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ABSTRACT
Training large models for modern recommendation systems re-
quires a substantial number of computational devices and extended
periods. Since it is essential to store model checkpoints throughout
the training progress for accuracy debugging ormitigating potential
failures, checkpointing systems are widely used. However, given
that recommendation models can scale to hundreds of gigabytes
or more, existing solutions often introduce significant overhead in
terms of both storage and I/O.

In this paper, we present IncrCP, a checkpointing system specifi-
cally designed for recommendation models. Given that only a small
fraction of model parameters are modified in each iteration, IncrCP
creatively leverages the incremental checkpointing strategy and
overcomes the inherent slow recovery problem. To support recov-
ering all states throughout the training process, while also ensuring
efficient storage utilization and rapid recovery, IncrCP proposes the
2-D chunk approach. It proactively records changed parameters in
the training process as well as their indexes, extracts parameters
according to duplicated indexes as independent chunk files, and
then orchestrates these chunks in the 2-dimensional linked list. In
this way, IncrCP achieves fast recovery by loading less unnecessary
parameters and performing less deduplication during recovery. Fur-
thermore, IncrCP includes a selective extraction approach to reduce
I/O by avoiding worthless extractions and a concatenate approach
to reduce random disk access when recovery. Evaluations show
that IncrCP achieves up to 6.6× recovery speedup compared to the
naive incremental strategy and saves storage space by 60.4% with
slight overhead compared to another recovery-friendly strategy.
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1 INTRODUCTION
Our daily life has been powerfully assisted by recommendation
systems, including daily usage of services from social media plat-
forms [18], e-commerce applications [42, 44] and video entertain-
ment websites [7, 15], etc. As reported by Meta [19], over 50% of
machine learning training demands are attributed to recommenda-
tion model training at Meta’s datacenter. Similar demands can be
found at other companies, such as Google, Amazon, and Alibaba.

Training large recommendation models often requires excessive
computing resources, e.g. occupying a large-scale high-performance
GPU clusters for days or even months. During such a long time, the
training process is inevitably interrupted by unexpected failures,
including hardware crushes, software malfunctions and network
disconnections. Frequent failures would even prevent the training
from succeeding since once a failure occurs the whole training
process aborts. To mitigate this, checkpointing becomes a fault
tolerance mechanism and a fundamental component of deep learn-
ing training frameworks [41]. Through periodically storing model
states to persistent storage, it enables training to recover from the
last saved state despite failures. In addition to failure recovery,
where the last checkpoint is saved, checkpoints are also needed in
many cases, such as debugging and transfer learning [41], where
all checkpoints should be kept. However, the large size of recom-
mendation models, often reaching hundreds of gigabytes or more,
challenges current checkpointing systems, making them inefficient
due to slow recovery and unacceptable storage usage.

It is imperative for checkpointing systems to optimize three key
metrics, checkpoint recovery time, checkpoint construction time,
and checkpoint storage usage, to ensure efficiency and practicality.
Firstly, the recovery process should be fast in case of a failure and
therefore reduce the system blocking time. Secondly, constructing
checkpoints blocks the training process, and the system can benefit
from a shorter construction time. Although asynchronous check-
pointing systems [32, 34, 35, 46] allow the I/O time of persisting
checkpoints from CPU memory to storage to overlap with GPU
computation, the training process is still blocked by the GPU-CPU
data transfer operation. Thirdly, storing checkpoints throughout
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the training [26, 30, 41, 46] demands significant storage space and
incurs substantial costs. For example, saving 154 checkpoints when
training Pythia-12B requires 11TB storage and would cost $5000
a month on a general cloud server [26]. Therefore, an efficient
checkpointing system should minimize overhead in both blocking
time and storage space, so as to support high-frequency check-
pointing. Related works put efforts on improving recovery perfor-
mance [32, 34, 35, 46] and reducing checkpoint size [3, 6, 20, 22],
but overlook the unique property of recommendation models.

During recommendation model training, only a small fraction of
the model parameters are updated after each iteration. This feature
provides a unique opportunity for checkpoints to save part of the
model instead of all parameters as in DNN model training, where
all parameters are updated after each iteration. Given the unique
feature, two classical approaches, incremental checkpointing and
differential checkpointing are potentially suited for recommenda-
tion models. The two methods have been widely adopted in high
performance computing applications [1, 12, 23, 25, 37, 43] and op-
erating systems [14, 31], yet seldom in deep model checkpointing.

Incremental checkpointing strategy records updates since last
checkpoint, capturing only changes between successive check-
points. In comparison, differential checkpointing strategy tracks
the differences relative to the baseline checkpoint (typically the first
checkpoint) and records parameters changed from the initial state.
Owing to the shorter interval of tracking, hence a reduced data vol-
ume, incremental checkpointing inherently surpasses differential
checkpointing in terms of construction time and storage consump-
tion. However, the incremental strategy tends to be very slow in
recovery for it requires loading all checkpoint files and processing
excessive duplication among these files. On the contrary, recover-
ing from differential checkpoints is faster for it only needs to load
two files, i.e. the baseline checkpoint and the file that records the
difference, with less data volume and avoiding duplicated updates.
Check-N-Run [10] uses differential checkpointing for recommen-
dation models, which achieves fast recovery and storage saving
compared to the full checkpoint strategy. Further, it intermittently
resets the differential interval to reduce storage consumption but
still consumes substantial storage. In comparison, the incremental
checkpointing strategy takes less storage space, while it is generally
overlooked in previous works due to poor recovery performance.

In this work, we reexamine the incremental checkpointing strat-
egy for recommendation model training and introduce a novel
checkpointing system IncrCP. IncrCP leverages the advantages
of incremental checkpointing, i.e. fast construction and low stor-
age consumption, while overcoming the inherent shortcomings in
recovery speed and providing the capability to recover from any
arbitrary checkpoint. The key idea behind IncrCP is the 2-D chunk
approach, which decomposes successive checkpoints into chunks
and orchestrates these chunks in a 2-dimensional linked list. One di-
mension of the linked list records changes in parameters throughout
the training process, while the other dimension tracks duplication
between checkpoints. As a result, IncrCP avoids loading unneces-
sary parameters and eliminates the need for deduplication during
recovery, thereby addressing the inherent limitations in recovery
speed. In details, the 2-D chunk approach is inspired by the famous
Log-Structured Merged Tree (LSM-Tree) used in many modern sys-
tems, such as Cassandra [24], RocksDB [11] and PebblesDB [40].

It proactively records all indexes of changed parameters in the
training process, and stores these indexes and corresponding pa-
rameters into a chunk file when checkpointing. Then it compares
this newly-added chunk file with all previous chunks and extracts
duplicated indexes as independent chunks, so as to avoid loading
and processing duplicated data in recovery. In this way, a check-
point is composed of multiple chunks and different checkpoints
share some chunks. To better manage these chunks, the 2-D chunk
approach orchestrates them into a 2-dimensional linked list and
achieves fast recovery by reading chunks in a specific route.

Furthermore, IncrCP solves two major problems in the extrac-
tion of duplicates. First, the former chunks of previous checkpoints
need to be loaded into memory and subsequently written back
to storage after retrieving duplicates, introducing excessive over-
head. We mitigate this problem by setting three level of filtering to
avoid small extractions where there is minimal duplication between
chunks. Second, frequent extractions can generate many small frag-
mented files, resulting in large random reads when recovery, which
is not disk friendly. We address this problem by concatenating small
chunks into large files during extractions, while ensuring the cor-
rectness of subsequent extractions. We summarize contributions of
our paper as follows:

• We reexamine the incremental strategy for fast and space-
efficient recommendation model checkpointing, by coordi-
nating the sparse update feature of models. To the best of
our knowledge, we are the first to apply incremental check-
pointing strategy for recommendation model training.

• We propose the 2-D chunk approach to overcome the inher-
ent slow recovery of the incremental checkpointing strat-
egy, by managing checkpoint chunks in a 2-dimensional
linked list.

• We propose a selective extraction approach that reduces
the I/O overhead of the background chunk management,
enabling fast and frequent foreground checkpointing.

• We propose a concatenation approach that repairs the frag-
mented storage caused by the chunk management, improv-
ing the recovery performance with less random disk access.

Extensive evaluations demonstrate that IncrCP significantly im-
proves recovery time over the naive incremental strategy and
greatly reduces storage consumption compared to the differential
strategy, with only a minor trade-off in other metrics. For example,
when checkpointing the popular recommendation model DLRM
and using a hard disk drive, IncrCP achieves a 6.6× faster recovery
time than the naive incremental strategy and reduces storage space
by 60.4% compared to the differential strategy.

2 BACKGROUND
2.1 Recommendation Models
Deep recommendation models are widely-used in existing recom-
mendation systems. They predict user interests by analyzing users’
prior interactions. Figure 1 illustrates the architecture of a popu-
lar recommendation model, DLRM [33], proposed by Meta. Since
the recommendation scenario usually takes continuous inputs (e.g.
user’s age, login time) and categorical inputs (e.g. user’s rating for
an item), recommendation models use combinations of the multi-
layer perceptron (MLP) and the embedding tables to process them
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Figure 1: The architecture of DLRM.
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Figure 2: The working process of differential checkpointing
and incremental checkpointing strategies.

separately. The dense features, representing continuous inputs, are
processed by the bottom MLP directly. The sparse features, repre-
senting categorical inputs, are actually embedding indices indicat-
ing user’s preferences to items in the embedding tables. The sparse
features are converted to embeddings by looking up corresponding
rows in the embedding tables [47]. In this way, the categorical in-
puts are mapped from sparse to dense representations, which can be
combined and computed with the output of the bottom MLP. Since
recommendation systems mostly process sparse features, such as
hundreds of billions of products and billions of users, parameters of
embedding tables generally dominate the recommendation models
(> 99%) and can scale to hundreds of gigabytes or more. For instance,
the DLRM model in the popular MLPerf benchmark [29] consists of
around 100GB of embedding tables and 10MB of other parameters.

In recommendation models, only a minor proportion of embed-
ding parameters are updated after each iteration [10]. The embed-
ding layers comprise massive embedding tables and each table
might contain millions of embedding vectors, where every vector
corresponds to one category in the sparse feature. In the forward
phase, the embedding table looks for the matching embedding vec-
tors of categorical inputs to be further processed by the upper MLP.
Simultaneously, in the backward phase, only the vectors that partici-
pated in the forward phase will undergo updates. Thus, considering
that embedding tables largely contribute to the overall model size,
there are relatively few updates involved in each training iteration
of a recommendation model. For example, when training a 25GB
DLRM model with a batch size of 1024, only 0.02% of embedding
vectors are updated after an iteration.

2.2 Incremental and Differential Strategies
The checkpoint mechanism in computing, particularly in the con-
text of training large models, is a vital technique used to manage

and safeguard ongoing computations. This mechanism involves
periodically saving the state of a system or model to persistent
storage. In general model training, such as CNN or Transformer
models, parameters are fully stored to persistent storage after sev-
eral iterations of training. In comparison, recommendation models
only update a small fraction of embedding tables after iterations,
there is no necessity to checkpoint all the embedding tables each
time. Thus, we tend to explore checkpointing strategy that better
suited for recommendation models, i.e. differential and incremental
checkpointing strategies.

Both incremental and differential checkpointing strategies begin
with the storage of a baseline checkpoint, which represents param-
eters of the entire model, as depicted in Figure 2. Subsequent to
the initial step, both approaches proceed to capture snapshots of
the updated parameters at each following checkpoint. The primary
distinction between these two approaches lies in the intervals they
track. Differential checkpointing tracks changes over an interval
from the baseline checkpoint to the current checkpoint, whereas
the incremental checkpointing captures the changes that occur
from one checkpoint to the next, tracking only the updates made
since the last saved state. Consequently, incremental checkpointing
monitors a shorter span and diminishes the checkpoint volume,
presenting great advantage in reducing both I/O and storage space.

However, incremental checkpointing strategy generally presents
much slower speed [10] compared to the differential strategy when
recovering from a target checkpoint. During the recovery process,
the baseline checkpoint is loaded initially. Given that differential
checkpoints encompass all parameters updated in relation to the
baseline checkpoint, only two files are necessary for recovery. Con-
versely, in incremental recovery, all files between the target check-
point and the baseline checkpoint are needed. Thus, lots of files
are required to be loaded and these files include massive repeated
parameters. In the circumstance of checkpointing recommenda-
tion models, there exists an abundance of duplicated embedding
indices among incremental files, indicating the same embedding
vectors updated during different incremental intervals. Redundant
data loading and deserialization, as well as complex deduplication
processing lead to slow recovery process, compared to the differ-
ential strategy and even the fully checkpointing strategy. In our
experiment of DLRM training, the data loading volume of one in-
cremental recovery can be easily more than 3× compared to that
of one differential recovery, and the gap will be further enlarged as
the training progresses.

To summarize, the incremental checkpointing strategy naturally
saves I/O and storage space, while it fails in achieving fast recovery
compared with other strategies.

3 MOTIVATION
3.1 Decomposing Incremental Checkpoints
Existing checkpointing systems generally provide interfaces to save
user-given content into single file when storing checkpoints. How-
ever, this approach loses the opportunity tomanage checkpoint data
at a fine-grained level. As is mentioned above, the embedding tables
of recommendation models are composed of embedding vectors,
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Figure 3: The timeline of how chunks are organized into
checkpoints in the LSM-Tree.

and an incremental checkpoint of the recommendation model con-
tains the updated embedding vectors since last checkpoint. There-
fore, an intuitive way to decompose checkpoint data is leveraging
key-value stores, where the indexes of vectors act as keys and the
embedding vectors act as values. In this way, the key-value stores
are able to arrange checkpoint data at the key-value pair granularity.
There are many popular key-value stores [9, 11, 16, 24, 40] serving
for different application scenarios, among which checkpointing is
write-intensive for checkpoints are created frequently.

The Log-Structured Merge Tree (LSM-tree) [36] is a data struc-
ture that is particularly effective for write-intensive tasks. Basically,
it provides high write performance by buffering recent updates in
memory and flushing them into disk subsequently, which is very
similar to performing an incremental checkpoint. To be specific,
the LSM-Tree manages data as key-value pairs, appends data into
storage to be log-structured chunks, then partially merges data to
maintain its orderliness through compaction operations. Moreover,
the LSM-Tree serves queries by searching for keys across its mem-
ory buffer and potentially multiple chunks in storage. Therefore, the
LSM-Tree is able to support checkpoint-recovery and the recovery
requires to query for all needed chunks.

In short, we seize the opportunity to decompose incremental
checkpoints based on key-value stores, among which the LSM-
Tree based key-value store is potential to be applied for managing
incremental checkpoints of recommendation model training.

3.2 Chunk-based incremental checkpoints
The LSM-Tree based key-value stores provide a sub-optimal solu-
tion to orchestrate incremental checkpoints in chunks. Since the
LSM-Tree appends incremental data into storage as chunks, all the
added chunks can form a complete checkpoint. Figure 3 shows an
example of how chunks are organized to form a checkpoint for re-
covery. In the 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙0, the chunk that records the updated param-
eters is appended to the tree, forming the first checkpoint(𝑐𝑘𝑝𝑡0).
Next, the incremental updates of the next interval(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙1) is
appended, forming the second checkpoint(𝑐𝑘𝑝𝑡1) together with the
former added chunk. Then, when the chunk containing the updated
parameters of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙2 is appended, a compaction is triggered to
merge former chunks into a more sorted chunk. Specifically, the
compaction loads key-value pairs in the two chunks into mem-
ory, sorts them in key order while discarding duplicated keys, and
writes sorted key-value pairs into a new chunk. The new chunk,

selective 
extraction

The changed parameters 
of the new interval.

1 3,4

2

2,5,6

3

5

ckpt 2

ckpt 0

ckpt 1

Recovery
1 3,4 2,5,6
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Failure
…

2D chunk

Checkpointing

1,2
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Figure 4: The Overview of IncrCP. The baseline checkpoint
is not displayed here.

together with the appended chunk in 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙2, form the third
checkpoint(𝑐𝑘𝑝𝑡2). Subsequently, updates in 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙3 is appended
and the existing three chunks form the fourth checkpoint(𝑐𝑘𝑝𝑡3).
At this point, a compaction is triggered and going to generate new
chunks for the next checkpoint. In this way, the chunks keeps be-
ing appended to form new checkpoints, and the compactions keep
merging and deduplicating key-value pairs among existing chunks.

Although the LSM-Tree based key-value stores are able to orga-
nize checkpoints in chunks and presents some advantages, it still
encounters the following shortcomings. Firstly, the LSM-Tree is
unable to maintain multiple checkpoints simultaneously, therefore
it lacks the ability of arbitrary checkpoint recovery. Each time a new
chunk is appended to the LSM-Tree, only the latest checkpoint is
maintained, as the compaction removes necessary key-value pairs
of former checkpoints. For example, in Figure 3, the information
of 𝑐𝑘𝑝𝑡0 has lost in 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙2 due to the compaction. Secondly, the
LSM-Tree is unable to deduplicate keys from a global perspective,
missing further opportunities for duplication elimination and re-
ducing I/O burden. It can only deduplicate keys within the most
recent chunks, as performing deduplication across all chunks would
impose an unacceptable I/O burden.

4 THE DESIGN OF INCRCP
4.1 Overview
IncrCP is a checkpointing system designed for the recommendation
model training. It reexamines the overlooked incremental check-
pointing strategy, aiming at saving storage space and achieving fast
recovery speed. In addition to leveraging the inherent characteristic
of saving storage space, IncrCP also incorporates novel approaches
to enhance recovery speed, addressing the traditional shortcoming
of the incremental strategy. Notably, here we focus exclusively on
the dominant embedding tables of recommendation models and
disregard the MLPs, which only constitute a very small proportion.

Figure 4 demonstrates an overview of IncrCP, which decomposes
and orchestates checkpoints in chunks. Specifically, it is composed
of a 2-D chunk approach, a selective extraction approach, and a
concatenation approach. The key concept behind IncrCP is the
2-D chunk approach. At first, the 2-D chunk approach of IncrCP
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Figure 5: The timeline of how multiple checkpoints are man-
aged by the 2-D chunk approach.

records the indexes of parameters that have changed. During the
checkpointing process, these indexes, along with the associated
parameters, are stored in a chunk file. This chunk is then asyn-
chronously compared with all previous chunks to identify and
extract data with duplicated indexes from previous chunk into new
chunks. When a checkpoint recovery is required, IncrCP retrieves
chunks following a specific route and these chunks are spliced
together in advance to accelerate data access.

Besides, in Figure 4, since all the former chunks of previous
checkpoints need to be loaded into memory and subsequently writ-
ten back to storage after retrieving duplicates, introducing excessive
overhead and slowing down checkpointing efficiency. The selective
extraction approach mitigates this by setting three level of filter-
ing to avoid small extractions where there is minimal duplication
between chunks. Frequent extractions can generate many small
fragmented files, resulting in large random reads during recovery,
which is not disk friendly. The concatenation approach addresses
this by concatenating small chunks into large files during extrac-
tions, while ensuring the correctness of subsequent extraction.

4.2 2-D Chunk Approach
The 2-D chunk approach enables fast recovery for the incremental
checkpointing strategy and acts as the core idea behind IncrCP.
Figure 5 demonstrates the timeline of how multiple checkpoints
are managed by the 2-D chunk approach and Figure 6 shows how
a checkpoint is inserted into and recovered from the 2-dimensional
linked list. Here we firstly introduce the 2-D chunk approach in a
step-by-step style, following Figure 5, and then introduce it in a
more general way, following Figure 6.

The 2-D chunk approach is based on the idea of the incremental
checkpointing strategy and supports recovering from an arbitrary
checkpoint. It only records and stores these incrementally changed
parameters within the training interval. In the beginning, a file that

𝑅𝑜𝑤!
𝑅𝑜𝑤"

𝐶𝑜𝑙! 𝐶𝑜𝑙" 𝐶𝑜𝑙#	𝐶𝑜𝑙$	

Extraction
Checkpoint

𝑅𝑜𝑤$
𝑅𝑜𝑤#

Newly-Added chunk
Compared chunk
Extracted chunk

newer

older

Figure 6: The illustration of how a newly-added chunk is
inserted into the 2-dimensional linked list.

records the baseline checkpoint, or rather the full model states, is
stored. Notably, the baseline checkpoint is not displayed in Figure 5
and Figure 6. Next, as the model training progressing, these changed
parameters will be recorded in the form of sorted key-value pairs
and stored as a chunk.

In the 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙0 of Figure 5, the chunk that records the changed
parameters is joined to the empty linked list and it is directly added
into the first row (𝑅𝑜𝑤0). Next, the chunk that stores incremental
updates of the next interval (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙1) is arrived. As is mentioned
before, recovery from incremental checkpoints suffers from redun-
dant updates among multiple checkpoints, and we introduce an
extraction process to eliminate this. In detail, 3 of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙0 is ex-
tracted to form an independent chunk, which is inserted into the
next row (𝑅𝑜𝑤1). Until now, if we need to recover from the most
recent model state, only loading two chunks in 𝑅𝑜𝑤0 is enough.
Subsequently, when the chunk containing updates of 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙2 is
joined, another extraction is triggered. As detailed in Figure 6, the
chunk will be compared with all other chunks in 𝑅𝑜𝑤0. Then, two
new chunks will be inserted into 𝑅𝑜𝑤1 and the original chunk of
𝑅𝑜𝑤1 will be pushed to 𝑅𝑜𝑤2. In 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙3, the newly-added chunk
does not have duplicates compared to the chunk in the intersection
of 𝑅𝑜𝑤0 and 𝐶𝑜𝑙0, an empty node will still be inserted into 𝑅𝑜𝑤1.

Basically, as shown in Figure 6, the 2-D chunk approach con-
stantly extracts duplicates and arranges the extracted data in the
2-dimensional linked list to balance between storage space and
recovery speed. The newly-added chunk will be compared with all
the other chunks in 𝑅𝑜𝑤0. If duplicated keys are found in former
𝑅𝑜𝑤0 chunks, the corresponding key-value pairs will be extracted
from its original chunk and inserted into 𝑅𝑜𝑤1. Thus, an original
incremental checkpoint will be extracted multiple times and split
into multiple chunks. After comparing and extracting, these ex-
tracted key-value pairs will be written to generate a new chunk
and always inserted into 𝑅𝑜𝑤1 of the 2-dimensional linked list. If
there is no duplication, an empty node plays as a placeholder and
will be inserted into 𝑅𝑜𝑤1. Further, the insertion pushes all rows to
their next rows. In this way, all chunks that reside in the same row
are the results of the same round of extraction.

Based on the 2-D chunk approach, we can recover from any one
of checkpoints without duplicated data through the well organized
chunks in the linked list. Thus, to recover from a specific checkpoint,
denoted as 𝑐𝑘𝑝𝑡𝑖 , we get its maximum depth and width, and loads
chunks within this rectangle to form the entire checkpoint. Other
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Figure 7: The Selective Extraction Approach.

chunks outside this rectangle is ignored. Since there is no duplica-
tion between these chunk files, the complex deduplication process
is not necessary compared to the naive incremental strategy.

In summary, the 2-D chunk approach targets at improving the
inherent shortcoming of the naive incremental checkpointing strat-
egy, i.e. the recovery speed. It decomposes incremental checkpoints
into chunks and extracts duplicates between these chunks, so as to
avoid loading unnecessary parameters and eliminate the deduplica-
tion process in recovery. To better manage these chunks, the 2-D
chunk approach arranges chunks in a 2-dimensional linked list.

4.3 Reduce Comparing Overhead by the
Selective Extraction Approach

The construction of the 2-dimensional linked list requires the com-
paring stage that each newly-added chunkwill be compared with all
previous chunks in 𝑅𝑜𝑤0, introducing I/O and CPU processing over-
head. If the training executes for an extended period and a single
2-dimensional linked list manages numerous checkpoints, frequent
extraction at each checkpoint interval leads to increased overhead,
which significantly impairs the performance of the checkpoint-
ing system. Specifically, when performing extractions, all chunks
in 𝑅𝑜𝑤0 should be loaded into memory, do extraction, and then
be written back to persistent storage. Although extractions are
executed asynchronously, the overhead increases as training pro-
gresses, finally blocking the foreground checkpoint writes.

To reduce the extraction overhead, we propose a selective extrac-
tion approach. It balances the extraction overhead during check-
pointing with the benefits of redundant loading during recovery.
Notably, the extraction overhead can be partly hidden with the
training process. Since the recommendation model updates only
a small proportion of parameters over a limited number of itera-
tions, performing extraction for every chunk results in few dupli-
cates between chunks and generates many extremely small chunks.
Therefore, we find it unnecessary to execute thorough extractions.

As shown in Figure 7, the selective extraction is composed of
three distinct filter stages to determine whether it is worthwhile to
do extraction. Further, it is able to reduce the data loading volume
and the number of small files. The first stage is called the index
range check. We store the minimum and maximum keys as the
metadata of each chunk. At the arrival of the newly-added chunk,
we can check the metadata and determine whether the key range
of this chunk falls in key ranges of other chunks. If overlaps, it
becomes meaningful to do extraction.

Selected Chunks:

1,3,51,2

N=3 Newly-added Chunk

3,4 5,6

2 4 6

1 3 5

2 4 6

1 3 5

#chunks=2*N  #files=2*N

without concatenation with concatenation

Plain file

Bundle file: counter=N𝑅𝑜𝑤!

𝑅𝑜𝑤"

𝑅𝑜𝑤!

𝑅𝑜𝑤" chunk: [offset,length]

#chunks=2*N  #files=2

Extraction

𝑅𝑜𝑤!

Figure 8: The concatenation approach.

The second stage is based on the bloom filter [4], which has been
adopted by many key-value stores to accelerate queries[27, 49, 50].
A Bloom filter can indicate whether an element is possibly in a set,
with extremely low space overhead and query latency. A bloomfilter
is a bit-vector, initially set to all zeros, that records the existence of a
key in a set according to the hash value of the key. To create a bloom
filter, each key in the set is calculated with multiple hash functions,
then the corresponding bits are set to 1 with hash values act as
indexes. To query for the existence of a key is to calculate the hash
values and check the corresponding bits. If all the corresponding
bits are 1, then the key is in the set, which is called a hit. However,
the answer of the bloom filter may be false-positive due to hash
collision. When a chunk of 𝑅𝑜𝑤0 is generated, the corresponding
bloom filter of the chunk is also generated. In this way, we can get
a hit ratio indicating the key duplicated ratio between the target
chunk and the newly-added chunk, by querying the bloom filter
of the target chunk with keys in the newly-added chunk. Here we
set the threshold of the hit ratio as 𝑅. If the hit ratio is larger than
𝑅, the comparison can enter the next stage. Otherwise, the related
extraction process is ignored this time.

The third stage directly checks whether it is worthwhile to do
extraction by calculating actual number of duplicated keys during
extraction process. Although chunks have been loaded into mem-
ory, it is still worthy of terminating the extraction. The frequent
extraction can generate extremely small chunks, and presents chal-
lenges due to the fragmented data storage, further damaging the
overall performance. In this way, we calculate the duplicated ra-
tio by real keys and determine whether to do extraction through
comparing the duplicated ratio with 𝑅.

4.4 Reduce Random Access Overhead by the
Concatenation Approach

Although incremental checkpoints are organized in chunks and
able to eliminate most redundant data access, the recovery process
cannot fully take advantage of the disk’s sequential read capabilities
due to the presence of small files. When performing extractions,
each chunk is written to its own file, resulting in massive small
files in the storage. To address this, we propose the concatenation
approach for enhancing the 2-D chunk approach. Basically, we
concatenate chunks of the same row into a file during extractions.

As shown in Figure 8, a newly-added chunk triggers an extrac-
tion, performing deduplication for 𝑁 𝑅𝑜𝑤0 chunks, where 𝑁 = 3.
When performing without concatenation, this extraction generates
total 2 ∗ 𝑁 new files, 𝑁 files in 𝑅𝑜𝑤0 and 𝑁 files in 𝑅𝑜𝑤1, with
each file contains only one chunk, called a plain file. Instead, the
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Figure 9: Decide the type of checkpoints by comparing the
time consumed by checkpoint construction and recovery.

concatenation approach generates 2 new files, one for 𝑅𝑜𝑤0 and
one for 𝑅𝑜𝑤1, with each file contains 𝑁 chunks, called a bundle file.
A [𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑙𝑒𝑛𝑔𝑡ℎ] label is assigned to each chunk, indicating its
offset in the bundle file and its data length. A counter is initialized
as 𝑁 for the generated 𝑅𝑜𝑤0 bundle file, indicating the number of
chunks inside the bundle file.

After concatenation, the bundle file of 𝑅𝑜𝑤0 may encounter sub-
sequent extractions, resulting in modifications of internal chunks.
When a chunk inside the bundle file joins an extraction, it will be di-
vided into two chunks, which are written into new files in 𝑅𝑜𝑤0 and
𝑅𝑜𝑤1. In this case, the chunk becomes invalid in the original bun-
dle file and the related counter is reduced by 1. When the counter
becomes 0, the bundle file will be removed. The concatenation may
require additional storage space intermediately, but the overhead
is acceptable and can be eliminated after checkpoints accumulate.

To quantify the number of files accessed during recovery, here we
assume 𝐿 checkpoints are generated and related number of chunks
are added to 𝑅𝑜𝑤0. When we recover from the 𝑖𝑡ℎ checkpoint (1 ≤
𝑖 ≤ 𝐿), chunks within a rectangle with depth 𝑑𝑖 = 𝐿 − 𝑖 + 1 and
width𝑤𝑖 = 𝑖 are accessed. Firstly, we compare the number of files in
𝑅𝑜𝑤0, denoted as 𝑁0. Without the concatenation approach, 𝑁0 = 𝑖 .
With the concatenation approach, 𝑁0 < 𝑖 , thanks to the presence
of bundle files. Secondly, we compare the number of files that are
extracted to rows deeper than 𝑅𝑜𝑤0, denoted as 𝑁+. Without the
concatenation approach, 𝑁+ = (𝐿 − 𝑖) ∗ 𝑖 , while 𝑁+ = (𝐿 − 𝑖) when
adopting the concatenation approach. This is because each row
maintains only one bundle file. Consequently, the number of files
accessed during recovery is significantly reduced, allowing more
sequential reads to be exploited.

4.5 Restrict Recovery Latency by Resetting the
Baseline Checkpoint

Due to the inherent nature of the lengthening of the recovery route
in the incremental strategy, recovery time increases as training pro-
gresses. Specifically, the increase comes from the growing number
of updated parameters over the baseline checkpoint. Therefore, it is
necessary to store a full model intermittently so that the differential
view (i.e. the updated parameters since the baseline checkpoint)
can be reset.

Before constructing a checkpoint, we always assume there is a
coming failure after current checkpoint. Then, we decide whether to
generate a baseline checkpoint by comparing the time of checkpoint
construction and recovery, as shown in Figure 9. In other words,
the type of a specific checkpoint is decided considering which one
can lead to shorter end-to-end training time. The construction time
is easy to obtain during training while the recovery time has to be
estimated. In our experiments, we observe that the recovery latency

of IncrCP shows a near-linear increase as checkpoint accumulates.
Thus, the recovery time can be estimated according to history
recoveries. The algorithm for the decision is as follows:

Let𝐶𝑏𝑎𝑠𝑒 and𝐶𝑖𝑛𝑐𝑟𝑒 be the time spent on constructing a baseline
checkpoint and an incremental checkpoint, respectively. The time
spent on recovering from a baseline checkpoint is denoted as 𝑅𝑏𝑎𝑠𝑒 .
The time consumed by loading the updated parameters since the
baseline checkpoint when recovering from 𝑐𝑘𝑝𝑡𝑖 is denoted as 𝑅𝑖 .
When constructing a baseline checkpoint, the construction and
recovery time (denoted as 𝑇𝑏𝑎𝑠𝑒 ) can be expressed as

𝑇𝑏𝑎𝑠𝑒 = 𝐶𝑏𝑎𝑠𝑒 + 𝑅𝑏𝑎𝑠𝑒 .

When constructing an incremental checkpoint, the construction
and recovery time (denoted as 𝑇𝑖𝑛𝑐𝑟𝑒 ) can be expressed as

𝑇𝑖𝑛𝑐𝑟𝑒 = 𝐶𝑖𝑛𝑐𝑟𝑒 + 𝑅𝑏𝑎𝑠𝑒 + 𝑅𝑖 ,

where 𝑅𝑖 is inferred from the last two recoveries. If 𝑇𝑏𝑎𝑠𝑒 < 𝑇𝑖𝑛𝑐𝑟𝑒 ,
the baseline checkpoint is generated for reset. When the baseline
checkpoint is generated, a 2-dimensional linked list will be created
relatively. In this way, the growing size of rows and columns in our
2-D chunk approach is limited, and the recovery time is restricted.

5 EVALUATION
This section firstly illustrates the effectiveness of IncrCP by con-
ducting single-node experiments and presenting the overall perfor-
mance across different storage devices. Next, we conduct a sensi-
tivity study to show the impacts of our optimization solutions on
IncrCP. At last, to show the generalizability of IncrCP, we apply
IncrCP to two additional recommendation models and evaluate it
under larger checkpoint interval and distributed setting.

5.1 Experimental Setup
5.1.1 Implementation. We develop IncrCP using C++ and pro-
vide Python interfaces for integrating with 𝑃𝑦𝑡𝑜𝑟𝑐ℎ. We employ
MessagePack [13] to perform serialization and deserialization for
chunk files. Particularly, to identify which embedding vectors are
modified with specific inputs, we track the behavior of the em-
bedding lookup operations and record which embedding vector
the input data flows through. Notably, we only take this process
in the forward pass. When applying IncrCP to recommendation
model training, each embedding table is managed by a separate
instance of a 2D linked list. Therefore, it is straightforward to apply
IncrCP to distributed training, where model parallelism is applied
and embedding tables are distributed to different GPUs.

Table 1: Device Access Bandwidth.

Device Sequential
Wr.(MB/s)

Sequential
Rd.(MB/s)

Random
Wr.(MB/s)

Random
Rd.(MB/s)

HDD 104 163 1.6 2.5
Flash SSD 1405 2463 1042 577
3D X. SSD 2182 2528 1457 2210
Lustre 119 7278 117 6867
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5.1.2 Testbed. We conduct experiments on a server that has 56
CPU cores, 256GB DRAM, and 4 Tesla V100 GPU, each with 16GB
of memory. The server runs CentOS 7.2 with CUDA ToolKit 12.0
and Pytorch 1.13.1. For persistent storage, the server is equipped
with a 1TB NAND flash-based NVMe SSD , a 726GB HDD, and a
688GB 3D XPoint based NVMe SSD . We also conduct distributed
experiments on a cluster where each node is configured with 56
CPU cores, 1 TB of DRAM, and 8 A800 GPUs, each with 80GB
of memory. The nodes are connected via infiniband network, and
checkpoints are stored using Lustre [5], a parallel distributed file
system. Detailed metrics for these storage systems are presented in
Table 1, with results obtained using fio under 16 concurrent jobs.

Table 2: Model training configurations.

Scale Model Dataset Model size
(GB)

Batch
size

Single Node
DLRM [33] Kaggle 25 1024
DeepFM [17] Kaggle 21 512
PNN [39] Kaggle 21 512

Distributed DLRM [33] Terabyte 220 16384

5.1.3 Models and training configurations. As shown in Ta-
ble 2, we select and configure three popular recommendation mod-
els, DLRM [33], DeepFM [17] and PNN [39], for training on a single
node using the Criteo Kaggle dataset [21], with model sizes of
25GB, 21GB and 21GB respectively. Further, we train DLRM on
Criteo Terabyte dataset [8] and conduct the distributed training
on 2 nodes, with the model size up to 220GB. In the single node
training, we set the checkpoint frequency to iteration-level as in
CheckFreq [32]. A checkpoint is generated every 10 iterations. Total
150 checkpoints are saved for DLRM [33], and 100 checkpoints are
saved for DeepFM [17] and PNN [39]. In the distributed training,
a checkpoint is generated every 4000 iterations. To evaluate the
recovery performance, we recover from each checkpoint for all the
saved checkpoints and record the time consumed. Notably, these
recovery time are measured after the all checkpoints are generated.

5.1.4 Metrics. We evaluate the effectiveness of different check-
pointing systems with three metrics: 1)Recovery time: The time
consumed of recovering from a specific checkpoint. It consists
of I/O and deserialization time. 2) Construction time: The time
consumed for constructing a checkpoint, including the time for
copying data from GPU memory to CPU memory (G2C) and the
time for copying data from CPU memory to persistent storage
(C2S). The C2S construction time can be overlapped with the GPU
computation and the G2C construction time blocks the GPU com-
putation. 3) Storage consumption: The storage space required for
checkpointing, including baseline checkpoints. Note that the base-
line checkpoint and dense parameters are ignored when recording
checkpoint construction time and recovery time.

5.1.5 Baseline Methods. There are two baseline approaches:

• Check-N-Run: The differential checkpointing strategy
introduced in Check-N-Run [10]. This approach is imple-
mented using the same serialization/deserialization library,
i.e. MessagePack, for fair comparison. Here we also take its
baseline reset strategy.

• Naive Incre: The naive incremental checkpointing strat-
egy, which requires to load massive duplicates and execute
complex deduplication process in recovery, theoretically
good at storage consumption while weak in recovery speed.
This approach is also implemented atop MessagePack for
fair comparison.

5.2 Overall Performance
This section evaluates the overall performance of IncrCP by con-
ducting the single-node experiment. Since the recommendation
model splits embedding tables into different nodes for scaling up
and each embedding table is managed by a separate instance of a
2D linked list, the single-node experiment can largely illustrate the
effectiveness of IncrCP. The single-node experiment trains DLRM
with Kaggle dataset on three different kinds of storage devices,
i.e. 3D XPoint SSD, NAND Flash SSD and HDD. We set 𝑅 = 0.02
for the selective extraction approach and turn on the concatena-
tion approach of IncrCP. Notably, here we only report the G2C
construction time from the overall training perspective.

5.2.1 Recovery Time. For the recovery time, as demonstrated in Fig-
ure 10, IncrCP shows a significant improvement compared to Naive
Incre and a comparable performance compared to Check-N-Run. It
illustrates that IncrCP successfully overcomes the inherent bottle-
neck of the incremental checkpointing strategy, where the recovery
time is generally unacceptable. In detail, over the 150 checkpoints,
IncrCP achieves an average recovery time reduction of 6.6×, 4.7×
and 5.2×, compared to that of Naive Incre on HDD, Flash SSD and
3D XPoint SSD, respectively. In other words, IncrCP significantly
outperforms Naive Incre on all three types of storage devices. This
aligns with our expectations. Through the decomposition and or-
chestration of incremental checkpoints, IncrCP loads fewer files,
processes smaller data volumes, and related less deserialization.
Additionally, the recovery time of Naive Incre is consistently and
rapidly increasing, which validates its unacceptability.

Next, we compare the recovery time of these three storage de-
vices. Although the trend of the absolute recovery time in Figure 10
fits the trend of the access bandwidth illustrated in Table 1, it does
not fit the ratio. For instance, the 3D XPoint SSD is more than 10
times faster than the HDD, while the recovery time is only ap-
proximately half that of the HDD. This is because, from the time
breakdown, the deserialization dominates the overall recovery time.
Among these three devices, our IncrCP shows the greatest speed-up
when using an HDD. During the 150 checkpoints, training with an
HDD requires three times the baseline reset, whereas other config-
urations only require twice the baseline reset. This is because, in
comparison, the ratio of sequential read to random read in an HDD
is much larger than that of the other two storage devices. Thus,
IncrCP can achieve better speedup when employing the HDD as
the storage device.

When compared to Check-N-Run, as shown in Figure 10c, In-
crCP achieves a comparable recovery time. In detail, IncrCP incurs
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(b) NAND Flash SSD.
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Figure 10: The recovery time on different storage devices as checkpoint number increases.
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(a) 3D XPoint SSD.
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(b) NAND Flash SSD.
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Figure 11: The construction time (G2C) on different storage devices as checkpoint number increases.
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(a) 3D XPoint SSD.
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(b) NAND Flash SSD.
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Figure 12: The storage consumption on different storage devices as checkpoint number increases.

an average of 1.1×, 1.5× and 1.3× recovery time increase on HDD,
NAND Flash SSD and 3D XPoint SSD respectively. Note that IncrCP
achieves worse recovery time compared to Check-N-Run within
a given interval range, for example, from interval 74 to 100 in Fig-
ure 10a. This difference arises from the distinct baseline checkpoint
reset policies of Check-N-Run and IncrCP . At interval 74, Check-
N-Run resets its baseline checkpoint, causing the recovery time to
reset and start from 0 at interval 75. In contrast, IncrCP does not
reach its baseline reset threshold at this interval, leading to a con-
tinued increase in recovery time. However, resetting the baseline
checkpoint introduces significant overhead in storage space and
checkpoint construction time, making it a trade-off decision.

5.2.2 Construction time. As shown in Figure 11, the checkpoint
construction time (G2C) for IncrCP is extremely close to that for
Naive Incre, while much lower in comparison to Check-N-Run.
In detail, Naive Incre is 26% faster than IncrCP using HDD, 13.6%
faster using NAND Flash SSD, and 16.4% faster using 3D XPoint SSD

when constructing these checkpoints. This also indicates that the
background operations of IncrCP have only a slight impact on the
foreground G2C data transfer. As for Check-N-Run, its construction
time grows linearly when the number of checkpoints grows, largely
exceeding that of both incremental approaches. Although it only
reaches several seconds in this experiment, significantly less than
the recovery time, the construction time is accumulated throughout
the training process, while the recovery time may only be triggered
once over a long period, or possibly not at all.

5.2.3 Storage consumption. As shown in Figure 12, IncrCP con-
sumes a little more storage than Naive Incre but significantly less
storage than Check-N-Run. IncrCP only consumes 44%, 34%, and
34% storage in comparison to Check-N-Run on HDD, NAND Flash
SSD and 3D XPoint SSD, after dumping all 150 checkpoints. Com-
pared to Naive Incre, IncrCP requires more storage. The major
disadvantage comes from the baseline checkpoint reset, which can
be considered a hyperparameter for trade-off.
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Figure 13: The selective extraction approach of IncrCP with
varying 𝑅 values. Here the construction time includes both
G2C and C2S.

5.3 Sensitivity & Ablation Study
This section conducts the sensitivity study of the selective extrac-
tion approach , and the ablation study of both the selective extrac-
tion and the concatenation approach. They were tested separately,
excluding the influence of each other. The selective extraction ap-
proach relies on the threshold 𝑅 of duplicated ratio to determine
whether to trigger an extraction. Concatenation is enabled with
extraction. Here we select HDD in the following experiments.

5.3.1 Selective Extraction. The selective extraction approach helps
reduce the data volume to be loaded during recovery by sacrificing
additional disk accesses. Therefore, the selection of the hyperparam-
eter 𝑅 will have varying effects on recovery time and construction
time. Figure 13a shows the average recovery time over 50 check-
points when using the HDD device with varying 𝑅. When 𝑅 = 0,
the recovery process makes full extraction and loads the least data
volume. As 𝑅 increases, more extractions are ignored and the data
volume also increases. Thus, the number of files decreases because
of less extractions. The recovery performance is related to both data
volume and number of files accessed, especially on random-access
sensitive devices like HDD. Notably, the construction time reported
here is from the perspective of the checkpointing subsystem and
includes both the transfer time from GPU to CPU and the transfer
time from CPU to persistent storage.

For the checkpoint construction time, it reduces as 𝑅 increases,
shown in Figure 13b. When 𝑅 = 0, the I/O and CPU computational
overhead is largest. As 𝑅 increases, less extractions are performed
resulting in shorter construction time. Since each extraction modi-
fies the state of 𝑅𝑜𝑤0 chunks, the next extraction has to wait until
the current extraction accomplished. Furthermore, since 𝑅 deter-
mines the least number of parameters to be extracted from a chunk,
it should be carefully set according to number of parameters up-
dated during one checkpoint interval. A larger interval generally
deserves a smaller 𝑅 value. It is essential to make a trade-off by
choosing a suitable 𝑅.

Besides the sensitivity study, we also conduct an ablation study
to assess the contribution of each selection stages.We incrementally
add these three filtering stages, i.e. index filter, bloom filter, and
actual filter, to the baseline: 1) Base: none of these stages are applied;
2) IF: applying index range check only; 3) IF+BF: applying index
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Figure 14: Ablation results for the selective extraction ap-
proach and the concatenation approach.

range check and bloom filter hit ratio check; and 4) IF+BF+AF:
applying all three stages. We select 0.02 as the 𝑅 threshold value.

Figure 14a presents the average construction and recovery time
normalized to the baseline results. Basically, applying all three
stages (IF+BF+AF) results in a significant speedup for both con-
struction and recovery compared to the baseline (Base). Initially,
the IF and the IF+BF considerably improves the construction time,
but slightly worsens the recovery time, due to the reduction of un-
necessary extraction and an increase in small files. However, when
the actual filter is added, construction time increases slightly, while
recovery time significantly decreases, achieving a more optimal
trade-off between the two. This is because the Bloom filter may
produce false positives in its predictions and makes it fail to inter-
cept all small extractions. The actual filter fixes this problem by
terminating the extraction after loading files, and this can largely
reduces the number of small files at the expense of useless I/O. Thus,
it slightly worsens the construction time, and largely benefits the
recovery time. Notably, selecting an appropriate threshold value for
each filter is crucial for achieving an optimal performance trade-off.
However, in this case, we use a unified value for all filters.

5.3.2 Concatenation. The concatenation approach concatenates
extraction outputs of the same row into the same file. To evaluate
this approach, we set 𝑅 = 0 to perform full extraction and com-
pare the recovery performance with and without concatenation.
The evaluation is also carried out on HDD. Figure 14b shows that
the recovery time significantly increases when the concatenation
approach is disabled, due to large amount of small files generated
by extraction. Thus, the impact of random accesses can be largely
mitigated by the concatenation approach.

Notably, the recovery time without the concatenation approach
initially increases and then decreases as the number of checkpoint
intervals grows. This is because the recovery time measured is not
for the most recent checkpoint; we measure the recovery time of
these checkpoints after all checkpoints have already been generated.
This fits the design of IncrCP and can be clearly investigated in Fig-
ure 6. The number of small files when retrieving the 𝑛𝑡ℎ checkpoint
is (𝐿−𝑛) ∗𝑛. Therefore, the number of random disk accesses attains
its maximum when 𝑛 = 𝐿/2. Although the data volume grows with
the increase of 𝑛, the influence of random accesses can exceed that
of data volume. In contrast, when applying the concatenation ap-
proach, the recovery time exhibits a linear increase corresponding
to the linear growth in data volume.
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Figure 15: The overall performance when training DeepFM and PNN.

5.4 Generalizability Study
5.4.1 Different Models. Apart from DLRM, there are many other
recommendation models. To verify the generality of IncrCP, we
further trained DeepFM [17] and PNN [39] on the 3D XPoint SSD.
As depicted in Figure 15, the results for both DeepFM and PNN
are quite similar to those for DLRM. Additionally, DeepFM and
PNN show almost the same trends in recovery, construction, and
storage. This similarity can be explained by the fact that they use the
same dimension for the embedding vector. Since the incremental
checkpointing strategy only stores and processes these updated
embedding vectors. With the same dataset, they only update the
same number of embedding vectors under a given batch size.

5.4.2 Distributed training. We conduct distributed training for the
220GB DLRM using the larger Criteo Terabyte dataset, as shown in
Figure 16. The embedding tables of DLRM are distributed across
2 nodes and checkpoints are generated every 4000 iterations with
a batch size of 16,384. Since the experiment takes extremely long
period, we only perform a limited number of intervals. Basically,
the distributed experiments show very similar trend as in the single-
node experiments. In terms of recovery time, IncrCP is very close to
Check-N-Run and averagely 35% faster than Naive Incre. Also, the
recovery time gap between the IncrCP and the Naive Incre keeps
growing as more checkpoints are generated.

As for construction time, Check-N-Run can spend tens of seconds
for transferring data from GPU memory to CPU memory, which is
averagely 8× slower than that of IncrCP and Naive Incre. Moreover,
the construction time of IncrCP is only 2% higher than that of
Naive Incre for the background operations of IncrCP have only a
slight impact on the foreground G2C data transfer. For the storage
consumption, although IncrCP introduces additional storage usage
for storing metadata than Naive Incre, it can be ignored compared
to the large size of checkpoint data itself, as in Figure 16c.

5.4.3 Varying checkpoint interval. We verify the effectiveness un-
der different checkpoint intervals for the 220GB DLRMmodel train-
ing. We set checkpoint interval as 2000, 3000, 4000, and 5000 and
generate 10 checkpoints in total. Figure 17a demonstrates the ex-
perimental results of the 10th checkpoint. Since this cluster uses a
shared file system, transferring data from CPU memory to persis-
tent storage can cause contention with other programs. We report
both the GPU-to CPU (G2C) and CPU-to-Storage (C2S) construction
times from the perspective of checkpointing subsystem.

Figure 17a demonstrates the recovery time, construction time
(G2C + C2S), and the checkpoint size of the 10th checkpoint under
different interval length. At first, for each interval length, our In-
crCP can maintain advantages over Check-N-Run and Naive Incre
in terms of all metrics. In details, as the interval length increases, In-
crCP maintains a similar recovery time compared to Check-N-Run,
while offering more advantages compared to Naive Incre. This is
because a larger interval length lead to more duplication between
checkpoints and Naive Incre requires to handle more deduplica-
tion operations. For both construction time (logarithmic ordinate)
and the checkpoint size, the incremental approach goes up slowly,
whereas the differential approach grows more rapidly, as the inter-
val length increases. This occurs because a larger interval length is
more likely to exist duplication between checkpoints. It indicates
that the construction time is largely attributed to the checkpoint
size, and they both scale linearly with the multiplication of check-
point interval length and batch size.

5.5 Summary
IncrCP can significantly eliminate the disadvantage of the incremen-
tal checkpointing strategy, achieving a recovery time comparable to
Check-N-Run. Simultaneously, IncrCP successfully preserves most
of the advantages of the incremental checkpointing strategy, largely
outperforming the differential checkpointing strategy in terms of
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Figure 16: The overall performance for checkpointing a 220GB DLRMmodel at distributed training.
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Figure 17: The performance at the 10th checkpoint under various checkpoint interval lengths.

construction time and storage consumption. Overall, IncrCP largely
improves these three key metrics compared to existing approaches.

6 RELATEDWORK
Fault tolerance for deep learning training. To handle unexpected

system failures, deep learning training systems usually leverage ad-
ditional memory resources for parameter backup. ECRec [48] repli-
cates and encodes DLRM parameters with erasure coding among
parameter servers. DLRover-RM [45] caches model parameters in
its caching system during job migration to reduce remote persistent
storage accesses. Bagpipe [2] shards and distributes DLRM parame-
ters with more parameter servers to reduce checkpointing overhead
of each server. Although memory-based fault tolerance approaches
can improve the robustness of training systems, storing training
states as checkpoints in persistent storage remains more reliable,
albeit with a higher time consumption. There are two main ways:
checkpoint content compression and system-level optimization, to
improve performance of checkpointing systems base on persistent
storage. For content compression, SCAR [38] and CPR [28] adopt
partial recovery, and Check-N-Run[10] leverages quantization.
For system-level optimization, DeepFreeze[34], CheckFreq[32] and
Gemini[46] use asynchronous checkpointing to overlap I/O with
computation, which are orthogonal to IncrCP.

Incremental Checkpointing. Incremental checkpointing has been
adopted in many applications such as high performance computing
[1, 12, 25, 43] and operating systems[14, 31]. However, these works
focus on tracking incremental data because most applications do
not give information about data modification. In recommendation
model training, tracking model state update is straightforward.

Therefore, IncrCP focuses on providing fast recovery, which is a
totally different scope.

7 CONCLUSION
This paper presents IncrCP, a checkpointing system designed specif-
ically for recommendation models. Basically, IncrCP innovatively
adopts the incremental checkpointing strategy and overcomes its
inherent shortcoming of recovery speed, by decomposing check-
points in chunks and orchestrating these chunks in a 2-dimensional
linked list. In this way, IncrCP can avoid the loading of unnecessary
parameters and eliminate the need for deduplication during the re-
covery process. IncrCP also includes a selective extraction approach
to reduce I/O by avoiding worthless extractions and a concatenate
approach to reduce random disk access when recovery. Experi-
mental results demonstrate that IncrCP successfully eliminate the
inherent disadvantage of the naive incremental checkpointing strat-
egy and make it feasible to real use. For instance, it reduces recovery
time by 6.6× compared to naive incremental strategy and reduces
storage space by 60.4% compared to to differential strategy on HDD.
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