
Are Joins over LSM-trees Ready?
Take RocksDB as an Example

Weiping Yu∗

Fan Wang∗

weiping001@e.ntu.edu.sg

FAN008@e.ntu.edu.sg

Nanyang Technological University

Xuwei Zhang
Nanyang Technological University

zhan0612@e.ntu.edu.sg

Siqiang Luo†

Nanyang Technological University

siqiang.luo@ntu.edu.sg

ABSTRACT

LSM-tree-based data stores are widely adopted in industries for

their excellent performance. As data scale increases, disk-based

join operations become indispensable yet costly for the database,

making the selection of suitable join methods crucial for system

optimization. Current LSM-based stores generally adhere to con-

ventional relational database practices and support only a limited

number of join methods. However, the LSM-tree delivers distinct

read and write e�ciency compared to the relational databases,

which could accordingly impact the performance of various join

methods. Therefore, it is necessary to reconsider the selection of

join methods in this context to fully explore the potential of various

join algorithms and index designs. In this work, we present a system-

atic study and an exhaustive benchmark for joins over LSM-trees.

We de�ne a con�guration space for join methods, encompassing

various join algorithms, secondary index types, and consistency

strategies. We also summarize a theoretical analysis to evaluate

the overhead of each join method for an in-depth understanding.

Furthermore, we implement all join methods in the con�guration

space on a uni�ed platform and compare their performance through

extensive experiments. Our theoretical and experimental results

yield several insights and takeaways tailored to joins in LSM-based

stores that aid developers in choosing proper join methods based

on their working conditions.
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1 INTRODUCTION

Log-structured merge (LSM) trees [62] based key-value stores have

gained signi�cant traction in the industry. Notable examples in-

clude RocksDB [25] at Facebook, LevelDB[28] and BigTable [13] at
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Figure 1: Our benchmark provides helpful guidelines to assist

practitioner in selecting proper methods according to their

working conditions for join in LSM-based key-value stores.

Google, HBase [1] and Cassandra [5] at Apache, X-Engine [30] at

Alibaba, WiredTiger [2] at MongoDB, and Dynamo [23] at Amazon.

These LSM-based stores are essential for applications such as social

media [6, 10], stream processing [12, 16], and �le systems [37, 69].

Joins over LSM-based stores. Many renowned LSM-based stores

have implemented join operations [5, 11, 23, 25, 57, 71] as shown

in Table 1. However, they typically rely on insights from relational

databases to focus on a few join methods. This raises the question:

Are these methods still the most appropriate choice for LSM-based

stores? Our analysis suggests a likely negative answer due to the

distinct and complex impact of LSM-trees. Speci�cally, while LSM-

tree enhances updates and lookups e�ciency, it requires additional

costs to maintain consistency, and the overall impact of LSM-tree

has not been meticulously evaluated. Consequently, there may exist

substantial space for optimizing the join method selection strategy

in LSM-based stores due to two problems.

Problem 1: Many join methods remain unexplored in exist-

ing LSM-based stores. As indicated in Table 1, current LSM-based

databases only practice limited join methods. However, the po-

tential of other join techniques has not been fully explored. For

instance, most LSM-based stores employ a synchronous consistency

strategy instead of a validation one for handling LSM-trees’ out-

of-place updates. This rationale is supported by the synchronous

strategy’s advantage in join e�ciency, as the validation strategy

incurs additional joining overhead. However, synchronous strategy

simultaneously introduces substantial update overhead which can

conversely deteriorate the performance under certain conditions. In

such cases, the validation strategy may surprisingly provide better

performance. Thus, it is crucial to expand the join design space to

include more join methods to enhance the selection criteria.

Problem 2: Many in�uential factors, tied to LSM-tree prop-

erties, on join performance have not been fully examined.

While existing LSM-based stores typically select join algorithms

based on selectivity inspired by relational database practices [43,

70, 73, 75], LSM-tree storage introduces additional performance

considerations. For instance, the performance of indexed nested
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Table 1: Di�erent join techniques supported in di�erent renowned LSM-based key-value databases.

NoSQL Storage Systems Secondary Index Join Algorithm Consistency Strategy Covering Index

AsterixDB [4] Embedded Index, Composite Keys INLJ, SJ, HJ Synchronous ✓

Cassandra [5] Lazy Index × Synchronous ×

CockroachDB [71], PolarDB-X Engine [11] Composite Index INLJ, SJ, HJ Synchronous ✓

HBase [1], LevelDB [28], RocksDB [25] × × × ×

MyRocks [57] Composite Index INLJ Synchronous ✓

loop join (INLJ) maintains robustness, compared to hash join (HJ)

and sort-merge join (SJ), for large entry sizes due to the lookup opti-

mization techniques in LSM-tree (e.g. Bloom �lters). Hence, though

INLJ is generally less preferred in high-selectivity cases, it still

can outperform HJ and SJ when handling large entry sizes. There-

fore, selecting an appropriate join method in LSM-based stores is

complex and requires examining more in�uencing factors.

To address these issues, we systematically study joins in LSM-

based stores and introduce an exhaustive benchmark that yields

novel insights, contributing primarily in the following aspects:

We identify key join method characteristics and propose

an inclusive con�guration space covering both existing and

potential new combinations. This con�guration space includes

four primitive join components, join algorithm (i.e. indexed nested

loop join, sort-merge join, and hash join), secondary index (i.e.

eager index, lazy index, and composite index), consistency strategy

(i.e. synchronous strategy and validation strategy), and covering

index (i.e. covering and non-covering). It allows us to describe

existing join methods and discover novel ones, such as the indexed

nested loop join combined with a non-covering eager index and

validation strategy. Such an integrated study allows us to explore

the join method overlooked by existing literature, which typically

concentrates on certain aspects of the entire space [47, 65, 72].

We tailor the theoretical analysis to the joins over LSM-

tree including 3 join algorithms across 12 scenarios and 6

index designs, many of which have not been previously ana-

lyzed in existing works. Di�erent from existing join analysis, our

assessment incorporates the unique characteristics of LSM-trees to

evaluate the overhead of join methods. Additionally, we analyze

the integrated cost of each join method in our con�guration space,

considering its distinct join algorithm, secondary index type, con-

sistency strategy, and covering index. Many combinations, such as

the integration of eager index designs with validation strategies,

have not been explored in prior research. This thorough analysis

not only leads to an in-depth understanding of the features of each

join method but also guides the design of our experiments.

We implement all 29 join methods within our con�gu-

ration space on a uni�ed platform and examine them un-

der diverse working conditions to derive guidelines for join

method selection in LSM-based stores.We examine 10 factors

related to workload and LSM-tree con�guration to assess their

impact on the performance of diverse join methods. Excitingly,

this leads to several useful guidelines as Figure 1 illustrates. In the

Movie dataset with moderate selectivity, SJ is the preferred method

based solely on selectivity. However, as entry size increases to 4096

bytes, INLJ outperforms both SJ and HJ by 70%, making it the best

choice. Notably, some di�er from traditional relational databases

and other data storage systems like those based on B+ trees. For ex-

ample, while selectivity is typically the main criterion in relational

databases, our results show that join frequency and entry size also

Table 2: Notations used in this paper. Subscripts denote asso-

ciated tables (e.g., ĈĎ : the number of levels in right data table

LSM-tree, ĈĎ′ : the number of levels in right index LSM-tree).

Term De�nition Unit

Ď, ď Right and left data tables

Ď′, ď ′ Index tables for right and left data tables

Ĉ Number of levels in an LSM-trees levels

Ċ Number of entries stored in an LSM-tree entries

ě Size of entries of LSM-tree bytes

þ Size of data block bytes

Ħ False positive rate of Bloom �lters

Ċ Ratio between the number of matched entries and
total entries in the LSM-tree

Ě Average duplication frequency of join attribute value
in a sequence of updates

entries

play crucial roles. In the Movie dataset with moderate selectivity,

SJ is the preferred method based solely on selectivity. However, as

entry size increases to 4096 bytes, INLJ outperforms both SJ and HJ

by 70%, making it the best choice. Additionally, some overlooked

secondary index designs can o�er competitive performance. For

instance, while the eager index is usually avoided due to its high

construction cost, it excels in frequent join workloads. In the User

dataset, INLJ with a composite index performs better than the ea-

ger index when joins occur less than once per 10 million updates.

However, when join frequency increases to 32, the eager index

outperforms the composite index by over 30% in latency.

The remainder of this paper is organized as follows: Section 2

provides preliminary knowledge about LSM-trees and joins in LSM-

based stores; Section 3 introduces our con�guration space; the

experimental results and discussion are elucidated in Section 4;

Section 5 summarizes the important insights and takeaways to

enhance our understanding of this topic, as well as points out some

directions to guide future research.

2 BACKGROUND

This section discusses background knowledge about joins over LSM-

based databases. Frequently used notations are listed in Table 2.

2.1 Log-Structured Merge Trees

An LSM-tree organizes data using an in-memory write bu�er and

multiple on-disk levels with capacities increasing exponentially

by a size ratio Đ . To store Ċ entries of size ě , an LSM-tree should

incorporate Ĉ = logĐ
Ċ ·ě
ĉ levels, where ĉ is the write bu�er size.

LSM-tree supports mainly three types of operations as follows.

Updates. LSM-tree uses an out-of-place update strategy where

key-value pairs, or entries, are initially stored in the write bu�er.

When this bu�er is full, the entries are �ushed to disk, progressing

through the LSM-tree levels as shown in Figure 2. In the worst case,

an entry reaches the largest level after Ĉ ·Đ compaction processes,

resulting in an update cost of ċ (Ĉ ·Đ · ě
þ )[19, 20].

Point Lookups. A point lookup in an LSM-tree searches for an

entry using a given key. It checks through all levels, returning
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Figure 2: An illustration of LSM-trees for a data table and the corresponding index table, constructed using various secondary

index types. In this �gure, dark blocks represent the keys of entries, while white blocks represent the values.

the result once the matched entry is found. To speed up this pro-

cess, Bloom �lters [9] are employed to indicate the presence of the

matched entry with false positive rate Ħ . Thus the lookup cost is

ċ (Ĉ · Ħ) if the entry is absent, or ċ (Ĉ · Ħ + + ěþ ,) if present.

Range Lookups. A range lookup retrieves entries within a key

range in an LSM-tree. It incurs ċ (Ĉ) I/O cost to seek quali�ed

entries across all levels [19, 20], and requires an additional ċ ( Ě ·ěþ )

cost for entry retrieval, where Ě is the number of matched entries.

2.2 Joins in LSM-tree based databases

Joins in LSM-tree based stores typically fall into two scenarios based

on the alignment of the join attribute with the primary keys of the

involved data tables. We examine an elementary case involving

two data tables, where the left and right tables are denoted as Ď

and ď . The data tables are stored in separate LSM-trees with their

primary keys as the keys in LSM-tree entries. We represent these

tables as Ď(ĦĨ , ĤĨ ) and ď (Ħĩ , Ĥĩ ), where Ħ is the primary key and Ĥ

represents non-primary attributes. Hence, there are two possible

scenarios for the data tables in join operation. In one scenario,

the join attribute is the primary key of the data table, thus entries

with speci�c join attributes can be accessed directly via the LSM

key (referred to as primary index) without additional overhead.

The other scenario is more complex where the join attribute is a

non-primary attribute. In this case, entries are di�cult to identify

by the join attribute since non-primary attributes are stored in

the values of the LSM-tree entries. Therefore, secondary indexes

can be introduced to identify entries by join attributes and then

bene�ting join algorithms involving lookups (e.g., indexed nested

loop joins), and the corresponding index tables are denoted as Ď′

and ď ′, respectively. Meanwhile, this introduces a tradeo� between

potential join performance gains and additional index construction

overhead. Our benchmark includes both scenarios and various

secondary index types to provide a comprehensive analysis.

3 CONSOLIDATED JOIN CONFIGURATION
SPACE FOR LSM-TREE

Algorithm 1: Update with Synchronous

Input: Data table Ď, index table Ď′ , update data (Ħğ , Ĥğ )

1 Lookup Ħğ in Ď for the corresponding secondary key ĤĮ
2 if ĤĮ == ĊđĈĈ then
3 Insert (Ħğ , Ĥğ ) to Ď

′

4 else
5 Lookup ĤĮ in Ď′ for the corresponding primary key ĦĮ
6 Delete (ĤĮ , ĦĮ ) in Ď

′

7 Insert (Ĥğ , Ħğ ) to Ď
′

Our investigation reveals that existing renowned LSM-based

stores support only a limited number of join methods, leaving many

potentially high-performing methods unexplored. This gap indi-

cates a lack of systematic study of join methods in LSM-based stores,

for which a comprehensive con�guration space encompassing a

wide range of instances is necessary. To �ll this gap we are the �rst

to propose an inclusive con�guration space tailored for joins over

LSM-trees comprising various join algorithms, secondary indexes,

consistency strategies, and covering indexes. This con�guration

encompasses all the existing join methods and many combinations

that have never been discussed before. Additionally, we provide

a theoretical analysis tailored to LSM-trees for each join method

within the con�guration space, which encourages a more compre-

hensive and thorough understanding of joins over LSM-trees.

This section provides a general introduction to and theoretical

analysis of various index designs (i.e., index types, consistency

strategies, and covering indexes) and join algorithms.

3.1 Secondary index types analysis

In LSM-based key-value stores, secondary indexes present a novel

trade-o� among join performance, update overhead, and space

consumption that requires detailed analysis. We consider three sec-

ondary index types [47, 65]: Eager Index (Eager), Lazy Index (Lazy),

and Composite Index (Comp). Our analysis in Table 3 quantitatively

evaluates their distinct performance to guide the index selection

for speci�c conditions.

Eager Index. Eager Index uses join attributes as keys and stores

associated primary keys and attributes in a posting list as the value

of the index entry. This structure links multiple entries that share

the same join attribute value. Its update process requires an extra

point lookup to retrieve the existing index entry with the same join

attribute, and then updates this entry before inserting it into the

index LSM-tree. It incurs ċ (Ĉ · Ħ + + ěþ ,) I/O cost for retrieval and

ċ (Ĉ · Đ · ě
þ ) for updates, as exempli�ed in Figure 2. The cost of

data extraction via point lookups isċ (Ĉ · Ħ) for empty lookups and

ċ (Ĉ · Ħ + + ěþ ,) for non-empty ones. The low false positive rate of

Bloom �lters suggests a lower cost for point lookups, potentially

favoring eager indexes and indexed nested loop joins for certain

workloads, as discussed in the evaluation section.

Lazy Index. Lazy Index also uses posting lists to store associated

primary keys within an index entry but defers their merging. Unlike

Eager Index, it merely appends a new entry to the write bu�er, with

index entries gradually merging during compaction at a cost ofċ (Ĉ ·

Đ · ěþ ). As a result, entries with the same key may exist concurrently
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Table 3: The theoretical analysis of various secondary indexes and consistency strategies. In this table, the point lookup cost

refers to the I/O cost of �nding index entries associated with a certain join attribute value. Moreover, it is worth mentioning

that we only present the cost for updating the index table given the update cost of the data table is identical for each method.

Index
Consistency

strategy

Index

Type

Empty Point

Lookup (Ė0)
Non-empty Point Lookup (Ė1) Update (U)

S-Eager

Synchronous

Eager Index ċ (Ĉ′ · Ħ ) ċ (Ĉ′ · Ħ + + ě
′

þ
, ) ċ (Ĉ · Ħ + + ě

þ
, ) +ċ (Ĉ′ · Ħ + + ě

′

þ
, ) +ċ (Ĉ′ · Đ · ě

′

þ
)

S-Lazy Lazy Index ċ (Ĉ′ · Ħ ) ċ (Ĉ′ · + ě
′

þ
, ) ċ (Ĉ · Ħ + + ě

þ
, ) +ċ (Ĉ′ · Đ · ě

′

þ
)

S-Comp Composite Keys ċ (Ĉ′ · Ħ ) ċ (Ĉ′ + Ě · ě
′

þ
) ċ (Ĉ · Ħ + + ě

þ
, ) +ċ (Ĉ′ · Đ · ě

′

þ
)

V-Eager

Validation

Eager Index ċ (Ĉ′ · Ħ ) ċ (Ě · (Ĉ · Ħ + + ě

þ
, ) ) +ċ (Ĉ′ · Ħ + + ě

′

þ
, ) ċ (Ĉ′ · Ħ + + ě

þ
, ) ) +ċ (Ĉ′ · Đ · ě

′

þ
)

V-Lazy Lazy Index ċ (Ĉ′ · Ħ ) ċ (Ě · (Ĉ · Ħ + + ě

þ
, ) ) +ċ (Ĉ′ · + ě

′

þ
, ) ċ (Ĉ′ · Đ · ě

′

þ
)

V-Comp Composite Keys ċ (Ĉ′ · Ħ ) ċ (Ě · (Ĉ · Ħ + + ě

þ
, ) ) +ċ (Ĉ′ + Ě · ě

′

þ
) ċ (Ĉ′ · Đ · ě

′

þ
)
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Figure 3: Synchronous incurs extra update cost, Validation

cannot remove invalid entries, adding query overhead.

at di�erent LSM-tree levels, requiring a modi�ed lookup process

that examines all levels to aggregate all relevant entries. This results

in a lookup cost of ċ (Ĉ · + ěþ ,). For instance, as Figure 2 shows,

retrieving entries with join attribute ā requires extracting index

entries from multiple levels to compile the complete posting list

{6, 1, 8}. Lazy Index provides better update e�ciency but incurs

higher lookup overhead, suiting workloads requiring rapid index

updates but tolerating infrequent point lookups.

Composite Index. The secondary index with a composite key

stores tuples with the same join attribute value in separate entries,

using a concatenated index key of the primary key and join at-

tribute. This setup enhances lookups with pre�x �lters, where the

join attribute serves as the pre�x. For example, as illustrated in Fig-

ure 2, n update involving the primary key {6} and join attribute {ā}

generates an index key {ā6}, incurring an update cost ofċ (Ĉ ·Đ · ěþ ).

Point lookups require examining all LSM-tree levels due to the po-

tential distribution of entries, with a cost of ċ (Ĉ + Ě · ě
þ ), where

Ě is the number of matched entries. Although Composite Index

generally o�ers robust update and lookup performance, its prac-

ticality may su�er due to increased space requirements and more

compaction cost, particularly with more duplicated join attributes.

Runing example: A data table with 10 million 64 bytes tuples

introduces a three-level LSM-tree if the write bu�er is 16 MB and

size ratio is 10. When the Bloom �lter is set to 10 bits per key, ac-

cording to Table 3, the searching cost (Ĉ′ ·Ħ) of Eager is neglectable

compared to the other two types, indicating faster lookup perfor-

mance. Meanwhile, the update cost of Eager is much higher since

the writing cost (Ĉ ·Đ · ě
þ ) is less than 1 while the additional cost

(Ĉ ·Ħ + + ěþ ,) is greater than 1. Hence Eager bene�ts query-intensive

workloads like indexed nested loop join with frequent join.

3.2 Consistency strategy analysis

Due to the out-of-place update mechanism, obsolete data entries

in LSM-based systems may not be promptly removed, requiring

consistent maintenance between data and index tables to ensure

accurate join results that are achieved via typical two methods.

Algorithm 2: Query with Validation Strategy
Input: Data table Ď, index table Ď′ , queried secondary key Ĥğ

1 Lookup Ĥğ in Ď
′ for the corresponding primary key ĦĮ

2 if ĦĮ is ĊđĈĈ then
3 return ĊđĈĈ

4 else
5 Lookup ĦĮ in Ď for the corresponding secondary key ĤĮ
6 if ĤĮ == Ĥğ then
7 return (Ĥğ , Ħğ )

8 else
9 return ĊđĈĈ

Synchronous. Synchronous immediately checks validity upon

updates to maintain consistency. This strategy improves lookup

performance but increases update costs due to additional synchro-

nization. The update process involves verifying data entry existence

and updating the index. Overall update costs for di�erent secondary

indexes are detailed in Table 3.

Validation.Validation in LSM-style secondary indexes ensures join

result correctness by checking the data table during joins. Hence,

it simply need to insert new entry to update the index LSM-tree

without removing obsolete data. Accordingly, the joining cost of

Validation includes both querying the index entry and verifying

all associated primary keys, expressed as ċ (Ě · (Ĉ · Ħ + + ěþ ,)) +

ċ (Ĉ′ + Ě · ě
′

þ ) in Table 3, where Ě is the number of primary key

duplicates per index entry. Validation therefore incurs lower costs

during index building but higher costs during joining.

Covering Index.A covering index includes the primary key and all

tuple attributes, except the join attribute, within the index entry’s

value. Conversely, a non-covering index only stores the secondary

and primary key, resulting in smaller entry sizes which delivers

improved update and degraded lookup performance. The choice

between covering and non-covering index is closely tied to the

consistency strategy. Covering indexes complement Synchronous

methods by enhancing lookup performance without querying data

LSM-trees. Validation pairs well with non-covering indexes, as both

require data entry retrieval.
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Table 4: Theoretical analysis of join cost, and ď and Ď represent the inner and outer table for INLJ, respectively.

Method Join algorithm Data table S Data table R Space complexity Join cost

INLJ-P

Indexed Nested

Loop Join

Primary index Regular column Ā (Ď) +Ā (ď ) (ĊĎ ·
ěĎ

þ
) + ĊĎ ( (1 − ĊĎ )Ė0 (ď ) + ĊĎ · Ė1 (ď ) )

INLJ-PS Primary index Secondary index Ā (Ď) +Ā (ď ) +Ā (Ď′ ) (ĊĎ′ ·
ě
Ď′

þ
) + ĊĎ ( (1 − ĊĎ )Ė0 (ď ) + ĊĎ · Ė1 (ď ) )

INLJ-N Regular column Regular column Ā (Ď) +Ā (ď ) (ĊĎ ·
ěĎ

þ
) + ĊĎ (Ċď ·

ěď

þ
)

INLJ-NS Secondary index Regular column Ā (Ď) +Ā (ď ) +Ā (ď ) (ĊĎ ·
ěĎ

þ
) + ĊĎ ( (1 − ĊĎ )Ė0 (ď

′ ) + ĊĎ · Ė1 (ď
′ ) )

INLJ-SS Secondary index Secondary index Ā (Ď) +Ā (ď ) +Ā (Ď′ ) +Ā (ď ′ ) (ĊĎ′ ·
ě
Ď′

þ
) + ĊĎ ( (1 − ĊĎ )Ė0 (ď

′ ) + ĊĎ · Ė1 (ď
′ ) )

SJ-P

Sort-merge

Join

Primary index Regular column 2Ā (Ď) + 2Ā (ď ) (Ċď ·
ěď

þ
) + 5(ĊĎ ·

ěĎ

þ
)

SJ-PS Primary index Secondary index Ā (Ď) + 2Ā (ď ) +Ā (Ď′ ) (Ċď ·
ěď

þ
) + (ĊĎ′ ·

ě
Ď′

þ
)

SJ-N Regular column Regular column 2Ā (Ď) + 2Ā (ď ) 5(Ċď ·
ěď

þ
) + 5(ĊĎ ·

ěĎ

þ
)

SJ-NS Secondary index Regular column 2Ā (Ď) +Ā (ď ) +Ā (ď ′ ) (Ċď′ ·
ě
ď′

þ
) + 5(ĊĎ ·

ěĎ

þ
)

SJ-SS Secondary index Secondary index Ā (Ď) +Ā (ď ) +Ā (Ď′ ) +Ā (ď ′ ) (Ċď′ ·
ě
ď′

þ
) + (ĊĎ′ ·

ě
Ď′

þ
)

HJ-P
Hash Join

Primary index Regular column 2Ā (Ď) + 2Ā (ď ) 3(Ċď ·
ěď

þ
) + 3(ĊĎ ·

ěĎ

þ
)

HJ-N Regular column Regular column 2Ā (Ď) + 2Ā (ď ) 3(Ċď ·
ěď

þ
) + 3(ĊĎ ·

ěĎ

þ
)

3.3 Join algorithm analysis

In this section, we integrate the previously discussed index designs

into three join algorithms: indexed nested loop join (INLJ), sort-merge

join (SJ), and hash-based join (HJ), in LSM-based key-value stores. A

join method is the combination of speci�c join algorithm, secondary

index type, and consistency strategy.

Indexed Nested Loop Join. INLJ is a fundamental join that scans

the left (outer) data table Ď and searches the right (inner) data table

ď for matching join attributes. This method’s overhead includes

scanning and searching costs. Scanning each entry in Ď’s LSM-

tree incurs a constant cost of ĊĎ ·
ěĎ
þ . Without an index, searching

requires scanning the entire right LSM-tree for each Ď entry, costing

ĊĎ · (Ċď ·
ěď
þ ), which is unacceptable. However, if ď is indexed,

either by its primary key or a separate index LSM-tree, the cost is

drastically reduced by the point lookup operation. As detailed in

Section 3.1, point lookup costs depend on whether the search �nds

a match. Assuming a match ratio ĊĎ in Ď, the search cost is (ĊĎ ·
ěĎ
þ ) +ĊĎ ((1−ĊĎ)Ė0 +ĊĎ ·Ė1), where Ė0 and Ė1 represent the costs

of empty and non-empty lookups shown in Table 3. The overall

join costs for various scenarios are further detailed in Table 4.

Sort-Merge Join. SJ identi�es matching tuples by sorting join

attributes from the left and right data tables. To this end, entries

are scanned from the LSM-trees, sorted into multiple runs, and

written back to disk. Note that single-run sorting is not feasible

due to memory limits. Subsequently, these runs are processed by a

k-way merge [8] and then saved to disk which is �nally read out

to execute the join. Hence the join cost sums up to 5(Ċ · ě
þ ).With

available indexes, sorting and merging steps can be skipped since

entries can be retrieved sequentially by join attributes. As shown

in Table 4, SJ performs best when both tables are indexed, which

our experimental results con�rm.

Hash Join. HJ groups tuples with matching attributes from the

left and right tables into the same buckets using join attributes. For

left table Ď, it scans all entries, assigns them to buckets based on

hash values, and stores them on disk. During the join, these buckets

are retrieved, resulting in a total cost of 3(ĊĎ ·
ěĎ
þ ). Unlike SJ, HJ’s

e�ciency is not in�uenced by the presence of indexes. As shown

in Table 4, HJ generally has lower join overhead than SJ, but SJ

performs better when indexes are used. Further analysis of both

algorithms’ performance is provided in later sections.

Join frequency

HJ Matching rate SJ-SS

INLJ Entry size

low medium high

SJ INLJ

low high

Join frequency

small large

Entry size

medium high

*/S-Eager

low

SJ-N

*/S */V

small large

Duplication

*-Lazy(Comp) *-Lazy

low high

Figure 4: A sketch of a decision graph according to the theo-

retical analysis results in Table 3 and Table 4.

Runing example: Consider join of two data tables (*-P), both con-

sisting of 10 million 64 bytes tuples, has matching rate of 1%. The

data block size is 4KB, and Bloom �lter uses 10 bits per key. Accord-

ing to Table 4, SJ and HJ exhibit comparable performance, while

INLJ outperforms them due to e�cient query operations (small Ė0
and Ė1). When ěĎ , the entry size of table R, decreases from 64 to 4

bytes, SJ’s join cost decreases substantially until surpassing INLJ,

whose performance remains stable due to the ceiling component in

Ė1. Conversely, as ěĎ increases, HJ can outperform SJ.

4 EVALUATING JOINS OVER LSM-TREES

We experimentally evaluate the in�uence of various factors on

the performance of diverse join methods to summarize practical

guidelines for choosing the most suitable methods under speci�c

working conditions. To this end, we identify several important vari-

ants introduced in the theoretical analysis as presented in Tables 3

and 4, which can be classi�ed into two categories: join algorithm

related factors and secondary index related factors. The fol-

lowing parts examine each of these factors individually.

Hardware. All experiments are conducted on a server with an

Intel Xeon Gold 6326 processors, 256GB DDR4 main memory, 1TB
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Table 5: Feature of Data Distribution in Benchmark Datasets.

Dataset
Duplication Matching Skewness
ĚĨ Ěĩ ĊĨ Ċĩ ĂĨ Ăĩ

Real
Database

Movie 4.1 5.6 0.72 0.99 0.89 0.85
User 4.2 3.9 0.42 0.40 0.93 0.92
Face 1.0 1.0 1 1 0 0
Wiki 1.1 1.1 1 1 0.20 0.20

Synthetic
Datasets

Unif 4.0 4.0 0.8 0.8 0 0
Zipf 2.6 2.6 1 1 0.5 0.5

NVMe SSD, a default page size of 4 KB, and running 64-bit Ubuntu

20.04.4 LTS on an ext4 partition.

Implementation.We implement all 29 join methods within our

proposed con�guration space on a uni�ed platform RocksDB [25],

a prevalent LSM-based storage. While RocksDB does not inherently

support joins, this required us to design custom work�ows for vari-

ous join algorithms and index types, many of which were developed

from scratch for LSM-based stores. For instance, in the Eager and

Lazy index designs, long posting lists, particularly with skewed or

duplicated data, introduce signi�cant overhead. To mitigate this

and improve e�ciency, we applied optimized C++ techniques for

string management [58]. The LSM-tree construction for both data

and index tables follows RocksDB’s default settings, with a block

size of 4096 bytes, a 16MB write bu�er, a size ratio of 5 to introduce

more levels, and no block cache. Our implementation of sort-merge

join using a streamlined approach, setting the total sorted segment

size to 16MB. For hash join, we integrated BKDR hash function [63]

with Grace Hash Join to reduce hash collisions, using 16MBmemory

for partitioning and probing.

Baselines.We examine all join methods in our con�guration space

each speci�ed by particular join algorithm (i.e. INLJ, SJ, and HJ),

secondary index type (i.e. Eager, Lazy, and Comp), and consistency

strategy (i.e. Synchronous (S) and Validation (V)). For example,

INLJ-NS/S-Eager refers to the indexed nested loop join applied to a

scenario where the data table R is a regular column and S is indexed

using an eager index with a synchronous consistency strategy.

Datasets. We incorporate four real datasets and two synthetic

datasets in our experiments as listed in Table 5. These datasets en-

compass diverse typical workloads with distinct data distributions

speci�ed by duplication, matching rate, and skewness. Speci�cally,

duplication refers to the average number of replicas of primary

keys (ęĨ , ęĩ ) or join attributes (ĚĨ , Ěĩ ) in the data table, matching

rate (Ċ) represents the ratio of the selected entries in a join, and

skewness (Ă ) re�ects the shape of data distribution.

Following the existing works related to joins [50, 51, 66, 70,

73, 75], we examine three widely used benchmarks, Stack [52],

IMDB [43], and SOSD [51] to derive our real datasets. For tailor-

ing each benchmark to our task, we select two joinable attribute

as the join attributes. User is derived from the Stack benchmark,

which involves high duplication and skewness along with a mod-

erate matching rate. Movie dataset is extracted from IMDB bench-

mark that has high duplication and skewness while presenting a

low matching rate. Face andWiki dataset are selected from SOSD

benchmark which presents high matching rate and slightly skewed

distribution with a few duplications [51], respectively.

Furthermore, we design two synthetic datasets that enable swift

adjustment of features like entry size and skewness to generate

diverse workloads. Unif dataset uses uniformly distributed integers

as join attributes, while Zipf dataset uses widely utilized Zip�an

distribution [31, 34, 46, 59, 67, 74] to generate skewed join attributes.

By default, each dataset contains 10 million entries (64 bytes per

entry, with 10-byte primary keys and join attributes), resulting in

a total size of 0.5GB. This setup balances capturing key LSM-tree

characteristics with experimental e�ciency. We also vary dataset

sizes from 0.5GB to 40GB in later experiments for a broader analysis.

4.1 Current join methods can be suboptimal

Current LSM-based stores typically adhere to conventions in re-

lational databases that determine join algorithms based on selec-

tivity and neglect many potentially e�ective index designs. Our

experiments indicate that several factors also signi�cantly impact

performance of di�erent join methods, like entry size (Figure 5

(a)), join frequency (Figure 5 (b)), and matching rate (Figure 5 (c)).

Furthermore, various index designs exhibit impressive performance

under speci�c conditions, in�uenced by entry size (Figure 6), data

distribution (Figure 7 and Figure 8), and join frequency (Figure 9).

To the best of our knowledge, no existing works have thoroughly

investigated the impact of these factors on the join methods selec-

tion or carefully examined the underlying principles. Our study �lls

this gap and provides novel insights from extensive experiments.

4.2 Entry size vs. join algorithm selection

We test di�erent join algorithms on two real datasets, User and

Face that present di�erent performance trends, with entry sizes

varying from 32 bytes to 2048 bytes. We evaluate a wide range of

scenarios, including those without index, single index, and dual

index, as presented in Figure 5 (a). In single index cases, we focus

on con�gurations with a primary index to avoid the impact of

index construction costs. For dual index scenarios, INLJ and HJ

are excluded since, as Table 4 indicates, additional indexes do not

lead to performance enhancement. Moreover, those without index

typically present inferior performance, thus being placed in our

technical report for space constraints. Furthermore, Composite

Index and synchronous strategy are employed by default, and the

impact of index types is discussed in subsequent subsections.

The results show that SJ and HJ have comparable join latencies

across various cases and datasets, consistent with our theoretical

analysis. The join costs of SJ-P and HJ-P are (Ċď ·
ěď
þ ) + 5(ĊĎ ·

ěĎ
þ )

and 3(Ċď ·
ěď
þ ) + 3(ĊĎ ·

ěĎ
þ ), respectively, which are nearly identical

when tables Ď and ď have similar data scales and entry sizes. Both

algorithms exhibit a linear increase in join cost as entry size grows,

aligning with the experimental results. In contrast, INLJ shows

greater resilience to larger entry sizes. For example, as entry size

increases from 32 to 4096 bytes in the Face dataset, HJ’s join latency

increases sixfold, while INLJ’s latency only rises by 50%. As analyzed

in Section 3.3, INLJ’s overhead includes scanning and searching

costs, the former grows with entry size, but the latter remains

constant if the entry size is smaller than the block size. This explains

why INLJ, initially performing worse with small entries, gradually

outperforms SJ andHJ as the entry size increases. In theUser dataset,

INLJ’s latency is 3 seconds higher than SJ andHJwith 32 byte entries

but surpasses both when the entry size exceeds 512 bytes.

Notably, sort-merge join with dual index (SJ-PS) exhibits im-

pressive join e�ciency due to the e�cient range scan. However, it

requires signi�cant index building overhead, degrading the overall
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Figure 5: Join algorithm performance varies greatly with changes in entry size, join frequency, and matching rate. In (a), SJ-PS

incurs additional index building latency (in seconds) as follows: 29, 43, 278, 627, 1162 (User); 25, 43, 239, 597, 1149 (Face).

performance. Meanwhile, the impact of index building cost varies

with join frequency which we explore in the next subsection.

4.3 Join frequency vs. join algorithm selection

To explore the impact of join frequency on algorithm selection, we

vary join frequencies from 1 to 32 and evaluate the performance of

various join algorithms. The dataset selection follows the criteria

with Figure 5 (a), with the inclusion of Wiki for diversity. Here,

join frequency refers to the number of join operations in a �xed

workload. For example, with a join frequency of 2, a dataset with 10

million updates is split into two subsets of 5 million updates each,

and a join operation is performed after processing each subset. Thus

the total number of updates remains constant across experiments,

regardless of join frequency. We assessed system latency including

both join and index-building latency, as shown in Figure 5 (b). The

results show that SJ-PS performs poorly at low join frequencies but

gradually surpasses other algorithms as frequency increases. For

example, with a join frequency of 1, the system latency of SJ-PS is

nearly �ve times that of the best-performing algorithm, hash join

with primary index (HJ-P). However, with join frequency increases

to 32, SJ-PS becomes the best algorithm with system latency 50%

of HJ-P. As detailed in Table 4 and Figure 5 (a), SJ-PS achieves high

join e�ciency because its indexes allow sequential retrieval by join

attributes without sorting. This comes at the cost of extra index

construction overhead. As join frequency rises, the latency of SJ-P,

INLJ-P, and HJ-P increases substantially, while SJ-PS grows more

moderately, making it more appealing for high-frequency joins.

INLJ-P typically has higher system latency than SJ-P and HJ-P

for small entry sizes, as discussed in Section 4.2. However, INLJ out-

performs SJ in the User dataset, which challenges our expectations.

Di�erences in matching rates, duplication, and skewness between

the datasets highlight the signi�cance of these factors in selecting

join methods, which is analyzed in the following section.

4.4 Matching rate vs. join algorithm selection

As discussed in Section 4.3, matching rate can signi�cantly impact

join algorithm performance, in�uencing the selection of the most

suitable method. Since matching rates in real datasets cannot be

adjusted, we use the representative dataset Unif to evaluate various

join algorithms, with matching rates decreasing from 1.0 to 0.2,

where the join attribute is a non-primary key in both tables Ď and ď .

We break down system latency into joining and index-building la-

tency, as shown in Figure 5 (c). It is observed that INLJ’s join cost is

positively correlated with the matching rate. This is because lower
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Figure 6: The Impact of entry size on index designs.

matching rates lead to fewer matched entries and more empty point

lookups, which cost less than non-empty lookups, as indicated in

Table 3. In contrast, HJ and SJ join latencies are una�ected by match-

ing rate, as they must process all entries regardless of matches. This

experiment also reveals the general impact of secondary indexes

on the performance of di�erent join algorithms. The update per-

formance of secondary indexes a�ects the index building latency

of INLJ and SJ, while the lookup performance mainly in�uences

the joining latency of INLJ. More complete and in-depth analysis is

provided in the following subsections.

Remark: Join algorithm selection is in�uenced by more

than just selectivity. Larger entry sizes or lower matching rates

favor INLJ, while higher join frequency reduces the impact of

index-building overhead, making index-based algorithms like

INLJ and SJ more advantageous. When index-building costs are

negligible, SJ with two indexes is the preferred choice.

4.5 Entry size vs. Index design

To examine the impact of entry size on index design, we evaluated

di�erent entry sizes on real datasetsĉĥĬğě and Ăėęě , representing

the more skewed cases and more uniform (less duplicated) sce-

narios, respectively. For the Eager Index with Synchronous, the

index building costs increase obviously with entry size on skewed

dataset ĉĥĬğě , reaching 7000 seconds for 2048-byte entries as is

shown in Figure 6. This is due to the exhaustive merging of entries

with the same keys. Moreover, in skewed datasets, some entries
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Figure 7: The performance of various index designs with diverse primary key and join attribute duplication in Unif dataset.

occur more frequently, leading to dramatically larger entry sizes.

Synchronous has to retrieve these large entries repeatedly to re-

move stale values. In this process, large entry sizes can lead to a

more serious burden. This is due to the frequent merging of large,

repeated entries, which signi�cantly increases the overhead of re-

trieving and removing stale values. In contrast, Composite and Lazy

Indexes, which don’t eagerly merge entries, handle entry size more

e�ciently, resulting in relatively stable index building costs.

In uniform datasets like Ăėęě , Synchronous index building costs

remain stable due to fewer merges, but its join costs surpass those of

Validation, since Validation avoids repeated checks in less-duplicated

data. Moreover, Synchronous must maintain a large index table,

with lookup overhead, as analyzed in Table 3, increases with entry

size. In contrast, Validation, storing only primary keys and join

attributes, has more stable index sizes, making it preferable for

large entries in uniform datasets. For skewed data, the Eager Index

is ine�cient due to high index building time, especially with large

entries. The composite key index is more favorite given it gener-

ally delivers sound performance. However, this preference is also

subject to the join frequency as we introduce in Section 4.7.

4.6 Data distribution vs. Index design

We examine data distribution’s impact on index design in two

scenarios. Since data distribution is determined in real datasets, we

include synthetic datasets to analyze the duplication in uniform

datasets by varying the duplicates of primary key (ęĨ , ęĩ ) and join

attribute in a grid pattern on Unif dataset, as well as investigate the

impact of join attribute skewness (ĂĨ , Ăĩ ) on Zipf dataset.

Duplication. As Figure 7 reveals, join latency decreases with incre-

ment of primary key duplicates, since LSM-tree merges identical

primary keys that e�ectively reduces data scale. For all Valida-

tion methods (Figures 7(a)-(c)), join costs increase with higher join

attribute duplication. This aligns with our analysis in Table 3, indi-

cating the increased lookup cost of Validation. For Eager with Vali-

dation, the cost is represented asċ (Ě · (Ĉ ·Ħ++ ěþ ,))+ċ (Ĉ′ ·Ħ++ě
′

þ ,).

As the duplication Ě increases, so does the overall cost. In the Syn-

chronous approach, only Composite Index shows a slight increase

in join latency with higher join attribute duplication (Figure 7(d)).

This is because Eager Index and Lazy Index can merge more identi-

cal keys into single entries, consistent with our analysis.

Regarding index building, Eager Index demonstrates increased

latency with higher join attribute duplication (Figure 7(b)) due
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Figure 8: The performance of various index designs with

varying skewness in Zipf dataset.

to non-empty point lookups for each duplicate. In contrast, Lazy

Index shows an opposite trend (Figure 7(c)) because the compaction

process in LSM-tree merges identical join attributes, which not only

avoids extra lookup costs but also reduces the index table size. For

Synchronous methods, the trend is less clear. Higher primary key

duplication leads to more entry checks but also a smaller index

table, causing index building costs to �uctuate. Consequently, for

Composite Index (Figure 7(d)) and Lazy Index (Figure 7(f)), index

build costs remain relatively stable.

Skewness. Figure 8 reveals striking patterns in index building

and join latency as data skewness increases. Notably, Eager Index

demonstrates exceptionally high index building latency, while all

Validation methods exhibit dramatically high join latency. When

skewness reaches 0.7, the eager index enhanced INLJ with syn-

chronous (INLJ-NS/S-Eager) and validation (INLJ) strategy require

767 and 172 seconds for index building, respectively, while other

methods take less than 25 seconds. This substantial di�erence can

be attributed to the increased frequency of validity checks for high-

occurrence entries as skewness grows. Furthermore, Eager Index’s

practice of merging identical keys results in potentially very large

entry sizes for high-occurrence items. This issue is exacerbated in

the Synchronous approach, which must frequently retrieve these

large entries to remove stale primary keys from the value. In con-

trast, Lazy Index and Composite Index, which don’t eagerly merge

entries, maintain more manageable entry sizes.

On the join latency side, Validation methods incur signi�cantly

higher costs, which exceed 4000 secondswhen skewness approaches
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Figure 9: Di�erent index designs deliver varied performance

facing increasing join frequency.

0.7, while other methods take only a few hundred seconds. This

can be explained by our analysis in Table 3, where each Validation

method includes a lookup term of ċ (Ě · (Ĉ · Ħ + + ě
þ
,)). This term

scales with increasing skewness and associated factor Ě , especially

for INLJ, thus leading to the observed high join latencies. In sum-

mary, Lazy Index and Composite Index with Synchronous approach

demonstrate superior resilience to data skewness.

4.7 Join frequency vs. Index design

We examine the impact of join frequency on index design by varying

the join frequency on two datasets: User and Wiki, following the

experiment in Section 4.3. As illustrated in Figure 9, the overall costs

of Validation methods rise much faster than Synchronous methods

as join frequency increases in both uniform (Wiki) and skewed (User)

datasets. For example, in the User dataset, Validation costs jump

from 460-500 seconds to 4800-5100 seconds, while Synchronous

methods remain under 630 seconds. This di�erence stems from their

design: Validation must check the data table for every matching

entry, which results in repeated validity checks as join frequency

increases. Synchronous methods, on the other hand, verify the

validity of each entry only once during the index building phase,

hence saving ċ (Ě · (Ĉ · Ħ + + ě
þ
,)) I/Os compared to Validation for

each lookup in subsequent joins.

Moreover, Eager Index demonstrates the best overall perfor-

mance among the three types of indexes. For instance, on the User

dataset, Eager Index with Synchronous completes 32 joins in 390

seconds, while Composite and Lazy Index require 630 and 570 sec-

onds. Eager Index saves 38% and 32% overall latency respectively,

which will become more pronounced as join frequency increases.

This advantage stems from Eager Index’s lower join cost, which

can be guaranteed as one entry lookup (ċ (Ĉ′ ·Ħ + +ě
′

þ
,) as shown in

Table 3). In contrast, the other two index types may scatter entries

with the same keys across di�erent levels of the LSM-tree, neces-

sitating multiple retrievals for a single matching data entry. The

performance gap seems relatively modest with Validation methods

as their costs are dominated by the check process of Validation.

In summary, Synchronous and Eager Index methods demonstrate

superior performance as join operations become more frequent.

Remark: Eager Index and Validation are underestimated

in conventional LSM-tree databases. Eager Index excels with

frequent joins (e.g., more than twice per 10 million updates),

while Validation outperforms Synchronous when entry sizes are

large (e.g., over 512 bytes on the Ăėęě dataset).

4.8 Impact of increasing database updates

Database updates a�ect multiple parameters with complex system

overhead impacts, making theoretical analysis di�cult. Here we

measured cumulative join and index building latencies across dif-

ferent join algorithms, index types, and consistency strategies with

varying update counts. In our experiments, we tested both Unif and

Zipf datasets by dividing the dataset into equal subsets, perform-

ing joins after processing each subset, and recording cumulative

latencies, which results are shown in Figure 10.

In uniform datasets, cumulative join latency grows quadrati-

cally, meaning join costs increase linearly with data scale. This is

supported by Table 4, which shows that almost every component

is linearly related to the number of entries. For skewed datasets,

as the duplicates of join attributes increases, the joining cost for

INLJ methods exceeds that of SJ, and the cumulative latency trend

increases more rapidly compared to uniform datasets. This is due

to the exponential growth in duplicate join attributes, which ne-

cessitates signi�cantly more point lookups. However, when the

skewed attribute is the primary key, the impact is reduced since the

duplicates are automatically merged by LSM-tree, thus reducing

the data scale and the number of required point lookups.

In terms of index building, the cumulative latency increases lin-

early in both datasets, indicating that the cost of incrementally up-

dating the index with each partition of uniform data remains consis-

tent. As analysed in Table 3, the number of levels is almost the sole

dynamic factor in each term, and these levels do not change rapidly

during index construction. So the expected cost of index building

remains relatively stable as the data volume increases. Furthermore,

the index building cost for the Eager Index also climbs more steeply.

This is because the frequently occurring join attributes produce

enlarged index entries, which requires more resources to access.

Remark: In uniform datasets, join and index building costs grow

steadily across methods, thus our selection criteria is still

applicable. For highly skewed datasets, we recommend HJ or SJ

with Composite or Lazy Index to deal with large-scale updates.

4.9 Impact of Tuning LSM-tree

To better understand the interaction of LSM-tree and joins, we

examine various LSM-tree parameters. We utilize the �exible syn-

thetic dataset with uniform distribution, Unif, to explicitly re�ect

the impact of di�erent LSM-tree structures.

Size ratio. Figure 11 shows the impact of size ratio, a key com-

paction policy factor, which increases from 2 to 100. INLJ-NS/S-

Comp join latency reduces from 60 to 30 seconds due to fewer

LSM-tree levels and reduced Seek operations during lookups. How-

ever, Eager Index’s join latency remains stable as it uses only one

version of secondary keys. SJ and HJ are una�ected since lookup

operations are not involved. Meanwhile, index building latency

increases with size ratio. For SJ-SS/V-Comp, it rises from 25 to 105

seconds as size ratio increases from 20 to 100, due to heavier update

overhead caused by larger compactions. For INLJ, larger size ratios

bene�t frequent join scenarios, while smaller ratios are better for

infrequent joins. For SJ and HJ, smaller size ratios are recommended

to reduce index building cost and improve join performance.

Write bu�er. Memory allocation has garnered signi�cant interest

within the LSM-tree community [32, 48, 60]. We examined memory
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Figure 10: The performance of di�erent join methods under increasing database updates.

allocation for the writer bu�er, Bloom �lters, and block cache, start-

ing with the write bu�er. In RocksDB, adjusting the write bu�er

size a�ects join latency for INLJ with Composite and Lazy Index

by reducing levels and merging entries in index tables. This e�ect

is less pronounced for Validation, where latency is predominantly

in�uenced by the validation process. For SJ and HJ, as they do not

rely on point lookups, changes in the number of levels do not a�ect

their performance. While larger write bu�ers theoretically reduce

index building latency, they can lead to ine�cient �ushes and I/O

spikes. Figure 11 shows joining costs with 256MB bu�er exceed

those with 64MB bu�er. We recommend using moderately large

bu�er sizes for better performance.

Bloom�lter. Larger Bloom �lter leads to reduced false positive rate

that enhances INLJ method. As Figure 12 shows, the join latency of

INLJ-NS/S-Eager reduces by 30% due to the drastically decreased

false positive rate when we increase Bloom �lter bits per key from

2 to 10. However, this improvement becomes marginal when we

assign more memory, so we suggest using moderate memory (10

bits per key) to balance e�ciency and memory usage.

Block cache. While larger block cache should reduce join latency

for INLJ and Validation methods, Figure 12 shows an obvious start

up phase due to the additional CPU overhead caused by frequent

updates when small caches are involved. SJ without Validation and

HJ are not a�ected by cache size since they perform full data scans.

Hence, we recommend using either default page cache or large

block cache for INLJ and Validation for better performance.
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Remark: Larger size ratios or writer bu�ers improve INLJ’s

joining performance but raise index building costs. So we suggest

moderate size ratios (10) and writer bu�ers (64-128MB). For INLJ,

10 bits per key is sound for Bloom �lters. Block cache can be

skipped if su�cient page cache is available.

5 DISCUSSION

Here it is time to answer the question in title – are joins over LSM-

trees ready? The experiments and analysis in this benchmark in-

dicate that there is still considerable potential for optimizing join

method selection. The join methods used by existing databases

cover only a small portion of our proposed con�guration space and

often fail to achieve optimal performance. Additionally, the e�-

ciency of di�erent joins varies signi�cantly under many conditions.

For instance, in Figure 5 (b), SJ-PS could achieve more than 8x better

latency than INLJ-P. Fortunately, we have derived valuable insights

that enhance our understanding of this topic and o�er practical

takeaways for developers in selecting appropriate join methods.

Moreover, we point out some constraints of our benchmark and

suggest future directions to guide development.

5.1 Insights and takeaways

One Method Does Not Fit All. Figure 1 summarizes the selec-

tion strategies for di�erent join components, demonstrating that

each method could excel under speci�c conditions, with no single

method dominating universally. For instance, HJ-P shows com-

petitive performance in many scenarios as illustrated in Figure 5.

However, it is outperformed by SJ-PS with frequent joins and by

INLJ-P when dealing with large entry sizes. This also suggests an

important takeaway message for joins over LSM-tree: Selection

of join algorithms is influenced by multiple parameters (e.g.,

1086



0 2 4 6 8 10 12 14
0

500

1000

1500

In
de

x 
B

ui
ld

in
g(

s)

23
08

59
53

0 2 4 6 8 10
0

100

200

300

INLJ-P
HJ-P

SJ-P
SJ-PS/S-Comp

SJ-SS/S-Eager
SJ-SS/V-Lazy

INLJ-NS/S-Comp
INLJ-NS/S-Eager

INLJ-NS/S-Lazy
INLJ-NS/V-Comp

INLJ-NS/V-Eager
INLJ-NS/V-Lazy

32 128 512 1024 2048
Entry Size (byte) of Movie

0

250

500

750

Jo
in

in
g(

s)

0.1 0.3 0.5 0.7
Skewness of Zipf

0

250

500

750

1000

40
49

44
20

44
90

(a) Other LSM-based Systems: Pebble

Unif Zipf User Movie Wiki Face
Datasets

0

5

10

Jo
in
in
g(
s)

HHJ-P HJ-P

(b) Hybrid Hash Join

1 2 4 8 16
Threads with Face

20

40

Sy
st

em
 L

at
en

cy
 (s

) INLJ-P SJ-P SJ-PS HJ-P

(c) Concurrency

Figure 13: Case Studies of extending our insights to other system, hash join method, and concurrent execution.

entry size, join frequency, and data distribution), instead of

only subject to selectivity.

Parametersmatter unequally in joinmethod selection.Among

the parameters examined, data distribution, join frequency, and

entry size are the most in�uential ones. Data distribution and

join frequency are key for choosing secondary index types. Ea-

ger is preferred for frequent joins, excelling with skewed or highly

duplicated join attributes, while Lazy and Comp o�er lower index-

building costs. Consistency strategies depend on entry size and

join frequency. Synchronous with a covering index is ideal for

frequent joins with small entries, whereas Validation with a non-

covering index works better otherwise. For skewed data, avoid

pairing Synchronous with Eager or Validation with INLJ due to

excessive overhead. Other parameters, like Bloom �lters, size ratio,

and block cache size, a�ect performance but don’t signi�cantly

alter join method priority. Identifying these key factors simpli�es

the selection of join methods.

Secondary indexes are not always necessary. Secondary in-

dexes improve INLJ’s join e�ciency with Bloom �lters and enhance

SJ with reduced sorting costs. However, they come with certain

index-building costs that sometimes can outweigh join improve-

ments. As a result, secondary indexes may not always be bene�cial,

especially with large entries, high data skew, or infrequent joins.

5.2 Future Directions

Multi-way joins are signi�cantly more complex than binary joins

that we discussed. Nevertheless, multi-way joins can be decom-

posed into a sequence of binary joins [39, 53–56] thus our derived

insights are still useful. For instance, we consider a join over three

tables Ď Z ď Z ē , where (Ď Z ď) aligns with our provided

analysis and our insights still apply. This join produces an inter-

mediate table (Ē ) with ĊĒ tuples, which should be stored in an

LSM-tree before joining with ē , leading to an overhead đĒ of

ċ (ĈĒ · Đ · ĊĒ ·
ěĒ

þ
). It’s straightforward to make Ē indexable to

boost the subsequent join during LSM-tree construction. As a result,

the costs of (Ē Z ē ) for INLJ, SJ, and HJ are đĒ + (Ċē ·
ěē

þ
) +

Ċē ((1 − Ċē )Ė0 (Ē ) + Ċē · Ė1 (Ē )),đĒ + (ĊĒ ·
ěĒ

þ
) + 5(Ċē ·

ěē

þ
),

and đĒ + (3ĊĒ ·
ěĒ

þ
) + 3(Ċē ·

ěē

þ
), respectively. This indicates

that join method selection is heavily in�uenced by ĊĒ . If ĊĒ is

much larger than Ċē , the costs pertaining toē are negligible,

indicating INLJ is preferable as it avoids extensive I/O overhead for

reading the entire tableĒ . If ĊĒ is comparable to Ċē , the selection

remains consistent with our previous analysis. For small ĊĒ , INLJ

is still preferable and SJ could outperform HJ after introducing

a secondary index. Meanwhile, INLJ remains the best due to the

desirable lookup cost achieved by the Bloom �lter. These reveal

enhanced attractiveness of INLJ in multi-way joins over LSM-tree.

Moreover, adding a secondary index for subsequent binary joins

becomes less critical, especially when Ē is large, as an existing

index is already su�cient in many scenarios. Additionally, many

existing studies enhance join performance by optimizing binary

join sequences to which our work could be adapted. Speci�cally, our

theoretical models o�er cost estimations and could be incorporated

into optimization frameworks like Bao [40] to generate optimized

query plans by applying the above analysis to di�erent join orders..

The specialized schemes and index structures like multi-way hash

trie join [40] are beyond the scope of this paper.

Moreover, LSM-based stores with di�erent implementations

and tuning parameters may present varied join performance thus

yielding distinct insights, as our �ndings are based on experiments

with RocksDB. However, we can easily extend our study to other

platforms by adjusting con�guration parameters and reevaluating

the cost model for new insights. For example, platforms utilizing

a key-value separation strategy like Wisckey [18, 46] o�er higher

update e�ciency and may bene�t from SJ due to faster index con-

struction, which requires a reevaluation. In such cases, our proposed

con�guration space can still guide the design of new evaluation

frameworks, and many of our insights remain applicable since they

reveal the fundamental principles of join operations over LSM-trees.

Besides, we suggest several promising directions to improve joins

over LSM-trees. One is optimizing join algorithms speci�cally for

LSM-trees and modern hardware [72] to further boost performance.

Another potential improvement lies in incorporating novel LSM-

style [26] or hybrid secondary indexes [41] to reach �exible update

and query trade-o� and enhanced overall performance. Moreover,

advanced consistency strategies to maintain data integrity while

reducing the query or update overhead are also crucial. As data

scales, distributed strategies and concurrent processing become

vital for managing large datasets and high transaction volumes. Ad-

ditionally, platform-speci�c optimizations, such as re-optimization

schemes [41] and normalization approaches [17], could be further

analyzed to identify the preferences for certain system.
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5.3 Extending to other LSM-based Storages

We included another LSM-based system to validate the generality

of the insights we provided. Among these systems, Pebble [17], the

core engine of CockroachDB [71] written in Go, has garnered sig-

ni�cant attention in the industry. Hence we use it to conduct a case

study presented in Figure 13 (a). As expected, although the exact

performance on Pebble di�er from those on RocksDB, the relative

di�erences in the costs of di�erent join methods, as well as the

trends in performance changes across di�erent settings, are appar-

ently consistent with the results observed on RocksDB. Speci�cally,

the joining latency for the HJ and SJ methods increases almost

proportionally with the entry size, whereas the INLJ methods ex-

hibit a slower increase. For instance, when selectivity is moderate,

INLJ-P surpasses HJ-P and SJ-P in joining e�ciency when the entry

size reaches 512B. These observations are consistent with the phe-

nomena we observed in Figure 5 (a). Additionally, in Figure 13 (b),

the joining latency for the INLJ methods and Validation increases

signi�cantly under higher skewness, due to more frequent retrieval

of higher-frequency data. When skewness reaches 0.7, the joining

latency for all INLJ methods with Validation exceeds 4000 seconds,

whereas other methods remain below 200 seconds. At the same

time, the index building times for both Eager Index and Synchronize

are noticeably longer than those of other methods. These results

are also similar to the �ndings from the RocksDB experiments in

Figure 8. Therefore, despite di�erences in implementation, since

our insights are based on the theoretical cost model of LSM-tree,

they can be generalized to other LSM-based systems.

For the systems encompassing a subset of our con�guration

space, we can evaluate the associated space and utilize the corre-

sponding insights or guidelines. In cases where join performance is

altered by hybrid data structures or speci�c optimizations on certain

join methods, we can adjust our �ndings to them with reevaluation

since the instinct of each join method remains consistent.

5.4 Extending to other Hash Joins

To further evaluate the generality of the insights presented in this

paper across more specialized joinmethods, we also included hybrid

hash join [24, 68] as a case study. Compared to the default grace hash

join used in this paper, hybrid hash join maintains an in-memory

hash table for a portion of the table, potentially reducing I/O costs

slightly. As shown in Figure 13 (b), across all datasets, hybrid hash

join consistently exhibits a similar join cost to grace hash join, with

a di�erence of only around one second. This is because joins over

LSM-trees typically process massive data scale and performance

is typically dependent on the I/O costs. In this case, the memory

budget is signi�cantly smaller than the total data volume, meaning

hybrid hash join can only store a limited portion of data in memory,

thus o�ering only marginal optimization. Therefore, the derived

insights are still applicable for hybrid hash join, which further

indicates the generality of our work.

5.5 Supplementary analysis on Concurrency

To further investigate the e�ects of potential variations in imple-

mentation, we examine the impact of concurrency in joins over

LSM-trees on Face, a representative real dataset with uniform data

distribution. Although concurrency does not appear to impact the

I/O cost presented in Table 4, systems can still bene�t from the par-

allel execution of join tasks which deserves further evaluation. To

achieve this, we divide the key ranges approximately evenly across

threads, allowing each thread to scan a di�erent range concurrently.

These scans allow HJ to build hash tables in parallel, SJ to sort data

of each range before merging them, and INLJ to perform concurrent

point queries on the target data table. As shown in Figure 13 (c),

INLJ-P shows the best thread scaling, reducing latency by over 80%

at 16 threads due to minimal thread interdependence - each thread

independently scans ĎR table and performs point lookups on ď table.

SJ-P and HJ-P show less improvement as they are memory-bound,

with threads waiting for memory resources. SJ-PS gains limited ben-

e�t as threading mainly a�ects index building compaction, which

is heavily I/O-bound. Therefore, under memory constraints, INLJ

methods demonstrate better concurrency potential.

6 RELATED WORK

LSM-tree stores. Research on LSM-trees focuses on optimizing

parameters like size ratio, compaction policy, and Bloom �lters

through theoretical analysis [15, 19–22, 32, 33, 42, 45, 49, 59, 77].

Additionally, works focusing on self-designing data structures, like

Cosine [14], Design Continuums [35], and Data Calculator [36],

have been proposed to address speci�c challenges including varying

data distribution, concurrency, and evolving hardware. We agree

that these methods could potentially improve join performance,

while they typically enhance system performance by including

more data structures like B+ tree in their con�guration space instead

of focusing on optimizing a certain type. Meanwhile, our results can

also be utilized in these works to analyze the LSM component and

optimize toward join operations since our insights are general for

LSM-tree structure. Moreover, various LSM-based industrial data

stores [4, 5, 11, 13, 25, 28, 71] have supported join operation. While

they typically provide several join methods for users to select by

themselves. Thus, a comprehensive benchmark study of joins over

LSM-trees is still lacking. The works focus on secondary indexes

and consistency strategies [47, 65, 72] are also related.

Disk-based joins.Disk-based joins di�er from in-memory joins [31,

66, 67] primarily due to their larger data volumes, necessitating

more disk I/O operations. While extensively studied in relational

databases [27, 38, 43, 44, 61, 64], traditional wisdom suggests that

join costs mainly depend on selectivity or cardinality [3, 29, 70, 73,

76]. However, the LSM-tree context presents a di�erent scenario.

The unique structure of LSM-trees, compared to traditional storage

engines like B+ trees [7, 35], results in distinct write and read I/O

costs, signi�cantly impacting join performance.

7 CONCLUSION

We provide a comprehensive analysis of LSM-tree join con�gu-

rations and their theoretical foundations. Through extensive test-

ing across various conditions and datasets, we derive several key

LSM-speci�c insights and practical takeaways that could challenge

current assumptions.
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