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ABSTRACT
Efficient data annotation stands as a significant bottleneck in train-

ing contemporary machine learning models. The Programmatic

Weak Supervision (PWS) pipeline presents a solution by utiliz-

ing multiple weak supervision sources to automatically label data,

thereby expediting the annotation process. Given the varied contri-

butions of these weak supervision sources to the accuracy of PWS,

it is imperative to employ a robust and efficient metric for their

evaluation. This is crucial not only for understanding the behav-

ior and performance of the PWS pipeline but also for facilitating

corrective measures.

In this paper, we introduce WeShap values as an evaluation

metric. This metric quantifies the average contribution of weak

supervision sources within a proxy PWS pipeline, leveraging the

theoretical underpinnings of Shapley values. We demonstrate effi-

cient computation of WeShap values using dynamic programming,

achieving quadratic computational complexity relative to the num-

ber of weak supervision sources.

Our experiments demonstrate the versatility of WeShap values

across various applications, including the identification of beneficial

or detrimental labeling functions, refinement of the PWS pipeline,

comprehension of the pipeline’s behavior, and scrutinizing spe-

cific instances of mislabeled data. Although initially derived from a

specific proxy PWS pipeline, we empirically demonstrate the gener-

alizability of WeShap values to other PWS pipeline configurations.

Our findings indicate a noteworthy average improvement of 5.0

points in downstream model accuracy through the revision of the

PWS pipeline compared to previous state-of-the-art methods, un-

derscoring the efficacy of WeShap values in enhancing data quality

for training machine learning models.
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1 INTRODUCTION
Deploying modern machine learning models in new application sce-

narios often hinges on the availability of large annotated datasets,

posing a significant bottleneck. While obtaining unlabeled data is

relatively straightforward, annotating typically demands substan-

tial effort and financial resources. Programmatic weak supervision

(PWS) [46, 65] offers a promising avenue for mitigating this manual

annotation burden. In the PWS paradigm, instead of annotating in-

dividual instances, users concentrate on developing multiple weak

supervision sources capable of automatically annotating a portion

of the data in a noisy manner. These sources may originate from

crowdsourced data [34], human-designed heuristics [46, 63], or

pre-trained models [5, 55]. Represented as labeling functions (LFs),

these weak supervision sources assign weak labels to some data

points while abstaining from others. Given the potential contra-

dictions among weak labels, a label model is trained to denoise

and aggregate them. Subsequently, the labels predicted by the label

model are utilized to train the downstreammachine learning model,

also called the end model.

Within the PWS framework, labeling functions (LFs) are the

fundamental components for automated annotation, profoundly

influencing data quality and downstream machine learning model

accuracy. Despite extensive research on the efficient design of LFs,

with notable studies [7, 15, 26, 59], scant attention has been de-

voted to LF quality evaluation methodologies. Conventionally, LF

evaluation relies on metrics such as accuracy (evaluated on a with-

held labeled dataset), coverage, or confliction with other LFs. For

instance, the Snorkel library [46]’s LFAnalysis module reports these

metrics. However, these metrics gauge different facets of LFs, often

yielding conflicting assessments. Notably, while both high coverage

and accuracy are desirable, they typically exhibit a negative corre-

lation in practice. Boeckling et al. [7] propose ranking LFs based on

(2𝛼 𝑗 − 1) ∗ 𝑙 𝑗 , where 𝛼 𝑗 and 𝑙 𝑗 denote the accuracy and coverage of

LF 𝑗 , respectively. They additionally present a theorem asserting

that under assumptions of LF independence conditional on class

labels and uniformly distributed LF errors, this ranking minimizes

the expected risk of a certain label model on training data. However,

these stringent assumptions are rarely met in practice. Furthermore,

along with all aforementioned metrics, their metric overlooks the

data distribution in feature space, which can significantly impact

downstream model performance.

Figure 1 provides amotivating example to illustrate the limitation

of existing LF evaluation metrics. There are three LFs for a binary

classification task, where LF 1 and LF 3 have over 90% accuracy and

30% coverage, while LF 2 has only around 50% accuracy and 20%

coverage. However, omitting LF 2 during the label model training

shifts the downstream model’s decision boundary to 𝑥 = 0, leading
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Figure 1: A motivating example for comprehensive LF eval-
uation. LF 2 is essential for reducing classification errors,
although its accuracy is around 0.5.

to substantial classification errors. The key is that although LF

2 has lower accuracy and coverage compared to other labeling

functions, it lies near the optimal decision boundary, making a

greater contribution to the downstream model accuracy.

The provided example underscores the necessity for more nu-

anced LF evaluation metrics to assess each LF’s contribution on

downstream model accuracy directly. Zhang et al.’s work on Source-

aware Influence Functions (SIF) [67] pioneered the exploration of

comprehensive LF evaluation metrics by learning to evaluate LFs

based on their influence. While SIF considers the data distribution

in feature space, it falls short of directly measuring an LF’s impact

on the accuracy of the downstream model.

A well-established approach for allocating contributions in coop-

erative games is the Shapley Value [53], renowned for its fairness,

symmetry, and efficiency properties [11]. Conceptually, if we regard

each LF as a player in a cooperative game and utilize downstream

model accuracy to gauge utility, then the Shapley value for each

LF mirrors its contribution to the downstream model. However, di-

rect computation of the Shapley value entails O(2𝑚) computations,

where𝑚 signifies the number of players in the game (equivalent to

the number of LFs in our context). Moreover, evaluating a coalition

of LFs proves computationally intensive, necessitating training the

label model and downstream model from scratch. Consequently,

direct computation of the Shapley value becomes impractical. This

poses a fundamental challenge for LF evaluation based on Shapley

value: how can we efficiently compute Shapley values to evaluate LFs
within a PWS framework?

In this paper, we address the above challenge by proposing the

WeShap value (Weakly Supervised Shapley Value), which mea-

sures the exact shapley value of LFs in a specific PWS framework,

with majority voting being the label model and K-nearest neigh-

bors (KNN) being the downstream model. We demonstrate that

the Shapley value of LFs can be computed efficiently under these

specific model choices. The WeShap value can be used to identify

helpful or harmful LFs, revise PWS pipelines, and understand model

behaviors. Our experiments show that while the WeShap value is

computed based on specific model choices, it also attains excellent

performance when other models, such as Snorkel [46], BERT [16],

or ResNet [24] are utilized in the pipeline.

2 PRELIMINARIES
In this section, we provide background material on setting up the

programmatic weak supervision framework and introduce Shapley

values and their favorable properties.

2.1 Programmatic Weak Supervision
We consider C-way classification scenarios, where X represents

the feature space, Y denotes the label space, and P stands for the

underlying data distribution. Within the PWS framework, the user

possesses a training dataset 𝐷𝑇𝑟𝑎𝑖𝑛 = {𝑥𝑖 }𝑛𝑖=1
, where the corre-

sponding labels {𝑦𝑖 }𝑛𝑖=1
are initially unknown. Optionally, a smaller

validation set 𝐷𝑉𝑎𝑙𝑖𝑑 = {𝑥𝑖 , 𝑦𝑖 }𝑛+𝑛𝑣𝑖=𝑛+1 may exist for hyperparam-

eter tuning. Both training and validation datasets adhere to the

underlying distribution, i.e., (𝑥𝑖 , 𝑦𝑖 ) ∼ P. The objective is to train a

machine learning model 𝑓 to minimize its expected risk on P.
To attain this objective, the user crafts a set of labeling functions

(LFs) Λ = {𝜆 𝑗 }𝑚𝑗=1
, where each LF furnishes noisy labels (termed

weak labels) to a subset of data. We denote by 𝐿𝑖 𝑗 = 𝜆 𝑗 (𝑥𝑖 ) the
weak label provided by 𝜆 𝑗 for 𝑥𝑖 . Here, 𝐿𝑖 𝑗 ∈ {Y ∪ {∅}}, where ∅
indicates that 𝜆 𝑗 abstains from labeling 𝑥𝑖 . Subsequently, the weak

labels are employed to train a label model Θ, which gauges the

accuracies of each LF and predicts a single probabilistic label �̃�𝑖 per

instance. Finally, the training dataset, coupled with the generated

labels, is utilized to train the downstream model 𝑓 .

2.2 Shapley Value
The Shapley value is based on cooperative game theory [17]. For-

mally, a cooperative game is defined by a pair (𝐼 , 𝑣), where 𝐼 =

{1, ...,𝑚} denotes the set of players and 𝑣 : 2
𝐼 → R is the util-

ity function, which assigns a real value 𝑣 (𝑆) to every coalition

𝑆 ⊂ 𝐼 . Furthermore, the utility of an empty coalition is set to 0,

i.e., 𝑣 (∅) = 0. Intuitively, the utility function defines how much

payoff a set of players can achieve by forming a coalition. One

central question in cooperative game theory is how to distribute

the total payoff fairly among the players. The Shapley value [53]

is a classical solution to this question, which assigns each player

their average marginal contribution to the value of the predecessor

set over every permutation of the player set. Formally, the Shapley

value is defined as

𝜙𝑆ℎ𝑗 =
1

|Π(𝐼 ) |
∑︂

𝜋∈Π (𝐼 )

[︂
𝑣 (𝑃𝜋𝑗 ∪ { 𝑗}) − 𝑣 (𝑃

𝜋
𝑗 )
]︂

(1)

Where Π(𝐼 ) denotes all possible permutations of 𝐼 and 𝑃𝜋
𝑗
de-

notes the predecessor set of player 𝑗 in permutation 𝜋 . Intuitively,

suppose the players join the coalition randomly; the Shapley value

for player j would be the expectation of their marginal contribution

to the payoff. An equivalent formulation is

𝜙𝑆ℎ𝑗 =
1

𝑚

∑︂
𝑆∈𝐼/{ 𝑗 }

1(︁𝑚−1

|𝑆 |
)︁ [𝑣 (𝑆 ∪ { 𝑗}) − 𝑣 (𝑆)] (2)

The Shapley value is theoretically appealing as it is the unique

solution that satisfies the following desiderata simultaneously:
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Efficiency: The payoff of the full player set is completely

distributed among all players, i.e.,

∑︁
𝑗∈𝐼 𝜙 𝑗 = 𝑣 (𝐼 ).

Null Player: If a player contributes nothing to each coalition,

then they should receive zero value, i.e., [∀𝑆 | 𝑗 ∉ 𝑆, 𝑣 (𝑆 ∪
{ 𝑗}) = 𝑣 (𝑆)] ⇒ 𝜙 𝑗 = 0.

Symmetry: If two players play equal roles to each coalition,

they should receive equal value, i.e., [∀𝑆 |𝑖, 𝑗 ∉ 𝑆, 𝑣 (𝑆∪{𝑖}) =
𝑣 (𝑆 ∪ { 𝑗}] ⇒ 𝜙𝑖 = 𝜙 𝑗 .

Additivity: Given two coalition games (𝐼 , 𝑣) and (𝐼 ,𝑤) with
different utility functions, the value a player receives under

a coalition game (𝐼 , 𝑣 + 𝑤) is the sum of the values they

receive under separate coalition games, i.e., 𝜙 𝑗 (𝑣 + 𝑤) =
𝜙 𝑗 (𝑣) + 𝜙 𝑗 (𝑤).

In our context, the set of LFs corresponds to the players, while the

accuracy of the downstream model on a holdout dataset, utilizing

a coalition of LFs to label the training set, serves as the utility

function. Under this framework, several desirable properties of the

Shapley value emerge:

Efficiency: The accuracy of the downstreammodel is entirely

attributed to all LFs.

Null player: LFs contributing nothing (e.g., abstaining on all

data) receive a score of zero.

Symmetry: LFs contributing equally to downstream model

accuracy receive identical scores.

Additivity: This property facilitates efficient score compu-

tation when the downstream model is employed across

multiple applications or datasets.

These properties are crucial for fair LF evaluation within the PWS

framework, rendering the Shapley value an appealing solution.

3 OUR METHOD
In this section, we first establish the formalization of the proxy PWS

framework, then outline the cooperative game within this proxy

framework. Subsequently, we derive the WeShap value, represent-

ing the Shapley value of LFs within the specified cooperative game

structure. Next, we present an efficient approach for computing the

WeShap value using dynamic programming and analyze its com-

putational complexity. Finally, we introduce various application

scenarios showcasing the utility of the WeShap value.

3.1 Proxy Framework
Definition 1 (Proxy Framework). The proxy framework is a

programmatic weak supervision framework, where the label model
uses majority voting (MV) to aggregate LF outputs, and the down-
stream model uses the K-nearest neighbors (KNN) algorithm to make
predictions.

For an LF set Λ, let Θ𝑐Λ (𝑥) denote the MV model’s predicted

probability that unlabeled training data 𝑥 belongs to class 𝑐:

Θ𝑐Λ (𝑥) =
{︄ ∑︁

𝜆∈Λ 1(𝜆 (𝑥 )=𝑐 )∑︁
𝜆∈Λ 1(𝜆 (𝑥 )≠∅)

,
∑︁
𝜆∈Λ 1(𝜆(𝑥) ≠ ∅) > 0

1

𝐶
,

∑︁
𝜆∈Λ 1(𝜆(𝑥) ≠ ∅) = 0

(3)

In other words, if LFs are activated on the instance, the label model

uses majority voting to predict its probabilistic label; otherwise, it

predicts every class with equal probabilities.

The downstream model in the proxy framework is a KNN clas-

sifier, where the user can arbitrarily specify the choice of K, the

distance metric, and the weight function. Here, we assume that uni-

form weights are applied for simplicity. For a validation instance

𝑥𝑣𝑎𝑙 , let N𝐾 (𝑥𝑣𝑎𝑙 ) contains the K nearest neighbors of 𝑥𝑣𝑎𝑙 in the

training set. The predicted probability of 𝑥𝑣𝑎𝑙 belongs to class 𝑐 is:

𝑓 𝑐Λ (𝑥𝑣𝑎𝑙 ) =
∑︁
𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 ) Θ

𝑐
Λ (𝑥𝑖 )

𝐾
(4)

Our framework addresses multiclass scenarios but does not en-

compass multi-label classification, where multiple non-exclusive

labels can be assigned to each instance. Consequently, the probabil-

ities assigned to each class in Equation 4 sum to 1.

The accuracy of the downstreammodel is measured on a holdout

dataset 𝐷𝑣𝑎𝑙 ∼ P. Note that the accuracy defined in Equation 5

differs from traditional classification accuracy, as it is based on

probabilistic predictions rather than categorical ones.

𝐴𝑐𝑐 𝑓 ,Λ (𝐷𝑣𝑎𝑙 ) =
∑︁
(𝑥,𝑦) ∈𝐷𝑣𝑎𝑙 𝑓

𝑦

Λ (𝑥)
|𝐷𝑣𝑎𝑙 |

(5)

Definition 2 (Proxy Game). The proxy game is a cooperative
game (𝐼 , 𝑣) defined under the proxy framework, where 𝐼 = {1, ...,𝑚}
denotes the set of LFs, and 𝑣 : 2

𝐼 → R maps an LF coalition to the
accuracy gain of the proxy framework (measured by Equation 5) using
that LF coalition compared to random prediction (i.e. with accuracy
1

𝐶
).

We use the accuracy gain instead of the absolute accuracy of

the proxy framework to define the utility function 𝑣 to guarantee

𝑣 (∅) = 0, which is a prerequisite for Shapley value computation.

3.2 WeShap Value
Within the proxy framework, we proceed to derive the formulation

of the WeShap value, representing the Shapley values of LFs within

the defined cooperative game structure.

First, we consider the marginal utility of an LF 𝜆 in classifying

a data point (𝑥,𝑦) with the MV label model. Notice that LFs that

abstain on (𝑥,𝑦) will not affect the prediction of the MV model,

so we only consider LFs providing weak labels. Without loss of

generality, we first consider the case where 𝜆(𝑥) = 𝑦. Suppose in
a LF permutation, there are 𝑎 correct LFs and 𝑏 wrong LFs in the

predecessor LF set of 𝜆. The marginal utility of 𝜆 on (𝑥,𝑦) is:

𝜓 (𝑎, 𝑏) =
{︃

𝑎+1
𝑎+𝑏+1 −

𝑎
𝑎+𝑏 , 𝑎 + 𝑏 > 0

1 − 1

𝐶
, 𝑎 + 𝑏 = 0

(6)

As a result, we can efficiently compute the average marginal

contribution of 𝜆 by enumerating the number of accurate and inac-

curate LFs in the predecessor set of 𝜆 over all possible LF permuta-

tions.

Theorem 1. Consider a coalition game G where a majority voting
(MV) model utilizes a set of LFs to label a data point (𝑥,𝑦). The player
set 𝐼 = {1, ...,𝑚} denotes the set of LFs, and the utility function 𝑣 ′

maps an LF coalition to the accuracy gain of the MV model using the
LFs compared to random prediction with accuracy 1

𝐶
. Suppose there

are 𝑝 correct LFs and𝑤 incorrect LFs on (𝑥,𝑦), then the Shapley value
of a correct LF 𝜆 in the coalition game G is:
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𝑺𝑽𝒑,𝒘$ 𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟐

𝑝 = 0 0 0 0
𝑝 = 1 0.5 0.5 0.444
𝑝 = 2 0.25 0.306 0.306

𝑺𝑽𝒑,𝒘% 𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟐

𝑝 = 0 0 −0.5 −0.25

𝑝 = 1 0 −0.5 −0.306

𝑝 = 2 0 −0.444 −0.306

𝑳𝒊𝒋 𝝀𝟏 𝝀𝟐 𝝀𝟑
𝑥+ 0 ∅ ∅

𝑥, 0 ∅ ∅

𝑥- 0 1 ∅

𝑥. 0 1 ∅

𝑥/ ∅ 1 1

𝑥0 ∅ ∅ 1

𝑥!

𝑥"
𝑥# 𝑥$

𝑥%

𝑥&
𝑥' 𝑥(

𝜆!

𝜆"

𝜆#

𝝋𝒊𝒋𝟎 𝝀𝟏 𝝀𝟐 𝝀𝟑

𝑥+ 0.5 0 0

𝑥, 0.5 0 0

𝑥- 0.5 −0.5 0

𝑥. 0.5 −0.5 0

𝑥/ 0 −0.25 −0.25

𝑥0 0 0 −0.5

𝝓𝒋
𝑾𝒆𝑺𝒉𝒂𝒑 𝝀𝟏 𝝀𝟐 𝝀𝟑

(𝑥7, 𝑦7) 0.5 −0.167 0

(𝑥8, 𝑦8) −0.167 0.25 0.25

𝐴𝑣𝑔 0.167 0.042 0.125

@𝒚𝒊𝒄 𝟎 𝟏

𝑥+ 1 0

𝑥, 1 0

𝑥- 0.5 0.5

𝑥. 0.5 0.5

𝑥/ 0 1

𝑥0 0 1

B𝒚𝒕𝒆𝒔𝒕𝒄 𝟎 𝟏

𝑥7 0.833 0.167

𝑥8 0.167 0.833

Dataset Label Matrix MV Prediction KNN Prediction (K=3)

WeShap Weights WeShap Contribution ScoresWeShap Values (K=3)

Majority
Voting

𝒘𝒊𝒋 𝝀𝟏 𝝀𝟐 𝝀𝟑

𝑥+ 0.083 0 0

𝑥, 0.083 0 0

𝑥- 0.083 −0.083 0

𝑥. −0.083 0.083 0

𝑥/ 0 0.042 0.042

𝑥0 0 0 0.083

KNN

Aggregate Decompose

Figure 2: Illustration of the WeShap value computation.

𝑆𝑉 +𝑝,𝑤 =
1

𝑝 +𝑤

𝑝−1∑︂
𝑖=0

𝑤∑︂
𝑗=0

⎡⎢⎢⎢⎢⎣𝜓 (𝑖, 𝑗)
(︁𝑝−1

𝑖

)︁ (︁𝑤
𝑗

)︁(︁𝑝+𝑤−1

𝑖+𝑗
)︁ ⎤⎥⎥⎥⎥⎦ (7)

Proof. Consider all permutations of LFs that produce weak

labels on (𝑥,𝑦). In a permutation with 𝑖 correct LFs and 𝑗 incorrect

LFs before 𝜆, the marginal utility of 𝜆 is 𝜓 (𝑖, 𝑗). The number of

permutations with 𝑖 correct LFs and 𝑗 incorrect LFs before 𝜆 is(︁𝑝−1

𝑖

)︁ (︁𝑤
𝑗

)︁
(𝑖 + 𝑗)!(𝑝 +𝑤 − 1 − 𝑖 − 𝑗)!, as we need to select 𝑖 correct

LFs from the other 𝑝 − 1 correct LFs, 𝑗 incorrect LFs from the 𝑤

incorrect LFs, and consider the order of LFs in the permutation.

Following the definition of Shapley value in Equation 1, the Shapley

value of 𝜆 in G is

𝑝−1∑︂
𝑖=0

𝑤∑︂
𝑗=0

⎡⎢⎢⎢⎢⎣
𝜓 (𝑖, 𝑗) ∗

(︁𝑝−1

𝑖

)︁ (︁𝑤
𝑗

)︁
(𝑖 + 𝑗)!(𝑝 +𝑤 − 1 − 𝑖 − 𝑗)!
(𝑝 +𝑤)!

⎤⎥⎥⎥⎥⎦ (8)

This equals to 𝑆𝑉 +𝑝,𝑤 expressed in Equation 7. □

As the Shapley value has the efficiency property, we can calculate

the Shapley value of an inaccurate LF on (𝑥,𝑦) as

𝑆𝑉 −𝑝,𝑤 =

𝑝
𝑝+𝑤 −

1

𝐶
− 𝑝 ∗ 𝑆𝑉 +𝑝,𝑤
𝑤

, 𝑤 > 0 (9)

We use 𝜑𝑐
𝑖 𝑗
to denote the Shapley value of 𝜆 𝑗 with respect to the

MV label model in classifying 𝑥𝑖 when the hidden label of 𝑥𝑖 is 𝑐 .

The 𝜑𝑐
𝑖 𝑗
value can be computed directly as

𝜑𝑐𝑖 𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑆𝑉 +𝑝𝑖 ,𝑤𝑖 , 𝜆 𝑗 (𝑥𝑖 ) = 𝑐
0, 𝜆 𝑗 (𝑥𝑖 ) = ∅
𝑆𝑉 −𝑝𝑖 ,𝑤𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

where 𝑝𝑖 and 𝑤𝑖 denote the number of correct and incorrect

LFs in Λ on (𝑥𝑖 , 𝑦𝑖 ) respectively. We name the 𝜑𝑐
𝑖 𝑗
values WeShap

weights, which correspond to the average contribution of 𝜆 𝑗 in

classifying 𝑥𝑖 with respect to the MV model, when the hidden label

of 𝑥𝑖 is 𝑐 .

Example. Figure 2 illustrates a running example, where we con-
sider three LFs denoted as 𝜆1 through 𝜆3, each contributing to the
labeling of data instances. The unlabeled training points, 𝑥1 through
𝑥6, are augmented with labeled validation points, 𝑥7 and 𝑥8, utilized
for LF evaluation.

In the bottom left of Figure 2, we demonstrate the WeShap weights
of the LFs on unlabeled training points. As a concrete example, we
calculate the Weshap weight of 𝜆1 on 𝑥3 when 𝑦3 = 0. Notice that 1
correct LF (𝜆1) and 1 wrong LF (𝜆2) are activated on it. Following Equa-
tion 7 and 10, the Weshap weight of 𝜆1 on 𝑥3 is 𝜓 (0,0)+𝜓 (0,1)

2
= 0.5.

The first part corresponds to the marginal utility of 𝜆1 in the permu-
tation [𝜆1, 𝜆2], and the second part corresponds to that in [𝜆2, 𝜆1].
The WeShap weight indicates that 𝜆1’s marginal contribution to the
classification of 𝑥3 is 0.5, averaging across all LF permutations under
the MV model.

Next, we focus on the downstream KNN model. Given a val-

idation instance (𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 ), let N𝐾 (𝑥𝑣𝑎𝑙 ) denote the K-nearest

neighbors of 𝑥𝑣𝑎𝑙 in the training dataset. The WeShap value of 𝜆 𝑗
on (𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 ) is defined as:

𝜙
𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
(𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 ) =

1

𝐾

∑︂
𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 )

𝜑
𝑦𝑣𝑎𝑙
𝑖 𝑗

(11)

Similarly, the WeShap value of an LF for a holdout dataset 𝐷𝑣𝑎𝑙
is defined as the average WeShap value of the LF with respect to

the instances inside the dataset:

𝜙
𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
(𝐷𝑣𝑎𝑙 ) =

∑︁
(𝑥,𝑦) ∈𝐷𝑣𝑎𝑙 𝜙

𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
(𝑥,𝑦)

|𝐷𝑣𝑎𝑙 |
(12)
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Theorem 2. The WeShap value of an LF is equal to its Shapley
value in the proxy game using the same set of LFs and holdout dataset.

Proof. Let’s focus on a single validation instance (𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 )
first. The utility of a coalition of LFs 𝑆 ⊂ Λ in the proxy game is:

𝑣 (𝑆) = 𝑓 𝑦𝑣𝑎𝑙
𝑆
(𝑥𝑣𝑎𝑙 ) −

1

𝐶
(Definition 2)

=
1

𝐾

⎡⎢⎢⎢⎢⎣
∑︂

𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 )
Θ
𝑦𝑣𝑎𝑙
𝑆
(𝑥𝑖 )

⎤⎥⎥⎥⎥⎦ −
1

𝐶
(Equation 4)

=
1

𝐾

⎡⎢⎢⎢⎢⎣
∑︂

𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 )

(︃
Θ
𝑦𝑣𝑎𝑙
𝑆
(𝑥𝑖 ) −

1

𝐶

)︃⎤⎥⎥⎥⎥⎦
(13)

Next, we define K coalition games {G𝑖 : 𝑖 ∈ N𝐾 (𝑥𝑣𝑎𝑙 )}. In each

game, the LFs are used to classify one point (𝑥𝑖 , 𝑦𝑣𝑎𝑙 ) using the MV

label model. The utility of each coalition game is defined as the

label model’s predictive accuracy on (𝑥𝑖 , 𝑦𝑣𝑎𝑙 ) minus
1

𝐶
.

Notice that Θ
𝑦𝑣𝑎𝑙
𝑆
(𝑥𝑖 ) − 1

𝐶
in Equation 13 is the utility of 𝑆 in

game G𝑖 . Following the additivity property of the Shapley value,

the Shapley value of an LF 𝜆 𝑗 in the proxy game is the average of

the Shapley values it receives in {G𝑖 : 𝑖 ∈ N𝐾 (𝑥𝑣𝑎𝑙 )}. Following
Theorem 1, the Shapley value of 𝜆 𝑗 receives inG𝑖 is𝜑𝑦𝑣𝑎𝑙𝑖 𝑗

. Therefore,

the Shapley value of 𝜆 𝑗 in the proxy game is
1

𝐾

∑︁
𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 ) 𝜑

𝑦𝑣𝑎𝑙
𝑖 𝑗

,

which is exactly the WeShap value.

Since we have proved the WeShap value is the Shapley value

of a LF in the proxy game when 𝐷𝑣𝑎𝑙 contains a single instance,

following the additivity property of Shapley value and the definition

in Equation 12, we can conclude that the WeShap value is also the

Shapley value of a LF when 𝐷𝑣𝑎𝑙 contains multiple instances. □

The WeShap value can also be generalized to KNN with non-

uniform weights. To apply weighted KNN, we can simply modify

Equation 11 as:

𝜙
𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
(𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 ) =

∑︁
𝑖∈𝑁𝐾 (𝑥𝑣𝑎𝑙 )

(︂
𝜔 (𝑥𝑖 , 𝑥𝑣𝑎𝑙 ) ∗ 𝜑

𝑦𝑣𝑎𝑙
𝑖 𝑗

)︂∑︁
𝑖∈𝑁𝐾 (𝑥𝑣𝑎𝑙 ) 𝜔 (𝑥𝑖 , 𝑥𝑣𝑎𝑙 )

(14)

Where𝑤 (𝑥𝑖 , 𝑥𝑣𝑎𝑙 ) specify the weight given to 𝑥𝑖 when predicting
𝑥𝑣𝑎𝑙 .

Finally, we can decompose the WeShap value in another way,

enabling us to inspect each weak label’s contribution. We define

the WeShap contribution scores as:

𝑤𝑖 𝑗 =

∑︁
(𝑥𝑣𝑎𝑙 ,𝑦𝑣𝑎𝑙 ) ∈𝐷𝑣𝑎𝑙 :𝑖∈N𝐾 (𝑥𝑣𝑎𝑙 ) 𝜑

𝑦𝑣𝑎𝑙
𝑖 𝑗

|𝐷𝑣𝑎𝑙 | ∗ 𝐾
(15)

The WeShap contribution scores serve as detailed metrics quan-

tifying the impact of weak labels 𝜆 𝑗 (𝑥𝑖 ) on the accuracy of the

proxy PWS pipeline. A higher contribution score suggests greater

assistance to the pipeline’s accuracy.

Example. In Figure 2, Following Equation 11, the WeShap score of
𝜆1 on (𝑥7, 𝑦7) (marked in red) is the average of {𝜑0

1,1
, 𝜑0

2,1
, 𝜑0

3,1
}, as

{𝑥1, 𝑥2, 𝑥3} are the KNNs of 𝑥7 in the training data and 𝑦7 = 0. The
result is 0.5, indicating that 𝜆1 makes an average contribution of 0.5
in the proxy framework for predicting 𝑥7.

The WeShap Contribution Scores table at the bottom right of Figure
2 is the decomposition of WeShap values. We observe negative scores
for 𝑤32 and 𝑤41, indicating detrimental effects on the downstream
model’s performance. 𝑤32 is negative because 𝜆2 misclassify 𝑥3 as
class 1 and hurts the prediction of 𝑥7 in 𝐷𝑣𝑎𝑙 . Similarly,𝑤41 is neg-
ative because 𝜆1 misclassify 𝑥4 as class 0 and hurts the prediction
of 𝑥8. Accordingly, we can enhance the PWS pipeline by excluding
these weak labels (setting them to ∅). Following this adjustment, the
downstream model achieves a perfect accuracy of 1.0, underscoring
the effectiveness of WeShap contribution scores in refining the PWS
pipeline.

3.3 Computational Complexity

!!,# −!!$%,#

LF Permutation Marginal Gain Probability

1
' + )

#$!$%,#* ' − 1
' + )

#$!,#$%* )
' + )

Figure 3: Efficient computation of WeShap scores using dy-
namic programming. The target LF 𝜆 is denoted in star; green
and red cells represent LFs making correct and wrong pre-
dictions, respectively.

The computational complexity of computing the WeShap value

primarily stems from calculating the WeShap weights outlined

in Equation 10 and identifying the K-nearest neighbors for each

validation instance. Brute-force KNN search entails a complexity of

O(𝑛𝑣𝑎𝑙𝑑𝑛) (where 𝑑 is the feature dimensionality), but this can be

optimized to O(𝑛𝑣𝑎𝑙𝑑 log𝑛) by employing spatial data structures

like KD-Trees [6], with an additional O(𝑛 log𝑛) complexity for

constructing the KD-Tree.

Let’s focus on computing the WeShap weights, which can be

derived from 𝑆𝑉 +𝑝,𝑤 and 𝑆𝑉 −𝑝,𝑤 values. Directly computing all 𝑆𝑉 +𝑝,𝑤
values following Equation 7 requires O(𝑚4) computations, but

this can be optimized further using dynamic programming. As

illustrated in Figure 3, we categorize all possible permutations of

LFs into three cases:

• The target LF 𝜆 is the last in the permutation;

• Some other correct LF is the last in the permutation;

• Some incorrect LF is the last in the permutation.

In the first case, the marginal contribution of 𝜆 is𝜓 (𝑝 − 1,𝑤); in the

second case, the average marginal contribution of 𝜆 is 𝑆𝑉 +
𝑝−1,𝑤

; and

in the last case, the average marginal contribution of 𝜆 is 𝑆𝑉 +
𝑝,𝑤−1

.

This yields the following recursive formula:

𝑆𝑉 +𝑝,𝑤 =
𝜓 (𝑝 − 1,𝑤)
𝑝 +𝑤 + 𝑝 − 1

𝑝 +𝑤 𝑆𝑉
+
𝑝−1,𝑤 +

𝑤

𝑝 +𝑤 𝑆𝑉
+
𝑝,𝑤−1

(16)

with the boundary values being

𝑆𝑉 +𝑝,0 =
𝐶 − 1

𝐶 ∗ 𝑝 , 𝑆𝑉 +
0,𝑤 = 0 (17)
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Algorithm 1: Dynamic Programming Algorithm for We-

Shap Value Computation

Input: 𝐷𝑡𝑟𝑎𝑖𝑛 : unlabeled training dataset

𝐷𝑣𝑎𝑙 : labeled holdout dataset

Λ: labeling function set

𝐶: number of candidate classes

𝐾 : number of neighbors in the proxy KNN model

𝛿 : distance metric in the proxy KNN model

𝜔 : weight function in the proxy KNN model

Output: 𝜙𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
: WeShap values

1 𝑛,𝑚,𝑛𝑣𝑎𝑙 ← |𝐷𝑡𝑟𝑎𝑖𝑛 |, |Λ|, |𝐷𝑣𝑎𝑙 |
2 𝑆𝑉 +∗,∗,𝑤∗,∗ ← 0

3 for 𝑝 ← 1 to𝑚 do
4 𝑆𝑉 +

𝑝,0
← 𝐶−1

𝐶∗𝑝
5 for𝑤 ← 1 to𝑚 do
6 𝑆𝑉 +𝑝,𝑤 ←

𝜓 (𝑝−1,𝑤 )
𝑝+𝑤 + 𝑝−1

𝑝+𝑤 𝑆𝑉
+
𝑝−1,𝑤

+ 𝑤
𝑝+𝑤 𝑆𝑉

+
𝑝,𝑤−1

7 𝑆𝑉 −𝑝,𝑤 ←
𝑝

𝑝+𝑤 −
1

𝐶
−𝑝∗𝑆𝑉 +𝑝,𝑤
𝑤

8 𝑓 ← 𝐾𝑁𝑁 (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐾, 𝛿)
9 for (𝑥𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 ) ∈ 𝐷𝑣𝑎𝑙 do
10 N𝐾 (𝑥𝑣𝑎𝑙 ) ← 𝑓 .𝐾𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑥𝑣𝑎𝑙 )
11 𝑅 ← 𝑛𝑣𝑎𝑙 ∗

∑︁
𝑥𝑖 ∈N𝐾 (𝑋𝑣𝑎𝑙 ) 𝜔 (𝑥𝑖 , 𝑥𝑣𝑎𝑙 )

12 for 𝑥𝑖 ∈ N𝐾 (𝑋𝑣𝑎𝑙 ) do
13 𝑝𝑖 ←

∑︁
𝜆 1(𝜆(𝑥𝑖 ) = 𝑦𝑣𝑎𝑙 )

14 𝑤𝑖 ←
∑︁
𝜆 1(𝜆(𝑥𝑖 ) ≠ ∅) − 𝑝𝑖

15 for 𝜆 𝑗 ∈ Λ do
16 if 𝜆 𝑗 (𝑥𝑖 ) = 𝑦𝑣𝑎𝑙 then
17 𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 + 𝑆𝑉 +𝑝𝑖 ,𝑤𝑖 ∗

𝜔 (𝑥𝑖 ,𝑥𝑣𝑎𝑙 )
𝑅

18 else
19 if 𝜆 𝑗 (𝑥𝑖 ) ≠ ∅ then
20 𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 + 𝑆𝑉 −𝑝𝑖 ,𝑤𝑖 ∗

𝜔 (𝑥𝑖 ,𝑥𝑣𝑎𝑙 )
𝑅

21 for 𝑗 ← 1 to𝑚 do
22 𝜙

𝑊𝑒𝑆ℎ𝑎𝑝

𝑗
← ∑︁

𝑖 𝑤𝑖 𝑗

Leveraging the recursive formula, we can compute all 𝑆𝑉 +𝑝,𝑤
values in O(𝑚2) computations. The 𝑆𝑉 −𝑝,𝑤 values can be computed

in O(𝑚2) computations using Equation 9. These values are then

mapped to theWeShap weights. Algorithm 1 demonstrates the algo-

rithm to computeWeShap values using dynamic programming. The

algorithm first utilizes Equation 16 to compute WeShap weights

(Line 2-7). Then, it learns a KNN model to get the K nearest neigh-

bors of each validation instance (Line 8) and aggregates WeShap

weights to compute the WeShap contribution scores (Line 9-20).

Finally, it aggregates WeShap contribution scores to get the We-

Shap values of each LF (Line 21-22). Assuming data structures like

KD-Trees are applied for KNN search, the total computational com-

plexity of Algorithm 1 is O(𝑛 log𝑛 + 𝑛𝑣𝑎𝑙𝑑 log𝑛 + 𝐾𝑛𝑣𝑎𝑙𝑚 +𝑚2),
which generalizes well to large LF sets, improving significantly over

the original O(2𝑚) time complexity for computing exact Shapley

values.

3.4 Use Cases
The WeShap value proves valuable in several applications, eluci-

dated in this section.

Identify Helpful/Harmful LFs: Higher WeShap values indi-

cate greater contributions to the proxy pipeline, suggesting help-

fulness, while negative values imply potential harm. This aids in

filtering out detrimental LFs and optimizing resource allocation. For

instance, if LFs stem from multiple supervision sources, users can

allocate more resources to the sources yielding the most beneficial

LFs.

Enhance Downstream Model Accuracy: We can refine LF

outputs by silencing those with WeShap contribution scores below

a threshold 𝜃 :

�̃�𝑖 𝑗 =

{︃
𝐿𝑖 𝑗 𝑤𝑖 𝑗 ≥ 𝜃
∅ 𝑤𝑖 𝑗 < 𝜃

(18)

The threshold 𝜃 is tuned to optimize the PWS pipeline accuracy on

the validation set.

Understanding PWS Pipeline Behaviors: WeShap scores

identify LFs and training points with the highest or lowest contri-

butions to validation instances, aiding in comprehending pipeline

behaviors and diagnosing mispredictions. This is particularly use-

ful when an LF indirectly influences predictions through nearby

instances.

Fair Credit Allocation: Leveraging Shapley value properties

(Section 2.2), WeShap ensures fair attribution of credits to each LF,

valuable when distributing payoffs among multiple contributors.

4 EXPERIMENTS
We have undertaken comprehensive experimentation to assess the

efficacy of WeShap values across a spectrum of downstream tasks.

These tasks encompass identifying beneficial LFs, enhancing the

PWS pipeline’s accuracy, and analyzing its behaviors.

4.1 Setup
Datasets. We evaluate our work extensively on 9 datasets, in-

cluding 5 datasets for text classification (YouTube [2], IMDB [40],

Yelp [70], TREC [35], MedAbs [52]), 2 datasets for tabular clas-

sification (Census [32], Mushroom (MUSH) [43]), and 2 datasets

for image classification (Indoor-Outdoor (IND) [57], and VOC07-

Animal (VOC-A) [18]
1
). These datasets have been widely used

to evaluate PWS pipelines in prior works [26, 57, 67, 69]. Table 1

outlines the dataset details and LF statistics. To assess LF quality in

a scaled context, we generated LFs for the datasets using specific

criteria:

For textual datasets, we employed LFs denoted as 𝜆𝑘,𝑐 , which

label class 𝑐 upon detecting a unigram 𝑘 in the text.

For tabular datasets, we utilized LFs denoted as 𝜆𝑒,𝑐 , where class

𝑐 is assigned based on the truth value of expression 𝑒 . We designed

LFs for the Mushroom dataset and utilized the LF set introduced by

[4] for the Census dataset.

1
This is a binary classification version of the VOC-2007 dataset detecting whether an

animal exist in the picture or not.
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Table 1: Dataset summary statistics.

Dataset Task Dataset Statistics LF Statistics
#Class #Train #Valid #Test #LF Acc Cov Overlap Conflict

YouTube spam classification 2 1686 120 250 100 0.875 0.038 0.037 0.011

IMDB sentiment analysis 2 20000 2500 2500 100 0.666 0.026 0.024 0.017

Yelp sentiment analysis 2 30400 3800 3800 100 0.698 0.027 0.024 0.013

TREC question classification 6 5033 500 500 100 0.526 0.039 0.037 0.031

MedAbs disease classification 5 6002 3095 2657 100 0.444 0.025 0.023 0.018

Mushroom mushroom classification 2 6499 812 813 56 0.793 0.271 0.271 0.216

Census income classification 2 10083 5561 16281 83 0.787 0.054 0.053 0.015

Indoor-Outdoor image classification 2 1226 408 410 226 0.921 0.043 0.043 0.012

VOC07-Animal image classification 2 4008 1003 4952 296 0.950 0.042 0.042 0.012

For image datasets, we employed the Azure Image Tagging API
2

to associate tags with images corresponding to their visual features

(e.g., sky, plant). Subsequently, we considered LFs denoted as 𝜆𝑡,𝑐 ,

which assign class 𝑐 based on the existence of tag 𝑡 .

We ensured LF quality by maintaining their accuracy at least 0.1

above random guessing on validation sets.

PWS Pipeline. We follow the standard PWS pipeline: train the

label model on unlabeled data using LFs, exclude instances without

active LFs, and then train the downstream model on remaining data

with label model predictions. We evaluate pipeline performance via

downstream model accuracy on the test set.

We assess two label models: majority voting and Snorkel MeTaL

[47] implemented in WRENCH [69]. For downstream models, we

consider two scenarios:

(1) Feature extraction: Use a frozen pretrained model to extract

features, then train an end model on these features.

(2) Fine-tuning: Directly fine-tune the downstream model on

weakly labeled data.

For feature extraction, we use dataset-specific feature extrac-

tors (Sentence-BERT [49] for YouTube, TREC, MedAbs; Bertweet-

sentiment [45] for IMDB, Yelp; ResNet-50 [24] for image datasets).

We then train a logistic regression end model. For fine-tuning, we

use BERT base [16] for text and ResNet-50 [24] for images. We

set 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32, 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑙𝑟 = 5𝑒 − 5,𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 0

when fine-tuning BERT and 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 64, 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 50, 𝑙𝑟 =

1𝑒−4,𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 1𝑒−5 when fine-tuning the ResNet-50 model

with an AdamW optimizer [38] and apply early stopping technique

to prevent overfitting. We don’t fine-tune on tabular datasets lack-

ing corresponding pretrained models. Each experiment is repeated

five times with different seeds, reporting averaged results.

Baselines. We compare the following methods.

Random (RND): Assigns random values to LFs as a baseline.

Accuracy (ACC): Evaluates LFs by validation set accuracy:

𝑉 (𝜆 𝑗 ) = 𝐴𝑐𝑐 (𝜆 𝑗 ).
Coverage (COV): Evaluates LFs by validation set coverage:

𝑉 (𝜆 𝑗 ) = 𝐶𝑜𝑣 (𝜆 𝑗 ).
IWS [7]: Combines accuracy and coverage: 𝑉 (𝜆 𝑗 ) = (2 ∗
𝐴𝑐𝑐 (𝜆 𝑗 ) − 1) ∗𝐶𝑜𝑣 (𝜆 𝑗 ). This corresponds to evaluating the

2
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-

tagging-images(last accessed: 01/11/2024)

LF based on the correct prediction count minus the wrong

prediction count on the validation set.

MC-Shap [10]: Approximates Shapley value using Monte

Carlo permutation sampling, evaluating gain by end model

accuracy on validation set. To balance approximation ac-

curacy and runtime cost, we use 𝑛 = 100 samples in our

evaluation.

SIF [67]: Learns fine-grained source-aware influence func-

tions computed on the validation set: 𝑉 (𝜆 𝑗 ) = |
∑︁
𝑖,𝑐 𝜙

¯
𝑖, 𝑗,𝑐 |,

where 𝜙¯𝑖, 𝑗,𝑐 is the source-aware influence function of 𝜆 𝑗 on

𝑥𝑖 with respect to class c.

WeShap: Our proposed method using Shapley values. We

optimize K (5-40), distance metric, and weight function for

each dataset based on proxy KNN classifier accuracy on the

validation set.

4.2 LF Evaluation
In assessing LF quality, we confront the challenge posed by the

varying scales of LF evaluation metrics. To standardize this process,

we implement the following methodology: initially, we arrange LFs

in descending order based on their evaluation metrics, mitigating

the influence of scale discrepancies. Subsequently, we adopt an

iterative approach where we progressively select the top-p LFs

and utilize them to train both the label and downstream models.

Our evaluation commences with the top-10 LFs and incrementally

expands the LF subset size at intervals of 10 until it encompasses

all LFs within the dataset. We present the average accuracy of the

downstream model on the test set across these iterations in Table 2.

As this evaluation process requires training the downstream model

repeatedly, which is time-consuming for the fine-tuning scenario,

we only evaluated the feature-extraction scenario for the LF ranking

experiments.

Table 2 illustrates the superiority of WeShap values in ranking

beneficial LFs. While WeShap does not consistently yield the op-

timal result, it demonstrates robust performance across diverse

datasets. For both label model choices, WeShap achieves the high-

est average downstream model accuracy. Notably, WeShap exhibits

particular efficacy when using Snorkel as the label model — a com-

mon PWS configuration in recent studies [26, 67, 69]. In this sce-

nario, WeShap outperforms the second-best metric (MC-Shap) by

1.4 points and the third-best metric (SIF) by 3.6 points on average
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Table 2: Average downstream model accuracy after ranking LFs based on different metrics.

LM Metric Youtube IMDB Yelp MedAbs TREC MUSH Census IND VOC-A AVG

MV

RND 0.825 0.831 0.877 0.497 0.536 0.876 0.782 0.889 0.934 0.783

ACC 0.813 0.842 0.888 0.489 0.583 0.840 0.809 0.884 0.940 0.787

COV 0.834 0.838 0.849 0.498 0.574 0.834 0.798 0.885 0.937 0.783

IWS 0.789 0.840 0.856 0.485 0.605 0.900 0.818 0.885 0.946 0.792

MC-Shap 0.818 0.837 0.858 0.556 0.539 0.895 0.813 0.910 0.930 0.795

SIF 0.854 0.838 0.872 0.507 0.587 0.885 0.802 0.888 0.951 0.798

WeShap 0.844 0.836 0.900 0.522 0.566 0.893 0.818 0.901 0.952 0.803

Snorkel

RND 0.735 0.778 0.690 0.434 0.475 0.835 0.781 0.879 0.882 0.721

ACC 0.667 0.796 0.722 0.445 0.504 0.864 0.778 0.877 0.922 0.730

COV 0.685 0.814 0.621 0.452 0.479 0.829 0.763 0.883 0.883 0.712

IWS 0.665 0.821 0.629 0.441 0.544 0.892 0.758 0.886 0.893 0.725

MC-Shap 0.811 0.782 0.743 0.466 0.480 0.886 0.778 0.891 0.948 0.754

SIF 0.727 0.793 0.741 0.440 0.460 0.882 0.793 0.883 0.869 0.732

WeShap 0.827 0.810 0.836 0.470 0.473 0.883 0.775 0.897 0.938 0.768

while significantly reducing runtime, as demonstrated in Figure 8.

The most substantial improvement is observed in the Yelp dataset,

where WeShap shows a remarkable 9.3-point increase over the next

best metric.
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Figure 4: Average downstream model accuracy gain of We-
Shap compared to random baseline in ranking LFs.

To discern scenarios where WeShap values reliably rank LFs, we

analyze the data distribution across the evaluated datasets and the

characteristics associated with LFs. Notably, we observe a strong

correlation between WeShap’s LF ranking performance and the

smoothness of the training data.

The smoothness assumption, a cornerstone in semi-supervised

learning, posits that points in a high-dimensional space proximal

to each other should share similar labels [58]. To quantify data

smoothness, we employ the silhouette coefficient [50], where a

higher coefficient denotes superior smoothness. Given the varying

factors affecting absolute end model accuracy across datasets, we

assess WeShap’s efficacy by measuring its average downstream

model accuracy gain relative to a random baseline.

Figure 4 depicts the silhouette coefficient plotted against the

downstream model accuracy gain in the proxy framework. Evi-

dently, a positive correlation (𝑟 = 0.810) emerges between dataset

smoothness and WeShap’s accuracy gain. The rationale lies in We-

Shap’s utilization of KNN as the downstream model within the

proxy pipeline, wherein the KNN model’s performance directly

hinges on data smoothness. Consequently, if the dataset exhibits

poor smoothness, the KNN model’s accuracy diminishes, thereby

impairing its efficacy as a proxy model for identifying beneficial

LFs. The low smoothness in the TREC dataset likely contributes

to WeShap’s poor performance, a finding corroborated by the in-

ferior performance of the Sentence-BERT encoder on TREC, as

reported in [49]. While the encoder’s poor performance affects all

evaluated metrics, it has a more pronounced effect on WeShap,

which uniquely relies on the smoothness assumption, as previously

discussed.

To better illustrate the effect of LF set size on downstream model

performance, Figure 5 depicts the downstream model accuracy as

we incorporate more LFs in the selected set across three datasets.

As the dataset’s smoothness level increases, WeShap demonstrates

greater performance gains than baseline methods. In the TREC

dataset, WeShap’s performance is comparable to the random base-

line, whereas in the Yelp dataset, it significantly outperforms all

other metrics. Notably, WeShap exhibits performance advantages

from the early stages in the VOC-Animal and Yelp datasets, with

as few as tens of LFs selected. This underscores WeShap’s utility

in identifying the most beneficial LFs from a large set. Another ob-

servation is that when the metric reliably evaluates LF helpfulness

(e.g., WeShap on Yelp), the downstream model accuracy resembles

an inverted U-shape as the number of LFs increases. This occurs

because we first include helpful LFs, followed by harmful ones in

the selected LF set. The position of the curve’s peak is dataset-

dependent. Conversely, if the metric distinguishes between helpful

and harmful LFs poorly, the downstream model accuracy tends to

change monotonically as more LFs are incorporated into the set.
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Figure 5: Ranking LFs on selected datasets.

4.3 PWS Pipeline Revision
Subsequently, we assess the impact of WeShap scores on refin-

ing the PWS pipeline regarding the downstream model’s accuracy

post-refinement. We explore two distinct refinement strategies: (1)

Pruning: Eliminating detrimental LFs with low evaluation scores,

and (2) Fine-Grained Revision: Modifying specific LF outputs or

soft labels predicted by the label model.

Both WeShap and SIF support fine-grained revision, thus en-

abling the evaluation of both options for these methods. We desig-

nate the approaches as follows: WeShap-P (or SIF-P) for pruning

out harmful LFs and WeShap-F (or SIF-F) for fine-grained revision.

As for other metrics, we solely evaluate their efficacy in pruning

out harmful LFs, as they lack support for fine-grained revision.

The revision pipeline operates as follows: For LF pruning, we

commence by ranking the LFs based on the evaluation metric, sub-

sequently selecting the top-p LFs for training the label model. We

tune the threshold p to optimize the PWS pipeline’s accuracy on

the validation dataset utilizing Optuna [1] with a Tree-structured

Parzen Estimator (TPE) Sampler for 20 trials.

For fine-grained revision, we adjust threshold 𝜃 for muting LF

outputs (as described in Section 3.4) for WeShap-F, and threshold 𝛼

for perturbing train losses for SIF-F (which serves a similar purpose

as𝜃 forWeShap, as elaborated in [67]).We optimize these thresholds

to maximize the PWS pipeline’s accuracy on the validation dataset

using Optuna with a TPE Sampler for 100 trials.

Additionally, we include two baselines for comparison: the Base
method reflects the downstreammodel’s accuracy without any revi-

sion, while the Golden method showcases the downstream model’s

accuracy when trained on golden training labels without weak su-

pervision. These baselines provide insight into the performance of

specific revision methods and their disparity compared to using

golden labels.

Table 3 presents various revision methods’ performance un-

der feature extraction and fine-tuning scenarios. We evaluate the

MC-Shap metric exclusively in the feature extraction scenario, as

computing MC-Shap in fine-tuning scenarios is prohibitively time-

consuming. Note that the MUSH and Census datasets are tabular

ones that do not have corresponding pre-trained models for fine-

tuning, so we omit the fine-tuning results on these two datasets.

Due to space limitations, we report the figures when Snorkel is

used as the label model. The performance comparison results are

similar when using the MV model.

We first focus on the feature-extraction scenario. In the context

of LF pruning, both the WeShap and MC-Shap methods emerge as

frontrunners, showcasing an advantage of 1.3 points over alterna-

tive pruning strategies. The result indicates the effectiveness of the

Shapley value in ranking LFs. When integrating fine-grained super-

vision, the fine-grained revision methodologies surpass traditional

LF pruning techniques. Particularly, WeShap-F distinguishes itself

by outshining all other baseline methods in 6 out of 9 datasets, with

the MedAbs dataset witnessing the most substantial leap in per-

formance, an 11.7-point increase. On average, across nine datasets,

WeShap-F significantly boosts downstream model accuracy by 11.2

points over using original LFs and exceeds the performance of

state-of-the-art (SOTA) revision techniques by 5.0 points. For the

fine-tuning scenario, we observe similar trends, where WeShap

outperforms other baseline methods in 6 out of 7 datasets and

achieves competitive results in the remaining one, surpassing the

performance of SOTA revision techniques by 3.9 points on average.

Surprisingly, WeShap demonstrates superior performance when

revising the PWS pipeline on the TREC dataset despite its mediocre

ranking of LFs on the same dataset. We hypothesize that this dis-

crepancy arises because fine-grained revision performance is more

influenced by local data smoothness (where neighboring data points

share similar labels) than global data smoothness (where data points

with similar labels cluster together). To test this hypothesis, we

trained a KNNmodel on TREC using ground-truth labels, achieving

an accuracy of 73.2%. This result suggests that TREC exhibits good

local smoothness despite its poor global smoothness, as indicated

by a low Silhouette score.

4.4 Understanding Pipeline Behaviors
We present a case study on the VOC-Animal dataset to demonstrate

how WeShap values can be used to understand and improve the

PWS pipeline through human-in-the-loop intervention. The study

uses Snorkel as the label model, Resnet-50 as the feature extractor,

and logistic regression as the downstream model. Class Y indicates

the presence of animals, while N indicates their absence.

Initially, the test set accuracy was 0.920. Table 4 shows LF sta-

tistics for the VOC07-Animal dataset, ranked by WeShap values.

The top LF, assigning Y when the image is tagged "animal," has a
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Table 3: Downstreammodel accuracy after revising the PWS pipeline. Tabular datasets (MUSH, Census) do not have correspond-
ing pre-trained models for fine-tuning.

Scenario Metric YouTube IMDB Yelp MedAbs TREC MUSH Census IND VOC-A AVG

Feature

Extraction

(LogReg)

Base 0.744 0.811 0.655 0.433 0.487 0.906 0.751 0.886 0.932 0.734

ACC 0.663 0.845 0.839 0.468 0.613 0.957 0.769 0.909 0.949 0.779

COV 0.718 0.809 0.638 0.445 0.496 0.900 0.764 0.898 0.786 0.717

IWS 0.712 0.840 0.757 0.477 0.621 0.862 0.764 0.901 0.808 0.749

MC-Shap 0.841 0.808 0.911 0.479 0.517 0.927 0.788 0.904 0.959 0.793

SIF-P 0.747 0.807 0.857 0.475 0.526 0.890 0.790 0.880 0.810 0.754

SIF-F 0.917 0.844 0.895 0.430 0.549 0.914 0.781 0.911 0.925 0.796

WeShap-P 0.868 0.827 0.905 0.486 0.496 0.927 0.764 0.905 0.950 0.792

WeShap-F 0.910 0.852 0.927 0.603 0.632 0.990 0.838 0.909 0.952 0.846
Golden 0.914 0.873 0.942 0.646 0.922 1.000 0.807 0.929 0.972 0.889

Finetuning

(BERT/

Resnet-50)

Base 0.877 0.789 0.770 0.445 0.495 – – 0.880 0.855 0.730

ACC 0.856 0.812 0.830 0.409 0.590 – – 0.905 0.977 0.768

COV 0.890 0.803 0.684 0.482 0.466 – – 0.885 0.778 0.712

IWS 0.890 0.797 0.635 0.501 0.516 – – 0.886 0.926 0.736

SIF-P 0.881 0.806 0.827 0.466 0.454 – – 0.887 0.715 0.719

SIF-F 0.934 0.857 0.866 0.489 0.517 – – 0.914 0.946 0.789

WeShap-P 0.849 0.822 0.872 0.473 0.495 – – 0.877 0.920 0.758

WeShap-F 0.919 0.882 0.942 0.539 0.621 – – 0.914 0.978 0.828
Golden 0.968 0.888 0.955 0.644 0.960 – – 0.918 0.981 0.902

Table 4: LF statistics for VOC07-Animal (Snorkel-LogReg).

LF Accuracy Coverage Overlap Conflict WeShap

animal→Y 0.992 0.223 0.223 0.221 0.024

mammal→Y 0.997 0.154 0.154 0.152 0.015

vehicle→N 0.977 0.342 0.342 0.027 0.012

... ... ... ... ... ...

tree→N 0.626 0.161 0.161 0.068 -0.007

outdoor→N 0.660 0.604 0.604 0.229 -0.022

positive WeShap value of 0.024, indicating it improves the proxy

downstream model (KNN) accuracy by an average of 0.024. The

second LF, "mammal→Y," also has a positive WeShap value of 0.015.

Based on these findings, we added three new animal-related LFs

("cat→Y," "dog→Y," and "bird→Y"), increasing test set accuracy to

0.934. Following that, we observed that the LF "outdoor→N" had

a negative WeShap value of -0.022 despite an accuracy of 0.66. Re-

moving this LF improved accuracy to 0.941. Lastly, noting that high

WeShap values corresponded to high-accuracy LFs, we increased

the LF selection threshold to 0.7, further improving test set accu-

racy to 0.957. These revisions led to a total accuracy improvement

of 0.034, a substantial enhancement given that the downstream

model’s accuracy using ground truth labels is 0.972.

WeShap values also offer a versatile application in identifying

the most influential LFs and training data pertinent to specific test

instances. Illustrated in Figure 6, we showcase a subset of images

from the validation dataset that the downstream model mispredicts.

Subsequently, we compute WeShap scores for these mispredicted

images individually.

The influential LFs are identified as thosewith the lowestWeShap

scores, while the influential training images are determined by the

images associated with the lowest WeShap contribution scores. Our

analysis reveals that the mispredictions predominantly stem from

certain LFs associated with the absence of animals. Consequently,

users can opt to discard or downweight these LFs to rectify these

mispredictions.

4.5 Ablation Studies
We assess the sensitivity of WeShap scores to various configuration

choices, including the number of neighbors (K), distance metrics,

weight functions, and holdout dataset size. Our default settings are

K=10, Euclidean distance, and uniform weight. We evaluate perfor-

mance using downstream model accuracy after fine-grained PWS

pipeline revision (WeShap-F). We test the following configuration

choices:

Number of neighbors (K): 5, 10, 20, and 40.

Distance metrics: Cosine, Euclidean, and Manhattan.

Weight functions: Uniform (Equation 11) and inverse dis-

tance (Equation 14).

Holdout dataset sizes: 50, 100, 200, 400, and 800 (for datasets

with over 800 validation points).

The findings, as depicted in Figure 7, demonstrate the robust-

ness of WeShap scores in enhancing the PWS pipeline, irrespective

of variations in K values, distance metrics, and weight functions.

Moreover, enlarging the holdout dataset consistently enhances the

performance of the PWS pipeline. Specifically, doubling the hold-

out dataset size correlates with a 1.2-point increase in downstream

model accuracy across our experiments. Remarkably, even with
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Figure 6: Analyze mispredictions in VOC07-Animal dataset (Snorkel-LogReg). Class "Y" denotes the presence of animals, and
"N" denotes the absence of them.
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Figure 7: Effect of WeShap configurations for PWS pipeline revision (Snorkel-Logreg).

as few as 50 labeled data points, WeShap scores contribute to a

substantial 5.7-point average improvement in downstream model

accuracy compared to the original PWS pipeline. These results

underscore the continued utility of WeShap scores, particularly in

scenarios with constrained labeling budgets.

4.6 Runtime
The experiments were conducted on a 4-core Intel(R) Xeon(R) Gold

5122 CPU (3.60 GHz) with an NVIDIA TITAN Xp GPU (12 GB

memory). Multiprocessing and GPU acceleration were used for

MC-Shap and SIF score computations, respectively. Figure 8 shows

the runtimes for LF evaluation metrics, excluding label model and

end model training times. Results are averaged over five runs, with

error bars indicating standard deviation.

WeShap scores were computed within seconds across all datasets,

while SIF and MC-Shap required significantly longer — often hours

to days, even with parallelization. On average, SIF and MC-Shap

took 356 and 5,300 times longer than WeShap, respectively. This

difference is due to their computational complexity: SIF calculates
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Figure 8: Runtime for different LF evaluation metrics.

Hessian-vector products recursively, while MC-Shap requires train-

ing both label and downstream models𝑚 × 𝑛 times (where𝑚 is

the LF set cardinality and 𝑛 is the Monte Carlo sample size). In

our evaluation, this resulted in tens of thousands of model train-

ing iterations. Consequently, WeShap offers a more efficient and

lightweight approach to LF evaluation.

5 DISCUSSIONS
In this section, we compare WeShap with selected baseline methods

in our evaluation, highlighting its key advantages and limitations.

Weshap vs SIF. Both methods offer fine-grained influence de-

composition but differ in their approach. SIF uses the (i-j-c) effect
to quantify the weight of the label model for 𝐿𝑖 𝑗 in predicting

𝑃 (𝑦𝑖 = 𝑐). WeShap employs WeShap weights 𝜑𝑐
𝑖 𝑗

to measure the av-
erage contribution of 𝐿𝑖 𝑗 in predicting 𝑃 (𝑦𝑖 = 𝑐). The key distinction
is that while SIF focuses on current label model weights, WeShap

considers all possible LF subsets to compute average contributions.

For example, when assessing 𝜆 𝑗 ’s impact on 𝑥𝑖 in the MV label

model, the (i-j-c) effect is binary (1 when 𝐿𝑖 𝑗 = 𝑐 , 0 otherwise). In

contrast, the WeShap weight 𝜑𝑐
𝑖 𝑗
accounts for other LFs’ outputs

on 𝑥𝑖 , providing a more comprehensive view of LF contribution.

Our evaluation shows that WeShap outperforms SIF in ranking

LFs and improving PWS pipeline accuracy while being computa-

tionally more efficient. While approaches like FastIF [22] could

potentially be applied to accelerate SIF, they are unlikely to bridge

the runtime gap with WeShap fully. Optimizing influence score

computation remains an open research area, though beyond our

current scope. In summary,WeShap’s broader reflection of LF contri-

butions and efficiency give it practical advantages over SIF, despite

both offering valuable insights into LF influence within the PWS

pipeline.

WeShap vs MC-Shap. Both WeShap and MC-Shap are founded

on Shapley values. MC-Shap’s primary advantage lies in its ability

to use the exact label and end models for Shapley value compu-

tation, potentially yielding more accurate LF evaluation results

compared to proxy models. However, the Monte Carlo sampling

process introduces estimation errors that may offset this advantage.

As our demonstrations have shown, MC-Shap values are compu-

tationally expensive, rendering it impractical to evaluate a large

number of samples within a reasonable timeframe. Furthermore,

unlike WeShap, MC-Shap does not support fine-grained decompo-

sition or revision, leading to inferior performance in PWS revision

tasks.

Limitations. We acknowledge several limitations of WeShap

values in this study. Firstly, our theoretical analysis is predicated

on a specific proxy PWS setting, as discussed in Section 3.1. Conse-

quently, the WeShap values may not accurately reflect the ground-

truth Shapley values of LFs in alternative settings. Extending the

theoretical guarantees of WeShap to broader contexts remains an

intriguing avenue for future research. Secondly, while WeShap

demonstrates robust performance across the evaluated datasets,

our analysis reveals that its efficacy is influenced by the underlying

dataset’s smoothness. Future investigations could explore tech-

niques such as contrastive learning [30] to enhance data smooth-

ness, potentially improving LF evaluation accuracy.

6 RELATEDWORK
Programmatic Weak Supervision. In the programmatic weak

supervision framework [46, 48, 65], users design labeling func-

tions (LFs) that come from various sources to label large datasets

efficiently, such as heuristics [46, 63], pre-trained models [5, 55],

external knowledge bases [25, 36], and crowd-sourced labels [34].

Researchers have also explored approaches to automate the LF de-

sign process [21, 27, 55, 59] or guide users to develop LFs more

efficiently [7, 15, 26]. On the other hand, there is rich literature

on learning the models to aggregate LFs and de-noise the weak

labels [4, 19, 46, 47, 60, 62, 66, 68]. While the work on programmatic

weak supervision is abundant, few works focused on the rigorous

evaluation of LFs. Work on LF design [7, 21, 23, 26] usually use sim-

ple heuristics like empirical accuracy or coverage to evaluate and

prune out LFs, which does not support fine-grained analysis and

revision. The most relevant work is WS Explainer (SIF) [67], which

leverages the influence function [31] to evaluate the influence of

each weak supervision source.

Shapley Values. Shapley value [53], originated from game

theory and has been applied in machine learning tasks including

feature selection [13, 56, 61], data evaluation [20, 29, 33, 54], deep

learning explanation [3, 12, 64] and federated learning [37]. The

wide application of the Shapley value is credited to its favorable

properties that include fairness, symmetry, and efficiency [11, 51].

However, the high computational complexity of the Shapley value

needs to be addressed before applying it in practice. Common ap-

proaches to efficiently computing approximate Shapley values in-

clude Monte-Carlo permutation sampling [8–10, 41], multilinear

extension [42, 44] and linear regression approximation [14, 39].

While computing the exact Shapley value is infeasible in most

cases, it is possible in specific settings. Specifically, Jia et al. [28]

demonstrated that the Shapley value for data evaluation can be

efficiently computed for nearest-neighbor algorithms.

7 CONCLUSIONS
In our study, we propose WeShap values as an innovative method

for assessing and refining Programmatic Weak Supervision (PWS)

sources. We demonstrate notable computational efficiency and ver-

satility across various datasets and PWS configurations. Our results

unveil an average downstream model accuracy enhancement of 5.0

points compared to conventional methods, highlighting the piv-

otal contribution of WeShap values in the progression of machine

learning models.
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