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ABSTRACT

Secure collaborative analytics (SCA) enables the processing of ana-

lytical SQL queries across data from multiple owners, even when

direct data sharing is not possible. While traditional SCA provides

strong privacy through data-oblivious methods, the signi�cant over-

head has limited its practical use. Recent SCA variants that allow

controlled leakages under di�erential privacy (DP) strike balance

between privacy and e�ciency but still face challenges like un-

bounded privacy loss, costly execution plan, and lossy processing.

To address these challenges, we introduce SPECIAL, the �rst

SCA system that simultaneously ensures bounded privacy loss, ad-

vanced query planning, and lossless processing. SPECIAL employs

a novel synopsis-assisted secure processing model, where a one-time

privacy cost is used to generate private synopses from owner data.

These synopses enable SPECIAL to estimate compaction sizes for

secure operations (e.g., �lter, join) and index encrypted data with-

out additional privacy loss. These estimates and indexes can be

prepared before runtime, enabling e�cient query planning and

accurate cost estimations. By leveraging one-sided noise mecha-

nisms and private upper bound techniques, SPECIAL guarantees

lossless processing for complex queries (e.g., multi-join). Our com-

prehensive benchmarks demonstrate that SPECIAL outperforms

state-of-the-art SCAs, with up to 80× faster query times, 900×

smaller memory usage for complex queries, and up to 89× reduced

privacy loss in continual processing.
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1 INTRODUCTION

Organizations, such as hospitals, frequently hold sensitive data

in separate silos to comply with privacy laws, despite the valu-

able insights that could be gained from sharing this information.

Recent advancement of Secure Collaborative Analytics (SCA) [7–

9, 25, 33, 44, 54, 55, 57, 70, 71] provides an exciting solution to tackle

this dilemma. These systems leverage advanced multi-party secure

computation (MPC) [76] primitives to empower multiple data own-

ers, who previously could not directly share data, to collaboratively
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process analytical queries over their combined data while ensuring

the privacy of each individual’s data.

While MPC can e�ectively conceal data values [76], its security

guarantees do not immediately extend to the protection of execu-

tion transcripts. Consequently, data-dependent processing patterns

such as memory traces and read/write volumes can still reveal crit-

ical information, risking privacy breaches [11, 15, 29, 38, 50, 60, 78]

even when the core data remains encrypted. To ensure strong pri-

vacy, modern SCA systems utilize data-oblivious primitives that

exhaustively pad query processing complexities to a worst-case and

data-independent upper bound [7, 44, 54]. However, such stringent

protections can largely reduce system e�ciency and hinder the

generalization of conventional optimization techniques to SCA,

which are typically data-dependent [44]. To address this, recent

e�orts [8, 55, 70, 71] have introduced Di�erentially Private SCA

(DPSCA). This approach allows controlled information leakage un-

der DP [23] to mitigate constant worst-case overhead. For instance,

systems under this model can dynamically compact an intermediate

query size to a noisy estimate close to the actual size, avoiding ex-

haustive padding. As such, queries under DPSCA experience largely

boosted e�ciencies (e.g., up to 105× faster [71]) compared to their

“no leakage” counterparts. Despite these substantial performance

gains, existing DPSCAs still face critical limitations that impede

their practical uses, as elaborated below:

• L-1. Unbounded privacy loss.Most DPSCA systems utilize a per-

operator privacy expenditure model [8, 16, 19, 55, 70, 71], meaning

each query operator (e.g., join, �lter) independently consumes a

portion of the privacy budget. This approach can lead to either

unbounded privacy loss or the forced cessation of query responses

upon budget exhaustion. To mitigate this, some studies [13, 56,

77] propose private, locality-sensitive grouping, incurring a one-

time privacy cost to pre-group data based on speci�c attributes.

Subsequent queries on those attributes can be directly applied to

a smaller subset and need no additional privacy budget. However,

this method only supports simple queries (e.g., point and range);

complex queries like joins still su�er from unbounded privacy loss.

• L-2. Unoptimized execution plan. Conventional query planners can

pre-estimate sizes for equivalent plans of a given query and select

the most e�cient plan with minimized intermediate sizes before

execution [12, 61]. In contrast, SCA systems lack this capability,

and even DPSCA designs [8, 9, 55, 69, 71, 77] can only reactively

determine plan sizes during runtime. This inherent limitation often

forces existing systems to settle for less e�cient query plans, such as

costly join orders, which lead to signi�cantly in�ated intermediate

sizes (§ 7.2) and substantially hinder performance.

• L-3. Lossy processing. Noise from randomized mechanisms in

DPSCA also introduces a unique accuracy issue (e.g., conventional

DP mechanisms may generate negative noise, applying which to

obfuscate the sizes of intermediate query results can cause losing
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quali�ed real tuples), and unfortunately, no existing DPSCA can

mitigate such loss for complex queries [28, 69–71, 77]. Furthermore,

stronger DP settings can further increase noise variance, which

ampli�es errors, signi�cantly impacting the utility of SCA systems.

1.1 Overview of SPECIAL

In this work, we introduce SPECIAL, an innovative SCA system

that resolves the aforementioned limitations all at once through a

new paradigm called synopsis-assisted secure processing. At its core,

SPECIAL incurs a one-time privacy cost to gather DP synopses

(statistics of base tables) from owners’ data. These synopses are

then used to accelerate complex query processing, and enhance SCA

query planning. Notably, SPECIAL is the �rst system to provide all

of the following bene�ts: (1) Bounded privacy—the privacy loss in

SPECIAL is strictly limited to the one-time synopses release stage,

with absotely no additional privacy cost during complex query

processing and planning; (2) Advanced query planning—it builds an

advanced SCA planner that can exploit plan sizes before runtime;

and (3) Lossless processing—it ensures exact results with no data

omissions. An overview of SPECIAL is shown in Figure 1.

Figure 1: Overview of SPECIAL work�ow.

SPECIAL operates under a standard server-aidedMPCmodel [37]

with three key participants: data owners, at least two SPECIAL

servers, and a vetted analyst. The process begins with data own-

ers securely outsourcing their data, typically through secret shar-

ing [37, 70, 71, 77], and privately releasing corresponding DP syn-

opses (§ 4) to the servers. SPECIAL introduces a set of novel prim-

itives (§ 5) that can leverage these synopses to accelerate secure

query operations. Once the data and synopses are in place, analysts

can submit Select-Project-Join-Aggregation (SPJA) queries [61] for

analytics. To process queries, a private planner (§ 6), running on

SPECIAL servers, strategically orchestrates SPECIAL primitives to

process the query and optimize performance. Finally, the results

are securely returned to the analyst.

1.2 Unique challenges and key contributions

LeveragingDP synopses in SCAholds signi�cant promise for achiev-

ing our desired objectives. However, this also introduces unique

challenges. Below, we highlight the key challenges and summarize

our non-trivial contributions to address them:

• C-1. How to select proper synopses? Even for a single relation, one

can �nd numerous attribute combinations for generating synopses.

Improper selection can lead to large errors (e.g. using too many syn-

opses or high-dimensional attributes [79]), or reduced functionali-

ties (e.g., using only simple attributes [77]). Hence, a key challenge

is selecting a limited set of DP synopses to optimize the privacy

budget for complex query processing. Our approach is informed by

two observations: (i) secure joins are resource-intensive and need

prioritized acceleration, and (ii) synopses for common �ltering pred-

icates are vital as they allow pre-built indexes on base relations for

fast access. Consequently, we propose a focused strategy (§ 4) that

targets low-dimensional (1D and 2D) attributes frequently involved

in joins and �lters within a representative workload.

• C-2. How to enforce lossless processing? Private synopses do not

immediately implies lossless guarantees. Thus, a second challenge

is designing practical approaches to achieve lossless results without

violating privacy goals. To address this, we employ one-sided DP

noise (either strictly positive or negative, § 4) in generating syn-

opses, and design novel primitives (§ 5) based on them to pessimisti-

cally estimate �lter cardinalities and intervals of index structures.

To ensure lossless processing of complex joins, we extend upon

cutting-edge join upper bound techniques [34] to privately estimate

lossless join sizes using DP synopses. To our knowledge, this is the

�rst study to support private join upper bound estimation.

• C-3. How DP synopses can empower e�cient query processing?

The use of DP synopses in SCA is largely underexplored, leav-

ing a knowledge gap regarding their potential to enhance query

e�ciency. To navigate this potential, we explore various use of

synopses in accelerating secure processing including private in-

dexes SPEidx (§ 5.2), and compacted oblivious operations SPEop

(§ 5.3). We also design a novel private query planner (§ 6) that

e�ciently orchestrate the execution of SPECIAL primitives (e.g.,

SPEidx, SPEop) to process SPJA queries. The planner uses avail-

able synopses to privately estimate intermediate result sizes and

operation costs for a set of equivalent execution plans of a given

query. It then executes the one with the lowest estimated cost.

• C-4. How to systematically evaluate SPECIAL? A major is the

absence of open benchmarks. We address this by initiating an open-

source evaluation set, accessible to the public. Speci�cally, we use

public �nancial data [1] and design eight test queries, ranging from

simple linear queries to complex 5-way joins. We also re-produce

an open version of the HealthLNK benchmark. We evaluate our

prototype, SPECIAL, against the state-of-the-art (SOTA) DPSCA

system, Shrinkwrap [8], and the conventional SCA system, SM-

CQL [7]. Results indicate that SPECIAL outperforms Shrinkwrap,

reducing query latency by up to 80.3×, and SMCQL, with at least a

114× reduction in query latency. Additionally, SPECIAL improves

memory e�ciency in complex join processing by more than 900×

compared to both systems. Moreover, scaling experiments show

that SPECIAL can e�ectively scale up to 8.8M rows dataset and up

to 9-way complex joins. All benchmarks, including our prototype

implementation, are open-sourced and available at [45].

2 BACKGROUND

General notations.We consider the logical databaseD to contain

multiple private (base) relations {�1, �2, ...}, where each relation

�ğ is owned by a speci�c party %ğ . A base relation � (we omit sub-

script for simplicity) has a set of attributes 0CCA (�). The domain of

an attribute � ∈ 0CCA (�) is denoted by 3><(�), and the combined

domain of a collection of attributes A = {�1, �2, ...} ¦ 0CCA (�)

is denoted by 3><(A) =
∏

ý∈A 3><(�). For a tuple C ∈ � , and

A ¦ 0CCA (�), we use C .A to denote the attribute value of A in C . A

logical query, represented by @(D), applies transformations and
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computations on D. In this work, we focus on SPJA [61] queries.

Frequency (count). Given � , A ¦ 0CCA (�), and a set of values v ∈

3><(A), the frequency (count) of v in� is the total number of tuples

C ∈ � with C .A = v. In addition, the max frequency moments (MF)

of A is de�ned as mf(A, �) = maxv∈Ěĥģ (A) |{C ∈ � | C .A = v}|.

Histograms. Given � , and A ¦ 0CCA (�), the (equal-width) his-

togram h(A, �) = (21, 22, ..., 2ģ) is a list of counts for the attribute

values in A. Speci�cally, h partitions 3><(A) into< “equal-sized”

domain intervals (�1, ..., �ģ), and a count 2ğ ∈ h is the number of

tuples C ∈ � with C .A in the interval of �ğ .

Query planning. Modern databases parse queries into physical

plans [61] that can be executed by the underlying query engine.

These plans specify the operations like scans, joins, and sorts, and

the order in which they’re performed. The same query can have

multiple equivalent execution plans, but their performance can

vary greatly depending on resource usage and data access patterns.

Query planning [12], done before runtime, involves selecting cost-

e�cient plans from these options. A key part of this process is

accurately estimating intermediate result sizes, known as cardi-

nality estimation (CE) [31], which relies heavily on table statistics.

Two crucial statistics in modern cardinality estimation methods are:

(i) histograms, which are vital for estimating selectivities in �lters,

and (ii) max frequency, which is crucial for estimating join sizes.

Multi-party secure computation (MPC). MPC [10, 26, 46, 76]

is a cryptographic technique that allows multiple parties %1, %2, ...

to jointly compute a function 5 (G1, G2, ...) over their own private

input Gğ . MPC ensures no unauthorized information is revealed to

any party, except the desired output of 5 , emulating a computation

as if performed by a trusted third party. Traditional MPC required

all parties to actively participate in intensive computations. How-

ever, recent server-aided MPC [37, 48, 59] schemes allow o�oading

computations to powerful servers, without sacri�cing security. In

this model, parties secretly share their inputs with servers, which

jointly evaluate an MPC protocol to reconstruct the secrets and

compute the function.

Di�erential privacy [23]. DP ensures that modifying a single

input tuple to a mechanism produces only a negligible change in its

output. To elaborate, consider � and �′ as two relations di�ering

by just one tuple, then DP de�nes the following.

De�nition 2.1 ((n, X)-DP). Given n > 0, and X ∈ (0, 1). A random-

ized mechanismM is said to be (n, X)-DP if for all � ∼ �′ pairs, and

any possible output > ¢ '0=64 (M), the following holds:

Pr [M(�) ∈ >] f 4ĊPr
[
M(�′) ∈ >

]
+ X

Secret sharing and secure array. SPECIAL uses the 2-out-of-2

boolean secret share [4] over ring Z232 for securely outsourcing

owners’ data and storing query execution results. Speci�cally, each

data, G , is divided into two shares: G1, G2 that are uniformly dis-

tributed over the ring Z232 such that G = G1 · G2. Each server

(ğ receives one secret shares, Bğ , where 8 ∈ {0, 1}. By retrieving

shares from any two servers, an authorized party can successfully

reconstruct the value of G . However, a single server alone learns

nothing about G . For clarity and to abstract out the lower-level

details, we leverage a logically uni�ed data structure, namely the

secure array [8, 71], denoted as ïxð = (ïG1ð, ïG2ð, ...), which is a

collection of secret-shared relational tuples.

Oblivious (relational) operators. Oblivious operators are data-

independent MPC protocols that implement the same functional-

ities as their plaintext database counterparts (e.g., �lter and join).

Data-independent execution requires that the control �ow and

memory access patterns of a function are indistinguishable given

di�erent inputs of the same size, and typically requires costly com-

putation. For example, a linear scan is required to ful�ll oblivious

�ltering [80], and join requires nested-loop over the two inputs [25].

The output sizes of such operators are usually padded with dummy

tuples to the worst case: # rows for �lters and # 2 for joins, given

size # inputs. The dummy tuples will not a�ect the query result

but can signi�cantly impact the performance [25, 80]. To enhance

e�ciency while maintaining strong privacy, DPSCAs introduce a

new type of oblivious operators [8, 55, 56, 71]. These operators

typically involve two steps: Compute and Compact. The Compute

step is fully oblivious, while the Compact resizes the output, often

by obliviously sorting valid tuples to the front and trimming the

output to a noisy DP size (the true size plus DP noise). While this

approach can signi�cantly reduce the computation cost and query

sizes, it may lead to lossy query processing if the DP size is smaller

than the true size (e.g., negative DP noise), as valid tuples could

be excluded during the compaction [70, 71, 77]. We emphasize that

when DP sizes exceed true sizes, there is no accuracy loss as it only

includes extra dummy data that do not impact accuracy [25, 80].

Private indexes. In conventional databases, indexes are powerful

data structures that map attribute values to positions in a sorted ar-

ray, allowing a predicate selection to quickly access the desired data

via index lookup without the need for full table scan. However, tra-

ditional indexes are unsuitable in SCAs due to their data-dependent

nature, which can easily lead to privacy breaches. To address this,

recent research has proposed DP indexes [57], where the mapping

of attribute values to their positions is intentionally distorted with

DP noise. To process queries, the system �rst pre-fetch a small

set of data using DP indexes, followed by oblivious selection. This

e�ectively avoids full table oblivious scan and sorting-based re-

sult compaction. However, the uncertainty inherent in DP indexes

can lead to the loss of valid tuples. For example, in the DP index

of [57], a true index range of positions [10, 20] might be distorted

into positions [12, 17], causing data at position 10, 11, 18, 19 and

20 to be missed. Nevertheless, if DP indexes overestimate the range,

subsequent oblivious selection can losslessly identify all valid tuples.

3 SYSTEM AND PRIVACY MODEL

In general, SPECIAL follows a standard server-aided MPC [37]

model, involving (i) a set ofmutually distrustful data owners %1, ..., %Ĥ ,

(ii) two non-colluding servers (0 and (1, and (iii) a trusted analyst.

We assume an admissible adversary [48] A, capable of corrupting

= − 1 out of = clients and at most one of the two servers. An in-

stance of such adversary can be a malicious server that creates Sybil

owners to form a malicious collation, attempting to steal sensitive

information from an honest owner. Additionally, A is considered

honest-but-curious, meaning it follows the protocol without de-

viation but may try to infer information from observed protocol

transcripts, such as randomness, memory access patterns, and com-

munication messages. The combination of these information is

referred to as the view ofA. We also assumeA is computationally
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bounded as a probabilistic polynomial time (p.p.t.) adversary, which

is a standard requirement in MPC protocols to ensure that adver-

saries cannot break cryptographic primitives. This threat model

is consistent with prior SCA designs [7, 8, 48, 70, 71]. Given this

setup, we design SPECIAL to satisfy the following:

De�nition 3.1 (MPC protocol with DP leakage). Given a set of

parties (owners) %ğ with private data �ğ and a secure query proto-

col Π that applies over D = {�1, �2, · · · }. We de�ne a randomized

mechanism Lkg(D) = {Lkg(�1), Lkg(�2), · · · } as the leakage pro-

�le, consisting of the control �ow and access patterns of running Π

over D. The protocol Π is said to be secure with DP leakage if, for

the subset of uncorrupted parties with data D ¦ D, leakage pro�le

Lkg(D) ¦ Lkg(D), and any p.p.t. adversary A:

• Lkg(D) satis�es (n, X)-DP (de�nition 2.1).

• There exists a p.p.t. simulator S with only access to public param-

eters pp and Lkg(D) that satis�es:

Pr
[
A

(
VIEWΠ (D, pp) = 1

)]

f Pr
[
A

(
VIEWS (Lkg(D), pp)

)
= 1

]
+ negl(^)

(1)

whereVIEWΠ isA’s view inΠ’s execution andVIEWS is a simulated

view produced by S using Lkg; pp denotes all public parameters, and

negl(^) is a negligible function related to a security parameter ^.

Simply put, De�nition 3.1 requires that the knowledge any p.p.t.

adversary adversary can gain about each individual tuple of an

honest owner, by observing the protocol execution, is bounded to

what can be inferred from the outputs of the (n, X)-DP mechanism

Lkg. We stress that this notion focuses on DP at the event (tuple)

level without loss of generality. Due to the group-privacy properties

of DP [22, 40, 66, 75], event-level DP can be extended to user-level

DP. For instance, in a logical database D where any single user

owns at most ; tuples, if a protocol satis�es (n, X) event-level DP,

it also satis�es (;n, ;4 (Ģ−1)ĊX) user-level DP. Moreover, we say that

SPECIAL can be relaxed to employ a weaker corruption model,

such as requiring a supermajority of owners and servers to remain

uncorrupted, to enhance e�ciency [44, 64]. This adjustment does

not change the privacy guarantee outlined in De�nition 3.1, but it

does a�ect the security assumptions. Under the relaxed corruption

model, De�nition 3.1 is only satis�ed when at least two-thirds of

the parties remain uncorrupted. Due to space concerns, we defer

the complete privacy proof of SPECIAL to our full version [18].

4 SPECIAL SYNOPSES

We now discuss the details of private synopses used in SPECIAL,

while in later sections we will show how they accelerate query

processing (§ 5) and aid in query planning (§ 6).

Challenges.We reiterate the main challenges in generating private

synopses for a relation include: (C-1) selecting a set of attribute

combinations that enable functional and e�cient query processing;

(C-2) ensuring that the subsequent query processing based on the

private synopses is lossless.

Key ideas. Given a SPJA query, join operations typically need

prioritized acceleration, as they are more resource-intensive than

other operations. A :-way join can have$ (=ġ ) complexity without

optimizations [7, 8, 25, 71, 80]. Additionally, synopses for frequently

queried �lter attributes play an important role in e�cient query

processing, as they enable fast indexing (§ 5.2) and e�ective �ltering

of unnecessary data before heavy joins. As such, our �rst key idea

is to focus on histograms-based synopses that cover frequently

queried join and �lter attributes. To minimize noise, we focus on

low-dimensional synopses: only 1D or 2D histograms.

To address the second challenge, our approach combines two

strategies. First, to support accurate indexing and �ltering, we use

one-sided DP noise to generate DP histograms that consistently

overestimate or underestimate attribute distributions. We will show

later that such special histograms allow lossless �ltering and index-

ing that reliably overestimate true �lter sizes and indexing ranges

(§ 5.2). Second, for lossless join output compaction, we incorpo-

rate noisy max frequency moments (MF) into the synopses. MF

allows us to build on advanced join upper bound techniques [34]

to privately estimate join sizes without data loss (§ 5.2).

4.1 Synopses generation

We now elaborate on the details of synopsis generation, which

mainly contains two phases: (i) Attributes selection, where the SPE-

CIAL servers select appropriate attributes for the generation, which

are then distributed to owners; (ii) Local synopses release, where

the owners create corresponding synopses using a DP mechanism

and upload them to SPECIAL servers.

Attributes selection (servers). The �rst step is to identify a set of

attributes for deriving synopses. In general, we consider the exis-

tence of a representative workload, &R [42], which can be sourced

from a warm-up run or annotated by the administrator. Note that

the representative workload does not involve any private data and

thus is leakage-free. The servers �rst identify representative at-

tribute pairs, pair = {pairġ }ġg1, for each private relation � ∈ D

via&R. The designated pairs include: (i) 2-way attribute pairs, which

correspond to frequently queried �lter-join key combinations; (ii)

frequently queried individual attributes not covered by these pairs.

By default, each pairġ = (��, �j) contains two valid attributes (case

i), but either �� or �j may be empty (case ii).

Synopses release (owners). Next, servers pushes the identi�ed

pairs to owners, and subsequently, the owners independently dis-

patche private synopses and return them to servers. We now focus

on the DP synopses generation mechanism run by each owner,

Algorithm 1 illustrates the work�ow.

In general, we expect owners to set a desired privacy budget

for their data (using parameters n and X). Algorithm 1 produces

synopses formalized as :

De�nition 4.1 (SPECIAL synopses). Given &R, we consider for

each relation � , its corresponding synopsis synop is the collection of

{(pairġ ,H(pairġ , �), MFġ )}ġg1, such that

• pairġ = (��, �j) ∈ &R is a frequently queried attribute pair.

• H(pairġ , �) = {h
+, h−} is the DP bounding histogram for pairġ ,

where h+ (resp. h−) is a DP histogram that overestimate (resp.

underestimate) the true histogram of pairġ .

• MFġ represents a collection of privately overestimated join key MFs

categorized by pairġ .��.

Wenow present a detailed explanation of generating these synop-

sis structures, starting with the private bounding histograms (Alg 1,
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Algorithm 1 DP synopsis genMsynop (in the view of % )

Input: pair = {pairġ }ġg1 from servers; private data � .

1: % self-determines privacy parameters n, X , and init synop← ∅

2: for each pairġ do

3: h(pairġ , �) ← HistGen(pairġ , �)

DP histograms:

4: h
+ (pairġ , �) ← h + Lap+ (n, X, h.shape)

5: h
− (pairġ , �) ← h + Lap− (n, X, h.shape)

² adding independently sampled noise to every bin of h+, h−

DP max frequencies:

6: if �j ∈ pairġ = ∅ or �j is unique valued then MFġ = ∅

7: else if �� ∈ pairġ ≠ ∅ then

² assuming h partitions 3><(��) into {�1, ..., �ģ}

8: �ℓ ← fý�∈þℓ
(�) for ℓ = 1, 2, ...,<

9: compute noisy MF table, MFġ = {m̂f(�j, �
ℓ )}1fℓfģ

10: else MFġ = m̂f(�j, �)

11: synop← synop ∪ (pairġ , {h
+, h−}, MFġ )

12: release synop, n , X to servers

lines 2:5). Speci�cally, for each pairġ , each owner �rst constructs

a histogram h(pairġ , �). By default, we assume there exists global

parameters (e.g., bin sizes) for each attribute, that ensure consistent

data partitioning among all owners. Next, the owner derives two

noisy histograms, h+ (pairġ , �) and h
− (pairġ , �), by adding inde-

pendently sampled one-sided Laplace noise (De�nition 4.2) to every

bin of h(pairġ , �). This guarantees that h
+ always overestimates

the true histogram, while h− consistently underestimates it.

De�nition 4.2 (One-sided Laplace variable). Lap+ (n, X) = max(0, I)

(resp. Lap− (n, X) = min(0, I)) is a one-sided Laplace random variable

in the range of [0,∞) (resp. (−∞, 0]) if I is drawn from a distribution

with the following density function

Pr [I = G] =
4Ċ − 1

4Ċ + 1
4−Ċ |Į−Ć | (2)

where ` = 1 − 1
Ċ ln(X (4Ċ + 1)) (resp. ` =

1
Ċ ln(X (4Ċ + 1)) − 1).

Next, we detail the generation of (noisy) join key MFs (Alg 1

lines 6:10). We assume that both �� and �j are non-empty and

that h(pairġ , �) partitions 3><(��) into bins {�1, . . . , �ģ}. Each

owner then generates a table of noisy MFs, {m̂f(�j, �
ℓ )}1fℓfģ ,

where each entry m̂f(�j, �
ℓ ) represents an independently generated

MF statistic for the join key attribute �j, calculated over a speci�c

subset of data �ltered by the attribute ��, such that

m̂f(�j, �
ℓ ) ← m̂axĊ

(
Gcount(ýj )

(
fý�∈þℓ

(�)
) )

(3)

here Gcount(ýj ) is a group-by-count operation over �j, and m̂axĊ
is a report noisy max mechanism [23]. It �rst adds i.i.d. noise from

the exponential distribution Exp( 2Ċ ) to each grouped count, then

outputs the largest noisy count. We stress thatMsynop will not

generate noisy MFs for non-join key attributes, and when �� is

empty, a global MF will be generated instead of MF tables (Alg 1:10).

Moreover, since SPECIAL enables owners to label attributes as

unique-valued, if �j is known to be unique-valued, then m̂f(�j, ·)

is always 1. Nevertheless, as exponential noises are non-negative,

thus m̂f g mf holds for all cases.

Theorem 4.3. Given |pair| = 2 , n, X > 0, the synopsis generation

(Algorithm 1) is (n̂, X̂)-DP where n̂ f 6n
√
2 ln(1/X), and X̂ = (2 + 1)X

For space concern, we move complete proofs to the full ver-

sion [18]. In a sketch, adding Lap+ (or Lap−) to a single bin is

(n, X)-DP. By parallel and sequential composition, generating H is

(2n, 2X)-DP. Moreover, each noisy max is (n, 0)-DP, and by parallel

composition, the generation of the entire MF table is also (n, 0)-DP.

In this way, we know that the generation of each (pairġ ,H, MFġ ) is

at most (3n, 2X)-DP. Given there are in total 2 such pairs, and thus

the total privacy loss is subject to 2-fold advanced composition [23].

Synopsis transformations.We say that one can perform trans-

formations on released synopses without incurring extra privacy

loss, per the post-processing theorem of DP [23]. Now, we out-

line the key synopsis transformation relevant to SPECIAL’s design.

First, given any (2d) bounding histogram H(pair, �) with both

��, �j ∈ pair are non-empty, one can derive the (1d) bounding

histograms, i.e. H(�j, �) and H(��, �), for any single attribute ��

or �j by marginal sums h+, h− ∈ H(pair, �) over �j or ��, respec-

tively. This enables the creation of statistics on individual attributes,

even when �� and �j are not included as a standalone synopsis

attribute. Moreover, it’s possible to derive relevant join key statis-

tics following a selection on the base relation. For example, given

��, �j ∈ pair ≠ ∅, and let �′ ← fý�∈ĬėĢĩ (�), one can obtain the

(1d) bounding histogram H(�j, �
′) by conducting a selective mar-

ginal sum of h+, h− ∈ H(pair, �) over bins of�� that intersect with

E0;B . Beyond bounding histograms, join key MFs over pre-�ltered

data can also be computed by

m̂f(�j, �
′) = min

(∑
þℓ∩ĬėĢĩ≠∅ m̂f(�j, �

ℓ ), m̂f(�j, �)
)

(4)

Note that m̂f(�j, �) exists if �j is also included as a standalone

synopsis attribute; otherwise, Eq 4 yields only the �rst term.

5 SPECIAL PRIMITIVES

We next introduce the secure primitives in SPECIAL. One major

challenge in designing these primitives is the knowledge gap on

how private synopses can accelerate oblivious query processing, i.e.,

C-3. To address this, we explore various usage of synopses, includ-

ing creating private indexes (SPEidx § 5.2) and designing compacted

oblivious operations (SPEop § 5.3). Given that joins are the most

resource-intensive operations, we optimize join algorithms by com-

bining private indexing and compaction techniques to develop a

novel, parallel-friendly oblivious join (§ 5.3). Another challenge

is ensuring lossless processing, which we tackle by integrating

mechanisms that pessimistically estimate selection cardinalities,

indexing ranges, and join sizes using synopses (§ 4) and advanced

upper bound techniques [34]. For simplicity, we assume all input

relations are of size = and all 1D histograms contain< bins.

5.1 Basic Operations

SPECIAL supports conventional fully-oblivious operators [7], which

logically the same as non-private ones but with data-independent

execution and worst-case padding for results. We brie�y introduce

these operations: (i) Default data access (SeqACC). By default,

query execution begins with loading all data into a secure array via

sequential scan. Each loaded tuple gets a secret bit ret (initially ‘0’),
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marking its validity; (ii) SELECT. This secure �lter fĦ (') performs

a linear scan over the secure array ï'ð, updating the ret bit to ‘1’

for tuples satisfying predicate ? and ‘0’ for others; (iii) PROJECT.

Removes irrelevant attributes from relation ï'ð, but retains the ret

bit; (iv) JOIN. Implements a secure \ -join '0 ZĂ '1 by computing

the cartesian product ï'0 × '1ð and marking joined tuples with

SELECT. The output is padded to the worst-case maximum size; (v)

COUNT, SUM, MIN/MAX. These aggregation operators scan the secure

array and update a secret-shared aggregation value for each tuple;

(vi) ORDER-BY, DISTINCT, GROUP-BY(AGG). Built on the oblivious

sort primitive [6]. ORDER-BY sorts the array by a given attribute.

DISTINCT sorts and then identi�es unique tuples, marking only the

last in a sequence of identical tuples with ret = ‘1’. GROUP-BY(AGG)

�rst uses DISTINCT to �nd unique tuples. For each distinct tuple

(ret set to ‘1’), it appends an aggregation value derived from the

tuple and a dummy attribute (e.g., ‘-1’) for non-distinct tuples.

5.2 SPECIAL Index SPEidx

Existing index techniques in SCA have several drawbacks: loss

of quali�ed data [57], reliance on intricate data structures with

large overhead [13, 56, 77], and restricted query support [13, 77].

Furthermore, all these techniques only support indexing the base

relations. SPEidx o�ers a breakthrough by enabling the creation

of lossless indexes directly on outsourced data and the query of

intermediate results, eliminating the need for extra structures or

storing dummy data.

In general, SPEidx builds upon the typical indexing model that

utilizes cumulative frequencies (CF) [43]. Speci�cally, given� sorted

by � ∈ 0CCA (�), all records C ∈ � where C .� = G can be indexed

by the interval [6(G − 1), 6(G)], where 6(G) = |{C | C .� f G}| is

the CF function. For better illustration, we show an example index

lookup in Figure 2: to get all records with an attribute value of

24, one may compute [6(23), 6(24)] = [217, 248] and access the

relevant data from the subset � [217 : 248]. To make this indexing

method private and lossless, the key idea of SPEidx is to derive

two noisy CF curves from synopses (i.e., bounding histograms).

One curve, 6+ (G), consistently overestimates 6(G), while the other,

6− (G), consistently underestimates it. Then for any attribute value

G , we can now derive a private interval [6− (G − 1), 6+ (G)] that

losslessly indexes all the desired records. As illustrated in Figure 2,

the SPECIAL index might estimate the index range for attribute

value 24 as [6− (23), 6+ (24)] = [198, 267].

Figure 2: True (left) vs. SPECIAL (right) index for G = 24

In what follows, we provide the formal explanations on how

SPEidx derives indexes from DP synopses. Speci�cally, SPEidx

�rst determines the bounding histograms H(�, �), which may be

either transformed from an available 2D histogram H(pair, �) with

� ∈ pair, or sourced directly if H(�, �) is already included in the

synopses. It then constructs the noisy mapping as follows:

De�nition 5.1 (SPECIAL index). Given� sorted by�, the bounding

histogram H(�, �) = {h+, h−}, and assume h+ = (2+1 , ..., 2
+
ģ), h

−
=

(2−1 , ..., 2
−
ģ) partitions3><(�) into {�1, ..., �ģ}. We say SPEidx(�, �) =

{idxğ = [loğ , hiğ ]}1fğfģ is the SPECIAL index of � over � with:

• ∀ 8 g 1, hiğ = min( |� |,
∑ğ
ġ=1

2+
ġ
).

• lo1 = 0, and ∀ 8 g 2, loğ =
∑ğ−1
ġ=1

max(0, 2−
ġ
).

By this construction, all tuples C ∈ � such that C .� ∈ �ğ will

be organized into the subset � [idxğ ] ¦ � . This subset can be

quickly accessed if � is already sorted, without the need for special

data structures or inclusion of dummy tuples. Depending on how

bounding histograms are constructed, SPEidx(�, �) can support

indexing lookups with varying granularity. This can range from

indexing individual attribute values (where each �ğ corresponds

to a single domain value) to indexing a range of of values. The

bounding histogram’s pessimistic estimation ensures that all tuples

where C .� ∈ �ğ are accurately contained within � [idxğ ], thereby

achieving lossless indexing. In contrast to existing methods that are

limited to indexing base relations [13, 57, 77], SPEidx extends its

capabilities to create private indexes on query intermediate results.

For instance, consider �′ ← fý∗∈ĬėĢĩ (�) where the attribute pair

(�∗, �) is included in synop. Here, SPEidx can derive H(�, �′)

from H(�∗, �) and subsequently build indexes on �′. Importantly,

since index creation is a post-processing procedure using available

DP synopses, it incurs no additional privacy loss.

Indexed store and fast data access IdxAcc. SPEidx enables a

new storage layout for outsourced data, namely indexed datastore.

Speci�cally, by analyzing a representative workload &R, one may

identify the “hottest” attribute per base relation, sort them according

to the “hottest” attribute, and then build indexes over the sorted data.

This storage layout enables fast indexed access (IdxAcc) to retrieve

a compact subset of data from the outsourced relations, thereby

eliminating the need for a full table sequential scan (SeqAcc) and

can directly produce a compact input. We emphasize that the SPE-

CIAL design does not require replicating the outsourced datastore

to accommodate multiple query types [13, 77]. However, creating

compact replicas (e.g., column replicas [35] over frequently queried

attributes) can be optionally employed to enhance query process-

ing speed. Moreover, the generation of all aforementioned objects

(indexed store and column replicas) requires only three primitives:

projection, oblivious sorting, and SPEidx. In other words, this im-

plies that one can selectively adjust these objects to align with

dynamic query workloads, without incurring extra privacy loss.

5.3 SPECIAL Operators SPEop

We introduce SPEop, a set of novel synopsis-assisted operators that

maintain full obliviousness, while enabling lossless compaction. To

our knowledge, SPEop is the �rst primitive of its kind in any SCA.

Oblivious compaction: OPAC. is a fundamental operation critical

to other SPEop primitives. Given input ï'ð, OPAC sorts it based

on the secret bit ret, moving tuples with ret = ‘1’ to the front.

Then, OPAC retains only the �rst : tuples from the sorted array. The

compaction is lossless if : is greater than or equal to the number of

tuples with ret = ‘1’; otherwise, it is lossy.
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SPECIAL selections: (OP)SELECT, (SP)SELECT, (DC)SELECT. Let

' to be a relation and � ∈ 0CCA ('), we now introduce three ad-

vanced selections that implements fý∈ĬėĢĩ (').

(OP)SELECT. is mainly implemented based on the oblivious com-

paction (OPAC) operation. Speci�cally, the operation �rst conducts

a standard SELECT on the input secure array ï'ð to label selected

tuples, followed by an OPAC to to eliminate a large portion of non-

matching tuples. To determine the compaction size 2B , (OP)SELECT

examines the synopsis of ' and pessimistically estimates the car-

dinality of fý∈ĬėĢĩ (') as shown in Algorithm 2. Since 2B never

underestimates the actual cardinality, and thus, the compaction is

lossless with no missing tuples. Moreover, as OPAC is fully oblivi-

ous and 2B is determined completely from post-processing over DP

synopsis, thus, (OP)SELECT causes no privacy loss.

Algorithm 2 CardEst(fý∈ĬėĢĩ ('), synop)

1: h = ∅, 2 = 0

2: if H(�, ') ∈ synop then h← h
+ ∈ H(�, ')

3: else if ∃ pair ∈ synop, s.t. � ∈ pair then

4: h← marginal sum h
+ ∈ H(�, ') over (pair \�).

5: else return 2B = |' |

6: return 2B = min( |' |,
∑ģ
ğ=1 2ğ ∈ h : (�ģ ∩ E0;B ≠ ∅))

(SP)SELECT. The running complexity of (OP)SELECT depends on

OPAC, which is typically linearithmic (see § 6.1 or [58]). However,

when CardEst(fý∈ĬėĢĩ ('), synop) is relatively small, oblivious se-

lection can be achieved without necessarily incurring linearithmic

cost. Speci�cally, we consider (SP)SELECT, which �rst creates an

empty output array ï'ĥ ð with size equals to 2B before any compu-

tations. Next, it evaluates two linear scans over ï'ð, where the �rst

scan obliviously marks all selected tuples, and in the second scan,

it privately writes all marked tuples into ï'ĥ ð. Speci�cally, in the

second scan, (SP)SELECT internally maintains the last actual write

position idx in ï'ĥ ð. Then for every newly accessed tuple ïCð in

ï'ð, a write action occurs on all tuples in ï'ĥ ð. If ïCð is selected,

then an actual write is made that writes ïCð to ï'ĥ [idx + 1]ð and a

dummy write is made to elsewhere. If not, dummy writes are made

throughout ï'ĥ ð. We say that, in the context of the secret-shared

secure array ïað, a dummy write to ïa[8]ð is simply a re-sharing of

a[8] through secure protocols without changing its value.

(DC)SELECT. Finally, if the underlying data is already indexable

on �, a direct pre-fetch can be applied to avoid full table scan

and compaction. The operator simply looks up SPEidx(�, '), and

accesses ' [0, 1], where 0 = minğ (idxğ .lo), 1 = maxğ (idxğ .hi), and

idxğ dentoes the index in SPEidx(�, ') with bin �ğ ∩ [0, 1] ≠ ∅. A

standard SELECT is then applied to ' [0, 1].

SPECIAL join: (MX)JOIN. We now introduce a novel MF-Index

based oblivious join operation. The advancements of (MX)JOIN

stand out in three aspects. First, compared to the standard JOIN,

(MX)JOIN stands out for its ability to signi�cantly compact the

output size, coupled with a highly parallelizable fast processing

mode. Second, existingDP oblivious joins typically require spending

privacy budget [21] to learn join sensitivity [21] or necessitate

truncation on joined tuples [8, 71]. (MX)JOIN eliminates this need.

Moreover, (MX)JOIN is unique as the �rst oblivious join that enables

lossless output compaction without extra privacy loss. We illustrate

the construction details in Algorithm 3.

Algorithm 3 (MX)JOIN (base and pre-�ltered relations)

Input: relations '0, '1; join attribute �j; we consider synopses

(histograms) of �j are partitioned into bins �1, ...�ģ .

1: if MXReady('0, '1) == True then BucketJoin('0, '1, �j)

2: else if '0, '1 are either base or pre-�ltered relation then

3: for 1 ∈ {0, 1} do

4: derive m̂f(�j, 'Ę ) from synopĘ (§ 4)

5: build index SPEidx(�j, 'Ę ) = {idxğ }ğ=1,..,ģ (§ 5.2)

6: if ∀1 , m̂f(�j, 'Ę ), and SPEidx(�j, 'Ę ) ≠ null then

7: oblivious sort '0, '1 on �j, BucketJoin('0, '1, �j)

8: else assert “not applicable for (MX)JOIN”

BucketJoin('0, '1, �j):

9: for 8 = 1, 2, ...,< do

10: '
(ğ )
0,1 ← fý Ġ ∈þğ

('0,1) using (DC)SELECT/ SPEidx(�j, '0,1)

11: compute $ğ ← ('
(ğ )
0 Zýj

'
(ğ )
1 ) via standard JOIN

12: 2Bğ ← min

(
|Ď
(ğ )
0 |

m̂f(ýj,Ď0 )
,
|Ď
(ğ )
1 |

m̂f(ýj,Ď1 )

)
× m̂f(�j, '0) · m̂f(�j, '1)

13: 'out ← 'out ∪ OPAC($ğ , 2Bğ )

14: return 'out

In general, (MX)JOIN can be applied to two types of data: the

base and pre-�ltered relations where the join key attribute is in-

cluded in synop. Speci�cally, (MX)JOIN starts with computing the

join key MFs (Alg 3:4) and constructing private indexes (Alg 3:5)

for both inputs. All these operations are conducted through “pri-

vacy cost-free” transformations using available DP synopses. Once

these objects are obtained, the algorithm employs oblivious sort to

rearrange both inputs (Alg 3:6,7), rendering them indexable with

tuples logically distributed into independent buckets by join key

values. Next, (MX)JOIN simply adopts standard JOIN to join tuples

exclusively within the same buckets (Alg 3:10). Finally, (MX)JOIN

performs per-bucket output compaction, where it �rst determines

the MF join bound [34] for each bucket join and invokes OPAC to

compact the output according to the learned size (Alg 3:11,12). As

bucket-wise operations are independent, the aforementioned steps

lend themselves well to parallelized processing. As (MX)JOIN de-

rives join compaction sizes completely from post-processing of DP

synopses, it thus incurs no extra privacy loss. Additionally, the

noisy MF bounds guarantee that compaction sizes are consistently

overestimated, ensuring lossless compaction of join results.

6 SPECIAL PLANNER

Current DPSCA designs struggle with costly execution plans be-

cause they cannot pre-estimate query intermediate sizes, and thus

unable to identify e�ective execution plans with minimized cost.

SPECIAL overcomes this challenge by introducing a novel query

planner that uses synopses for size estimation, and thus enabling

both private and e�cient SCA query planning.

At a high level, our planner is modeled after the Selinger-style op-

timizer [12]. It uses a bottom-up, dynamic programming approach

to enumerate all equivalent plans for a given query, estimates their

costs (heavily in�uenced by intermediate sizes) using available
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Table 1: Asymptotic costs for secure operators

Operator Input I/O (�in) Eval. (�eval) Output I/O (�out)

PROJECT $ (=) N/A $ (=)

Agg. $ (=) $ (=) $ (1)

Group & Order $ (=) $ (= log2 =) $ (=)

SELECT $ (=) $ (=) $ (=)

(OP)SELECT $ (=) $ (= log=) hist_bound

(SP)SELECT $ (=) $ (=) $ (1)

(DC)SELECT idx_bound N/A N/A

JOIN $ (=) $ (=2) $ (=2)

(MX)JOIN $ (=) $ (=2)∗ mf_bound
∗Assuming the max size of the indexed buckets is bounded byċ ( Ĥ

logĤ
) .

synopses, and selects the plan with minimal cost. The introduc-

tion of SPECIAL primitives signi�cantly impacts cost modeling for

oblivious operations, rendering existing models [8, 44] inadequate.

Furthermore, the design-space challenge of query planning per-

sists, and the extensive equivalent plan search space necessitates

strategies to simplify the search process. To address these, we �rst

systematically analyze the complexities of SPECIAL primitives and

develop a new cost model (§ 6.1). We then design protocol-speci�c

heuristics (§ 6.2) tailored to our planner to narrow the search space.

6.1 Cost Model

We adopt the standard SCA cost framework [8] to develop SPE-

CIAL’s cost model, viewing the cost of a secure execution plan as the

sum of each operator’s I/O and secure evaluation costs. Speci�cally,

given a plan with ℓ operators, op1, ..., opℓ , and let I = {�1, ..., �ℓ },

O = {$1, ...,$ℓ }, to be the input and output sizes of each operators.

The plan cost is:

Cost =
∑ℓ
ğ=1�

opğ
in
(�ğ ) +�

opğ
eval
(�ğ ) +�

opğ
out ($ğ ) (5)

Here, �in represents the data access cost (input I/O), primarily cap-

turing the expenses when moving data from persistent storage

to an in-memory secure array. �out denotes the output I/O cost,

modeling the expenses when writing operator results into output

arrays. �eval accounts for the secure computing cost for evaluating

an operator, typically constituting the dominant cost. Note that, in

practice, the exact formulas for�in,�out, and�eval can vary depend-

ing on the speci�c secure protocol employed (garbled circuits [76],

secret sharing [46], etc.) as well as the particular hardware con�gu-

rations in use. Nonetheless, the understanding of the asymptotic

costs is adequate for comprehending the principles of SCA query

planning and optimization strategies [8, 44]. In what follows, we

provide detailed analysis on the asymptotic costs for each SPECIAL

operator. Similarly, we assume that all input data sizes mentioned

henceforth in this section are of size =, and all 1D histograms have

< bins. Table 1 summarizes the operator costs.

Oblivious sorting and compaction.While oblivious sorting al-

gorithms with optimal $ (= log=) complexity exist, they often ne-

cessitate either impractically large constants [3, 27] or client-side

memory [5], both do not �t with SCA scenario. Consequently, we

will consider the well-established bitonic sorting based implemen-

tation for oblivious sort, which come with $ (= log2 =) complexity.

Nonetheless, e�cient OPAC implementations with $ (= log=) com-

plexity remain achievable [58].

Projection, grouping and aggregation. The PROJECT accesses

private relations and discards unnecessary columns independently

on each server, which is naturally oblivious. Thus, I/O costs domi-

nate this operation, with both input and output costs bounded by

$ (=). The costs of ORDER-BY, DISTINCT, and GROUP-BY are domi-

nated by oblivious sorting, resulting in a complexity of$ (= log2 =).

Additionally, as these operators do not reduce output sizes, both

�in and�out are bounded by$ (=). Finally, the cost of aggregations,

i.e. COUNT, SUM, and MIN/MAX subjects to a oblivious linear scan,

typically outputting a single secret-shared value. Hence, its �eval is

bounded by $ (=), with �in at $ (=) and �out at $ (1).

Selections. The primary cost of SELECT stems from an oblivi-

ous linear scan, making �eval within $ (=). Since SELECT does

not shrink the output size, both �in and �out are within $ (=).

(OP)SELECT requires an oblivious compaction (OPAC) before writing

outputs, where OPAC usually yields an $ (= log=) complexity [58].

Consequently, its �eval is bounded by $ (= log=) with input I/O

cost same as SELECT. However, as (OP)SELECT compacts output

size, �out is reduced to hist_bound = $
(∑

þğ∩ĬėĢĩ≠∅ |�ğ |
)
, where

�ğ ∩ E0;B ≠ ∅ are bins in the synopsis histogram intersecting

with selection conditions. If
∑
þğ∩ĬėĢĩ≠∅ |�ğ | ∼ $ (1), (SP)SELECT

becomes preferable, with its running cost dominated by a two-

phase linear scan, and thus �eval is now $ (=), and the output cost

is $ (1). (DC)SELECT is the most e�cient selection, though it re-

quires indexable input data. All costs are directly related to the

size of the indexed data, so �in, �evals and �out are all bounded

by idx_bound = $ (maxğ (idxğ .hi) −minğ (idxğ .lo)). Here, idxğ are

indexed regions that intersect with selection conditions.

Joins. Both JOIN and (MX)JOIN have $ (=) data access costs, but

di�er in �eval and �out. JOIN, conducting a Cartesian product for

two input tables, has �eval and �out both bounded by $ (=2). Com-

pared to JOIN, in the worst-case scenario where the join keys fol-

low a highly biased distribution, i.e. max bucket size reaches $ (=),

(MX)JOIN’s asymptotic cost is at most $ (=2 log=). However, when

join keys are distributed more uniformly, the cost can be asymp-

totically better. For instance, with< = log= and assuming a max

bucket size of $ ( Ĥ
logĤ
), each bucket join costs $ ( Ĥ2

logĤ
), leading to

a total cost of $ (=2), equivalent to JOIN. Recall that bucket joins

in (MX)JOIN can be executed concurrently, hence, the processing

latency is indeed dominated by the bucket-wise cost, i.e. $ ( Ĥ2

logĤ
).

Additionally, the output cost is lowered from $ (=2) to the sum of

per-bucket MF upper bounds (Alg 3:11), which can be substantially

less if the join key MFs are low.

6.2 Heuristics

H-1. Filter push down. is a common query planning optimiza-

tion, moves selection operations to the earliest possible stage to

reduce data processed by subsequent operations. In conventional

SCAs, data obliviousness often requires padding selection sizes,

making �lter pushdown ine�ective [25, 44, 54, 80]. However, SPE-

CIAL’s innovative selection methods enable compacting selections

to approximate true cardinalities without compromising privacy,

restoring the e�ectiveness of �lter pushdown. Hence, we include

�lter push down as one of the optimization heuristic for SPEplan.

H-2. Predicates fusion. Let ' to be any relation, �1, �2, ..., �ġ ¦

0CCA ('), and v = {E1, E2, ..., Eġ }. We say that for multiple selection

over ' such that fý1∈Ĭ1 (...fýġ ∈Ĭġ (')), one can always fuse them

into one selection fA¢v ('). This can reduce the number of secure
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computation invocations from : rounds to just one. Additionally,

the selection size can be estimated asminýğ

(
CardEst(fýğ ∈Ĭğ ('))

)
.

H-3. Join statistics propagation. A key property of SPECIAL

join, (MX)JOIN, is that the output is already indexed and bucketized

by the join key. Therefore, for any output ' of (MX)JOIN comput-

ing '0 Zýj
'1, a new index SPEidx(�j, ') across ' can be easily

derived. Moreover, as per [34], one can also update the MF for '

by computing m̂f(�j, ') = m̂f(�j, '0) × m̂f(�j, '1). As a result, we

say that the output of (MX)JOIN as MF-and-index-ready, enabling

direct application of another (MX)JOIN on the same join attribute.

7 EVALUATION

In this section, we present evaluation results of our proposed frame-

work. Speci�cally, we address the following questions: Question-1:

Does SPECIAL o�er e�ciency and privacy advantages over exist-

ing SCAs? Question-2: For SPECIAL design, is there a trade-o�

between privacy guarantees and system e�ciency? How di�erent

synopses scenarios a�ect system performance? Question-3: Can

SPECIAL scale complex analytical (e.g. multi-way join) queries to

large-scale (multi-million rows) datasets?

7.1 Experimental setups

Baseline systems and SPECIAL prototype. We compare SPE-

CIALwith two baseline systems: Shrinkwrap [8], the SOTA DPSCA,

and SMCQL [7] (also used as a baseline for Shrinkwrap). For con-

sistency, we consider the same circuit-model implementations for

both baseline systems and the SPECIAL prototype. While some

works [44, 54] similar to SMCQL use exhaustive padding but im-

prove e�ciency through protocol-level optimizations, we exclude

them from our benchmarks for fair comparison concerns. We re-

implemented key query features for the two baseline systems and

built SPECIAL using the same MPC package ( EMPtoolkit-0.2.5).

All implementations are open-sourced [45].

Datasets and workloads. We developed two open benchmarks.

The �rst reproduces the HealthLNK benchmark used by Shrinkwrap

and SMCQL which simulates a real-world scenario where medical

researchers want to perform secure analytics across multiple co-

horts’ sensitive data. We use an open schema [62] to generate a

scalable synthetic dataset with 4 tables, 222K rows and 24 columns.

The benchmark involves four multi-cohort medical study queries,

identical to those used in Shrinkwrap and SMCQL. Our second

benchmark simulates secure collaborative analytics within the �-

nancial sector. Imagine multiple banks needing to analyze their

combined, private data to study loan and �nancial statistics—all

without compromising sensitive customer information. We use the

anonymized Czech Financial Dataset [1] for this, assuming each

entry represents data owned by a di�erent bank or �nancial organi-

zation unable to directly share information. This dataset comprises

8 relational tables with a total of 55 columns and 1.1 million rows.

For testing workloads, we design eight query workloads, ranging

from simple linear queries to complex multi-way join-aggregation

queries. A brief summary of the workloads is provided in Table 2.

Default con�gurations. For SPECIAL, we employ a per-table

privacy budget allocation strategy. Each table is allocated a one-time

privacy budget of n = 1.5 and X = 0.00005 for synopses generation,

Table 2: Query workloads

Bench. Query Type Description

HealthLNK

Dosage Study Binary Join Expanding binary join.

Comorbidity Binary Join Non-expanding binary join.

Aspirin count Multi Join 3 way mixed join

3 Join Aspirin Multi Join 4 way mixed join

Financial

FQ1 Linear Point query.

FQ2 Linear Range query.

FQ3 Binary Join Non-expanding binary join.

FQ4 Binary Join Expanding binary join.

FQ5 Multi Join 3-way mixed joins.

FQ6 Multi Join 3-way all expanding joins.

FQ7 Multi Join 4-way mixed joins.

FQ8 Multi Join 5-way mixed joins.

and is evenly distributed across all DP synopses. For Shrinkwrap, we

adopt their default per-query privacy allocation, assigning a privacy

budget of n = 1.5 and X = 0.00005 to each query, as outlined in [8]. It

is important to note that this con�guration means Shrinkwrap will

not o�er guarantees on the bounded privacy loss across multiple

queries. For the HealthLNK benchmark, we use Dosage and Aspirin

as representative workloads, and for the Financial benchmark, we

use FQ2, FQ4, and FQ8. Unless further elaborated, these workloads

will also serve as default testing queries for our evaluation. For all

equal-width histograms generated in SPECIAL, we con�gure them

to have at most 8 bins. Moreover, for baseline systems, as they do

not have join ordering optimizations, thus we will assume a random

join order for them. We conduct all experiments on bare-metal Mac

machines with M2 Max CPUs and 96GB uni�ed memory.

7.2 End-to-end comparisons

To address Question-1, we �rst conduct an end-to-end perfor-

mance comparison of SPECIAL, Shrinkwrap, and SMCQL across all

benchmark workloads. The results are summarized in Figure 4, 5.

We cannot complete full benchmark for SMCQL due to high mem-

ory cost, so we project evaluations for FQ4 (using 10% data) and

omit results for other complex workloads.

Figure 4: End-to-end comparison: query latency

Figure 5: End-to-end comparison: memory usage

Observation 1. SPECIAL outperforms Shrinkwrap and SM-

CQL in query latency across all benchmarks, reaching up to

3618.3× for linear queries, 114× for binary joins, and 80.3×

for multi-joins. Figure 4 shows the comparison results in query
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Figure 3: In-depth comparisons in execution plans: (i) The exhaustive padding in SMCQL can lead to signi�cant memory blowup;

(ii) Both SMCQL and Shrinkwrap su�er from unoptimized join ordering; (iii) Although Shrinkwrap reduces intermediate sizes,

it still requires substantial memory to materialize join outputs; (iv) SPECIAL can identify e�cient join execution orders to

reduce intermediate sizes; (v) IdxAcc can signi�cantly reduce input I/O costs.

time. First, SPECIAL shows signi�cant speedups for linear queries,

reaching up to 3618.3× (FQ2). This large performance gain is mainly

attributed to its index-based fast data access. By directly fetching

private data through DP indexes, SPECIAL eliminate substantial

I/O costs (e.g., sequential reads) and bypass the need for secure com-

putations (e.g., oblivious �lter). Second, we observe that in binary

joins, SPECIAL has a less pronounced advantage over Shrinkwrap.

This is because binary joins have a single join order, eliminating the

potential for join ordering problems (where di�erent join orders

lead to signi�cantly di�erent performance). Consequently, even

though Shrinkwrap does not optimize join orders, it doesn’t experi-

ence e�ciency losses in this scenario. However, for more complex

multi-way joins, SPECIAL’s advantage becomes more pronounced

again. For instance, more than 80× speedup in FQ7. This is because

SPECIAL can pre-select e�cient join orders before runtime.

Observation 2. SPECIAL shows profound improvement in

memory usage (Figure 5) against baseline systems, especially

in complex multi-way joins. This is primarily due to two factors:

First, the (MX)JOIN used by SPECIAL is more memory-e�cient

compared to the joins implemented by Shrinkwrap and SMCQL.

Second, SPECIAL’s capability to identify optimal execution plans

signi�cantly reduces total intermediate sizes, which is particularly

bene�cial for complex joins that su�er from sub-optimal or exhaus-

tive padding in other systems. To better understand the substantial

improvements SPECIAL achieves—for instance, up to 928.2× over

Shrinkwrap and more than 105× over SMCQL—we will zoom into

a speci�c query, FQ6, and compare the detailed execution plans of

the three systems. The choice of FQ6 is strategic because its com-

plexity su�ciently highlights the di�erences in execution plans,

yet it remains simple enough for clear visual representation. Our

comparison features four execution plans: a plaintext optimal plan,

illustrating the ground truth optimal execution; a hypothetical SM-

CQL plan (with projected cardinalities); and two actual execution

plans from our experiments with Shrinkwrap and SPECIAL. The

detailed comparisons and observations are summarized in Figure 3.

To continue address Question-1, we now compare the privacy

guarantees of SPECIALwith the baseline systems (Figure 6). Specif-

ically, we focus on comparing cumulative privacy loss in multiple

query answering, w.r.t. two composition models: advanced compo-

sition (Adv.)[23] and concentrated composition (CDP.)[14].

Figure 6: End-to-end comparison privacy loss.

Observation 3. Under continual query answering, SPECIAL

demonstrates signi�cantly lower privacy loss compared to

Shrinkwrap, achieving up to 89.01× and 38.91× improvements

in the Adv. and CDP modes, respectively. The privacy loss

of SPECIAL is bounded to the initial synopsis release stage, so

continual query answering does not incur additional privacy loss.

In contrast, Shrinkwrap’s privacy loss accumulates over time as

each new query allocates a fresh privacy budget. Consequently, its

privacy loss exhibits a logarithmic growth, as shown in Figure 6.

This accumulation can result in signi�cant privacy degradation

when processing a large number of queries. For example, answering

100 queries in Shrinkwrap could result in a privacy loss of n >

100 in Adv. and n ≈ 60 in CDP., respecitvely, even if each query

only uses a small privacy budget of n = 1.5. As such, SPECIAL

demonstrate signi�cant improve in privacy guarantees towards

SOTADPSCA. Even when compared to standard SCA (e.g., SMCQL)

with no privacy loss due to exhaustive padding, our system incurs

only a small and �xed privacy cost (e.g. n = 1.5 per table) while

delivering substantial performance gains.
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7.3 Privacy e�ciency tradeo�s

We address Question-2 by evaluating SPECIAL at various privacy

levels. Speci�cally, we maintain X constant while varying n from

0.1 to 10 and assess the performance across default testing queries.

The results are shown in Figure 7.

Figure 7: Privacy vs. Performance trade-o�s

Observation 4. The privacy-e�ciency tradeo� generally ex-

ists but exhibits varying trends at di�erent privacy levels.

For instance, SPECIAL shows a clear tradeo� at higher pri-

vacy levels (n < 1), while at lower privacy levels (n > 1), the

tradeo� becomes less pronounced.When n increases from 0.1

to 1, both memory usage and query latency for all test queries

signi�cantly decrease. However, increasing n from 1 to 10 shows

no signi�cant performance gains. This may indicate that once n

exceeds 1, the impact of noises on cardinality estimation or index

building is alredy minimal, and further reductions in n do not lead

to notable improvements. Therefore, if high privacy protection is

required, practitioners should carefully �ne-tune privacy param-

eters to optimize performance. Conversely, if performance is the

priority, setting n near 1 is typically su�cient.

7.4 Synopses impacts micro benchmarks

We continue to address Question-2 to explore how synopses sce-

narios may a�ect SPECIAL’s performance. Speci�cally, we study

two key settings: (i) How di�erent bin numbers (BinNum) in syn-

opses can impact the e�ciency of (IDX)JOIN, and (ii) how synopsis

coverage levels for a single query can a�ect its overall execution.We

will conduct micro-benchmarks for a thorough investigation. Note

that simulate di�erent synopses scenario on both HealthLNK and

Financial benchmarks can be challenging (e.g., joins typically occur

on the same key, so it is hard to simulate partial coverage), hence, to

better control experimental variables and accurately assess impacts,

we will now use synthetic data and workloads.

Figure 8: BinNum experiments.

Table 3: Synopses coverage experiments.

Synopses Coverage Time (ms) Improv. Mem. (bytes) Improv.

No coveragee 1831703 baseline 129048576 baseline

Join Key

(JK)

2 way (1 JK) 276340 6.6× 28481424 4.5×

3 way (2 JKs) 29200 62.7× 905808 142.5×

All way (3 JKs) 6097 300.4× 65088 1982.7×

Filter∗

1 input 444463 4.1× 40327680 3.2×

2 inputs 108205 16.9× 12602400 10.2×

3 inputs 24486 74.8× 3943200 32.72×

All inputs 6847 267.5× 1303200 99×

* We synthesize a random selectivity between (0, 0.33) for each �lter operation.

We �rst study how the BinNums impact the performance of

(IDX)JOIN. To study this, we synthesize two join queries on �xed

input data, generate join key synopses with varying bin numbers (2

to 64), and measure the performance of (IDX)JOIN in processing

the queries. The results are shown in Figure 8.

Observation 6. The running time of (IDX)JOIN initially de-

creases but then increases as the BinNumgrows. Thememory

usage consistently increases. (IDX)JOIN partitions larger joins

into smaller sub-joins, but since we rely on DP indexes for parti-

tioning, each sub-join inevitably includes additional dummy data.

This increased plan size directly translates to higher memory usage

and will grow when BinNum increases (more noises in DP indexes).

On the other hand, partitioning large joins into smaller ones can en-

hance join e�ciency, which is why we initially observe a decrease

in execution time as BinNums increase (e.g., 2 to 8). However, the

trade-o� arises when the number of bins becomes excessive (e.g.,

> 8). The overhead of handling the increased dummy data starts to

outweigh the bene�ts gained from partitioning. At this point, the

performance improvement plateaus and starts to degrade as the

system struggles with the in�ated plan sizes.

We now study how synopses coverage impacts query perfor-

mance. We synthesize and test a 4-way join query under two con-

trolled scenarios: (i) JK coverage:We focus on varying the level of

JK coverage, starting from 1 out of 3 JKs to full coverage, while

ensuring no �lter synopses are present. We then measure how this

impacts query performance; and (ii) Filter coverage: We maintain

full JK coverage and change the coverage of �lter synopses on the

query’s input tables, ranging from 1 out of 4 inputs to full cover-

age. This allows us to examine the isolated e�ect of �lter synopsis

coverage on performance. Results are in Table 3.

Observation 7. For both groups, query e�ciency signi�cantly

improves as synopses coverage grows. Nevertheless, even at

the lowest coverage level, queries can still achieve notable

speedups. Even with minimal synopsis coverage—like boosting

only one join or applying synopses to just one input table—we

observe signi�cant speedups of 6.6× and 4.1×, respectively. This

demonstrates the potential for substantial performance gains even

with limited synopsis availability. Moreover, real-world workloads

often involve joins on the same keys and similar �ltered inputs (e.g.,

HealthLNK workloads), suggesting that high synopsis coverage is

achievable even with a small set of representative workloads. As

demonstrated by Table 3, adding even a single additional synop-

sis, whether for join keys or table �lters, can yield a substantial

performance boost (up to 10×) in query execution e�ciency.
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Table 4: Scaling query complexity experiments

Join scale Query time (ms) Improv. Memory (bytes) Improv.

Shrinkwrap Q6 58342782 baseline 3354165360 baseline

7 (FQ8 Z FQ3) 1330602 43.8× 5334360 628×

8 (FQ8 Z FQ5) 11789800 4.9× 7901016 424×

9 (FQ8 Z FQ3 Z FQ4) 13306150 4.4× 8999352 328×

7.5 Scaling experiments

To addressQuestion-3, we stress SPECIALwith two types of scaled

workloads: (i) scaled data: we duplicate the raw dataset to sizes of

2×, 4×, and 8× and evaluate default testing queries; (ii) scaled query

complexity: We use standard inputs, but simulate complex multi

joins (up to 9-way) by chaining together multiple join workloads.

The results are shown in Figure 9 and Table 4.

Figure 9: Scaling data experiments.

Observation 8. SPECIAL shows large potential to scale up to

multi-million data, even for complex 5-way joins. Figure 9

shows SPECIAL’s e�ective scaling: up to 8× data for linear queries

and binary joins, and up to 4× data for complex 5-way joins like

Q8. For instance, Q2 can be completed within 290ms under 8×, and

in fact, since selection is bypassed (due to index access), thus the

cost is mainly on I/O costs. Q4 �nishes in 289 minutes at the same

scale 8×, while the more complex 5-way join Q8 takes less than

280 minutes for 4× data. As a reference, Shrinkwrap would require

over 1035 minutes to complete Q8 even with unscaled data.

Observation 9. SPECIAL can e�ectively process very large

joins (e.g., 9-ways). Table 4 shows that the query processing time

of SPECIAL at 9-way scale can still be 4.4× faster than Shrinkwrap

at 3-way join scale (Q6), and the memory improvement is evenmore

evident that is 328× smaller.We stress that these signi�cantmemory

savings can become even more crucial when processing massive

datasets. Techniques like Shrinkwrap or SMCQL, might be forced

to rely on much slower persistent storage to handle intermediate

results that exceed memory capacity. In contrast, SPECIAL can still

maintain a fully in-memory query mode, potentially leading to even

more pronounced e�ciency gains in such scenarios.

8 RELATED WORK

SCA systems. Two main approaches exist for designing MPC-

based SCA systems. The �rst is peer-to-peer (P2P) paradigm [2, 49, 54,

67, 74], where the goal is to improve e�ciency by decomposing ana-

lytical queries and pushing them to data owners, so that they can ei-

ther directly process in clear or running MPCs across a small group

of parties. Unfortunately, this approach imposes large overhead on

data owners, especially for complex operations like joins. Given that

real-world data owners often lack robust computing resources and

service capabilities, the P2P paradigm is hard to scale and support

reliable SCA services to external analysts. The other paradigm is the

server-aided-MPC model [8, 9, 37, 41, 44, 48, 57, 64, 70, 71, 77]. This

model allows data owners to outsource both expensive MPC com-

putations and secure data storage to a set of capable servers, which

can then jointly evaluate MPC to provide reliable SCA services.

SPECIAL is built upon the server-aided-MPC model and under a

strong “all but one”corruption assumption. Moreover, SPECIAL’s

core design is protocol-agnostic, which allows interoperability with

various MPC models, including the P2P or a weaker corruption

where a supermajority of servers need to be honest [41, 44, 64].

DP leakages. Leakage-abuse attacks [11, 15, 29, 38, 50, 60, 78], ex-

ploit data-dependent processing patterns, are persistent threats to

SCA systems. To mitigate these risks, oblivious computation [5, 17,

20, 36, 39, 47, 52, 53, 58, 63, 65, 72, 73] have become the de facto

solution.While this technique ensures the strongest privacy guaran-

tees by eliminating any data-dependent leakages, it also introduces

a fundamental contention with modern database optimizations,

which often rely heavily on data-dependent operations [8, 69–71].

To this end, many recent e�orts seek a practical balance in the

privacy-performance trade-o� by allowing controlled leakage un-

der DP [8, 16, 19, 28, 32, 51, 55, 56, 68–71, 77]. However, a common

issue of these approaches is unbounded privacy loss. While some

works propose to address this [13, 56, 77], their approaches are re-

stricted to only simple linear queries. SPECIAL addresses all these

limitations together, and to our knowledge, is the �rst SCA system

that can simultaneously ensure both bounded privacy and lossless

results for complex SPJA queries.

SCA query planning. Query planning [61] is crucial in conven-

tional databases. Conventional planners can exploit size disparities

across di�erent query plans to choose e�cient ones with smaller

sizes [24, 30, 31]. However, such techniques use data-dependent

information and are typically prohibited in SCA. A handful of stud-

ies [7, 44, 54, 67] that explore query planning within SCA frame-

works primarily rely on data-independent metrics for planning,

which usually lead to only moderate optimizations. Shrinkwrap [8]

introduced a private planning method that optimally compacts

intermediate sizes by e�ciently allocating privacy budgets to mini-

mize dummy data. However, it cannot pre-determine an optimal

join order. SPECIAL o�ers an advanced query planner capable of

pre-estimating intermediate sizes and comparing execution costs

among di�erent plan structures before runtime.

9 CONCLUSION

We introduce SPECIAL, the �rst SCA system that simultaneously

supports: (i) handling complex queries with bounded privacy loss;

(ii) advanced query planning that e�ectively exploit plan interme-

diate sizes before runtime; and (iii) delivering exact query results

without missing tuples. This is achieved through a novel synopses-

assisted SCA design, where a set of private table statistics are re-

leased with one-time privacy cost to guide subsequent secure SCA

planning and processing.
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