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ABSTRACT

Translating natural language questions into SQL queries (NL2SQL)
is a challenging task of great practical importance. Prior work has
extensively studied how to address NL2SQL using Large Language
Models (LLMs) with solutions ranging from careful prompt engi-
neering, to fine-tuning existing LLMs, or even training custommod-
els. However, a remaining challenging problem in NL2SQL is the
inherent ambiguity in the natural language questions asked by users.
In this paper, we introduce Sphinteract, a framework designed to
assist LLMs in generating high-quality SQL answers that accurately
reflect the user intent. Our key insight to resolve ambiguity is to
take into account minimal user feedback interactively. We intro-
duce the Summarize, Review, Ask (SRA) paradigm, which guides
LLMs in identifying ambiguities in NL2SQL tasks and generates tar-
geted questions for the user to answer. We propose three different
methods of how to process user feedback and generate SQL queries
based on user input. Our experiments on the challenging KaggleD-
BQA and BIRD benchmarks demonstrate that by means of asking
clarification questions to the user, LLMs can efficiently incorporate
the feedback, resulting in accuracy improvements of up to 42%.
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1 INTRODUCTION

Given a database 𝐷 and a natural language question nl, the goal of
converting Natural Language to SQL queries (NL2SQL, for short) is
to find a SQL query𝑄 that answers nl. NL2SQL tasks have broad ap-
plications in databases [61], geographical information systems [66],
healthcare [31], and code generation [11], to name a few. A good
quality NL2SQL solution can greatly enhance the productivity of
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data scientists and engineers, by allowing individuals with various
levels of SQL expertise to interact with the database easily. Given
its importance in making data analytics easier for users, the prob-
lem has received significant attention from multiple communities
in both academia and industry [8, 15, 16, 32, 69]. Recent progress
in developing pre-trained language models [65] and LLMs [2] has
demonstrated strong capabilities for NL2SQL. Using LLMs, [17, 42]
has achieved impressive performance on popular NL2SQL bench-
marks (such as Spider [64] or WikiSQL [75]).

Although LLMs have brought advancements and showcased
strong potential for addressing NL2SQL, there remain several com-
plex challenges to support enterprise-grade NL2SQL [16, 19]. One
of the key challenges, and the main focus of this paper, is to identify
the intent of user’s natural language questions accurately, and then
generate SQL queries that match the user intent.

Example 1.1. Consider the following question from the GeoNu-
clearData database in the KaggleDBQA benchmark: Where is the

first 'BWR' type power plant built and located?

The database contains a single table nuclear_power_plants. The
table includes columns such as Name, Latitude, Longitude, Country,
ConstructionStartAt, OperationalFrom, etc. Despite the data-
base being simple, directly prompting GPT-4 Turbo [38] with the
question and the schema information leads to the following incor-
rect SQL: SELECT Country, Name FROM nuclear_power_plants
WHERE ReactorType = 'BWR' ORDER BY OperationalFrom ASC
LIMIT 1. There are two immediate ambiguities that appear in the
question.

• How to define the first BWR power plant: There are
at least two possible ways of how to define the first power
plant. It could be defined since a power plant becomes
operational or based on when the construction of the power
plant started.

• Query output: Although the LLM makes a reasonable
choice of picking the Country and the Name of the power
plant in the selection clause of the query, it is incorrect
when compared to the ground truth query (which expects
Latitude and Longitude as the output) in the benchmark.
Thus, it is not clear what are the columns expected in the
output of the query.

There are several known causes of ambiguities in an NL2SQL
translation. First, in contrast to many popular academic NL2SQL
benchmarks [64, 75], real-world databases often contain noisy
data values, lack meaningful semantics in their table and column
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names, and usually do not provide metadata with column specifica-
tions [19]. As demonstrated by Example 1.1, without the knowledge
about the semantics of which columns to use to determine the first
power plant of 'BWR' type, answering the NL question is difficult.
Second, NL2SQL benchmarks have a single correct answer for each
NL question. However, in practice, the same question has multiple
possible interpretations that may vary from user to user [16]. Thus,
understanding the user intent is critical to make sure that the inter-
pretation a user has in mind is used to answer the NL question. For
instance, as shown in Example 1.1, knowingwhether the user wants
Country, Name or Latitude, Longitude as the output columns of
the query is important to answer the NL question correctly. There-
fore, unidirectional approaches (i.e., directly providing the answers
with no interaction with the user) fail to disambiguate a user’s
question and do not scale to real-world datasets. Although prior
works have also observed such challenges and looked into incorpo-
rating user feedback during semantic parsing of SQL queries using
pre-trained models (e.g., BERT [27]), solutions are not scalable since
they rely on rule-based algorithms that work for a small fragment
of the SQL syntax to explain a SQL query [51], require significant
effort from the user to reason and edit the SQL query [14, 51], and
have severe restrictions on the type of questions that can be asked
(for example, [63] only allows asking whether a column should be
included in the query or not.)

To address the aforementioned challenges, in this paper, we pro-
pose a new interactive framework called Sphinteract 1 that uses
LLMs to address the limitations in prior approaches. Motivated by
the strong reasoning and code generation capabilities in LLMs, we
investigate how LLMs perform with different types of user interac-
tions. We develop new techniques in Sphinteract to iteratively
detect ambiguities, ask clarification questions, and incorporate user
feedback in generating the user’s expected SQL answer. This in-
teractive process allows the LLMs to refine its SQL reasoning and
generating process, leading to more accurate and context-aware
responses. The framework’s key innovation lies in its ability to
dynamically adjust NL2SQL answers based on the user’s intent,
thereby improving utility and reliability. We summarize our overall
contributions as follows.

• We propose the Sphinteract framework for NL2SQL tasks.
The framework uses three different algorithms for gener-
ating questions that are used to solicit feedback. A core
ingredient in our techniques is the proposed Summarize,
Review, and Ask (SRA) paradigm to help LLMs identify am-
biguities and generate meaningful clarification questions.
Based on the feedback from the user to the clarification
questions, the input is used in an iterative fashion to nar-
row down the ambiguity and generate higher quality SQL
statements.

• We conduct a user study with production team engineers
and data scientists to understand the different types of
ambiguities present in NL2SQL tasks. The resulting diverse
high quality queries inform us on the different expectations
users have when using NL2SQL tasks, which in turn helps
in carefully constructing prompts for the LLM to identify

1The name takes inspiration from the story of the Sphinx, known for posing riddles
that required deep thought and understanding to solve.

possible ambiguities in a natural language question. The
ground truth annotations obtained via our study may be of
independent interest as well.

• Our experiments on two challenging datasets, as well as
a user study with 11 participants, demonstrate the effec-
tiveness of our approach. Our experimental results show
that Sphinteract can increase the execution accuracy by
42.3% on KaggleDBQA and 26.86% on BIRD in the zero-shot
SQL setting; and by 30.03% on KaggleDBQA and 32% on
BIRD for the few-shot setting in SQL generation by using
at most four interactions with the user. Further, these gains
are observed consistently across two different LLM models.

2 BACKGROUND AND RELATEDWORK

2.1 Preliminaries on LLMs

LLMs are trained on large amounts of data, and by using the atten-
tion mechanisms [52], these language models can generate high-
quality answers based on the input prompt. They have demon-
strated strong capabilities in solving complex tasks in mathemat-
ics [46], logics [68, 74], and semantics [72].

Few-shot learning. Given a few examples of the form {(𝑥𝑖 , 𝑦𝑖 )},
where 𝑥𝑖 is the description of the task (e.g., the natural language
question) and 𝑦𝑖 is the answer (e.g., the gold/ground truth SQL
query), prompting the LLMs with a prefix of “𝑥1 → 𝑦1; . . . ;𝑥𝑖 →
𝑦𝑖 " before asking the question, leads to a more accurate answer
compared to when no examples are provided in the prompt. LLMs
exhibit good performance when provided with few-shot examples
for a wide variety of tasks [9]. A core capability of LLMs is that
they follow natural language instructions. When the input prompt
contains specific instructions and requirements (e.g., output in JSON
format), the models will ensure the generated output satisfies the
instructions in the input prompt. A recent study [76] has found
models such as GPT-4 strictly follow the instructions around 80%
of the time, and this capability increases with larger model sizes.

Separation between generation and understanding capa-
bilities. It has been shown that while LLMs can often provide
expert-level generated answers, LLMs consistently need to catch up
in the aspects of understanding [58]. As a result, while the LLMs can
generate seemingly correct answers to a given question, they may
need help understanding what the question is precisely looking for.
LLMs limited ability in comprehending user’s intent in NL2SQL
motivated us to explore methods to overcome this shortcoming.

2.2 Prior Work

2.2.1 NL2SQL. NL2SQL has been an active area of research in both
the database and the NLP community for over four decades, dating
back to 1980s [20, 56]. The goal is to construct a SQL query that
answers the natural language question. As noted in study [33], rule
based methods [41, 47] were popular before 2010s. Usually, rule
based approaches parse the input question to construct a parsing
tree and then construct the output SQL query by applying a set of
rules. From the late 2010s, with the rapid advancements in learning-
based techniques, NL2SQL tasks are tackled primarily with neural
networks or pre-trained models [23, 44, 53, 54, 75]. More recently,
LLMs have shown powerful reasoning, domain generalization, and
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semantic parsing capabilities [36, 73]. ChatGPT, for example, is able
to surpass all previous models on NL2SQL benchmarks [34, 64]. We
refer the reader to the survey papers [26, 28] for more details. Our
investigation into enhancing the NL2SQL pipeline through interac-
tions is not the first of its kind. Earlier rule-based natural language
interfaces presented SQL parsing trees to users to solicit feedback.
However, these methods implicitly assumed that users possessed in-
tricate knowledge of SQL and could guide the system in modifying
the SQL structure. Another previous study [24] presents a method
to develop a semantic parser through crowd-sourcing and improv-
ing the semantic parser through feedback. When a SQL prediction
is incorrect, a crowd worker will fix the incorrect SQL query. The
gathered SQL queries are later used to train future models. Having
crowd workers fix the incorrect SQL queries is expensive, and due
to the inherent ambiguities, workers may still fail to provide the
SQL query that may satisfy the user. Prior research [22] has also
explored improving SQL generation by LLMs through the use of
documentation and data values to enhance domain-specific column
understanding by addressing ambiguity about column semantics.

2.2.2 Self-Debug. Our proposed Sphinteract framework has a
close relationship to the ability of LLMs in self-debugging, i.e., LLMs
fix the incorrect SQL queries based on the provided feedback. As
we will show, even the simplest form of user feedback, a binary
response, can measurably enhance the quality of the generated SQL
responses. It is important to note that our findings do not contradict
previous research in the area of self-correction via LLMs [10, 21],
which find LLMs cannot improve their answers with feedback gen-
erated by the LLMs themselves. Our approach differs fundamentally
as it incorporates feedback directly from users, making this external
interaction a pivotal aspect of our framework.

2.3 Prompting and Knowledge Graphs

Prompting techniques are at the core of applying LLMs in different
domains. Gradient-based prompting optimizations aim to auto-
matically find better prompt templates [43, 67]. However, these
optimizations often require access to the model’s training data. An-
other approach is the use of reasoning chains, exemplified by the
popular Chain-of-Thought (CoT) technique [57], which encourages
the model to process information sequentially before arriving at a
final conclusion. Building on similar concepts, researchers have also
utilized structured data representations to enhance problem-solving
capabilities. These include tree structures [62], graph structures [6],
and table structures [55, 74], enabling models to better address
and solve complex questions by systematically organizing and an-
alyzing information. Our proposed SRA template aligns with this
paradigm, where we direct models to summarize user feedback and
review ambiguities.

A recent line of work that also incorporates contextual informa-
tion uses knowledge graphs and ontologies to encode context [4,
13, 48]. Preliminary results show that ontologies are capable of
providing higher accuracy for LLM powered systems. However, we
note that building such ontologies from scratch can be expensive.
Further, as we will show in our user study, users frequently have
different expectations for the same question. Thus, there is also a
need to build personalized ontologies that capture user preferences.
We view answering of clarification questions as an incremental way

to build ontologies on-the-fly in a personalized way. A deeper ex-
ploration of the interplay between ontologies and user interactions
with LLMs is left as an exciting problem for future work.

3 PROBLEM STATEMENT

The overarching goal of this work is to effectively deal with ambi-
guity for NL2SQL. Since ambiguity is a fundamental characteristic
of natural language, managing ambiguities in NL2SQL is crucial for
understanding a user’s intent, revising the generated queries, and
aligning with the user’s expectations. To study the type of ambigu-
ities present in NL2SQL, we conducted a thorough user study on
sampled questions from the realistic KaggleDBQA bechmark [30]
(we present these results in Section 4). Our key idea is to disam-
biguate user questions by allowing LLMs to interact with the end
user via the mechanism of clarification questions.

Setup and Problem Statement. In our setup, the user inputs
a natural language question nl, and seeks a SQL query 𝑄 over
the database 𝐷 , such that 𝑄 (𝐷) answers the question nl. In the 0𝑡ℎ
round, the LLM directly generates an initial prediction𝑄0 to answer
nl. When the LLM incorrectly answers nl with 𝑄0, the interaction
process starts. In our setup, the 1𝑠𝑡 round consists of taking the nl,
𝐷 , the first user feedback𝐶𝐹1 as input and generate a revised query
𝑄1. This process continues until the user accepts the most recently
generated query or a stopping criterion is met (e.g., a fixed number
of rounds). Our goal is to minimize (a function of) the number
of interaction rounds 𝑛 and the 𝑐𝑜𝑠𝑡𝑠 of invoking the LLM while
ensuring that each iteration progressively improves the quality of
the generated SQL query to correctly answer nl. This goal can be
written as Equation 1.

𝑚𝑖𝑛{V(𝑛, 𝑐𝑜𝑠𝑡𝑠) |1𝑄 (𝐿𝐿𝑀 (nl,D,𝐶𝐹1,...,𝑛)) = 1} (1)

LLM(·) returns a SQL query𝑄 ′ as the output, 1𝑄 (𝑄 ′) returns 1 if the
the execution results for 𝑄 and 𝑄 ′ on the underlying database are
the same (i.e. the standard execution match metric), andV(., .) is a
function of the number of interactions and the cost associated with
calling the LLM. As an example, a user may want to minimize the
number of interactions, which is done by settingV(𝑛, 𝑐𝑜𝑠𝑡𝑠) = 𝑛.

It is easy to see that when the number of interactions is large
enough, any finite SQL query 𝑄 , can be found by iteratively asking
questions about each token of the query. However, this approach
is tedious and does not enhance the overall user experience. Fur-
thermore, this approach also assumes that the user is an expert in
SQL. Our focus in this work is to generate high-quality clarification
questions and then incorporate the user feedback on these clarifi-
cation questions to eliminate the ambiguities in natural language
questions and help LLMs construct accurate SQL query answers.

SolutionDesiderata.Next, we outline several guiding principles
based on our discussions with customers of NL2SQL.

1. Clarification questions should be easy to understand.
Since the user may not have deep knowledge of SQL, the clari-
fication questions should not contain any SQL specific syntactic
content. For instance, data scientists are proficient with Pandas
and may have some familiarity with SQL, but may not know the
intricacies of SQL itself. The clarification questions should contain
pragmatic language that most people are capable of understanding
and reasoning about.
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2. Answering clarifications questions should be simple. It is
important to keep in mind that seeking clarifications can be bur-
densome to the user. We believe it is best to use a multiple-choice
format. When the highly likely answers are directly included in
the multiple choices, the user can simply select the desired answer.
Only when none of the choices are correct, the user may have to
provide free-form feedback by typing. Furthermore, the clarifica-
tion questions and answers are tailored specifically to the user’s
anticipated SQL queries, rather than being derived from an open
domain. We elaborate on this aspect in the evaluation section.

3. Avoiding unnecessary interactions. While bounding the
number of interactions to a fixed number may seem natural, NL
questions have different ambiguity and difficulty levels, and thus an
a priori fixed number of interaction rounds may not be well suited
for all questions. Moreover, there are other sources of errors such
that LLMs may still not achieve a 100% execution accuracy when all
ambiguities have been resolved for all questions. For example, LLMs
sometime may hallucinate or fail to correctly reason about complex
database schema. Due to the complex nature of how LLMs handle
ambiguities in NL2SQL tasks, we investigate both the approach of
using fix a interaction budget and the approach of stopping when
no remaining ambiguities are detected.

4. Show the user queries that are executable. Since the user
has access to the database, it is important to make sure that the
SQL query shown to the user is executable. This also aligns with
the third desiderata since correcting syntactic errors in SQL queries
potentially reduces interactions with the user.

4 USER STUDY AND MOTIVATION

This section presents our user study over 64 randomly sampled
questions from KaggleDBQA [30], which has eight cross-domain
databases with multiple tables. The goal is to identify common
challenges in writing SQL answers and to validate our hypothesis
that ambiguities are ubiquitous in NL2SQL tasks, even for well-
established NL2SQL benchmarks.

4.1 Human Annotations and Analysis

We asked seven computer scientists who have deep knowledge of
SQL to write the SQL query for a given NL. We made sure that each
question was answered by at least three experts. Each user was
given between 16 to 20 questions to annotate. In the user study, we
specifically asked the experts to "provide multiple SQL statements
for questions that you think are ambiguous" and they could also
provide comments on why they think the question is ambiguous.
The database schema information along with the questions were
provided to the experts. All human experts performed the study
independently. In addition to the seven experts, we also appended
the gold SQL queries from KaggleDBQA benchmark, as they reflect
the interpretation of the benchmark creators. In the end, we exe-
cuted all queries on the underlying database, and if a SQL query
is not valid (i.e. not executable), the authors fixed the errors in the
SQL query (e.g., misspelled column names) while still keeping the
query aligned with the logic of the original invalid SQL query.

Analysis.We find that the number of SQL answers to each question
follows a skewed distribution. Only a few questions have a single

unique SQL answer, and many questions have several different
SQL answers. As shown in Figure 1 (a), the x-axis is the number
of unique SQL answers, and the y-axis is the number of questions.
We consider two SQL queries to be the same if they give the same
output table when executed on the same database. Only 8% of the
questions (5 out of 64) have a single SQL answer (i.e. all SQL queries
written for the question map to the same output table).

In some cases, a question may have different interpretations, but
there might be an implicit consensus on the most likely answer.
As a result, we looked into the degree of agreement for the most
popular SQL answer (the top SQL answer) for each question in
Figure 1 (b). The x-axis is the likelihood of the top SQL answer,
and the y-axis is the number of questions with that likelihood. For
example, if a question has 3 SQL answers and two of them give
the same output table, then the top SQL answer has a likelihood
of 2/3. We find that roughly 50% of the questions have a majority
consensus, while only 5 questions have a unique answer, confirm-
ing that ambiguity is ubiquitous in NL2SQL tasks. Consequently,
for the same NL question, two different users may have completely
different expectations of the output.

5 AMBIGUOUS TYPES

Next, we classified the ambiguities found in the user study, taking
expert’s comments into consideration. In particular, we identified
four different types of ambiguities: AmbColumn, AmbOutput, Am-
bQuestion, and AmbValue. Note that each type of ambiguity is not
exclusive. The distribution of these ambiguity types is depicted in
Figure 1 (c). AmbColumn happens when the entities in the natural
language question do not have a clear mapping to the database
schema. The main causes for AmbColumn are unclear semantic of
the columns (e.g., columns with dummy names: col1, col2, ...) and
when at least two columns share similar semantics (e.g., locations
and areas). AmbOutput occurs when the natural language question
does not specify the expected format or ordering of the output table.
To accurately answer the user’s query, it is essential to understand
specifics such as the number of columns to select, whether to in-
clude aggregates or present information in a specific format and
if duplicates in the output are acceptable. AmbQuestion happens
often since ambiguity is intrinsic to natural language. For example,
there may be lack of clarity on how to compute an aggregate or
the NL question is vague (such as “tell me something cool about
the data"). Based on different interpretations of the question, the
SQL queries can be drastically different. AmbValue occurs when
there is uncertainty about the appropriate predicate values to use.
The predicates referenced in the question may differ from their
physical storage formats in the database, such as being encoded as
numbers, or phrases. We have also listed example questions and
corresponding SQLs in Table 1.

Example 5.1. Continuing the running example from Example 1.1,
we observe that the NL questionWhere is the first 'BWR' type
power plant built and located? exhibits AmbQuestion since
there are two valid interpretations of how to define the first power
plant and thus, making progress on generating the query requires
clarification about the definition. The question also has AmbOutput
since the 𝑛𝑙 can be interpreted as asking for the Country and Name
or the Latitude and Longitude of the power plant as the output.
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(a) Cardinality of each Question (b) Distribution of Top Answers (c) Ambiguous Types

Figure 1: Analysis on the User Study.

Table 1: Example Questions and the corresponding SQLs for each Ambiguity Types. The different SQL clauses employed by

users to answer the same question are highlighted.

Type NL Question and SQLs
AmbColumn For award winners, which position has the most hall of fame players?

SELECT notes FROM player_award AS p JOIN hall_of_fame AS h ON p.player_id=h.player_id WHERE inducted='Y'
GROUP BY notes ORDER BY COUNT(*) DESC LIMIT 1;
SELECT category FROM player_award as p JOIN hall_of_fame as h ON p.player_id = h.player_id WHERE
inducted = 'Y' GROUP BY category ORDER BY COUNT(h.player_id) DESC LIMIT 1;

AmbOutput What is the torrent download statistics for each release year?
SELECT groupYear, SUM(totalSnatched) AS total FROM torrents GROUP BY groupYear ORDER BY groupYear;
SELECT SUM(totalSnatched) FROM torrents GROUP BY groupYear;

AmbQuestion Which artist/group is most productive?
SELECT artist, COUNT(*) AS total FROM torrents GROUP BY artist ORDER BY total LIMIT 1;
SELECT artist FROM torrents GROUP BY artist ORDER BY SUM(totalSnatched) DESC LIMIT 1;

AmbValue Show all fires caused by campfires in Texas?
SELECT * FROM Fires WHERE state = ‘TX’ and STAT_CAUSE_DESCR = ’Campfire’;
SELECT * FROM Fires WHERE state = ‘TEXAS’ and STAT_CAUSE_DESCR LIKE ’%Campfire%’;

6 SPHINTERACT

To address the ubiquitous ambiguities in NL2SQL tasks, we propose
the Sphinteract framework, which consists of multi-round inter-
actions with the end user. The implementation of the interaction
process can be separated into two parts: (𝑖) generate a SQL query to
show the user (subsection 6.1), and (𝑖𝑖) gather user feedback (sub-
section 6.2). The first part is responsible for learning from earlier
mistakes and incorporating user feedback to generate high-quality
SQL answers. The second part involves communicating with the
end user to gain clarity on the user’s question and the user’s intent.

Sphinteract framework workflow is shown in Figure 2. In step
1 and step 2, Sphinteract generates an executable SQL query
based solely on the given nl question and the database schema.
After executing this SQL query on the database in step 3, it presents
the output and the query to the user who may inform Sphinter-
act that the proposed query does not satisfy their expectations
(step 4). In Section 6.2.1, we discuss how this simple feedback of
yes or no alone can be used to help improve future predictions.
In Section 6.2.2 and 6.2.3, we introduce the SRA prompt to seek
feedback with a multiple-choice question, depicted in step 5. In step
6, the collected user feedback is then effectively used to resolve
ambiguities in answering the user’s question. Step 7 and 8 presents
the revised SQL query and output of its execution on the database
to the user. The process continues until an ending criterion is met.

6.1 SQL Generation

There are many different choices in prompting the LLMs to answer
a SQL query, and there exist different prompting techniques to
improve single round SQL generation. In Sphinteract, we adopt
the state-of-the-art DAIL-SQL prompting template [18]:
Complete sqlite SQL query only and with no explanation.
/* Given the following database schema: */
{schema}
/* Answer the following with no explanation :{ question} */
SELECT

DAIL-SQL consists of instructions, database schema, and ques-
tions. The columns of each table in the schema are encoded as
a comma separated list. DAIL-SQL prompts have been carefully
crafted to identify the best format for presenting the NL questions
and the schema information. We note that in DAIL-SQL, only the
schema level information (such column names and PK-FK informa-
tion) is provided in the prompts2. The prefix “Complete sqlite SQL
query only and with no explanation" is a specific rule introduced
by OpenAI’s official Text-to-SQL demo [37], which has been found
to improve the quality of generated SQL across different models
consistently (across different language models) [17]. In practice, an
LLM may generate invalid SQL queries (e.g., misspelled columns
and missing table prefixes). When a SQL exception is raised from
2Data values are not provided due to privacy and security concerns, as well as prompt
window size constraints.
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Figure 2: Demonstration of the workflow in Sphinteract .

executing the generated code, we give the LLM another chance to
fix the error by providing the invalid query, the exception error
message, and the schema.

6.2 Seeking User Feedback

In this section, we describe three techniques to seek feedback from
the user, starting from the basic approach that will form our baseline
to increasingly advanced strategies.

6.2.1 Simple User Feedback. Taking inspiration from the simple
feedback approach in [10] for code generation, we also investigate
if the simple feedback of whether the generated SQL is correct or
incorrect according to the user can be used to improve the overall
quality of the generated SQL answers. If a generated SQL query is
incorrect, the incorrect query, along with incorrect queries from
prior rounds, are also provided in the prompt, and the LLMs are
instructed to generate a revised SQL query.

We highlight the core difference between the simple feedback in
our work and [10]. In Sphinteract, we operate under the assump-
tion that users can offer feedback on whether the generated SQL
queries meet their expectations; hence, the feedback is conditioned
on the user’s expectations. In contrast, the approach taken in [10] in-
volves obtaining feedback directly from themodel by having it deter-
mine whether the generated SQL query correctly answers the given
question. Since the feedback in [10] is independent of the user’s
expectations, there may be discrepancies: the model may deem a
SQL query correct based on its own interpretation of the question,
while the user might have a different interpretation in mind.

6.2.2 Asking For Clarifications. While the simple feedback ap-
proach is very easy to implement, it may be sub-optimal. The simple
feedback, in essence, is searching for the correct SQL query (the
one that satisfies the user’s expectation) one by one via a guided
search. To accelerate the steps in finding the correct SQL query,
we believe that asking clarification questions is more efficient. We
employ a multiple-choice format for clarification questions, con-
sistently including an option for users to provide free-form input,
which is a standard practice in soliciting user responses [25]. In
addition to logging incorrect SQL queries, we also prompt the LLM
to identify ambiguities within the question and then pose a clarifica-
tion question to the user. Once we receive this clarifying feedback,
we instruct the LLM to generate a new SQL query that accurately
reflects the user’s input and aligns with their feedback.

The prompt for both generating the SQL answer and generat-
ing the clarification questions takes incorrect queries and the user
feedback on the incorrect queries as input. In the SQL generation
stage, using this information in the input prompt helps LLMs gen-
erate better SQL answers by learning from past mistakes and user
feedback. In the clarification question generation stage, including
this information in the input prompt helps the LLMs to effectively
pinpoint the remaining ambiguities and prevent the model from
repeating previously asked clarification questions.

In addition, we introduce a new technique called ‘Summarize,
Review, and Ask’ (SRA), which enables LLMs to summarize infor-
mation from previous interactions, assess and review the remaining
ambiguities, and ask targeted clarification questions to the user in
a streamlined process. We also include four ambiguity types identi-
fied through our user study. During the review step, we instruct the
LLM to reason about any unresolved ambiguities based on the four
ambiguity types. Finally, we ask the LLM to generate a question that
will help resolve one of the ambiguities. The algorithm obtained
with the use of the SRA prompt template will be referred to as the
CQs algorithm. The SRA template is shown below:

1. Summarize the information that is clear based on the
ansewrs to previous clarification questions and
incorrect queries.

2. Evaluate whether AmbQuestion , AmbColumn , AmbOutput ,
and AmbValue remain in formulating a SQL query to
answer the QUESTION , considering each category
individually.

3. Ask a multiple -choice clarification question to
clarify the remaining ambiguities and help you find
the correct SQL query.

Since we want the generated clarification question to be in a
specific format (a multiple choice question with three closed-ended
options and one open-ended option), we provide static few-shot
demonstration examples in the prompt to help the LLM generate
the questions in the correct format.

6.2.3 Early Stopping (ES). Although ambiguity is one of the key
factors causing LLMs to struggle with NL2SQL tasks, they may still
fail to correctly answer a question, even after all ambiguities are
addressed. For instance, LLMsmay fail to focus on the user feedback
or fail to use the correct SQL keywords due to its inherent limi-
tation in answering complex questions. When all the ambiguities
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have been addressed, the interactions between LLMs and the user
may not be very helpful. Therefore, we add an early stopping (ES)
instruction for the LLM. Algorithm 1 shows the algorithm steps
with ES. If we remove the ES instruction from the prompt, we get
the CQs algorithm from the previous subsection.

The early stopping technique offers two key advantages over the
CQs introduced in the previous section. First, reducing the number
of interactions directly reduces the dollar cost. As we will show
in the experimental section, with early stopping, it is possible to
obtain better improvement in accuracy per dollar as compared to
CQs. Second, the CQs algorithm has the disadvantage that LLMs
can continue to generate clarification questions (owing to their
stochastic parrot [5] nature where LLMs may continue to generate
output without truly understanding the task) even if all ambiguities
have been resolved. This is because there is no explicit instruction
to stop asking questions when the model thinks no ambiguities
are left. However, since each clarification question comes with a
free-form feedback option, the user has the option to point the
model towards its mistakes (such as a hallucinated table name).
Thus, there is an inherent tradeoff between keeping the interactions
going to improve accuracy (at the cost of being expensive) versus
ending the interactions as soon as possible to keep monetary costs
low (but potentially sacrificing accuracy). We report the empirical
performance of the two methods in the experimental evaluation (cf.
Section 7.3.1).

Algorithm 1 Asking Clarification Questions and Early Stop (CQs
& ES)
Require: Database schema 𝑠𝑐ℎ𝑒𝑚𝑎, nl, Temperature 𝑇 = 0, Num-

ber of rounds 𝑛, User feedback 𝑢𝑠𝑒𝑟 (.) that returns true or false.
1: 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑄𝐿𝑠 ← [], 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑠 ← []
2: 𝑝 = SQL_prompt(nl, 𝑠𝑐ℎ𝑒𝑚𝑎)
3: 𝑆𝑄𝐿 = LLM(𝑇, 𝑝) ⊲ get the initial LLM prediction
4: for 𝑖 = 1 to 𝑛 do

5: 𝑂𝑈𝑇 = execute(𝑆𝑄𝐿, 𝐷) ⊲ execute the SQL query
6: if 𝑢𝑠𝑒𝑟 (𝑂𝑈𝑇, 𝑆𝑄𝐿) then
7: return

8: else

9: 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑄𝐿𝑠.Append(𝑆𝑄𝐿)
10: end if

11: ⊲ use SRA prompt to recover CQs algorithm
12: 𝑝 ← SRA_with_ES(nl, 𝑠𝑐ℎ𝑒𝑚𝑎, 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑄𝐿𝑠)
13: 𝑀𝐶𝑄 ← LLM(𝑇, 𝑝) ⊲ MCQ generated by the LLM
14: if 𝑀𝐶𝑄 is none then
15: return ⊲ Early termination if using ES instruction
16: end if

17: 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ← feedback from the user for𝑀𝐶𝑄

18: 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑠.Append((𝑀𝐶𝑄, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘))
19: 𝑝 = SQL_prompt(nl, 𝑠𝑐ℎ𝑒𝑚𝑎, 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑄𝐿𝑠, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑠)
20: 𝑆𝑄𝐿 = LLM(𝑇, 𝑝) ⊲ get a new SQL prediction from the

LLM
21: end for

22: return

Example 6.1. Continuing our running example from Example 1.1,
Sphinteract with GPT-4-Turbo correctly detects AmbOutput. By

inspecting the LLM generated output of the SRA prompt, we see
that the LLM reasons that the question does not explicitly state
whether the country or the specific geographical coordinates (Latitude
and Longitude) are desired for "location.".

Thus, in the first interaction, the MCQ generated is:What do

you mean by ‘located’ in the context of finding the power

plant? with the following options:
A The country where it is built
B The Latitude and the Longitude
C The name of the power plant and the country
D Others (please specify).

At this point, the user selects option B (based on the ground
truth). After taking the feedback into account, Sphinteract gen-
erates the SQL query: SELECT Latitude, Longitude FROM
nuclear_power_plants WHERE ReactorType = 'BWR' ORDER
BY OperationalFrom ASC LIMIT 1.

In the next iteration, Sphinteract correctly detects that Am-
bOutput has been resolved but AmbQuestion still remains. By
inspecting the SRA prompt output, we find that the LLM reasoned
that there might be ambiguity in what constitutes the "first" BWR
type power plant. This could refer to the earliest "ConstructionStar-
tAt" date or the earliest "OperationalFrom" date. Thus, for the second
interaction, the MCQ is:What does ‘first’ refer to in the context

of the BWR type power plant being built and located? with
the following options:

A The power plant whose construction started first.
B The power plant that became operational first.
C The power plant that has the oldest update date.
D Other (please specify).

The user selects option A and with this feedback, the system
generates the correct query which matches the ground truth in the
benchmark: SELECT Latitude, Longitude FROM
nuclear_power_plants WHERE ReactorType = 'BWR' ORDER
BY ConstructionStartAt ASC LIMIT 1.

7 EVALUATION

In this section, we evaluate our framework over the three proposed
algorithms and their corresponding prompts. For all experiments,
we assume the number of interactions between LLMs and the user
is at most four rounds, and hence, at most, five SQL queries are
generated. In particular, we seek to answer the following questions:

Q.1 What is the performance of the three feedback techniques
for zero-shot NL2SQL?

Q.2 What is the performance of the three feedback techniques
for few-shot NL2SQL?

Q.3 Do our proposed techniques generalize to multiple LLMs?
Q.4 What is the tradeoff between the number of interactions

and the improvement in accuracy?
Q.5 What are the qualitative feedback and quantitative metrics

about effectiveness and usability of the system?

7.1 Data Source and Metrics

Our evaluationwas conducted on two real-world relational databases
designed for NL2SQL tasks: (i) KaggleDBQA [30] (referred to as
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Table 2: The zero shot evaluation results on Kaggle and BIRDwith the state-of-the art models. Baseline is the execution accuracy

obtained using the DAIL-SQL system.

Model Source Method Baseline 1 Interaction 2 Interactions 3 Interactions 4 Interactions

GPT-3.5 Turbo

Kaggle
Simple 26.44% 28.37% (+1.93%) 30.29% (+3.85%) 30.77% (+4.33%) 30.77% (+4.33%)
CQs 26.44% 39.90% (+13.46%) 46.63% (+20.19%) 50.00% (+23.56%) 53.85% (+27.41%)
CQs & ES 26.44% 37.50% (+11.06%) 39.90% (+13.46%) 41.83% (+15.39%) 41.83% (+15.39%)

BIRD
Simple 28.03% 29.01% (+0.98%) 29.27% (+1.24%) 29.27% (+1.24%) 29.40% (+1.37%)
CQs 28.03% 31.88% (+3.85%) 35.27% (+7.24%) 38.20% (+10.17%) 39.63% (+11.60%)
CQs & ES 28.03% 31.68% (+3.65%) 33.37% (+5.34%) 33.70% (+5.67%) 33.83% (+5.80%)

GPT-4 Turbo

Kaggle
Simple 29.33% 34.62% (+5.29%) 35.10% (+5.77%) 35.58% (+6.25%) 36.54% (+7.21%)
CQs 29.33% 53.37% (+24.04%) 64.90% (+35.57%) 70.19% (+40.86%) 71.63% (+42.30%)
CQs & ES 29.33% 52.40% (+23.07%) 58.17% (+28.84%) 59.62% (+30.29%) 59.62% (+30.29%)

BIRD
Simple 32.07% 34.62% (+2.55%) 35.20% (+3.13%) 36.05% (+3.98%) 36.38% (+4.31%)
CQs 32.07% 45.70% (+13.63%) 52.74% (+20.67%) 56.32% (+24.25%) 58.93% (+26.86%)
CQs & ES 32.07% 45.96% (+13.89%) 50.46% (+18.39%) 52.22% (+20.15%) 53.00% (+20.93%)

Kaggle henceforth for brevity); and (ii) BIRD [34]. The Kaggle bench-
mark contains 272 questions covering eight databases in different
application domains. On average, each database contains 2.3 tables
and 280K rows. Recall that we have used 64 questions for the user
study, as shown in Section 4. As a result, we perform the evaluation
on the remaining 208 questions. The BIRD benchmark contains 1534
questions in its development set. On average, each database has
7.3 tables and 549K rows. For all experiments in this section, we as-
sume each NL2SQL question contains a natural language question,
a corresponding SQL answer (gold SQL), and the database schema.
Metrics. The standard evaluation metric for NL2SQL benchmarks
is the execution accuracy. We also compute the precision and recall
when looking at the columns and tables present in the predicted SQL
query and the gold SQL. Such featurization of the SQL queries is
frequently used for measuring query similarity [29]. Monetary cost
metrics will be presented as the average cost (in USD cents) of an-
swering a question in the benchmark using a particular algorithm.

7.2 Experiment Configurations

7.2.1 LLMs Configurations. We evaluate our proposed framework
on OpenAI GPT models [38]. In particular, we showcase the ex-
perimental results using the popular GPT-3.5 Turbo (gpt-3.5-turbo)
and GPT-4 Turbo (gpt-4-turbo-preview) models. In the API call,
we set the temperature to 0. For all experiments in this paper, we
also include the foreign-key-primary-key (FK-PK) constraints in
the database schema.

7.2.2 Baselines and Prompt Details. We use the state-of-the-art
DAIL-SQL [18] system as the baseline in all of our experiments. We
omit comparing against baselines that involve fine-tuned models
(such as CHESS [50]) or contextualizing prompts with non-standard
information (i.e., beyond schema information and few-shot exam-
ples). Such approaches can be considered orthogonal to ambiguity
resolution and are limited by security, cost, and updates concerns
as we discuss in Section 7.5.1.

Unlike the Kaggle benchmark, BIRD questions come with hints
from the benchmark creators that are useful in generating the

SQL queries. Since providing hints can only make the NL2SQL
problem easier and to keep the experiment configuration consistent
with Kaggle, unless specified otherwise, we do not add hints to the
prompt. However, to aid comparison with solutions that use the
hints, we present results of our framework on BIRD but with hints
added in the prompts in Section 7.4.4. For all our experiments, we
cap the number of interactions to four.

7.2.3 Feedback Oracle. We employ an oracle to simulate the in-
teractions in our framework, a standard method that has been
used by prior works [3, 7, 12, 40, 59]. Previous works have also
demonstrated that LLMs are capable of answering multiple-choice
questions [45] and understanding the logic behind SQL queries [74].
The oracle takes the clarification question and the gold SQL query
as input, and then outputs the feedback to clarify the ambiguities.
To ensure highly accurate feedback is generated, we leverage few-
shot prompting (eight examples) coupled with the chain-of-thought
technique on the state-of-the-art GPT-4o model [39].

7.2.4 Few Shot Setting. Few shot examples are used in generating
the clarification questions, feedback, and, later in this section, for
SQL generation. We use eight static few shot examples for gener-
ating the clarification questions. The few-shot examples used in
generating SQL queries for the simple feedback algorithm are also
static, and we use the same examples as [10]. The few-shot exam-
ples used for the SQL generations in CQs and CQs & ES are selected
based on the cosine similarity between the vector embedding3 of
the nl asked by the user and the vector embedding of question nl
in the question bank. The question bank for BIRD is the training
set provided by the benchmark, and question bank for Kaggle are
the 64 questions that were used for the user study in Section 4.

7.3 SQL Zero Shot Experiments

In this section, we evaluate the performance of simple feedback
(Simple), asking clarification questions (CQs), and stopping early

3For our experiments, we used the text-embedding-ada-002 embedding model from
OpenAI.
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when no ambiguities remain (CQ & ES) but without providing any
examples in the SQL generation prompt (i.e., the zero shot setting).

As shown in Table 2, providing feedback through MCQs to an-
swer clarification questions significantly increases the overall ex-
ecution accuracy of LLMs. The CQs algorithm (Algorithm 1 with
SRA prompt), which seeks the user’s feedback to the clarification
question, achieves 71.6% and 58.9% execution accuracy on Kaggle
and BIRD, respectively, using GPT-4 Turbo. The execution accu-
racy is improved by 42.3% and 26.9% compared to the execution
accuracy with no interactions. This is consistent with our expecta-
tions since addressing the different types of ambiguity helps LLMs
better understand the user’s intent. On the other hand, the simple
feedback consistently yields lower accuracy. This is because the
binary feedback does not directly resolve ambiguities. The simple
feedback mechanism, when using both GPT-3.5 Turbo and GPT-4
Turbo models, only slightly improves the quality of the generated
SQL query after the first round of interaction, and oftentimes, no
further improvements are made beyond the second round.

The incremental execution improvements decrease as the num-
ber of interactions increases. While many NL questions have low
levels of ambiguity, some questions can be hard to understand and
require much more interactions to clarify. The CQ & ES algorithm,
which halts processing when the LLM determines all ambiguities
have been resolved in translating a natural language question to
an SQL query, exhibits mixed effectiveness. It requires less round
of interactions and less accuracy improvements. Despite incorpo-
rating the ambiguities types into our proposed SRA prompt, we
noted that LLMs may not fully identify all ambiguities. For exam-
ple, LLMs occasionally overlook the number of columns selected,
a category we term AmbOutput. Consider a case where the user
seeks the ‘average weight for each position’. The correct SQL query
only selects the average weight. However, LLMs often erroneously
include both the average weight and other fields (e.g., position) in
the output table, failing to satisfy the user’s expectation.

Table 3: The efficiency metric and the cost (in cents) per

question of the three methods (see Section 7.3.1).

Model Algorithm Kaggle BIRD
Efficiency Cost Efficiency Cost

GPT-3.5
Turbo

Simple 1.52 ¢.5 0.48 ¢1.2
CQs 11.57 ¢2.6 4.36 ¢4.0
CQs & ES 12.93 ¢1.8 4.92 ¢2.5

GPT-4
Turbo

Simple 2.72 ¢0.21 1.64 ¢4.2
CQs 23.20 ¢8.2 12.61 ¢12.8
CQs & ES 21.02 ¢7.4 15.73 ¢9.9

7.3.1 Trade-offs. So far, we have only looked at the improvement
in accuracy for the three methods. In this section, we study the
accuracy improvements compared to the number of interactions.
To align with this objective, we introduce the new efficiency metric
which is defined as the ratio of the incremental improvement in
execution accuracy (compared to no interaction) and the average
number of interactions for questions. This efficiency metric closely
relates to our optimization objective shown in Equation 1. A higher

(a) GPT-3.5 Turbo Kaggle (b) GPT-3.5 Turbo BIRD

(c) GPT-4 Turbo Kaggle (d) GPT-4 Turbo BIRD

Figure 3: Tradeoffs between the total execution accuracy and

the average number of interactions.

value of this efficiency metric indicates that the algorithm is able
to converge more rapidly (i.e. in fewer interactions) to the correct
answer. In Figure 3, we observe that while CQs always achieve the
highest execution accuracy, CQs & ES uses less number of interac-
tions to score higher execution accuracy than Simple Feedback.

Table 4: Precision and recall for the zero shot setting after all

interactions. The numbers in bracket show the improvement

compared to the Baseline.

Model Dataset Algorithm Precision & Recall

GPT-3.5 Turbo

Kaggle

Baseline 0.80 & 0.78
Simple 0.80 (+0%) & 0.76 (-2%)
CQs 0.91 (+11%) & 0.88 (+10%)
CQs & ES 0.88 (+8%) & 0.84 (+8%)

BIRD

Baseline 0.88 & 0.82
Simple 0.87 (-1%) & 0.77 (-5%)
CQs 0.91 (+3%) & 0.87 (+5%)
CQs & ES 0.90 (+2% & 0.86 (+4%)

GPT-4 Turbo

Kaggle

Baseline 0.77 & 0.85
Simple 0.80 (+3%) & 0.85 (0%)
CQs 0.90 (+13%) & 0.92 (+7%)
CQs & ES 0.90 (+13%) & 0.91 (+6%)

BIRD

Baseline 0.88 & 0.88
Simple 0.88 (+0%) & 0.89 (+1%)
CQs 0.94 (+6%) & 0.93 (+5%)
CQs & ES 0.93 (+5%) & 0.92 (+4%)

As shown in Table 3, the more powerful GPT-4 Turbo model
consistently achieves higher efficiency compared to the weaker
GPT-3.5 Turbo model. We also find that the CQs and CQs & ES
algorithm always achieve higher efficiency (using less number of
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interactions or costs to improve execution accuracy) than the sim-
ple feedback algorithm on both GPT-3.5 Turbo and GPT-4 Turbo
models. Table 3 also shows the dollar cost incurred per question.
The first observation is that CQs & ES is cheaper (but achieves
lower total improvement in accuracy) compared to CQs, which is
in line with our expectation since CQs requires more interactions
as we had hypothesized in Section 6.2.3. Interestingly, the simple
feedback is (up to) an order of magnitude cheaper compared to the
other two algorithms. This is because simple feedback generates no
clarification questions and thus, no LLM output tokens are used4,
making the LLM calls significantly cheaper. Table 4 shows the pre-
cision and recall metrics based on the exact match of columns and
tables. Similar to execution match accuracy, both precision and
recall improve for CQs and CQs & ES which signifies that as more
and more interaction happen, the correct set of columns and ta-
bles are incorporated into the generated query and the incorrect
columns and tables are removed. The reader may see that com-
pared to the baseline, the precision and recall for simple feedback
does not experience much improvement (and sometimes decreases).
Upon deeper investigation, we observed that with just the binary
feedback of whether the LLM generated query is correct or not,
the LLM tends to take more risk in subsequent rounds and gener-
ates queries with more variety by incorporating different tables
and columns. For example, for the questionWhat is the rule of

playing card "Benalish Knight"? from the card_games database
in the BIRD benchmark, the (incorrect) baseline query generated
is SELECT text FROM cards WHERE name = 'Benalish Knight'.
When using simple feedback, the query generated in the next it-
eration is SELECT text FROM rulings WHERE uuid = (SELECT
uuid FROM cards WHERE name = 'Benalish Knight'). Note
that the LLM adds the rulings table into the query. However, CQs
gets the feedback from the user that the output required is the
legality of the card in different formats. When the LLM takes this
feedback, the query generated in the next round (which matches
the ground truth) is SELECT format FROM legalities JOIN
cards ON legalities.uuid = cards.uuid WHERE cards.name
= 'Benalish Knight', correctly identifying that the format comes
from the legalities table.

We conclude this section by highlighting the benefits of the SQL
exception handler. Inspecting the logs of the CQs algorithm on
Kaggle, we observed that GPT-3.5 turbo and GPT-4 turbo are able
to fix 95% of the SQL exceptions after providing the invalid query,
exception message, and the schema.

7.4 SQL Few Shot Experiments

The capabilities of languagemodels can be increasedwith in-context
learning [9]. The primary distinction between the few-shot and
zero-shot experiments lies in the inclusion of several examples dur-
ing the SQL generation phase. Previously, we hypothesized that
the primary reason for incorrect SQL responses, even with sub-
stantial feedback, is the failure of language models to construct the
appropriate SQL structure. Introducing examples during the SQL
generation phase should enhance the quality of the SQL query.

4Output tokens cost 3 − 4× more than the input tokens for GPT models.

7.4.1 Impact of Number of Examples on Accuracy. As shown in
Figure 4, the x-axis depicts the number of examples added into SQL
generations, and the y-axis is the total execution accuracy (note the
different scales) after all rounds of interactions. The few-shot exam-
ples for the simple feedback are static, and the few-shot examples
for CQs and CQ & ES are selected based on the question similarity
with questions in question bank. From Figure 4, we can observe that
by increasing the number of examples, the total execution accuracy
often improves. For example, the execution accuracy of CQs always
increases. For the simple feedback and CQs & ES, the accuracy may
slightly decrease or plateau when increasing from 3 to 5 examples,
as shown in Figure 4 (a)-(c). This phenomenon aligns with previ-
ous NL2SQL research, which suggests that a greater number of
examples does not necessarily enhance accuracy due to the limited
in-context learning capabilities of LLMs [17]. In addition, the ability
of the GPT-4 Turbo model to self-correct SQL queries when given
some examples is impressive. The simple feedback algorithm is able
to achieve 3% - 8% execution accuracy improvements, CQs is able
to achieve 25% - 32% execution accuracy improvements, and CQs &
ES is able to achieve 18% - 25% execution accuracy improvements.
These observations demonstrate that even the simplest form of
feedback can lead to substantial improvements in the quality of
SQL answers through in-context learning by LLMs. Although CQs
& ES always has lesser execution accuracy improvement compared
to CQs, CQs & ES involves fewer interactions with the user and
thus, has a smaller dollar cost. We discuss the efficiency and the
cost of these algorithms in the next section.

7.4.2 Improvements through User Interactions. In Table 5, we show
the improvements achieved by LLMs through rounds of interactions
and their corresponding efficiency for the few-shot experiments.
When employing CQs, the performance enhancements observed
are quite significant. Specifically, the GPT-3.5 Turbo model regis-
ters ∼25% improvement in execution accuracy on Kaggle and ∼18%
improvement on BIRD compared to the strong baseline DAIL-SQL.
Meanwhile, the GPT-4 Turbo model shows even more significant
accuracy improvements, achieving around a 30% improvement on
Kaggle and on BIRD compared to the DAIL-SQL baseline. The high-
est execution accuracy for Kaggle is 82.7%, and for BIRD is 66.7%
(see 3-shot and 5-shot GPT-4 Turbo in Table 5). Even with the most
basic form of binary feedback provided over a maximum of four
rounds of interaction and utilizing a static set of five examples
during SQL generation, simple feedback still achieves a respectable
38.7% accuracy on BIRD. This highlights that even the most basic
form of interactions can markedly improve outcomes in complex
tasks. Moreover, asking clarification questions lead to much higher
accuracy improvements. By engaging in more detailed conversation
with the user, models can refine their understanding and address
the specific needs of each nl more effectively.

7.4.3 Efficiency, Precision, and Recall. Table 5 also shows the effi-
ciency and the precision/recall metrics. CQs consistently achieves
the highest execution accuracy improvements and often delivers
the best efficiency, albeit with the highest monetary cost. CQs &
ES, while slightly less effective in accuracy improvements, requires
lower costs. Simple feedback is considerably less efficient compared
to CQs and CQs & ES. For precision and recall, we observe the same
trend as in the zero-shot setting where simple feedback experiences
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(a) GPT-3.5 Turbo Kaggle (b) GPT-3.5 Turbo BIRD (c) GPT-4 Turbo Kaggle (d) GPT-4 Turbo BIRD

Figure 4: The evaluation of incorporating in-context learning for SQL generation.

Table 5: The few shot evaluation on Kaggle and BIRD after all interactions. Cost denotes the average cost (in cents) per question.

The numbers in brackets report the accuracy improvement compared to the Baseline method.

Few shot Source Method GPT-3.5 Turbo Prec. & Recall Efficiency Cost GPT-4 Turbo Prec. & Recall Efficiency Cost

3-shot

Kaggle

Baseline 41.8% .84 & .87 - ¢.1 50.5% .86 & .88 - ¢.5
Simple 44.7% (+2.9%) .84 & .87 1.3 ¢.7 56.7% (+6.2%) .87 & .88 3.5 ¢2.0
CQs 63.5% (+21.7%) .91 & .92 11.8 ¢2.4 76.4% (+25.9%) .96 & .95 19.5 ¢6.8
CQs & ES 60.6% (+18.8%) .89 & .91 16.9 ¢1.8 72.1% (+21.6%) .93 & .94 21.7 ¢6.0

BIRD

Baseline 28.0% .87 & .85 - ¢.3 34.7% .89 & .88 - ¢1.1
Simple 30.0% (+2.0%) .88 & .86 0.7 ¢1.6 38.7% (+4.0%) .90 & .89 1.6 ¢4.9
CQs 46.0% (+18.0%) .92 & .90 6.9 ¢4.4 66.7% (+32.0%) .94 & .92 16.3 ¢12.9
CQs & ES 34.4% (+6.4%) .90 & .88 5.1 ¢2.9 52.9% (+18.2%) .93 & .92 14.1 ¢10.5

5-shot

Kaggle

Baseline 41.8% .83 & .88 - ¢.2 52.4% .89 & .89 - ¢.6
Simple 44.7% (+2.9%) .83 & .87 1.3 ¢.8 57.7% (+5.3%) .89 & .89 3.0 ¢2.3
CQs 65.9% (+24.1%) .91 & .93 13.4 ¢2.5 82.7% (+30.3%) .95 & .96 24.9 ¢6.6
CQs & ES 54.8% (+13.0%) .88 & .90 13.0 ¢1.8 75.0% (+22.6%) .94 & .95 18.6 ¢5.9

BIRD

Baseline 28.4% .87 & .84 - ¢.4 34.9% .89 & .88 - ¢1.2
Simple 30.8% (+2.4%) .88 & .86 0.9 ¢1.7 38.3% (+3.4%) .89 & .89 1.4 ¢5.3
CQs 46.3% (+17.9%) .92 & .90 7.0 ¢4.6 66.4% (+31.5%) .94 & .93 16.0 ¢13.5
CQs & ES 34.3% (+8.9%) .90 & .87 5.2 ¢3.0 53.3% (+18.4%) .93 & .92 14.0 ¢10.9

Table 6: The evaluation results onBIRD (after all interactions)

after including the provided hints for each question.

Source Few Shot Method GPT-3.5 Turbo GPT-4 Turbo

BIRD
(with hints)

0-shot

Baseline 45.8% 49.7%
Simple 48.2% (+2.4%) 52.5% (+2.8%)
CQs 54.2% (+8.4%) 67.1% (+17.4%)
CQs & ES 51.2% (+5.4%) 63.4% (+13.7%)

3-Shot

Baseline 43.8% 51.6%
Simple 47.0% (+3.2%) 53.3% (+1.7%)
CQs 56.0% (+12.2%) 68.1% (+16.5%)
CQs & ES 51.4% (+7.6%) 63.9% (+12.3%)

little to no benefit but CQs and CQs & ES experience meaningful
improvements.

7.4.4 Evaluation on BIRD with hints. So far, all results on BIRD
benchmark do not make use of the extra hints available for each
question. Table 6 presents the result for zero-shot and three-shot
evaluation of our framework on the BIRD benchmark when hints
are also included in the prompts. CQs provides the best accuracy

in both settings and across both models. With GPT-4 Turbo, CQs is
able to achieve an accuracy of 68.1% (with at most four interaction)
on the development set, which is competitive with several top
solutions on the BIRD leaderboard. Due to lack of space, metrics
on the efficiency and cost have been deferred to the full paper [1].

7.5 Sphinteract User Study

To study the effectiveness and usability of our system, we recruited
11 participants across different roles (data scientists, engineers, and
graduate students). All participants had a background in computer
science and were familiar with SQL. In the user study, the partici-
pants were first briefed about NL2SQL and our system were given
a browser-based implementation of the system that uses GPT-4
Turbo. The tasks in the study were divided into two parts that were
performed sequentially. In the first part of the study, the participants
were given 10 challenging NL questions from the BIRD and Kag-
gle benchmarks, along with the relevant database schema. These
questions required 3 to 4 iterations in our experiments. Further,
we ensured that the questions cover all types of ambiguity and a
majority of the questions contain more than one type of ambiguity.
Users were instructed to study the database schema and description.
The objective was to interact with Sphinteract until the generated
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Figure 5: Feedback from Likert-scale questionnaire. Arrows

indicate whether lower or higher values are better.

SQL matches their own expectation. In the second part of the study,
the users looked at the same set of NL questions as the first part but
were also given the benchmark ground truth queries. The objective
was to interact with the clarification questions to steer the system
towards generating the ground truth query or a query equivalent
to it. Finally, participants were also asked to fill a 7-point Likert-
scale [35] based questionnaire to rate their effectiveness in solving
the task and system usability, quality and perceived cognitive load
of the clarification questions, and provide any general feedback.
The entire user study lasted between 1-2 hours. The authors took
notes to record feedback after the study.

Quantitative results. The quantitative results of our user study
are shown in Figure 5. As the results indicate, most of the partici-
pants felt satisfied with Sphinteract. They agreed that the mental
load of interacting with clarifications questions was low and the
overall quality of the questions generated by the system was good.
The majority of participants perceived themselves to be successful
on the two tasks. For the second study, upon analysis of the logs,
we observed that ∼ 90% of the questions were solved correctly5.
Across both the studies, the users chose the free-form feedback op-
tion in the clarification questions ∼ 45% of the time, demonstrating
that both open and closed ended feedback are valuable to users.
The average number of interactions per question was found to be
2.18. These results indicate that Sphinteract was successful in
achieving its goal of helping users generate higher quality SQL via
simple CQs while having low cognitive overhead.

Qualitative results. To derive qualitative results, we read the
free-form feedback provided by the participants in the question-
naire to identify the strengths and limitations of the system. One
participant commented that "The interactive system is very friendly
to work with and it can help rectify errors and ambiguities through
iterations. Overall it is a very helpful tool for non-experts of SQL.".
Another participant observed that they were "very surprised by the
accuracy and efficiency of this system". A third participant observed
that "except one question, clarifications questions always helped. In
some cases, even though the first query was decent, looking at the
questions made me think about a better SQL query that would answer
the question". The participants also identified a few opportunities for
improvement in the system as well. Two participants said that they
preferred interacting with the system via free-form feedback option
compared to using radio buttons since the radio button option text
was not exactly what they wanted. A different participant noted
5Some users had left the final query with minor variations (e.g., select an extra column).

that they wanted the system to ask more clarification questions to
address ambiguity in data values (i.e. AmbValue) since that was the
biggest cause of ambiguity according to them. It was also noted that
sometimes, the system asks questions that are quite similar to ques-
tions that have been answered before and occasionally can go into a
loop of repeating a set of questions that have been asked previously.

7.5.1 Limitations and Future Work. Our research is not without
limitation. In this section, we identify future work based on the
feedback from the user study. First, the User Experience (UX) of the
interactions requires further extension and study. For example, a
better ergonomic interface for asking which columns to include in
the output could be via a small widget that may support drag and
drop of columns. Customization of the questions based on user
preference is also an important aspect that was highlighted by the
participants. This could be done via a learning module that learns
from the responses of the users to the CQs. Similar (or repeated)
questions can be mitigated by making use of LLMs multiple genera-
tion capability in a single call by varying the temperature setting of
the LLM and discarding clarification questions with high similarity
to questions already asked. In terms of the study itself, there are
three aspects to improve the evaluation. First, it is important to do
a large scale study with a more diverse set of participants, both for
ambiguity detection to uncover more cases of how users think about
ambiguity, and to understand how users prefer to engage with a
real-world system. Second, the study needs to be conducted on pro-
duction datasets as they can be significantly more challenging. Fi-
nally, it would be interesting to conduct a longitudinal study where
the system is used on a daily basis for a longer period. In this work,
we integrate user feedback into the NL2SQL pipeline to address
ambiguities. However, this is not the sole approach. Contextualizing
prompts through query logs, semantic models, learning from (NL,
SQL) pairs, and employing fine-tuned models are alternative meth-
ods that warrant further exploration. Several practical challenges
must be overcome for these approaches to be effective. For example,
training or fine-tuning a model can be resource-intensive [18] and
presents privacy and security risks related to exposing customer
data [49, 60, 70, 71]. Additionally, incorporating models with dis-
tinct architectures can complicate deployment compared to using a
universal foundation model. Specialized models can also be diffi-
cult to maintain as workloads or customer requirements change.
Addressing these issues presents exciting research directions.

8 CONCLUSION

In this paper, we proposed Sphinteract, a framework that capi-
talizes on the capabilities of LLMs by incorporating user feedback
directly into the SQL generation process to help LLMs in under-
standing a user’s question. We presented different algorithms to
capture various types of user feedback, utilizing either a fixed inter-
action budget or a self-determined stopping point. Our framework
not only boosts the model’s capability to generate accurate and
context-sensitive SQL responses but also dynamically adapts to each
user’s unique requirements. Our evaluation achieves an execution
accuracy of 82.7% and 66.7% on the cross-domain KaggleDBQA and
BIRD benchmarks respectively, and confirmed that our framework
is effective through a user study.
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