to conduct a soft optimization
which can migrate the impact of noise in training set.

5.3 Further Experiments
5.3.1 Ablation Study. In this section, we evaluated the effective-
ness of various modules in our model, including global attention,
local attention, cross discrepancy, and prior knowledge. Results
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Table 3: Ablation study. DM denotes the distance matrix, AnoB denotes the anomaly boundary, Global and Local denotes the
different views of representation network respectively.

Module Flink SWaT SMAP PSM
DM A𝑛𝑜B Global Local P R F1 P R F1 P R F1 P R F1

✓ ✗ ✓ ✓ 55.23 47.98 51.35 96.00 94.97 95.48 95.71 98.93 97.29 97.20 97.00 97.10
✗ ✓ ✓ ✓ 40.73 20.98 27.69 90.23 93.13 91.66 93.10 95.13 94.10 96.19 96.78 96.48
✓ ✓ ✓ ✗ 57.23 62.31 59.66 94.94 95.86 95.39 96.47 98.00 97.23 97.81 85.08 96.43
✓ ✓ ✗ ✓ 55.73 63.20 59.23 96.04 92.42 94.20 95.40 87.71 91.40 97.83 95.65 96.73
✓ ✗ ✗ ✗ 34.32 43.82 38.49 92.20 90.07 91.12 89.97 85.73 88.3 92.37 91.89 92.12
✗ ✓ ✗ ✗ 23.12 18.27 20.41 91.32 87.23 89.23 91.23 84.72 88.39 93.12 92.53 92.82
✓ ✓ ✗ ✗ 47.45 49.53 48.47 95.70 90.21 92.87 92.89 85.23 88.90 96.05 90.50 93.19
✓ ✓ ✓ ✓ 60.98 70.16 65.25 96.27 98.97 97.60 95.80 99.21 97.48 98.28 98.70 98.49

are reported in Table 3. First, it can be observed that the atten-
tion from the two views complements each other, and combining
both of them leads to a better representation for each timestamp,
thus producing a better result. Second, it can be observed that our
cross discrepancy, compared to optimizing discrepancies in differ-
ent representations for the same timestamp, leads to significant
improvement. Third, in the case of training datasets with anomalies,
our anomaly boundary can significantly alleviate this effect, giving
rise to in a better overall performance. To better show the need of
attention mechanism to capture the pattern of the given time series
and separating out the improvement of each module. we use a MLP-
based model equipped with theA𝑛𝑜B andDM module to conduct
the ablation study. The result is shown in Table 3. As shown in
the table, applying theA𝑛𝑜B and DM modules to an MLP-based
model also yields certain performance gains. Furthermore, using
the attention mechanism to represent each timestamp, compared
to an MLP, results in a significant improvement. This highlights
the effectiveness of attention in capturing richer representations
for anomaly detection.

5.3.2 Other analysis. The efficiency analysis can be found in Ap-
pendix ??. We validate the performance of our method on anomalies
in the Flink dataset, as shown in Appendix Figure ??. Comparing
with Figure 2, it can be observed that despite the potential inclusion
of anomalies in the training dataset, our method demonstrates the
capability to detect the Flink-specific anomaly patterns. We con-
duct sensitivity experiment on various parameters of the model,
which is shown in Appendix [48] Figure ??. We discuss why our
method has broad applicability to other benchmark datasets in
Appendix ?? [48].

5.4 Real-world deployment
5.4.1 Offline training. In ourmonitoring system, we collect metrics
data from all nodes in the Flink cluster every 20 seconds and store
it into a database. When training is needed, we retrieve the latest
three days of data from the database for the cluster and use it
for training. Through training, we obtain a trained representation
model, a threshold 𝜎 , and the optimal detect window size N . We
store the model and the threshold for online detection.

5.4.2 Online detection. The Flink system collects machine metrics
every 20 seconds and we use the collected metrics for anomaly
detection. The anomaly detection process is triggered every minute.

Each time, we pass the latest collected N timestamps into the
representation model and calculate the anomaly score for each
time step. Then, we compare it with the offline threshold 𝜎 to
determinewhether that timestamp is anomalous. If a specific node is
determined to be anomalous, an alert is triggered in our monitoring
system.

5.4.3 Post-launch performance. We deploy our model and a statis-
tic model as mentioned in Section 3, integrating two models into
the Flink production scenario. Once the two models detect hotspot
anomalies, they will trigger alert notification. Our model has been
successfully deployed online for several months. During this period,
We conduct multiple evaluations, using a three-day period as the
evaluation interval. Our Flink experts collect all exact hotspot issues
within three days using their domain knowledge to identify real
hotspots and compare all the alert notifications from the two mod-
els. We report the average result in Appendix Table ??. It shows that
our model can effectively diminish the likelihood of erroneously
removing machines due to false identification and detect potential
hotspot issues earlier and more comprehensively.

6 CONCLUSION AND LEARNED LESSON
In this paper, we propose an unsupervised time series anomaly de-
tection method based on contrastive learning. Our approach lever-
ages contrastive learning among different timestamps, endowing it
with the capability to address the Flink-specific anomalies. Addi-
tionally, we incorporate prior knowledge to mitigate the impact of
a noisy training dataset. Our approach proves highly effective not
only for the Flink-specific anomalies but also achieves state-of-the-
art results on public datasets.
Learned Lesson: Data matters. Existing unsupervised anomaly de-
tection methods in academia mostly rely on high-quality datasets
e.g., a noise-free dataset, which are often difficult or costly to obtain
in real-world applications. In the real-world applications, there is
more focus on how to achieve optimal results without incurring
significant costs e.g., labor cost. Thus, finding solutions to miti-
gate dataset issues e.g., a noisy dataset, without additional human
resources is more practically significant in real-world scenarios.
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