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ABSTRACT
ABSTRACTThis paper presents an efficient and scalable frame-

work for Range Filtered Approximate Nearest Neighbors Search

(RF-ANNS) over high-dimensional vectors associated with attribute

values. Given a query vector 𝑞 and a range [𝑙, ℎ], RF-ANNS aims to

find the approximate 𝑘 nearest neighbors of 𝑞 among data whose

attribute values fall within [𝑙, ℎ]. Existing methods including pre-,

post-, and hybrid filtering strategies that perform attribute range

filtering before, after, or during theANNS process, all suffer from sig-

nificant performance degradation when query ranges shift. Though

building dedicated indexes for each strategy and selecting the best

one based on the query range can address this problem, it leads to

index consistency and maintenance issues.

Our framework, called UNIFY, constructs a unified Proximity

Graph-based (PG-based) index that seamlessly supports all three

strategies. In UNIFY, we introduce SIG, a novel Segmented Inclusive
Graph, which segments the dataset by attribute values. It ensures

the PG of objects from any segment combinations is a sub-graph of

SIG, thereby enabling efficient hybrid filtering by reconstructing

and searching a PG from relevant segments. Moreover, we present

Hierarchical Segmented Inclusive Graph (HSIG), a variant of SIG

which incorporates a hierarchical structure inspired by HNSW to

achieve logarithmic hybrid filtering complexity. We also implement

pre- and post-filtering for HSIG by fusing skip list connections

and compressed HNSW edges into the hierarchical graph. Experi-

mental results show that UNIFY delivers state-of-the-art RF-ANNS

performance across small, mid, and large query ranges.
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1 INTRODUCTION
In recent years, Approximate Nearest Neighbors Search (ANNS)

has drawn great attention for its fundamental role in data mining

[25, 38], recommendation systems [36], and retrieval-augmented

generation (RAG) [19], etc. Numerous ANNS methods [2, 7, 23,

26, 37, 41, 50] have been developed to efficiently retrieve similar

unstructured objects (e.g., text, images, and videos) by indexing and

searching their high-dimensional feature vectors [25]. However,

ANNS fails to support many real-world scenarios where users need

to filter objects not only by feature similarities but also by certain

constraints. For example, Google Image Search allows users to

upload an image and search for similar images within a specific

period. Likewise, e-commerce platforms such as Amazon enable

customers to find visually similar products within a price range.

The above queries can be formulated as the range filtered approx-
imate nearest neighbors search (RF-ANNS) queries. Consider a vector
dataset where each vector is associated with a numeric attribute

(e.g., date, price, or quantity). Given a query vector 𝑞 and a range

[𝑙, ℎ], RF-ANNS returns𝑞’s approximate 𝑘 nearest neighbors among

the data whose attributes are within the range [𝑙, ℎ]. Several studies
[33, 39, 40, 43, 47] have been carried out on the RF-ANNS problem,

which can be categorized into the following three strategies based

on when the attribute filtering is performed.

Strategy A: Pre-Filtering. This strategy performs ANNS after the

attribute filtering. For example, Alibaba ADBV [43] integrates the

pre-filtering strategy using a B-tree to filter attributes, followed

by a linear scan on the raw vectors or PQ [16] codes. Milvus [39]

partitions data by attributes and builds ANNS indexes for subsets.

RF-ANNS is done by first filtering out partitions covering the query

range, then performing ANNS on subset indexes. This strategy is

efficient for small query ranges, but it does not scale well with

larger ranges due to the linearly increasing overhead for scanning

qualified vectors or indexes.

Strategy B: Post-Filtering. This strategy uses an ANNS index

to find 𝑘′ candidate vectors (𝑘′ > 𝑘), then filters by attributes to

obtain the final top-𝑘 results. Vearch [20] and NGT [46] apply this

strategy, which can be easily extended to popular ANNS indexes

like HNSW [23] and IVF-PQ [16, 18]. This method is efficient for

large query ranges. In the extreme case where the query range

covers 100% of objects, RF-ANNS becomes equivalent to ANNS,
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making post-filtering efficient. However, if the query range is small,

the ANNS stage may struggle to collect enough qualified candidates,

resulting in sub-optimal performance.

Strategy C: Hybrid Filtering. In Strategy A or B, an RF-ANNS

query is decomposed into two sub-query systems for attribute fil-

tering and ANNS processing. In contrast, Strategy C employs a

single data structure to index and search vectors and attributes

simultaneously. Several studies [10, 40] propose to employ state-of-

the-art Proximity Graphs (PGs) [41], e.g., HNSW [23] and Vahama

[10, 15], to implement Strategy C for ANNS with categorical filtra-

tion (searching similar vectors whose attributes match a label). The

recent study SeRF [52] is the first work implementing Strategy C

with PGs for RF-ANNS. It compresses multiple HNSWs into a hy-

brid index. RF-ANNS is carried out by reconstructing and searching

an HNSW index only containing objects in the query range. SeRF

achieves state-of-the-art performance on query ranges from 0.3% to

50%. However, it lags behind Strategy A and B for smaller and larger

ranges due to the overhead of HNSW reconstruction. Additionally,

SeRF lacks support for incremental data insertion, limiting its use

in scenarios with new object arrivals.

Problems and Our Solutions. As discussed above, existing meth-

ods suffer from two challenges: sub-optimal performance when query
range shifts and lack of incremental data insertion support. A trivial

solution is to build dedicated indexes for each strategy and adap-

tively select the best one based on the query range. However, this

requires extra effort to ensure data consistency across multiple

indexes, leading to high maintenance costs [40]. To tackle these

problems, we propose a UNIFY framework combining Strategies

A, B, and C into a unified PG-based index supporting incremental

insertion. UNIFY is designed to enhance RF-ANNS performance by

prioritizing the following key objectives: (O1) enabling efficient hy-

brid filtering, (O2) supporting incremental index construction, (O3)

integrating pre- and post-filtering strategies, and (O4) implement-

ing a range-aware selection of search strategies. The key techniques

in UNIFY to achieve these objectives include:

(1) Segmented Inclusive Graph (SIG) (O1). For efficient hybrid fil-

tering, we introduce a novel graph family named SIG. SIG segments

the dataset based on attribute values and theoretically guarantees

that the PG of objects from any combination of segments is a sub-

graph of SIG. For example, segment a dataset D into three subsets

D1,D2, andD3, and letG(X) denote the PG constructed on dataset

X. The PGs G(D1), G(D2), G(D1 ∪ D2), . . . , G(D1 ∪ D2 ∪ D3)
are all included in SIG. This characteristic allows us to reconstruct

and search a small PG from relevant segments intersected with the

query range to enhance RF-ANNS performance.

(2) Hierarchical Segmented Inclusive Graph (HSIG) (O1 & O2).
Based on SIG, we introduce HSIG, a hierarchical graph inspired by

HNSW. Similar to HNSW, HSIG is built incrementally. Besides, as a

variant of SIG, HSIG can approximately ensure that the HNSW of

objects from any combination of segments is a sub-graph of HSIG.

By reconstructing and searching an HNSW for relevant segments,

we achieve 𝑂 (log(𝑛′)) RF-ANNS time complexity, where 𝑛′ is the
number of objects in those segments.

(3) Fusion of skip list connections (O3). The skip list is a classic

attribute index optimized for one-dimensional key-value lookup

and range search (see Section 2 for more details). We observe that

the skip list shares a similar hierarchical structure with our HSIG.

Inspired by this, we fuse the skip list connections that reflect the

order of attribute values into the hierarchical graph structure to

form a hybrid index. By navigating these skip list connections,

we can efficiently select objects within the query range, thereby

implementing efficient pre-filtering.

(4) Global edge masking (O3). Recall that post-filtering relies on
a global ANNS index over the entire dataset. HSIG ensures that

the global HNSW is approximately a sub-graph of it, meaning that

each node’s global HNSW edges are included within its HSIG edges.

We employ an edge masking algorithm to mark the global HNSW

edges with a compact bitmap. Navigated by these bitmap-marked

edges, we can perform ANNS over the global HNSW to efficiently

support post-filtering.

(5) Range-aware search strategy selection (O4). Inspired by the

effectiveness of Strategies A, B, and C for different query ranges,

we developed a heuristic for range-aware strategy selection. Let 𝑌

denote the cardinality of objects that fall within the query range,

our heuristic is: use Strategy A for 𝑌 ≤ 𝜏𝐴 , Strategy B for 𝑌 ≥ 𝜏𝐵 ,

and Strategy C for 𝜏𝐴 < 𝑌 < 𝜏𝐵 . Here, 𝜏𝐴 and 𝜏𝐵 serve as thresholds

to distinguish the ranges for which each strategy is most effective,

and they can be derived from historical data statistics. In this paper,

we run a set of sample queries to collect statistics and determine 𝜏𝐴
and 𝜏𝐵 . Experimental results show that this heuristic is effective.

Contributions. Our contributions are summarized as follows:

• We introduced SIG, a novel graph family that segments the

dataset based on attribute values, ensuring efficient hybrid

filtering by allowing the reconstruction and search of a PG

from relevant segments.

• We developed HSIG, a novel hybrid index that supports

efficient hybrid filtering with logarithmic time complexity

for RF-ANNS and enables incremental data insertion.

• We integrated novel auxiliary structures, including skip

list connections and edge masking bitmaps, into HSIG to

support both pre- and post-filtering strategies. To the best

of our knowledge, HSIG is the first index supporting pre-,

post-, and hybrid filtering simultaneously.

• Experiments on real-world datasets demonstrate that our

approach significantly outperforms state-of-the-art meth-

ods for query ranges from 0.1% to 100% by up to 2.29 times.

2 PRELIMINARIES
2.1 Problem Definition
This paper considers a datasetD with attributed vectors and nearest

neighbors search (NNS) with attribute constraints. Specifically, let𝐴

be an attribute (e.g., date, price, or quantity). We use 𝑣 [𝐴] to denote
the attribute value associated with vector 𝑣 . The range filtered

nearest neighbors search (RF-NNS) problem is defined as:

Definition 1 (RF-NNS). Given a dataset D of 𝑛 attributed vec-
tors {𝑣1, 𝑣2, . . . , 𝑣𝑛}, a distance function Γ(·, ·), and a query 𝑄 =

(𝑞, [𝑙, ℎ], 𝑘) with 𝑞 as the query vector, an integer 𝑘 from 1 to 𝑛, and
[𝑙, ℎ] a real-valued query range, RF-NNS returns the 𝑘𝑁𝑁 (𝑞,R), a
subset ofR = {𝑣 | 𝑣 ∈ D and 𝑙 ≤ 𝑣 [𝐴] ≤ ℎ}. For any 𝑜 ∈ 𝑘𝑁𝑁 (𝑞,R)
and any𝑢 ∈ R\𝑘𝑁𝑁 (𝑞,R), it holds that Γ(𝑜, 𝑞) < Γ(𝑢, 𝑞). If |R | < 𝑘 ,
all objects in R are returned.
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Algorithm 1: ANNSearch
Input :G: HNSW layer; 𝑞: query vector; 𝑒𝑝 : entry point; 𝑘 :

an integer.

Output :𝑞’s approximate 𝑘 nearest neighbors on G.

1 push 𝑒𝑝 to the min-heap 𝑐𝑎𝑛𝑑 in the order of distance to 𝑞;

2 push 𝑒𝑝 to the max-heap 𝑎𝑛𝑛 in the order of distance to 𝑞;

3 mark 𝑒𝑝 as visited;

4 while |𝑐𝑎𝑛𝑑 | > 0 do
5 𝑜 ← pop the nearest object to 𝑞 in 𝑐𝑎𝑛𝑑 ;

6 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

7 if Γ(𝑜, 𝑞) > Γ(𝑢, 𝑞) then break;
8 foreach unvisited 𝑣 ∈ G[𝑜] do
9 mark 𝑣 as visited;

10 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

11 if Γ(v,q) < Γ(u,q) or |𝑎𝑛𝑛 | < k then
12 push 𝑣 to 𝑐𝑎𝑛𝑑 and 𝑎𝑛𝑛;

13 if |𝑎𝑛𝑛 | > 𝑘 then pop 𝑎𝑛𝑛;

14 return 𝑎𝑛𝑛;

Due to the "curse of dimensionality" [14], exact NNS in high-

dimensional space is inefficient [21]. As a result, most research

focuses on approximate nearest neighbors search (ANNS), which

reports approximate results with an optimized recall. Similarly, this

paper studies the RF-ANNS problem, which returns an approximate

result set 𝑘𝑁𝑁 ′ (𝑞,R) with an optimized recall:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑘𝑁𝑁 ′ (𝒒,R) ∩ 𝑘𝑁𝑁 (𝒒,R)|

min(𝑘, |R |) . (1)

2.2 Proximity Graph
A Proximity Graph (PG) [41] treats a vector as a graph node, with

connections built based on vector proximity. Various greedy heuris-

tics are proposed to navigate the graph for ANNS [41]. In the fol-

lowing, we introduce two PGs related to our work.

𝑘 Nearest Neighbor Graph (𝑘NNG) [29]. Given a dataset D, a

𝑘NNG is built by connecting each vector 𝑣 to its 𝑘 nearest neigh-

bors, 𝑘𝑁𝑁 (𝑣,D \ {𝑣}). 𝑘NNG limits the number of edges per node

to at most 𝑘 , making it suitable for memory-constrained environ-

ments. However, 𝑘NNG focuses on local connections and does not

guarantee global connectivity, leading to sub-optimal performance

compared to state-of-the-art PGs such as HNSW [23].

HierarchicalNavigable SmallWorldGraph (HNSW) [23]. HNSW
is inspired by the 1D probabilistic structure of the skip list [32],

where each layer is a linked list ordered by 1D values. The bottom

layer includes all objects, while the upper layers contain progres-

sively fewer objects. HNSW extends this structure by replacing

linked lists with PGs, enabling efficient hierarchical search. The

hierarchical structure of HNSW is similar to that in Figure 4. As

shown in Algorithm 1, HNSW uses a greedy approach to find the

𝑘NN for query vector 𝑞 in each layer. The neighbors of each node

𝑣𝑖 in a given layer G are stored in adjacency lists G[𝑣𝑖 ]. The search
starts at an entry point 𝑒𝑝 , the most recently inserted vector at

the topmost layer [23]. It repeatedly selects the nearest object 𝑜 to

Algorithm 2: HierarchicalANNS
Input :H: HNSW; 𝑞: query vector; 𝑒𝑝: entry point; 𝑒 𝑓 :

enlarge factor; 𝑘 : an integer.

Output :𝑞’s approximate 𝑘 nearest neighbors.

1 𝐿 ← max level of H;
2 foreach 𝐿 ≥ 𝑖 ≥ 1 do

/* Search the 𝑖-th layer H𝑖. */

3 𝑎𝑛𝑛 ←ANNSearch(H𝑖
, 𝑞, 𝑒𝑝 , 1);

4 𝑒𝑝 ←the nearest object to 𝑞 in 𝑎𝑛𝑛;

/* Search the bottom layer H0. */

5 𝑎𝑛𝑛 ←ANNSearch(H0
, 𝑞, 𝑒𝑝 , 𝑒 𝑓 );

6 return top-𝑘 nearest objects to 𝑞 in 𝑎𝑛𝑛;

Algorithm 3: InsertLayer
Input :G: HNSW layer; 𝑣 : the object to insert; 𝑒𝑝: entry

point;𝑀 : the maximum degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠: number

of candidate neighbors.

Output : the updated graph.

1 𝑎𝑛𝑛 ← ANNSearch(G, 𝑣 , 𝑒𝑝 , 𝑒 𝑓 𝐶𝑜𝑛𝑠)
2 G[𝑣] ← Prune(𝑣 , 𝑎𝑛𝑛,𝑀)

3 foreach 𝑜 ∈ G[𝑣] do
4 add 𝑣 to G[𝑜];
5 if |G[𝑜] | > 𝑀 then G[𝑜] ← Prune(𝑜 , G[𝑜],𝑀) ;

6 return G;

𝑞 from 𝑐𝑎𝑛𝑑 (Line 5), adds 𝑜’s unvisited neighbors to 𝑐𝑎𝑛𝑑 (Lines

8–12), and updates 𝑎𝑛𝑛 (Lines 11–13). The search ends when all

nodes in 𝑐𝑎𝑛𝑑 are farther from 𝑞 than those in 𝑎𝑛𝑛. As shown in Al-

gorithm 2, the hierarchical search in HNSW begins at a coarse layer

to identify promising regions and progressively descends to finer

layers for detailed exploration. To improve accuracy, Algorithm 2

uses the parameter 𝑒 𝑓 (𝑒 𝑓 > 𝑘), initially exploring 𝑒 𝑓 neighbors to

broaden the search region, and finally returns the top-𝑘 results.

HNSW is built incrementally based on Algorithm 3. When in-

serting a new object 𝑣 into an HNSW layer, the process begins by

searching for its top 𝑒 𝑓 𝐶𝑜𝑛𝑠 nearest neighbors using theANNSearch
algorithm (Line 1). The Prune heuristic is then applied to limit 𝑣 ’s

connections to a maximum of𝑀 (Line 2). The value of𝑀 , typically

set between 5 and 48 [23], balances accuracy and efficiency, with

its optimal value determined experimentally. The Prune method ini-

tially sorts 𝑣 ’s candidate neighbors by distance. For each candidate

𝑟 , if a neighbor 𝑒 satisfies Γ(𝑣, 𝑟 ) > Γ(𝑒, 𝑟 ), 𝑟 is pruned. Otherwise,
an edge between 𝑣 and 𝑟 is inserted. The process continues until 𝑣

has𝑀 neighbors. Additionally, 𝑣 is added to the neighbor lists of

its identified neighbors, and the Prune method is applied to each

neighbor to maintain the𝑀-neighbor limit (Lines 3–5). The Prune
strategy prevents the graph from becoming overly dense, ensuring

efficient navigation. HNSW achieves state-of-the-art ANNS time

complexity of𝑂 (log𝑛) [41] and demonstrates top-tier practical per-

formance indicated by various benchmarks [3, 21, 41]. It also serves

as the backbone for various vector databases such as Pinecone [31],

Weaviate [42], and Milvus [39].
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3 SEGMENTED INCLUSIVE GRAPH
We aim to develop a PG-based index that integrates three search

strategies and supports incremental construction. Section 3.1 intro-

duces the Segmented Inclusive Graph (SIG), a novel graph family

that leverages attribute segmentation and inclusivity for hybrid

filtering. Section 3.2 explores the challenges of constructing an SIG

using the basic PG structure 𝑘NNG and presents practical solutions.

3.1 SIG Overview
Attribute Segmentation. Given a dataset of 𝑛 objects, RF-ANNS is

concerned only with the 𝑛′ objects within the query range, where

𝑛′ ≤ 𝑛. To efficiently filter out the qualified objects, we employ the

attribute segmentation method to reduce the search space. Assum-

ing that the attribute distribution remains stable, we first sample

objects from the dataset and sort them by their attribute values,

then apply an equi-depth histogram [30] to partition them. The

histogram bin boundaries define the attribute intervals for each

segment, partitioning the dataset into disjoint subsets with similar

sizes for further indexing.

Graph Inclusivity and SIG. After attribute segmentation, we

focus on designing a graph for efficient hybrid filtering. Since a

query range intersects a few segments, a straightforward approach

is to independently build PGs for each segment. For an RF-ANNS

query, we search the local PGs in intersected segments and merge

the results for the global 𝑘NN. However, this method results in

search time increasing linearly with the number of intersected

segments. State-of-the-art PGs offer an ANNS time complexity

of 𝑂 (log𝑛), suggesting sub-linear search time growth with the

number of intersected segments. For example, with 𝑆 segments,

searching multiple PGs scales as 𝑂 (𝑆 log( 𝑛
𝑆
)), while searching a

single PG containing all objects scales as 𝑂 (log𝑛). The ratio be-

tween them is 𝑆

(︂
1 − log𝑆

log𝑛

)︂
. Since 1 < 𝑆 ≪ 𝑛, this ratio is greater

than 1 but less than 𝑆 , indicating that searching across multiple PGs

is less efficient than searching a single PG containing all objects.

Inspired by this, we introduce a novel graph family known as

the Segmented Inclusive Graph (SIG). An SIG ensures that the PG

of any segment combination is included in (i.e., is a sub-graph of)

the SIG. Leveraging this characteristic, termed graph inclusivity,
allows efficient hybrid filtering by reconstructing and searching

the smaller PG of a few segments covering the query range. Below,

we introduce the formal definitions of graph inclusivity and SIG.

Definition 2 (Graph Inclusivity and Segmented Inclusive

Graph). LetG(X) denote a PG constructed over the datasetX. Given
a datasetD segmented into 𝑆 disjoint subsets P={D1,D2, . . . ,D𝑆 }, a
segmented inclusive graph SIG(D) is a type of graph that possesses
the property of graph inclusivity defined as

∀𝑟 ∈ {1, 2, · · · , 𝑆}, ∀C ∈ P (𝑟 ) , G(
⋃︂
𝑒∈C

𝑒) ⊆ SIG(D), (2)

where P (𝑟 ) denotes all possible combinations of 𝑟 elements from P.

Example 1. Assume that P = {D1,D2,D3}, we have P (2) =
{{D1,D2}, {D1,D3}, {D2,D3}}. For one of the possible combina-
tions C = {D1,D2}, we have

⋃︁
𝑒∈C (𝑒) =D1 ∪ D2. It holds that

G(D1 ∪ D2) ⊆ SIG(D).

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

① 𝒌NNG edges of 𝒗𝟒 in 𝑫𝟏 ②	𝒌NNG edges of 𝒗𝟒 in 𝑫𝟐

③ 𝒌NNG edges of 𝒗𝟒 in 𝑫𝟏 ∪ 𝑫𝟐

Figure 1: Build multiple 𝑘NNGs exhaustively (𝑘 = 3).

𝒗𝟒
𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟔 𝒗𝟕𝒗𝟓

𝑮[𝒗𝟒]

𝑮 𝒗𝟒 [𝟏] 𝑮 𝒗𝟒 [𝟐]

Figure 2: Example of the segmented adjacency list (𝑘 = 3).

Based on Definition 2, we derive an exhaustive SIG construction

algorithm: build PGs for all segment combinations and merge them

into a single graph. While it guarantees graph inclusivity, it faces

significant computational challenges. With 𝑆 segments, the number

of combinations is

∑︁𝑆
𝑖=1

(︁𝑆
𝑖

)︁
= 2

𝑆 − 1, and the space complexity of

SIG scales as 𝑂 (2𝑆 − 1), making the construction of all PGs both

computationally and spatially prohibitive
1
. Thus, we propose a

space-efficient SIG index that scales as 𝑂 (𝑆) in the next section.

3.2 SIG-𝑘NNG
In this section, we conduct a case study on 𝑘NNG to demonstrate

the limitations of the exhaustive method. Then, we introduce SIG-

𝑘NNG, a novel graph structure that guarantees inclusivity without

exhaustively building all possible 𝑘NNGs.

Limitation of the Exhaustive Method. For each object 𝑣 in a

dataset D, constructing a 𝑘NNG involves adding a directed edge

(𝑣, 𝑜) for each object 𝑜 ∈ 𝑘𝑁𝑁 (𝑣,D \ {𝑣}). When the dataset is

divided into 𝑆 subsets by attribute segmentation, the exhaustive

method requires running the construction algorithm 2
𝑆 − 1 times.

Figure 1 illustrates an example. Here, the dataset D is divided into

two subsets D1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and D2 = {𝑣5, 𝑣6, 𝑣7, 𝑣8}. We need

to build 𝑘NNGs (𝑘=3) for D1, D2, and D1 ∪D2, respectively. Such

exhaustive construction is unnecessary, as the 𝑘NN of a union is

inherently within the individual 𝑘NN sets. For example, all objects

in𝑘𝑁𝑁 (𝑣4,D1∪D2) can be found in𝑘𝑁𝑁 (𝑣4,D1) ∪𝑘𝑁𝑁 (𝑣4,D2).
In other words, 𝑣4’s three edges in graph 3○ are already included in

graphs 1○ and 2○, making the construction of graph 3○ redundant.

Structure of SIG-𝑘NNG. Inspired by the prior observations, we

introduce SIG-𝑘NNG, a novel graph structure that achieves inclusiv-

ity without the need for exhaustive 𝑘NNG construction. SIG-𝑘NNG

uses a segmented adjacency list to store the outgoing edges for each

object in the graph. As illustrated in Figure 2, given a datasetD seg-

mented into 𝑆 subsetsD1, . . . ,D𝑆 , the adjacency list for any object

1
In fact, for RF-ANNS, we only need to consider continuous segments, with potential

combinations totaling 0.5(𝑛2 − 𝑛) , which is also prohibitive. Since the conclusions in

this paper apply to both all segment combinations and continuous ones, we discuss

the harder scenario, i.e., all segment combinations, to maintain generality.
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Figure 3: Illustration of SIG-𝑘NNG’s inlusivity (𝑘 = 1).

𝑣 is divided into 𝑆 chunks. For example, the full adjacency listG[𝑣4]
of object 𝑣4 is segmented into two chunks G[𝑣4] [1] and G[𝑣4] [2].
The 𝑖-th chunk stores only 𝑣 ’s 𝑘NNwithinD𝑖 . Based on this design,

to add SIG-𝑘NNG edges for 𝑣 , we perform 𝑘NN searches 𝑆 times

to find its neighbors in each subset, instead of searching 2
𝑆 − 1

times across all subset combinations. In the following, we introduce

the formal definition of SIG-𝑘NNG and prove that SIG-𝑘NNG can

exactly guarantee inclusivity.

Definition 3 (SIG-𝑘NNG). Given a dataset D segmented into
𝑆 disjoint subsets D1,D2, . . . ,D𝑆 , the SIG-𝑘NNG on D is defined
as F𝑘 (D) = (𝑉F, 𝐸F), where 𝑉F = D and 𝐸F =

⋃︁
𝑣∈D

⋃︁𝑆
𝑖=1 𝐸

𝑘
𝑖
(𝑣).

Here, 𝐸𝑘
𝑖
(𝑣) is the set of edges based on the 𝑖-th chunk of 𝑣 ’s adjacency

list, defined as 𝐸𝑘
𝑖
(𝑣) = {(𝑣, 𝑜) | 𝑜 ∈ 𝑘𝑁𝑁 (𝑣,D𝑖 \ {𝑣})}.

Inclusivity of SIG-𝑘NNG.We first present the following lemma,

which shows that the 𝑘NN of a union is inherently included in the

individual 𝑘NN sets.

Lemma 1. Given 𝑟 disjoint datasets D1,D2, . . . ,D𝑟 and their
union set U =

⋃︁𝑟
𝑖=1D𝑖 , it holds that ∀𝑣 ∈ U, 𝑘NN(𝑣,U \ {𝑣}) ⊆⋃︁𝑟

𝑖=1 𝑘𝑁𝑁 (𝑣,D𝑖 \ {𝑣}).

Based on Lemma 1, we derive the inclusivity of SIG-𝑘NNG, as

presented in Theorem 1. The proof is omitted here for brevity, as it

is straightforward to follow.

Theorem 1. Let G𝑘 (X) and F𝑘 (X) denote a 𝑘NNG and SIG-
𝑘NNG for dataset X, respectively. Given a dataset D segmented
into 𝑆 disjoint subsets D1,D2, . . . ,D𝑆 , it follows that SIG-𝑘NNG
is a segmented inclusive graph. Specifically, for any 𝑟 distinct in-
tegers 𝑖1, 𝑖2, . . . , 𝑖𝑟 chosen from [1, 𝑆] with 1 ≤ 𝑟 ≤ 𝑆 , we have
G𝑘 (U) ⊆ F𝑘 (D), whereU =

⋃︁𝑟
𝑗=1D𝑖 𝑗 .

Example 2. Figure 3 demonstrates the inclusivity of SIG-𝑘NNG.
Given a dataset D = {𝑣1, 𝑣2, . . . , 𝑣8}, we assume the attribute of 𝑣𝑖 is
𝑖 for simplicity. The attribute space [1, 8] is divided into two disjoint
segments [1, 5) and [5, 8], leading to two subsetsD1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}
andD2 = {𝑣5, 𝑣6, 𝑣7, 𝑣8}. Graphs 1○~ 3○ represent the 𝑘NNGs forD1,
D2, and D1 ∪ D2, and the SIG-𝑘NNG for D is displayed in graph
4○. As illustrated, all three 𝑘NNGs are sub-graphs of the SIG-𝑘NNG.

4 HIERARCHICAL SEGMENTED INCLUSIVE
GRAPH

SIG-𝑘NNG offers an efficient approach to build an SIG with seg-

mented adjacency lists. Though it theoretically guarantees inclusiv-

ity, the underlying 𝑘NNG is not competitive with state-of-the-art

PGs like HNSW [23]. Additionally, SIG-𝑘NNG lacks support for

incremental insertion. In this section, we expand the basic idea

of SIG-𝑘NNG, introducing the Hierarchical Segmented Inclusive

Layer 2
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Figure 4: Illustration of HSIG.

Graph (HSIG), which uses HNSW as a building block to achieve

incremental construction and a logarithmic search complexity.

Figure 4 provides an overview of HSIG, showcasing a hierarchical

structure that follows the structure of HNSW and skip lists. HSIG

is a unified structure that indexes both vectors and attributes by

leveraging the strengths of vector-oriented HNSW and attribute-

oriented skip lists. For vector indexing, HSIG organizes the outgoing

edges of each object into chunks based on attribute segmentation,

inspired by SIG-𝑘NNG. Each chunk contains the edges of an HNSW

for the corresponding segment. Thus, the backbone graph of HSIG

can be seen as a set of HNSWs constructed for different segments

(e.g., the three HNSWs with different colors in Figure 4), which

are mutually connected with additional edges to ensure inclusivity.

Additionally, we incorporate the skip list into the backbone graph to

index attributes for efficient pre-filtering and introduce a compact

auxiliary structure to optimize post-filtering. The structure and

algorithms are detailed in Sections 4.1 and 4.2.

4.1 HSIG Construction
In this section, we describe the core structures of HSIG for hybrid,

pre-, and post-filtering sequentially. Then, we integrate them to

introduce the complete insertion algorithm.

Backbone Graph for Hybrid Filtering. Based on Theorem 1,

we present HSIG’s backbone graph, which is designed to ensure

inclusivity regarding HNSW and support efficient hybrid filtering.

As depicted in Algorithm 3, when inserting a new object 𝑣 into

an HNSW layer, the core operation involves finding 𝑣 ’s 𝑒 𝑓 𝐶𝑜𝑛𝑠

nearest neighbors and establishing up to𝑀 connections. This pro-

cedure is similar to 𝑘NNG’s construction, which finds 𝑘NN and

establishes at most 𝑘 connections. Therefore, we use the segmented

adjacency list introduced by SIG-𝑘NNG to guarantee the inclusivity

for all possible HNSW connections. With 𝑆 segments, connections

are stored in 𝑆 chunks, with a maximum degree of 𝑀 per chunk.

The values of 𝑆 and𝑀 are experimentally determined, with default

values set to 8 and 16, respectively. Since each chunk contains the

HNSW connections in the corresponding segment, the objects and

connections in chunk 𝑗 form a sub-graph G𝑗 of the backbone graph

in HSIG. When inserting object 𝑣 that is located in segment 𝑖 , Al-

gorithm 4 outlines how to build 𝑣 ’s connections in segment 𝑗 at

an HSIG layer. First, we search for 𝑣 ’s 𝑒 𝑓 𝐶𝑜𝑛𝑠 nearest neighbors

in G𝑗 (Line 1) using ANNSearch (Algorithm 1), then select up to𝑀
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Algorithm 4: BackboneConnectionsBuild
Input :G: HSIG layer; 𝑒𝑝: entry point; 𝑣 : the object to

insert; 𝑖: index of the segment that 𝑣 [𝐴] belongs to;
𝑗 : index of the segment to insert;𝑀 : the maxinum

degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠: number of candidate neighbors.

Output :𝑣 ’s approximate nearest neighbors in G𝑗 (a

sub-graph of G with only nodes and edges in

segment 𝑗 ).

1 𝑎𝑛𝑛 ← ANNSearch(G𝑗 , 𝑣 , 𝑒𝑝 , 𝑒 𝑓 𝐶𝑜𝑛𝑠);

2 foreach 𝑜 ∈ Prune(𝑣, 𝑎𝑛𝑛,𝑀) do
3 add (𝑣, 𝑜) to G[𝑣] [ 𝑗];
4 add (𝑜, 𝑣) to G[𝑜] [𝑖];
5 if | G[𝑜] [𝑖] |> 𝑀 then
6 G[𝑜] [𝑖] ← Prune(𝑜 , G[𝑜] [𝑖],𝑀);

7 return 𝑎𝑛𝑛;

neighbors using the Prune algorithm. For each neighbor 𝑜 , we es-

tablish mutual connections between 𝑣 and 𝑜 within their respective

segments (Lines 2–4). If the number of neighbors of 𝑜 in segment

𝑖 exceeds 𝑀 , we apply the Prune algorithm to discard the extra

neighbors (Lines 5–6). This algorithm guarantees the approximate

inclusivity of HSIG, as demonstrated in Section 5.4.

Fusing Skip List Connections for Pre-Filtering. For small-range

RF-ANNS queries, pre-filtering with an attribute index typically

outperforms PG-based methods. This is because PGs prioritize

vectors over attributes, making it difficult to filter candidates within

the query range. For instance, in the extreme case of a query range

containing only one object, using an attribute index to quickly

locate the target object is optimal. Thus, we propose fusing an

attribute index into the graph structure for effective pre-filtering.

As described in Section 2, the skip list is a popular index for efficient

1D key-value lookups and range searches, sharing a hierarchical

structure similar to HNSW and HSIG. Inspired by this, we integrate

the skip list into the backbone graph of HSIG to form a unified

index. Navigated by skip list connections, we can efficiently locate

and linearly search objects within the query range. As shown in

Figure 4, we use an extra connection G[𝑣] .𝑛𝑒𝑥𝑡 to store the ID of

𝑣 ’s successor object in the skip list. After inserting an object into

the backbone graph via Algorithm 4, we search for its successor in

the skip list and store it in G[𝑣] .𝑛𝑒𝑥𝑡 .
Global EdgeMasking for Post-Filtering. For large-range queries,
post-filtering with a pure ANNS index is preferable. We use a global

HNSW over the entire dataset to support post-filtering. Due to

inclusivity, the global HNSW is (approximately) a sub-graph of

HSIG. We apply a global edge pruning method to identify these

HNSW edges from HSIG edges and use a compact bitmap to mask

the unused edges. Since each segment’s sub-graph has a maximum

degree of𝑀 , we similarly limit the connections in the global graph

to a maximum of 𝑀 . This procedure is detailed in Algorithm 5.

First, we obtain the object 𝑣 ’s connections in all segments and

select𝑀 connections using the Prune algorithm (Line 1). Next, we

create a bitmap whose size equals the number of 𝑣 ’s neighbors in

all segments and set the positions of 𝑣 ’s 𝑀 neighbors to 1 (Line

2). For each neighbor 𝑜 in the 𝑀 neighbors (Line 3), if 𝑣 is also a

Algorithm 5: GlobalEdgeMasking

Input :G: HSIG layer; 𝑣 : the object to insert;𝑀 : the

maximum degree.

Output : the updated graph.

1 N ← Prune(𝑣 , G[𝑣],𝑀);

2 G[𝑣] .𝑏𝑖𝑡𝑚𝑎𝑝 ← generate bitmap with N ;

3 foreach 𝑜 ∈ N do
4 if 𝑣 ∈ G[𝑜] then
5 𝑝𝑜𝑠 ← 𝑣 ’s position in G[𝑜];
6 G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝 [𝑝𝑜𝑠] ← 1;

7 if 𝑠𝑢𝑚(G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝) > 𝑀 then
8 N ′ ← Prune(𝑜 , G[𝑜],𝑀);

9 G[𝑜] .𝑏𝑖𝑡𝑚𝑎𝑝 ← update bitmap with N ′;

10 return G;

neighbor of 𝑜 , set the position of 𝑣 in 𝑜’s bitmap to 1 (Lines 4–6).

Then, we update the bitmap of 𝑜 (Lines 7–9).

Complete Insertion Algorithm. As aforementioned, the adja-

cency list of a node in HSIG consists of (1) several chunks for

backbone graph connections, (2) a skip list connection, and (3) a

bitmap for global connections. The bottom-right of Figure 4 illus-

trates an example. Here,G[𝑣] [𝑖] is the backbone graph connections
of 𝑣 in the 𝑖-th segment, G[𝑣].next stores the ID of 𝑣 ’s successor in

the skip list, and G[𝑣].bitmap stores the global edge masks.

Next, we present the complete insertion algorithm for construct-

ing an HSIG. The HSIG structure consists of a set of HNSWs for

different segments, augmented with auxiliary structures for pre-

and post-filtering. Construction involves three main steps: building

the HNSW in each segment, adding skip list connections, and ap-

plying global edge masking. Each step is performed hierarchically

and incrementally, as outlined in Algorithm 6. First, we find the

segment to which object 𝑣 belongs (Line 1). The maximum layer

𝑙𝑒𝑣𝑒𝑙 of 𝑣 is randomly assigned using an exponentially decaying

probability distribution normalized by𝑚𝐿 (Line 2; see [23] for de-

tails). We then traverse all segments (Line 3) to sequentially build

the HNSW HG𝑗 in each segment 𝑗 , determining its maximum level

𝐿 and entry point 𝑒𝑝 (Lines 4–5). For each layer 𝑙 from 𝐿 to 𝑙𝑒𝑣𝑒𝑙 +1,
we use ANNSearch (Algorithm 1) to find the nearest neighbor 𝑒𝑝 of

𝑣 in HG𝑙
𝑗
, where HG𝑙

𝑗
denotes layer 𝑙 in HG𝑗 (Lines 6–7). Then, for

each layer 𝑙 from 𝑙𝑒𝑣𝑒𝑙 to 0, we employ BackboneConnectionsBuild
(Algorithm 4) to insert 𝑣 into HG𝑙

𝑗
, using its nearest neighbor as

the entry point for the next layer (Lines 8–10). After building HG𝑗 ,

we update its entry point if necessary (Line 11), ensuring the first

object in the topmost layer serves as the entry. Next, 𝑣 is inserted

into the skip list using the method in [32] (Line 12). Finally, we use

GlobalEdgeMasking (Algorithm 5) to mask unnecessary edges for

post-filtering from layer 0 to 𝑙𝑒𝑣𝑒𝑙 (Lines 13–14).

4.2 Search on HSIG
To adapt to different query ranges, we propose three search strate-

gies and a range-aware search strategy selection method.

Strategy A (Pre-Filtering). Navigated by the hierarchical skip list

connections, we can quickly reach the bottom layer to identify the
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Algorithm 6: HSIGInsert
Input :HG: HSIG; 𝑣 : the object to insert; 𝑆 : number of

segments;𝑀 : the maximum degree; 𝑒 𝑓 𝐶𝑜𝑛𝑠:

number of candidate neighbors.

Output : the updated HSIG.

1 𝑖 ← ComputeSegmentId(𝑣 [𝐴]);
2 𝑙𝑒𝑣𝑒𝑙 ← ⌊− ln(unif (0 . . . 1) ·𝑚𝐿)⌋;
3 foreach 1 ≤ 𝑗 ≤ 𝑆 do
4 𝐿 ← the max level of HG𝑗 ;

5 𝑒𝑝 ← the entry point of HG𝑗 ;

6 foreach 𝐿 ≥ 𝑙 ≥ 𝑙𝑒𝑣𝑒𝑙 + 1 do
7 𝑒𝑝 ← ANNSearch(HG𝑙

𝑗
, 𝑣 , 𝑒𝑝 , 1);

8 foreach 𝑙𝑒𝑣𝑒𝑙 ≥ 𝑙 ≥ 0 do
9 𝑎𝑛𝑛 ← BackboneConnectionsBuild(HG𝑙

𝑗
, 𝑒𝑝 , 𝑣 , 𝑖 , 𝑗 ,

𝑀 , 𝑒 𝑓 𝐶𝑜𝑛𝑠);

10 𝑒𝑝 ← nearest object to 𝑣 in 𝑎𝑛𝑛;

11 update graph entry for HG𝑗 if necessary;

12 add skip list connections for 𝑣 in layers 0 . . . 𝑙𝑒𝑣𝑒𝑙 ;

13 foreach 0 ≤ 𝑙 ≤ 𝑙𝑒𝑣𝑒𝑙 do
14 HG𝑙 ← GlobalEdgeMasking(HG𝑙

, 𝑣 ,𝑀);

15 return HG;

first object whose attribute value falls within the query range. From

there, a linear search is performed to collect the query vector’s 𝑘NN

among those vectors with qualified attribute values. This method

is straightforward, so pseudocode is omitted.

Strategy B (Post-Filtering). We employ the hierarchical search

scheme in Algorithm 2 for ANNS, followed by filtering objects

within the query range. ANNS is performed over a global HNSW

with edges marked by bitmaps. During the search, only outgoing

edges marked as 1 in an object’s bitmap are considered. The search

retrieves the top-𝑒 𝑓 nearest neighbors (𝑒 𝑓 > 𝑘) in the bottom layer,

after which attribute filtering is applied to obtain the top-𝑘 results.

Strategy C (Hybrid Filtering). We perform hybrid filtering by

reconstructing and searching the HNSW of segments covering the

query range. The search follows the hierarchical scheme in Al-

gorithm 2, starting from the topmost entry point of graphs in all

segments. Since each object has𝑀 connections per segment, and

assuming there are 𝑆 ′ segments intersecting the query range, this

requires visiting𝑀𝑆 ′ neighboring nodes, leading to a large search

space and high computational complexity. Thus, we introduce the

search parameter𝑚 to reconstruct an HNSW with a maximum de-

gree of𝑚 at runtime. We propose two neighbor selection strategies

to select𝑚 neighbors from𝑀𝑆 ′ connections: (1) compute distances

between node 𝑣 and its neighbors across all 𝑆 ′ segments, then select

the top-𝑚 neighbors by sorting them by distance; and (2) select

the top-(⌈𝑚/𝑆 ′⌉) neighbors from each chunk of the adjacency list.

Since neighbors in each chunk are naturally ordered by distance to

𝑣 upon acquisition via ANNSearch, we simply take the first ⌈𝑚/𝑆 ′⌉
objects. We adopt the second strategy as the default, based on exper-

imental results in Section 5.6. Algorithm 7 presents the pseudocode

for hybrid filtering at a specific layer. Compared with Algorithm 1,

the key differences are: (1) only examining outgoing edges within

Algorithm 7: HybridFilteringLayer
Input :G: HSIG layer; 𝑞: query vector; [𝑙, ℎ]: query range;

𝑚: number of visited neighbors per object; 𝑒𝑝 :

entry point; 𝑘 : number of nearest neighbors.

Output :𝑞’s approximate 𝑘 nearest neighbors within [𝑙, ℎ].
1 push 𝑒𝑝 to the min-heap 𝑐𝑎𝑛𝑑 in the order of distance to 𝑞;

2 push 𝑒𝑝 to the max-heap 𝑎𝑛𝑛 in the order of distance to 𝑞;

3 S ← segments that intersect with [𝑙, ℎ];
4 while |𝑐𝑎𝑛𝑑 | > 0 do
5 𝑜 ← pop the nearest object to 𝑞 in 𝑐𝑎𝑛𝑑 ;

6 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛 ;

7 if Γ(𝑜, 𝑞) > Γ(𝑢, 𝑞) then break ;

8 foreach 𝑖 ∈ S do
9 N ← the top-(⌈𝑚/|S|⌉) neighbors in G[𝑜] [𝑖];

10 foreach unvisited 𝑣 ∈ N do
11 mark 𝑣 as visited;

12 𝑢 ← the furthest object to 𝑞 in 𝑎𝑛𝑛;

13 if Γ(v,q) < Γ(u,q) or |𝑎𝑛𝑛 | < k then
14 push 𝑣 to 𝑐𝑎𝑛𝑑 ;

15 if 𝑙 ≤ 𝑣 [𝐴] ≤ ℎ then push 𝑣 to 𝑎𝑛𝑛;

16 if |𝑎𝑛𝑛 | > 𝑘 then pop 𝑎𝑛𝑛 ;

17 return 𝑎𝑛𝑛;

intersected segments (Line 8) and (2) pushing qualified objects in

the query range into the results (Line 15).

Range-aware Strategy Selection. Let 𝑌 be the cardinality of ob-

jects within a query range. Observing that pre-, post-, and hybrid

filtering perform best for small-, large-, and mid-range queries,

respectively, we propose the following heuristic for strategy selec-

tion: use Strategy A if 𝑌 ≤ 𝜏𝐴 , Strategy B if 𝑌 ≥ 𝜏𝐵 , and Strategy

C if 𝜏𝐴 < 𝑌 < 𝜏𝐵 . Here, 𝜏𝐴 and 𝜏𝐵 are thresholds distinguishing

the optimal ranges for each strategy, derived from historical data

analysis. Given these thresholds, we estimate the cardinality of an

incoming query to apply the heuristic. Since statistic collection and

cardinality estimation are well studied [12, 27] and not the focus of

this paper, we provide a simple preprocessing method to validate

our heuristic. Specifically, we sample objects from the base dataset

as queries and assign each a random query range. We then execute

these queries using the three strategies and record recall and la-

tency metrics. Given a recall target, we analyze records meeting

this requirement and identify two turning points where pre- and

post-filtering outperform hybrid filtering. These points establish

𝜏𝐴 and 𝜏𝐵 , guiding strategy selection for future queries.

4.3 Theoretical Analysis
Space Complexity. Following HNSW [23], we use a 32-bit integer

to store each edge in HSIG and analyze space complexity using

32-bit as a storage unit. In HSIG, each node has up to 𝑀𝑆 edges

(taking 𝑀𝑆 units), a bitmap of size 𝑀𝑆 (taking
𝑀𝑆
32

units), and a

skip list connection (taking one unit). For a dataset of 𝑛 objects,

HSIG contains 𝑛𝐿′ nodes, where 𝐿′ is the average number of levels.

This results in an expected space complexity of 𝑂 (𝑛𝐿′ ( 33
32
𝑀𝑆 + 1)).

As discussed in [23], the average number of levels in HNSW is
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Table 1: Dataset specifications

Dataset Dimension #Base #Query Type

SIFT1M 128 1,000,000 1,000 Image + Attributes

GIST1M 960 1,000,000 1,000 Image + Attributes

GloVe 100 1,183,514 1,000 Text + Attributes

Msong 420 992,272 200 Audio + Attributes

WIT-Image 2048 1,000,000 1,000 Image + Attributes

Paper 200 2,029,997 10,000 Text + Attributes

a constant, and since HSIG uses the same strategy to determine

the number of levels, 𝐿′ is also a constant in HSIG. 𝑆 and 𝑀 are

experimentally determined and are generally small constants. Given

that 𝐿′, 𝑆 , and 𝑀 are all considered small constants relative to 𝑛,

the space complexity can be simplified to 𝑂 (𝑛).
Construction Complexity. Consider a dataset with 𝑛 objects

divided into 𝑆 subsets, each containing 𝑛1, 𝑛2, . . . , 𝑛𝑆 objects. Insert-

ing an object into HSIG requires three operations: (OP1) backbone

graph insertion, (OP2) skip list insertion, and (OP3) edge masking.

OP3 runs in constant time, while OP2 has an expected complex-

ity of 𝑂 (log𝑛) [32]. OP1 performs ANNS on the HNSW of each

segment, requiring 𝑆 ANNS iterations. Since ANNS on an HNSW

with 𝑥 objects takes𝑂 (log𝑥) time, OP1 costs

∑︁𝑆
𝑖=1 log(𝑛𝑖 ) bounded

by 𝑆 log𝑛, making OP1 an 𝑂 (𝑆 log𝑛) operation. Neglecting con-

stants, the expected complexity of inserting an object is 𝑂 (log𝑛),
and constructing an HSIG for 𝑛 objects scales as 𝑂 (𝑛 log𝑛).
Search Complexity. The complexity scaling of a single search

can be strictly analyzed under the assumption that HSIG exactly

guarantees inclusivity with respect to HNSW. For an HSIG with

𝑛 objects, consider a query range covering 𝑌 objects and a small

constant 𝑘 negligible compared to 𝑛. The search complexities of the

three strategies in HSIG are as follows:

A. Pre-Filtering. Searching the skip list has an expected com-

plexity of 𝑂 (log𝑛) [32], and computing vector distances within

the query range takes 𝑂 (𝑌 ) time. Thus, the total complexity is

𝑂 (𝑌 + log𝑛). Due to range-aware search in HSIG, Pre-Filtering is

used only when𝑌 is smaller than a constant 𝜏𝐴 , ensuring it typically

operates with an 𝑂 (log𝑛) complexity.

B. Post-Filtering. This strategy involves searching the global

HNSW, which has an expected time complexity of𝑂 (log𝑛) [23, 41].
C. Hybrid Filtering. For RF-ANNS, hybrid filtering selects seg-

ments covering the query range and performs ANNS on their

HNSWs. Let 𝑛′ be the number of objects in the intersected seg-

ments, searching the HNSW takes 𝑂 (log𝑛′) time. Since 𝑛′ ≤ 𝑛,

the expected time complexity is 𝑂 (log𝑛). Although the theoretical

complexity is derived under the exact inclusivity assumption, ex-

perimental results (Section 5.8) confirm the method’s logarithmic

scaling with data size, validating its efficiency and scalability.

5 EXPERIMENT
5.1 Experimental Setup
Datasets.We use six real-world datasets of varying sizes and di-

mensions. The Paper [40] and WIT-Image [52] datasets include

both feature vectors and attributes. The Paper contains publication,

topic, and affiliation attributes, which we convert from categori-

cal to numerical, while WIT-Image uses image size as its attribute.

For the remaining datasets, which contain only feature vectors,

we generate numerical attributes using a method similar to [39],

assigning each vector a random value between 0 and 10,000. The

dataset characteristics are detailed in Table 1. For each query, we

generate a query range uniformly between 0.1% and 100%.

Compared Methods.We compare HSIG against six competitors

in terms of RF-ANNS performance:

• ADBV [43] is a hybrid analytic engine developed by Al-

ibaba. It enhances PQ [16] for hybrid ANNS and proposes

the accuracy-aware, cost-based optimization to generate

optimal execution plans.

• Milvus [39] partitions datasets based on commonly utilized

attributes and implements ADBV within each subset.

• NHQ [40] constructs a composite graph index based on

the fusion distance of vectors and attributes for hybrid

queries. It proposes enhanced edge selection and routing

mechanisms to boost query performance.

• NGT [46] is anANNS library developed by Yahoo Japan that

processes hybrid queries using the post-filtering strategy.

• Vearch [17, 20] is a high-dimensional vector retrieval sys-

tem developed by Jingdong that supports hybrid queries

through the post-filtering strategy.

• SeRF [52] designs a 2D segment graph that compresses

multiple ANNS indexes for half-bounded range queries and

extends this to support general range queries.

We use the Euclidean distance function to measure vector distances.

Metrics.We evaluate query effectiveness by recall and efficiency

by measuring the number of queries processed per second (QPS).

Parameter Settings. The parameters 𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 represent

the number of segments, maximum edge connections, and candidate

neighbors during index construction, respectively. We use grid

search to determine their optimal values, setting 𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠

to 8, 16, and 500, respectively. The parameters𝑚 and 𝑒 𝑓 relate to

the search process, where𝑚 is the total number of neighbors visited

per object, and 𝑒 𝑓 is the number of candidates searched during a

query. We vary𝑚 and 𝑒 𝑓 to generate recall/QPS curves and apply

grid search to set baseline parameters.

Implementation Settings. We implement HSIG construction and

search algorithms based on hnswlib [23]. The code is written in

C++ and compiled with GCC 10.3.1 using the "-O3" optimization

flag. A Python interface is provided for the indexing library, and

experiments are conducted using Python 3.8.17.

Environment. Scalability experiments are conducted on Alibaba

Cloud Linux 3.2104 LTS with 40 cores and 512GBmemory. Other ex-

periments are conducted on a Linux server with an Intel(R) Xeon(R)

E5-2609 v3 (1.90GHz, 6 cores), 16GB memory, and Ubuntu 18.04.5.

5.2 Overall Performance
We evaluate the query performance of HSIG and its competitors

with 𝑘 values of 10 and 100. Based on the preprocessing method

in Section 4.2, we set 𝜏𝐴 and 𝜏𝐵 to 1% and 50% of the dataset size.

Figure 5 shows query performance, while Table 2 presents index

sizes and build times. Although HSIG does not excel in index size

or build time due to its multi-segment structure and extensive edge
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Table 2: Index build time and index size.

Method

Build Time (s) Index Size (MB)

SIFT1M GIST1M GloVe Msong WIT-Image Paper SIFT1M GIST1M GloVe Msong WIT-Image Paper

Vearch 735 1319 1187 2241 1294 617 692 3905 741 2095 4456 2430

NGT 789 27357 15281 771 8620 814 764 4031 773 1894 4277 2129

NHQ 2806 1689 4956 841 889 5039 78 66 52 99 97 158

ADBV 860 4318 896 2069 10039 2444 21 24 25 22 24 43
Milvus 1459 6931 1560 4289 4983 2477 30 52 35 36 56 61

SeRF 2502 11820 2678 4817 13440 6189 763 3896 704 1852 4185 2096

HSIG 2406 10827 2601 4230 16076 6254 1554 4728 1713 2647 5008 3785
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Figure 5: Overall Performance.

connections, it is comparable to SeRF, the state-of-the-art PG-based

solution for RF-ANNS. PQ-based methods like ADBV and Milvus

are space-efficient but struggle with query accuracy and efficiency

compared to PG-based methods. As shown in Figure 5, HSIG con-

sistently outperforms baselines across all datasets regarding the

QPS vs. recall trade-off. For example, with 𝑘 = 10 and a recall of

around 0.9, HSIG achieves a QPS two orders of magnitude higher

than ADBV on the GloVe and GIST1M datasets, one order of mag-

nitude higher than NHQ on the SIFT1M dataset, and outperforms

SeRF by up to 2.29 times across all datasets. These results highlight

HSIG’s effectiveness, benefiting from its unified graph structure and

range-aware strategy selection. Additionally, HSIG allows HNSW

reconstruction with varying edge degrees using the parameter𝑚,

whereas SeRF reconstructs HNSW with a fixed edge degree, limit-

ing its query performance. Finally, HSIG outperforms NGT, Vearch,

and NHQ, as they employ the post-filtering strategy and perform

poorly on small query ranges.

5.3 Effect of Range-aware Search Strategy
Selection

We evaluate HSIG’s performance across small, medium, and large

query ranges. The methods compared are as follows: (1) HSIG-
pre uses HSIG with the pre-filtering strategy. (2) PQ-pre performs

attribute filtering first, followed by PQ-based vector retrieval. (3)

Btree-pre uses a B-tree for attribute filtering, followed by brute-

force vector retrieval. (4) HSIG-post applies HSIG with the post-

filtering strategy. (5) HNSW-post builds HNSW over the entire

dataset and applies the post-filtering strategy. (6) HSIG-hybrid
employs HSIG for RF-ANNS queries using the hybrid filtering strat-

egy. (7) SeRF is a state-of-the-art RF-ANNS solution that uses a

hybrid filtering. (8) HSIG-range-aware uses HSIG with range-

aware search strategy selection. (9) Dedicated builds specialized

indexes for each strategy, with Btree-pre, HNSW-post, and SeRF

used for pre-, post-, and hybrid filtering, respectively, and selects

the best strategy based on query range.

The results are shown in Figure 6. Some methods have missing

QPS values for specific query ranges, indicating they could not

meet the recall threshold. HSIG-pre, HSIG-hybrid, and HSIG-post

outperform competitors in small, medium, and large ranges, respec-

tively. For example, HSIG-pre outperforms Btree-pre by 20.3% at a

recall of 0.9 in small query ranges. HSIG-hybrid exceeds SeRF by

1.21 times in medium query ranges at a recall of 0.95. HSIG-post sur-

passes HNSW-post by 37.5% at a recall of 0.99 in large query ranges.

Additionally, HSIG-pre outperforms HSIG-hybrid and HSIG-post

in small ranges, HSIG-post surpasses HSIG-hybrid and HSIG-pre

in large ranges, and HSIG-hybrid performs best among the three

strategies in medium ranges, validating our range-aware heuristics.

Finally, HSIG-range-aware consistently outperforms Dedicated by

up to 1.1 times across all query ranges, thanks to its unified PG-

based index and range-aware strategy selection.

5.4 Validation of Inclusivity of HSIG
We evaluate HSIG’s inclusivity using the inclusiveness metric. Inclu-

siveness is computed as
#common-edge

#hnsw-edge
×100%, where #common-edge
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Figure 6: Impact of different query ranges on GloVe dataset.

is the number of identical edge connections in both HSIG and

the multi-segment HNSW (where multi-segment HNSW refers to

the HNSW constructed for any combination of segments), and

#hnsw-edge is the total number of edges in the multi-segment

HNSW. According to Definition 2, the multi-segment HNSW should

be a sub-graph of HSIG to satisfy inclusivity. Thus, 100% inclu-

siveness indicates that HSIG strictly satisfies inclusivity. In this

experiment, we partition the dataset evenly into eight segments

and construct HNSWs for 1, 2, 4, 6, and 8 contiguous segments.

Figure 7 shows that the average inclusiveness of HSIG exceeds 80%,

demonstrating that HSIG achieves significant inclusiveness and

approximately satisfies inclusivity.

To further evaluate the impact of inclusivity on query perfor-

mance, we compare HSIG at varying levels of inclusiveness (30%,

40%, 60%, and 80%) against two competitive methods that guar-

antee exact inclusivity. The first method, Optimal HNSW, builds

an HNSW in real time for objects within each query range. The

second method, MS-HNSW, pre-builds HNSWs for each segment.

During the search, MS-HNSW identifies the segments intersecting

with the query range, retrieves vectors from the corresponding

HNSWs, and combines the intermediate results to obtain the final
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Figure 7: Inclusiveness of HSIG.
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Figure 9: Performance of incremental insertion on SIFT1M.

results. The results are shown in Figure 8. While Optimal HNSW
offers the best performance, building indexes in real time for every

query is time-consuming and impractical. As HSIG’s inclusiveness

increases, its query performance improves, approaching that of

Optimal HNSW. Additionally, HSIG consistently outperforms MS-
HNSW, which requires more distance computations. These results

demonstrate the effectiveness of HSIG’s inclusivity, showing that

higher inclusiveness leads to better query performance.

5.5 Validation of Incremental Insertion
In this section, we evaluate HSIG’s incremental insertion capa-

bility. We first build HSIG with 200,000 objects from the SIFT1M

dataset, followed by four rounds of incremental insertion, each

adding 200,000 objects. We compare the index build time and query

performance against the state-of-the-art method SeRF. As shown in

Figure 9, HSIG’s build time remains stable with each insertion since

the number of inserted objects is consistent, whereas SeRF’s build

time increases linearly due to its lack of incremental update support.

Moreover, HSIG outperforms SeRF in query efficiency at a recall

of 0.95. These results highlight HSIG’s effectiveness in supporting

incremental insertions, showing that it is suitable for applications

with continuously evolving data.

5.6 Validation of Runtime Neighbor Selection
In this section, we compare two strategies for runtime neighbor

selection in hybrid filtering, as described in Section 4.2. The first

strategy, Hybrid-S1, computes the distance to neighbors in all 𝑆 ′

segments (assuming there are 𝑆 ′ segments intersecting with the
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Figure 11: Performance of index parameters on SIFT1M.

query range) and then selects the top-𝑚 neighbors by sorting them

based on their distances. The second strategy, Hybrid-S2, selects

the top-(⌈𝑚/𝑆 ′⌉) neighbors from each segment. As shown in Fig-

ure 10, Hybrid-S2 outperforms Hybrid-S1 in query efficiency. This

is because Hybrid-S2 selects the top-(⌈𝑚/𝑆 ′⌉) neighbors from the

pre-ordered neighbor lists without additional distance calculations,

as neighbors of the object 𝑣 in each segment are already sorted

by their distance to 𝑣 upon acquisition via ANNSearch. In contrast,

Hybrid-S1 requires calculating distances for all neighbors across 𝑆 ′

segments, increasing query time. Therefore, we adopt Hybrid-S2 as

the default runtime neighbor selection method.

5.7 Parameter Study
Impact of Index Construction Parameters.We analyze the sen-

sitivity of three parameters in HSIG construction: 𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 .

Figures 11 and 12 show how parameters affect query performance

and index build times, respectively. Figure 11a shows the impact

of varying 𝑆 on query performance, with a performance increase

from 2 to 8, followed by a decline as 𝑆 grows further due to in-

creased neighbor visits. Figure 11b and Figure 11c illustrate the

effects of varying𝑀 and 𝑒 𝑓 𝐶𝑜𝑛𝑠 on query performance. Lower𝑀

degrades graph quality, while higher𝑀 increases the number of ob-

jects traversed during the search. Similarly, lower 𝑒 𝑓 𝐶𝑜𝑛𝑠 leads to

insufficient candidates, whereas higher 𝑒 𝑓 𝐶𝑜𝑛𝑠 includes irrelevant

candidates, both hindering query performance. Therefore, setting

these parameters based on the dataset and workload is crucial for

balancing query efficiency and accuracy. As shown in Figure 12, in-

dex build time rises with higher 𝑆 ,𝑀 , and 𝑒 𝑓 𝐶𝑜𝑛𝑠 due to increased

distance computations. Based on a comprehensive evaluation of

query performance and index construction time, we select 𝑆 = 8,

𝑀 = 16, and 𝑒 𝑓 𝐶𝑜𝑛𝑠 = 500 as default settings.

Impact of Search Parameters. Figure 13 shows the impact of

varying the parameters 𝑒 𝑓 and𝑚 on hybrid filtering in HSIG. Here,

𝑒 𝑓 is typically set to a value greater than 𝑘 . Figure 13a and Fig-

ure 13c show that with𝑚 = 16, as 𝑒 𝑓 increases, recall gradually

improves while QPS decreases. This occurs because a larger 𝑒 𝑓
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Figure 13: Performance on different search parameters.

requires visiting more objects to gather sufficient candidates, en-

hancing accuracy but reducing efficiency. Figure 13b and Figure 13d

show that with 𝑒 𝑓 = 100, increasing𝑚 leads to a gradual improve-

ment in recall but a decrease in query efficiency. This is because a

larger𝑚 results in visiting more neighbors of each object during

the search, improving accuracy but at the cost of efficiency.

Impact of 𝑘 values. Figure 14 shows the impact of different 𝑘

values on query performance of HSIG. HSIG maintains strong effi-

ciency and accuracy across various𝑘 values. However, as𝑘 increases

from 10 to 100, performance gradually declines due to the increased

number of candidates that need to be filtered during the search.

5.8 Scalability
We evaluate the scalability of HSIG using datasets ranging from 10

to 100 million objects. We fix the index parameters to 𝑆 = 8,𝑀 = 16,

and 𝑒 𝑓 𝐶𝑜𝑛𝑠 = 500, and maintain a query range width of 25%. As

shown in Figure 15, both the index size and build time increase

almost linearly with the dataset size. Figure 15c plots the hybrid

filtering latency versus data size, indicating a logarithmic search

complexity. Notably, the recall consistently reaches 0.99 across all

dataset sizes. These results demonstrate that HSIG achieves strong

scalability in both index construction and query processing.

5.9 Discussions
Range-aware strategy selection.Asmentioned in Section 4.2, our

range-aware strategy selection method is based on historical data

statistics, not query patterns. This approach may face challenges

if the data distribution of the base dataset changes significantly

over time. To address this issue, we propose an adaptive method

that can detect changes in data distribution. If the change exceeds

the user-defined threshold, the method resamples objects from the

updated base dataset to recalibrate 𝜏𝐴 and 𝜏𝐵 , thereby adjusting the

range-aware search strategy selection.
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RF-ANNS with Multiple Attributes. Existing PG-based indexes

struggle to support RF-ANNS queries with multiple attributes, as

incorporating multiple attributes into a graph is challenging. How-

ever, with two enhancements, HSIG can be extended to handle such

queries. While we use the case with two attributes in this discussion,

the method can be adapted for more attributes. (1) Multiple single-

attribute indexes: Build a separate HSIG for each attribute. For a

conjunctive query with a query vector 𝑞, retrieve objects that sat-

isfy 𝑟1 (𝐴1) AND 𝑟2 (𝐴2), where 𝑟1 (𝐴1) and 𝑟2 (𝐴2) are the attribute
ranges. We aim to return the top-𝑘 ANN of 𝑞 among objects satisfy-

ing both ranges. Specifically, we modify Line 15 of Algorithm 7 to "if

𝑣 satisfies 𝑟1 (𝐴1) AND 𝑟2 (𝐴2), then push 𝑣 to 𝑎𝑛𝑛". For disjunctive

queries (𝑟1 (𝐴1) OR 𝑟2 (𝐴2)), we use separate indexes for 𝐴1 and

𝐴2 and merge the results. (2) Single index for multiple attributes:

Create a composite attribute (𝐴1, 𝐴2) and apply the z-order method

[28] to map them into a one-dimensional attribute, enabling the

construction of a single HSIG to handle RF-ANNS queries with

multiple attributes. We plan to explore a dedicated algorithm for

RF-ANNS queries with multiple attributes in future work.

6 RELATEDWORK
6.1 ANNS
The primary approaches for A𝑘NNS can be categorized tree-based

methods [2, 26], hash-based methods [13, 37, 50], quantization-

based methods [1, 9, 22, 24], and PG-based methods [6, 7, 23, 34, 35,

41, 49]. Tree-structured indexes like the KD-tree [4], R-tree [11],

VP-tree [8], and KMeans-tree [48] suffer from the "curse of dimen-

sionality" [14], making them ineffective in high-dimensional spaces.

Hash-based methods utilize hash functions to map vectors into

hash buckets. However, as the binary hash code length increases,

the number of buckets grows exponentially, leading to many empty

buckets, which reduces the search accuracy. Quantization-based

methods reduce storage and computational costs but involve lossy

compression, which produces a "ceiling" phenomenon on the search

accuracy [21]. PG-based methods show significant performance ad-

vantages and have attracted substantial attention. However, while

effective for vector retrieval, these methods fail to handle attribute

filtering effectively, limiting their applicability in scenarios requir-

ing integrated vector retrieval and attribute filtering.

6.2 Filtered ANNS
Most hybrid A𝑘NNS queries separate the process into vector re-

trieval and attribute filtering, which are combined to produce final

results. MA-NSW [45] explores ANNS with attribute constraints

by constructing indexes for each attribute combination. Vearch
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Figure 15: Impact of varying data size on SIFT dataset.

[20] and NGT [46] apply post-filtering, which first retrieves candi-

dates through vector search and then filters candidates based on

the attributes. This strategy is extendable to some vector libraries,

such as Faiss [18] and SPTAG [5]. However, they perform worse

when the selectivity of the query range is low, limiting the query

efficiency and accuracy. ADBV [43] uses a B-tree for attributes and

a PQ index for vectors, optimizing query plans with a cost model.

Milvus [39] partitions datasets by attributes and adopts the query

strategies of ADBV. However, they focus on query optimization

and partitioning techniques without enhancing the index struc-

ture. Filtered-DiskANN [10] develops a graph supporting attribute

matching and vector similarity searches. However, it focuses on

attribute matching, leaving a gap for A𝑘NN with range constraints.

NHQ [40] and HQANN [44] introduce a fused distance metric that

combines attributes and vectors, enabling simultaneous attribute

filtering and vector retrieval within a single graph index. However,

they lack a solid theoretical foundation due to the irrelevance of

attributes and vectors. ARKGraph [51] builds PGs for all possible at-

tribute range combinations and compresses the indexes. However, it

requires decompression during querying, reducing query efficiency.

SeRF [52] addresses range-filtering A𝑘NNS by designing a segment

graph that compresses multiple indexes for half-bounded range

queries and extends it to support general range queries. However,

SeRF does not support online updates of new data.

7 CONCLUSION
This paper addresses RF-ANNS queries over high-dimensional vec-

tors associated with attribute values. Existing methods, including

pre-, post-, and hybrid filtering strategies, which apply attribute

filtering before, after, or during the ANNS process, suffer perfor-

mance degradation when query ranges shift. We propose a novel

framework called UNIFY, which constructs a unified PG-based in-

dex that seamlessly supports all three strategies. Within UNIFY, we

introduce SIG, enabling efficient RF-ANNS by reconstructing and

searching a PG from relevant segments. Additionally, we present

HSIG, a variant of SIG that incorporates a hierarchical structure

inspired by HNSW, achieving logarithmic time complexity for RF-

ANNS. Experimental results demonstrate that UNIFY outperforms

state-of-the-art methods across varying query ranges.
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