
Most Similar Biclique Search at Scale

Deming Chu
University of New South Wale
deming.chu@unsw.edu.au

Zhizhi Gao
Guangzhou University

zhizhigao@e.gzhu.edu.cn

Fan Zhang*
Guangzhou University
zhangf@gzhu.edu.cn

Wenjie Zhang
University of New South Wale
wenjie.zhang@unsw.edu.au

Xuemin Lin
Shanghai Jiao Tong University

xuemin.lin@sjtu.edu.cn

Zhihong Tian
Guangzhou University

tianzhihong@gzhu.edu.cn

ABSTRACT

The biclique is a fundamental model of bipartite cohesive subgraphs.
To analyze a bipartite graph, many existing works seek the maxi-
mum biclique, that is, the biclique with the largest number of edges.
However, our finding is that the most similar biclique (i.e., the bi-
clique whose vertices are the most similar to each other) can be a
good alternative for understanding the network. Using the model,
we can detect meaningful communities with high similarity and
avoid unnecessary searches based on vertex similarity. In particu-
lar, we aim to find (i) local most similar biclique: the biclique that
contains a query node 𝑞 and the similarity between vertices is the
highest, and (ii) global most similar biclique: the biclique with the
highest similarity between vertices.

Despite the NP-hardness of the problems, this paper presents
two efficient algorithms, Mosib and Mosib-GloApp. Specifically, our
Mosib is an exact algorithm for the most similar biclique search.
The algorithm incorporates three novel graph reduction rules that
can reduce the size of the bipartite graph while preserving the
most similar biclique, as well as two similarity-first search rules
that can prioritize the bicliques with high similarity in the search.
These techniques can significantly improve the practical efficiency
of the algorithm. Meanwhile, our Mosib-GloApp is an approximate
algorithm that adopts a novel MinHash-based dividing method,
and it can further improve the efficiency of the global most similar
biclique search. We experimentally evaluate our algorithms on real-
world networks, and show that the most similar biclique models
can find meaningful results while being computed efficiently.

PVLDB Reference Format:

Deming Chu, Zhizhi Gao, Fan Zhang, Wenjie Zhang, Xuemin Lin, and

Zhihong Tian. Most Similar Biclique Search at Scale. PVLDB, 18(4): 1022 -

1034, 2024.

doi:10.14778/3717755.3717763

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/nedchu/mosib-release.

∗ Fan Zhang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717763

VLDB SIGMOD ICDEKDDICDM SOSPOSDI
Database Operating SystemData Mining

Figure 1: Researcher-Venue Bipartite Network.

1 INTRODUCTION

Bipartite graphs have been widely used to describe the relationships
between two classes of entities, e.g., the author-paper relationships
in the academia [20], the customer-product relationships in an e-
commerce platform [33], and the user-content relationships in a
social network [47]. Nowadays, people are producing large-scale
bipartite graphs in various fields [11, 29].

The biclique model is a fundamental structure, and it has been
applied to applications such as anomaly detection [2, 4, 26], gene
expression analysis [23, 31, 44], and social recommendation [22, 26].
Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph with two disjoint sets of
vertices 𝐿(𝐺) and 𝑅(𝐺), and a set of edges 𝐸 (𝐺) that connects the
two vertex sets. Given 𝐺 , a biclique is a subgraph 𝐶 of 𝐺 such
that every pair of vertices between the two sides of 𝐶 is adjacent.
The maximum biclique [8, 26, 27], i.e., the biclique with the largest
number of edges, is often used to analyze a bipartite graph.

Figure 1 presents a researcher-venue bipartite graph that depicts
if a researcher has published in a venue. The shadowed subgraph
is the maximum biclique, and all six researchers in the biclique
have published in database conferences. However, the model fails to
distinguish the preferences of these researchers: 𝑟1, 𝑟2 are interested
in database and data mining, 𝑟3, 𝑟4 are focusing on database, while
𝑟5, 𝑟6 are interested in database and operating system. In other
words, the vertices in a biclique are not necessarily similar, even
though they share a set of common neighbors.

To address this limitation of the traditional model, Yao et al. [40]
propose the model of similar biclique. Given a similarity threshold
𝑠 , the model regards two vertices 𝑢 and 𝑣 as similar if the (Jaccard)
similarity between their neighbor sets is no less than 𝑠 . Yao et
al. [40] aim to enumerate any maximal similar biclique where all
vertices on one side are similar to each other, and they propose an
efficient algorithm MSBE for similar biclique enumeration.

The similar biclique model can detect meaningful communities,
and the running time is far less than enumerating traditional bi-
cliques [40]. However, the number of resulting similar bicliques

1022

https://www.acm.org/publications/policies/artifact-review-and-badging-current

is still excessively large, e.g., there are 4,524 similar bicliques on
YouTube (a graphwith 293 thousand edges) when 𝑠 = 0.5. Therefore,
any practitioner can hardly make sense of these similar bicliques.

This paper is the first to study the problem ofmost similar biclique.
Let a 𝑟 -similar biclique be a biclique where the minimum similarity
equals 𝑟 for every pair of vertices on one side. Intuitively, we aim
to find (i) local most similar biclique, i.e., the biclique that contains
a query node 𝑞 and the similarity 𝑟 is the highest, and (ii) global
most similar biclique, i.e., the biclique with the highest similarity
𝑟 in the whole network. In addition, we ensure that the resulting
most similar biclique is maximal, and that the number of vertices
on each side of the biclique is no less than a size constraint 𝜏 .

Our model can detect meaning communities from the author-
venue graph, either globally or locally. Each community contains a
group of researchers that focus on a set of closely related venues.
For example, the global most similar biclique (𝜏 = 2) in Figure 1 is
{𝑟3, 𝑟4}×{VLDB, SIGMOD, ICDE}. Given 𝜏 = 2, the local most simi-
lar biclique containing 𝑟1 is {𝑟1, 𝑟2}×{KDD, VLDB, SIGMOD, ICDE},
while the local most similar biclique containing 𝑟5 is {𝑟5, 𝑟6} ×
{SOSP, VLDB, SIGMOD, ICDE}. In comparison, the similar biclique
model [40] would return {all authors} × {VLDB, SIGMOD, ICDE}
when 𝑠 = 0.5, and it cannot distinguish the differences of authors.

Challenges. Like many other biclique-related problems [26, 35, 40],
we can prove that the problem of local/global most similar biclique
search is NP-Hard. One may wonder if existing works on simi-
lar biclique can solve our problems. As a preliminary attempt, we
develop a baseline based on the state-of-the-art method of enumer-
ating similar bicliques, i.e., MSBE [40]. However, MSBE will return
an empty result when the similarity threshold 𝑠 is larger than the
highest similarity. When 𝑠 is too low, MSBE may enumerate a bi-
clique that contains the most similar biclique and other dissimilar
vertices. Therefore, the main difficulty is picking the largest 𝑟 value
s.t. the 𝑟 -similar biclique exists, and set 𝑠 to this 𝑟 value. Intuitively,
our baseline performs a binary search on 𝑟 , and usesMSBE to verify
the existence of a 𝑟 -similar biclique. Despite its simplicity, the base-
line incurs significant computation overheads, e.g., it takes over 24
hours on CiteULike, a graph with 2.3 million edges (see Section 6.2).
Thus, this baseline cannot scale to large networks.

One may also wonder if we can solve the problems with the
classical techniques of clique and biclique search. For the maximum
clique search, existing works [7, 19, 24] use graph coloring and core
decomposition to estimate the upper bound of the maximum clique
size, and use this upper bound to prune vertices. Existing works of
maximum biclique search [26] also use the size to prune the vertices.
However, these techniques cannot be used in our studied problem,
as our optimization objective (the similarity between vertices) is
not necessarily correlated with the size. This motivates us to design
new techniques for the most similar biclique search.

Contributions. This paper presents Mosib, an exact algorithm
for Most similar biclique search. Different from existing works,
Mosib prunes unpromising vertices and prioritizes promising ones,
particularly from the view of vertex similarity. The algorithm in-
corporates graph reduction rules that aim to reduce the size of the
bipartite graph while preserving the local most similar biclique.
It also adopts similarity-first search rules that can prioritize the
similar bicliques with high similarity in the search. As a result,

Table 1: Summary of Notations.

Notation Definition

𝐺 a bipartite graph

𝑛𝐿 ; 𝑛𝑅 the number of left-/right-side vertices in𝐺

𝑚 the number of edges in𝐺

𝜏 the minimum number of vertices on each side of a biclique

𝑁𝑢 the set of neighbors of a node 𝑢

𝑁 2
𝑢 the set of 2-hop neighbors of a node 𝑢

𝑠𝑖𝑚 (𝑢, 𝑣) the Jaccard similarity between 𝑁𝑢 and 𝑁𝑣

Mosib can significantly speed up the local most similar biclique
search (also referred to as local search), while Mosib solves the
global search with a series of local searches. Compared with the
baseline based on Yao et al. [40], our Mosib is up to six (resp. five)
orders of magnitude faster in the local (resp. global) search. In addi-
tion, we compare our model with existing models such as similar
biclique [40], (𝛼, 𝛽)-core [21], and personalized maximum biclique
[35], which verifies the effectiveness of our model (see Section 6.3).

Moreover, we design an approximate algorithm Mosib-GloApp

for the global search. Unlike the global search for Mosib, ourMosib-

GloApp divides the nodes into groups and only considers the bi-
cliques within each group. This avoids searching for any biclique
whose nodes are located in different groups, thus significantly im-
proving the efficiency. We also propose a novel dividing algorithm
based on the well-known MinHash technique. The experiments
show that ourMosib-GloApp can outperformMosib in running time
by up to two orders of magnitude.

In summary, our principal contributions are as follows:

1. To our best knowledge, we are the first to formulate the problem
of the local/global most similar biclique search. We prove that
the problems are NP-Hard.

2. We proposeMosib, an exact algorithm for the local (resp. global)
most similar biclique search, including novel optimization rules
for graph reduction and similarity first search.

3. We propose an approximate algorithmMosib-GloApp for finding
the global most similar biclique more efficiently.

4. The experiments on real-world datasets show that our algo-
rithms can efficiently handle large-scale bipartite graphs while
finding insightful results in the network.

2 PRELIMINARIES

In this section, we define the problems of finding the local and
global most similar bicliques. We prove that the two problems are
NP-Hard. Table 1 lists the frequently-used notations.

2.1 Problem Definition

Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph with two disjoint sets of ver-
tices 𝐿(𝐺) and 𝑅(𝐺) (i.e., the left-side and right-side vertices), and
a set of edges 𝐸 (𝐺) between the two vertex sets. Given a subgraph
𝐶 of 𝐺 , we let 𝐿(𝐶) (resp. 𝑅(𝐶)) denote the left-side (resp. right-
side) vertices from 𝐶 . Then, a biclique is defined as a subgraph 𝐶
of 𝐺 such that every vertex pair between the two sides of 𝐶 are
connected, that is, ∀(𝑢 ∈ 𝐿(𝐶)) (𝑣 ∈ 𝑅(𝐶)) (𝑢, 𝑣) ∈ 𝐸.

The similar biclique is a kind of biclique whose left-side vertices
are similar to each other [40]. Let 𝑁 (𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸} be

1023

Figure 2: Maximal Biclique. Figure 3: Similar Biclique.

the neighbor set of 𝑢. The similarity between 𝑢 and 𝑣 , denoted by
𝑠𝑖𝑚(𝑢, 𝑣), is defined as the Jaccard similarity between the neighbor

sets, i.e., 𝑠𝑖𝑚(𝑢, 𝑣) = 𝐽 (𝑁 (𝑢), 𝑁 (𝑣)) = |𝑁 (𝑢)∩𝑁 (𝑣) |
|𝑁 (𝑢)∪𝑁 (𝑣) | .

Definition 1 (𝑟 -similar biclique). A 𝑟 -similar biclique𝐶 is a biclique
such that the minimum similarity between every pair of left-side
vertices of 𝐶 is equal to 𝑟 , i.e., 𝑟 = 𝑠𝑖𝑚(𝐶) = min𝑢,𝑣∈𝐿 (𝐶) 𝑠𝑖𝑚(𝑢, 𝑣).

A 𝑟 -similar biclique is maximal when it is not a subset of any
other 𝑟 -similar biclique. We assume that the similarity constraint
is considered for the left-side, otherwise, we can simply swap the
two sides before applying the algorithm.

In this paper, we aim to find (i) global most similar biclique, i.e.,
the maximal 𝑟 -similar biclique with the highest similarity 𝑟 in the
whole graph, and (ii) local most similar biclique, i.e., the maximal
𝑟 -similar biclique that contains 𝑞 and the similarity 𝑟 is the highest.
For simplicity, we also refer to our studied problems as the local
(resp. global) search problem, and they can be formally defined as:

Problem 1 (Local Most Similar Biclique). Given a graph 𝐺 , a size
threshold 𝜏 , and a query node 𝑞 ∈ 𝐿(𝐺), we ask for a 𝑟∗-similar
biclique 𝐶∗𝜏,𝑞 that satisfies

(i) Node Containment: 𝑞 ∈ 𝐶∗𝜏,𝑞 ;
(ii) Size Constraint: |𝐿(𝐶∗𝜏,𝑞) | ≥ 𝜏 ∧ |𝑅(𝐶∗𝜏,𝑞) | ≥ 𝜏 ;
(iii) Maximality: 𝐶∗𝜏,𝑞 is maximal;

(iv) Most Similar: for any 𝑟 -similar biclique satisfying (i-iii), 𝑟∗ ≥ 𝑟 .

Problem 2 (Global Most Similar Biclique). Given a graph 𝐺 and a
size threshold 𝜏 , we ask for a 𝑟∗𝑔 -similar biclique 𝐶∗𝜏 that satisfies

(i) Size Constraint: |𝐿(𝐶∗𝜏) | ≥ 𝜏 ∧ |𝑅(𝐶∗𝜏) | ≥ 𝜏 ;
(ii) Maximality: 𝐶∗𝜏 is maximal;
(iii) Most Similar: for any 𝑟 -similar biclique satisfying (i-ii), 𝑟∗𝑔 ≥ 𝑟 .

There is an "at least 𝜏" size constraint for the resulting biclique𝐶 ,
i.e., |𝐿(𝐶) | ≥ 𝜏 and |𝑅(𝐶) | ≥ 𝜏 . Such a size constraint can avoid too
small or too skewed bicliques, and is widely adopted in previous
works [26, 35, 40]. If necessary, the techniques in this paper can be
easily extended to handle different size constraints on two sides.
In the real world, the size constraint 𝜏 can refer to the number of
customers and products in an e-commerce platform, or the number
of users and tweets in a bipartite social network.

The rationale of the "at least 𝜏 constraint" is as follows. Let 𝜏 = 5.
In the worst case, we will obtain a (5, 5)-biclique which is not too
small or skewed. The constraint can also stop our algorithms from
finding a (1, 5)-biclique or a (1, 1)-biclique. Therefore, the "at least
𝜏" constraint can keep good bicliques and prune bad ones.

Example 1. Consider the maximal biclique𝐶0 in Figure 2, and the
similar bicliques 𝐶1 and 𝐶2 in Figure 3. The nodes 𝑎 and 𝑏 have the
same neighbor set (i.e., {𝑒, 𝑓 , 𝑔}), while nodes 𝑐 and 𝑑 have the same

neighbor set {𝑓 , 𝑔}. The similar biclique can observe the difference
between {𝑎, 𝑏} and {𝑐, 𝑑}, but the raw biclique model cannot. Let
𝜏 = 2. Given 𝑞 ∈ {𝑎, 𝑏} (resp. 𝑞 ∈ {𝑐, 𝑑}), the local most similar
biclique is 𝐶1 (resp. 𝐶2), because 𝐶1 and 𝐶2 are both 1.0-similar
biclique. Both 𝐶1 and 𝐶2 are the global most similar biclique.

2.2 Problem Hardness

Theorem 1. The global most similar biclique search is NP-Hard.

Proof. The maximum balanced biclique (MBB) problem asks for
a biclique𝐶 such that |𝐿(𝐶) | = |𝑅(𝐶) | and the number of edges in𝐶
is the largest. This problem is NP-hard [17]. Assume that the global
search can be solved in polynomial time. Then, we can solve the
MBB problem as follows. For every 𝜏 from 1 to min{|𝐿(𝐺) |, |𝑅(𝐺) |},
there exists a biclique𝐶 with |𝐿(𝐶) | ≥ 𝜏 and |𝑅(𝐶) | ≥ 𝜏 if and only
if we run the global search with size constraint 𝜏 and it returns a
non-empty result. Thus, we can determine the MBB in polynomial
time. This contradicts the fact that theMBB problem is NP-hard. �

Theorem 2. The local most similar biclique search is NP-Hard.

Proof. Assume that the local search problem is solvable in poly-
nomial time. For every any 𝑣 ∈ 𝐿(𝐺), we compute the local most
similar biclique 𝐶∗𝑣 containing 𝑣 . Then, we select from these local
most similar bicliques the one with the largest similarity 𝑟 , and
return it as the final result. This is a polynomial-time solution to
the global search problem, which contradicts Theorem 1. �

3 THE BASELINE SOLUTION

In what follows, we first present an overview of Yao et al. [40], the
state-of-the-art method for enumerating similar bicliques. After
that, we devise a baseline solution based on Yao et al’s method.

3.1 Yao et al.’s Method and Our Insights

Let 𝑠 be a similarity threshold. Yao et al. [40] aim to enumerate
any 𝑟 -similar biclique with 𝑟 ≥ 𝑠 , and they present an algorithm
(referred to as MSBE) for similar biclique enumeration. Formally
speaking, given 𝐺 , a size threshold 𝜏 , and a similarity threshold
𝑠 ∈ [0, 1], MSBE can enumerate all 𝑟 -similar bicliques 𝐶 such that
(i) 𝑟 ≥ 𝑠 , (ii) |𝐿(𝐶) | ≥ 𝜏 ∧ |𝑅(𝐶) | ≥ 𝜏 , and (iii) 𝐶 is maximal.

Suppose we know the similarity of global most similar biclique
𝐶∗𝜏 (i.e., 𝑟∗𝑔 in Problem 2). Then, we can answer the global most

similar biclique by runningMSBE with a similarity threshold 𝑠 = 𝑟∗𝑔
and a size threshold 𝜏 . This will lead to the lowest computation cost.
However, it is impossible to know 𝑟∗𝑔 in advance.

On the one hand, if we adopt a large 𝑠 , MSBE may return an
empty result. On the other hand, if we use a small 𝑠 (e.g., 𝑠 = 0),
MSBE may enumerate a biclique that contains the most similar
biclique and other dissimilar vertices. Such a small 𝑠 also incurs
prohibitive overheads, e.g., when 𝑠 = 0, MSBE cannot terminate in
24 hours on GitHub (a graph with 0.5 million edges). Therefore,
the main difficulty is picking the largest 𝑟 value s.t. the 𝑟 -similar
biclique exists, and set 𝑠 to this 𝑟 value.

3.2 Our Baseline Based on Yao et al’s Method

Basically, our baselineMSBE+ uses a binary search to select a proper
𝑠 for MSBE. Algorithm 1 presents the pseudo-code of our baseline

1024

Algorithm 1: MSBE+: Global(𝐺, 𝜏)

Initialize the result 𝐶∗𝜏 = ∅;1

Initialize the binary-search boundaries 𝑠𝑙 = 0 and 𝑠𝑢 = 1;2

while |𝑠𝑢 − 𝑠𝑙 | is not sufficiently small do3

Let 𝑠𝑚 = (𝑠𝑙 + 𝑠𝑢)/2;4

Use MSBE to find a maximal 𝑟 -similar biclique 𝐶 with5

𝑟 ≥ 𝑠𝑚 and satisfying the size constraint 𝜏 ;
if 𝐶 is found in above then6

Set 𝑠𝑙 = 𝑟 ; Update 𝐶
∗
𝜏 = 𝐶;7

else Set 𝑠𝑢 = 𝑠𝑚 ;8

return 𝐶∗𝜏 ;9

MSBE+ when it handles global search. The algorithm starts with
the binary-search boundaries 𝑠𝑙 = 0 and 𝑠𝑢 = 1, and then iteratively
tests 𝑠𝑚 = (𝑠𝑙 + 𝑠𝑢)/2 and updates the boundaries. Given 𝑠𝑚 , it runs
MSBE with similar threshold 𝑠 = 𝑠𝑚 and size threshold 𝜏 , and imme-
diately terminates the enumeration once MSBE finds any qualified
𝑟 -similar biclique 𝐶 (Line 5). If 𝐶 is found, then the algorithm sets
𝑠𝑙 = 𝑟 and updates the result 𝐶∗𝜏 = 𝐶 (Line 7), otherwise, it sets
𝑠𝑢 = 𝑠𝑚 (Line 8). Finally, 𝐶∗𝜏 is returned as the answer (Line 9).

Algorithm 1 can be extended to handle the local search. Note
that MSBE enumerates all similar bicliques with a for-loop on 𝑢 ∈
𝐿(𝐺) (Lines 3-10 of Algorithm 1 in [40]), each iteration of which
enumerates the similar bicliques containing 𝑢. In order to find the
local most similar biclique containing a node 𝑞, we can simply
replace the above-mentioned for-loop in MSBE with its inner body
(𝑢 = 𝑞) when we run Algorithm 1.

Let 𝑏 be the number of iterations in the binary search, and 𝑛𝐿 be
|𝐿(𝐺) |, and𝑚 be |𝐸 (𝐺) |. The baselineMSBE+ takes𝑂 (𝑏𝑚 ·2𝑛𝐿) time
for the local search and 𝑂 (𝑏𝑚𝑛𝐿 · 2𝑛𝐿) time for the global search.
In particular, our baseline MSBE+ runs the enumeration algorithm
MSBE for 𝑏 times, each of which takes 𝑂 (𝑚 · 2𝑛𝐿) time for local
search and 𝑂 (𝑚𝑛𝐿 · 2𝑛𝐿) time for global search [40].

Although the baseline MSBE+ is conceptually simple, it incurs
significant overheads, e.g., it requires 39 hours for the global search
on CiteULike, a graph with 2.3 million edges (see Section 6.2).

4 PROPOSED EXACT SOLUTION

The Bron-Kerbosch algorithm [6] is an algorithm for listing all max-
imal cliques in an undirected graph. The algorithm attempts to
add a vertex to a partial clique and then remove it to find more
cliques. Such a branch-and-bound framework is adopted by almost
all existing works of clique and biclique [1, 26, 35, 40, 44], as well
as our solutions. Nevertheless, the framework only provides an
enumeration method, and must be redesigned to fit our problem.

This section presents Mosib, an exact algorithm that borrows
ideas from the Bron-Kerbosch algorithm [6] but significantly im-
proves the efficiency with a novel algorithm design. At a high level,
Mosib incorporates two techniques in its local search:

1. Graph Reduction Rules. This technique aims to reduce the
size of the bipartite graph while preserving the local most sim-
ilar biclique. It includes three graph reduction rules, namely,
hop-based, degree-based, and similarity-based rules.

2. Similarity-First Search.This technique contains two similarity-
first search rules that aim to prioritize the bicliques with high
similarity in the search, such that more vertices can be pruned
by the similarity-based graph reduction rule.

In general, our algorithmmaintains a partial biclique (𝐿, 𝑅, 𝐿×𝑅)
and recursively adds left-side vertices into 𝐿. Given a fixed set 𝐿,
the set 𝑅 is simply the common neighbors of all vertices in 𝐿, i.e.,
𝑅 =

⋂
𝑢∈𝐿 𝑁𝑢 . When we add vertices into 𝐿, we consider a vertex

𝑢 as promising if it is similar to the vertices in 𝐿. Our Mosib uses
the graph reduction rules to prune unpromising vertices and uses
the similarity-first search to prioritize promising vertices.

Next, we first detail the graph reduction rules and similarity-first
search. Then, we integrate these techniques into our algorithms.

4.1 Graph Reduction Rules

Given𝐺 and a subgraph𝐺 ′ of𝐺 , we can reduce𝐺 to𝐺 ′ if and only
if 𝐺 ′ preserves the local most similar biclique of 𝐺 .

Definition 2 (LMSB-Preserved Subgraph). Let 𝐺 be a graph, 𝜏 be
a size threshold, and 𝑞 ∈ 𝐿(𝐺) be a query node. A subgraph 𝐺 ′ of

𝐺 is the LMSB-preserved subgraph, denoted by 𝐺 ′ 𝜏,𝑞≡ 𝐺 , if the local
most similar biclique on 𝐺 and 𝐺 ′ is the same given 𝜏 and 𝑞, i.e.,
𝐶∗𝜏,𝑞 (𝐺) = 𝐶

∗
𝜏,𝑞 (𝐺

′).

Lemma 1 (Transitivity of LMSB-Preserved Subgraph).

𝐺1
𝜏,𝑞
≡ 𝐺2 ∧𝐺2

𝜏,𝑞
≡ 𝐺3 =⇒ 𝐺1

𝜏,𝑞
≡ 𝐺3 .

Proof. Let the local most similar biclique of𝐺1 be𝐶
∗
𝜏,𝑞 (𝐺1) = 𝐶 .

Given 𝐺1
𝜏,𝑞
≡ 𝐺2 ∧𝐺2

𝜏,𝑞
≡ 𝐺3, it follows that 𝐶

∗
𝜏,𝑞 (𝐺3) = 𝐶∗𝜏,𝑞 (𝐺2) =

𝐶∗𝜏,𝑞 (𝐺1) = 𝐶 . In addition, 𝐺3 must be a subgraph 𝐺1, as 𝐺3 is a
subgraph of𝐺2 and𝐺2 is a subgraph of𝐺1. Based on the above,𝐺3

is the LMSB-preserved subgraph of 𝐺1. �

By the transitive property, we can repeatedly reduce a graph to
its LMSB-preserved subgraph. We eliminate a node 𝑢 from 𝐺 by
removing 𝑢 and all its incident edges, denoted as 𝐺 𝑢.

Hop-based Rule (HOP). Given a node 𝑞, the first rule states that
we can eliminate any node 𝑢 whose distance to 𝑞 is larger than 2,
i.e., eliminating all nodes outside 𝑞’s 2-hop neighborhood. Then,
we can formalize the hop-based rule as follows:

Lemma 2 (Rule HOP). Let 𝑞 be a query node, and 𝑁 2
𝑞 be the set of

2-hop neighbors of a node 𝑞, then we have

∀𝑢 : 𝑢 ∉ 𝑁 2
𝑞 =⇒ 𝐺 𝑢

𝜏,𝑞
≡ 𝐺.

Proof. Let 𝑢 be a node such that 𝑢 ∉ 𝑁 2
𝑞 . Proving 𝐺 𝑢

𝜏,𝑞
≡ 𝐺

is equivalent to proving 𝑢 is not contained in 𝐶∗𝜏,𝑞 (𝐺), i.e., the
local most similar biclique on 𝐺 given 𝜏 and 𝑞. We prove this by
contradiction. Assume that 𝑢 is contained in 𝐶∗𝜏,𝑞 (𝐺). Recall that a
biclique is a complete bipartite graph, so the distance between𝑢 and
𝑞 must be no more than 2. This contradicts the fact that𝑢 ∉ 𝑁 2

𝑞 . �

Degree-based Rule (DEG). Given the size threshold 𝜏 , the second
rule recursively eliminates any node whose degree is less than 𝜏
until no more nodes can be removed.

1025

Algorithm 2: graph reduction rules

def HOP(𝐺𝑟 , 𝑞) :1

for ∀𝑢 : 𝑢 ∉ 𝑁 2
𝑞 do 𝐺𝑟 ← 𝐺𝑟 𝑢;2

def DEG(𝐺𝑟 , 𝜏) :3

while ∃𝑢 : 𝑑 (𝑢,𝐺𝑟) < 𝜏 do 𝐺𝑟 ← 𝐺𝑟 𝑢;4

def SIM(𝐺𝑟 , 𝑞, 𝑟
∗) :5

for 𝑢 ∈ 𝐿 (𝐺𝑟) and 𝑠𝑖𝑚 (𝑢,𝑞) < 𝑟 ∗ do 𝐺𝑟 ← 𝐺𝑟 𝑢;6

Lemma 3 (Rule DEG). Let 𝑑 (𝑢,𝐺) be degree of 𝑢 in graph𝐺 , then

∀𝑢 : 𝑑 (𝑢,𝐺) < 𝜏 =⇒ 𝐺 𝑢
𝜏,𝑞
≡ 𝐺.

Proof. Let 𝑢 be a node such that 𝑢 ∈ 𝐿(𝐺) and 𝑠𝑖𝑚(𝑢, 𝑞) < 𝑟∗.

Proving 𝐺 𝑢
𝜏,𝑞
≡ 𝐺 is equivalent to proving 𝑢 is not contained in

𝐶∗𝜏,𝑞 (𝐺), i.e., the local most similar biclique on𝐺 given 𝜏 and 𝑞. We

prove this by contradiction. Assume that 𝑢 is contained in 𝐶∗𝜏,𝑞 (𝐺).
By the fact that 𝑑 (𝑢,𝐺) < 𝜏 and 𝐶∗𝜏,𝑞 (𝐺) is a subgraph of 𝐺 , we
have 𝑑 (𝑢,𝐶∗𝜏,𝑞 (𝐺)) < 𝜏 . But this contradicts the size constraint of
the local most similar biclique, i.e., 𝑑 (𝑢,𝐶∗𝜏,𝑞 (𝐺)) ≥ 𝜏 . �

Similarity-based Rule (SIM). Let a 𝑟∗-similar biclique𝐶∗𝜏,𝑞 be the
temporary result of the local most similar biclique that satisfies the
conditions (i)-(iii) in Problem 1. If a left-side node 𝑢 ∈ 𝐿(𝐺) is not
sufficiently similar to 𝑞 (i.e., 𝑠𝑖𝑚(𝑢, 𝑞) < 𝑟∗), then we can eliminate
𝑢 from 𝐺 , as any biclique containing {𝑢, 𝑞} is not the highest in
similarity. This rule is referred to as the similarity-based rule (SIM):

Lemma 4 (Rule SIM). Let 𝑞 be a query node, and a 𝑟∗-similar

biclique𝐶∗𝜏,𝑞 be the temporary result of the local most similar biclique.

Then, for every update of 𝑟∗ and 𝐶∗𝜏,𝑞 ,

∀𝑢 ∈ 𝐿(𝐺) : 𝑠𝑖𝑚(𝑢, 𝑞) < 𝑟∗ =⇒ 𝐺 𝑢
𝜏,𝑞
≡ 𝐺.

Proof. Let 𝑢 be a node such that 𝑢 ∈ 𝐿(𝐺) and 𝑠𝑖𝑚(𝑢, 𝑞) < 𝑟∗.

Proving 𝐺 𝑢
𝜏,𝑞
≡ 𝐺 is equivalent to proving 𝑢 is not contained in

𝐶∗𝜏,𝑞 (𝐺), i.e., the local most similar biclique on𝐺 given 𝜏 and 𝑞. We

prove this by contradiction. Assume that 𝑢 is contained in 𝐶∗𝜏,𝑞 (𝐺).
By the fact that𝐶∗𝜏,𝑞 (𝐺) contains 𝑢 and 𝑞, we have 𝑠𝑖𝑚(𝐶∗𝜏,𝑞 (𝐺)) ≤
𝑠𝑖𝑚(𝑢, 𝑞) < 𝑟∗ = 𝑠𝑖𝑚(𝐶∗𝜏,𝑞). Therefore, 𝐶

∗
𝜏,𝑞 has a higher similarity

than 𝐶∗𝜏,𝑞 (𝐺), which contradicts the fact that 𝐶∗𝜏,𝑞 (𝐺) is the local
most similar biclique on 𝐺 . �

Implementation. Algorithm 2 presents the pseudo-code of our
graph reduction rules. Let 𝐺𝑟 be a reduced graph. The algorithm
starts with 𝐺𝑟 = 𝐺 , and then repeatedly reduces 𝐺𝑟 if necessary.
Given a size constraint 𝜏 , we implement DEG with a BFS-like
method, that is, we remove any vertex 𝑢 with 𝑑 (𝑢,𝐺𝑟) < 𝜏 and
recursively remove any neighbor 𝑣 of 𝑢 if the degree of 𝑣 drops
below 𝜏 . For SIM, we compute 𝑠𝑖𝑚(𝑢, 𝑣) and memorize the result
with a table. The running time of all these rules is 𝑂 (|𝐸 (𝐺𝑟) |) time.

Note that DEG can interact with other rules, i.e., using SIM or
HOP may cause degree reduction, creating a chance for further
using DEG. The rules are applied on demand: we apply all rules
HOP, SIM, DEG in the initialization, and then apply SIM, DEG once
we find a biclique with a higher similarity than the current best
(see Algorithm 3 Lines 2 and 11). Such an on-demand application is
more efficient than other ways, e.g., sequential or fixed point.

Figure 4: The Similarity-First Search on Figure 2.

4.2 Similarity-First Search

In a nutshell, ourMosib enumerates similar bicliques in a similarity-
first search manner, i.e., it prioritizes the biclique with high simi-
larity. As a result, the algorithm can prune more vertices with the
similarity-based rule (see the last section) in the early stage, leading
to a significantly improved performance.

Recall that the algorithmmaintains a partial biclique𝐶 = (𝐿, 𝑅, 𝐿×
𝑅) and recursively adds left-side vertices into 𝐿, where 𝑅 can be
simply computed as 𝑅 =

⋂
𝑢∈𝐿 𝑁𝑢 . Let 𝑃 be the candidate left-side

vertices that we consider adding to 𝐿. In this process, we adopt the
following two similarity-first search rules.

Similar Node First Rule (SFS). The first rule is to sort all candidate
vertices in 𝑃 in decreasing order of 𝑠𝑖𝑚(𝑢, 𝐿), where 𝑠𝑖𝑚(𝑢, 𝐿) is
the minimum similarity between 𝑢 and the vertices from 𝐿, i.e.,
𝑠𝑖𝑚(𝑢, 𝐿) = min𝑣∈𝐿 𝑠𝑖𝑚(𝑢, 𝑣). Every time a node is moved from 𝑃
to 𝐿, the algorithm uses the rule to order the updated 𝑃 .

The rationale of the rule is as follows. Let 𝑠𝑖𝑚(𝐿) be the min-
imum pair-wise similarity in 𝐿, i.e., 𝑠𝑖𝑚(𝐿) = min𝑢,𝑣∈𝐿 𝑠𝑖𝑚(𝑢, 𝑣).
If a vertex 𝑢 is added to 𝐿, the similarity becomes 𝑠𝑖𝑚(𝐿 ∪ {𝑢}) =
min{𝑠𝑖𝑚(𝐿), 𝑠𝑖𝑚(𝑢, 𝐿)}. By sorting 𝑃 in decreasing 𝑠𝑖𝑚(𝑢, 𝐿), the
algorithm can prioritize the node 𝑢 that maximizes the similarity
of the partial biclique after it adds 𝑢 into 𝐿.

High-Similarity Node Sets First Rule (SFS2). Given a query
node 𝑞, a naive approach is to start with 𝐿 = {𝑞} and the set of
vertices 𝑃 that can be added to 𝐿. We have to consider all vertices in
𝑃 to ensure algorithm correctness. However, some vertices in 𝑃 are
relatively dissimilar to 𝑞 and may delay the search. Intuitively, the
second rule aims to divide the naive search into several iterations
of searches such that (i) dissimilar vertices are not considered in
the early iterations, and (ii) the computation cost stays the same.

In particular, we assume that 𝑃 = {𝑣1, 𝑣2, · · · , 𝑣 |𝑃 | } is ordered
by the similarity to 𝑞, i.e., 𝑠𝑖𝑚(𝑣1, 𝑞) ≥ 𝑠𝑖𝑚(𝑣2, 𝑞) ≥ · · · 𝑠𝑖𝑚(𝑣 |𝑃 | , 𝑞).
The algorithm runs up to |𝑃 | iterations, the 𝑘-th of which executes
a local search with 𝐿′ = {𝑞, 𝑣𝑘 } and 𝑃 ′ = {𝑣1, 𝑣2, · · · , 𝑣𝑘−1}. In
other words, for every biclique 𝐶 we detected in the 𝑘-th itera-
tion, we ensure that any vertex in 𝐿(𝐶) is top-𝑘 most similar to
𝑞, i.e., 𝐿(𝐶) ⊆ {𝑞, 𝑣1, 𝑣2, · · · , 𝑣𝑘 }, while the searches on relatively
dissimilar vertices are deferred to the subsequent iterations.

Moreover, the rule will not increase the computation cost. All
bicliques enumerated in the 𝑘-th iteration are different from those
enumerated in the previous iterations, because the former always
contains 𝑣𝑘 while the latter never contains 𝑣𝑘 . Therefore, the al-
gorithm enumerates every biclique exactly once and has the same
worst-case time complexity as the naive approach.

Example 2. Let node 𝑐 in Figure 2 be the query node. In Figure 4
(left), the similar node first rule (SFS) sorts the candidate vertices

1026

Algorithm 3: Mosib-Exact: Local(𝐺,𝑞, 𝜏)

Initialize the temporary local result 𝑟∗ = −∞ and 𝐶∗𝜏,𝑞 = ∅;1

Copy 𝐺 into 𝐺𝑟 ; Reduce 𝐺𝑟 with HOP and DEG;2

Sort 𝑢 ∈ 𝐿(𝐺𝑟) in decreasing order of 𝑠𝑖𝑚(𝑞,𝑢); // SFS2 ↓3

for 𝑢 ∈ 𝐿(𝐺𝑟) and 𝑢 ∈ 𝐺𝑟 do4

Let 𝑃 be the set of 𝑢 (Line 14) visited in previous iterations;5

Run Enum-BK({𝑞,𝑢}, 𝑁𝑞 ∩ 𝑁𝑢 , 𝑃 ∩ 𝑁
2
𝑢 , ∅, 𝑠 (𝑞,𝑢));6

return 〈𝑟∗,𝐶∗𝜏,𝑞〉;7

def Enum (𝐿, 𝑅, 𝑃, 𝑋, 𝑟) :8

if |𝐿 | ≥ 𝜏 and |𝑅 | ≥ 𝜏 and 𝑟 > 𝑟∗ then9

Update 𝐶∗𝜏,𝑞 = (𝐿, 𝑅, 𝐿 × 𝑅) and 𝑟∗ = 𝑟 ;10

Reduce 𝐺𝑟 with SIM and DEG;11

Let 𝑠𝑖𝑚(𝑢, 𝐿) be min𝑣∈𝐿 𝑠𝑖𝑚(𝑢, 𝑣);12

Sort 𝑢 ∈ 𝑃 in decreasing order of 𝑠𝑖𝑚(𝑢, 𝐿); // SFS13

for 𝑢 ∈ 𝑃 and 𝑢 ∈ 𝐺𝑟 do14

𝐿′ = 𝐿∪{𝑢}; 𝑅′ = 𝑅∩𝑁𝑢 ; 𝑃 ′ = 𝑃∩𝑁 2
𝑢 ; 𝑋

′ = 𝑋∩𝑁 2
𝑢 ;15

𝑟 ′ = min{𝑟, 𝑠𝑖𝑚(𝑢, 𝐿)};16

if 𝑟 ′ > 𝑟∗ and |𝐿′ | + |𝑃 ′ | ≥ 𝜏 and |𝑅′ | ≥ 𝜏 and17

� 𝑣 ∈ 𝑋 ′ s.t. 𝑅′ ⊆ 𝑁𝑣 then

Enum (𝐿′, 𝑅′, 𝑃 ′, 𝑋 ′, 𝑟 ′);18

𝑃 = 𝑃 \ {𝑢}; 𝑋 = 𝑋 ∪ {𝑢};19

𝑃 = {𝑑, 𝑎, 𝑏} by similarity to 𝐿 = {𝑐}. Then, we will attempt to
move candidate vertices from 𝑃 to 𝐿 using the order.

By the high-similarity node sets first rule (SFS2), Figure 4 will
turn the naive enumeration (left) into three iterations of enumera-
tion (right). The computation cost is the same, but the algorithm
does not need to consider 𝑏 in the first two iterations. Similarly,
when the algorithm attempts to find the most similar biclique
among the 10% vertices that are most similar to the query node, it
can avoid considering the remaining 90% vertices, thus prioritizing
the biclique with high similarity and reducing the running time.

4.3 Exact Algorithm for Local Search

Algorithm 3 presents our exact solution for local search. The al-
gorithm incorporates the graph reduction rules (see Section 4.1)
and the similarity-first search (see Section 4.2). The parameters of
graph reduction rules are omitted, as they are consistent with the
definitions in Algorithm 2, e.g., HOP is equivalent to HOP(𝐺𝑟 , 𝑞).

Lines 1-7 are the main body of Algorithm 3. Let a 𝑟∗-similar bi-
clique𝐶∗𝜏,𝑞 be the temporary result of the local most similar biclique.

The algorithm starts with 𝑟∗ = −∞ and 𝐶∗𝜏,𝑞 = ∅, and initializes

a reduced graph 𝐺𝑟 with rules HOP and DEG (Lines 1-2). After
that, the algorithm uses rule SFS2 to enumerate all similar bicliques
that contain 𝑞 (Lines 3-6). That is, for each vertex 𝑢 ∈ 𝐿(𝐺𝑟) in de-
creasing order of the similarity to 𝑞, we execute a local search with
𝐿 = {𝑞,𝑢} and 𝑃 is the set of 𝑢 visited in the previous iterations.

Lines 8-19 depict the similar biclique enumeration of Mosib. The
algorithm maintains a partial biclique 𝐶 = (𝐿, 𝑅, 𝐿 × 𝑅), and recur-
sively adds the candidate vertices from 𝑃 to 𝐿. The function Enum

requires five parameters (Line 8). In particular, 𝐿, 𝑅 are the left- and
right-side vertices of the partial biclique, 𝑃 is the set of candidate

vertices, 𝑋 is a set of vertices used to check whether 𝐶 is maximal,
and 𝑟 = 𝑠𝑖𝑚(𝐶) is the similarity of 𝐶 .

The computation of Enum works as follows. Every time the
algorithm detects amaximal 𝑟 -similar biclique𝐶 with 𝑟 > 𝑟∗ and the
size constraints satisfied, it updates 〈𝑟∗,𝐶∗𝜏,𝑞〉 and reduces𝐺𝑟 with
SIM and DEG (Lines 9-11). Note that we apply SIM first and then
DEG, as the degrees of some nodes may be decreased after applying
SIM. Then, we expand 𝐿 to enumerate more bicliques (Lines 12-19).
In particular, we sort 𝑃 with SFS (Lines 12-13). For every vertex
𝑢 ∈ 𝑃 , we either move 𝑢 into 𝐿 and recursively expand the partial
biclique (Line 18), or move 𝑢 into 𝑋 (Line 19). The expansion of 𝑢 is
valid if and only if (i) the similarity is large enough, i.e., 𝑟 ′ > 𝑟∗; (ii)
the sizes |𝐿′ | ∪ |𝑃 ′ | and |𝑅′ | are no less than 𝜏 ; and (iii) the partial
biclique is maximal, i.e., � 𝑣 ∈ 𝑋 ′ s.t. 𝑅′ ⊆ 𝑁𝑣 .

Efficient Similarity Computation. The algorithm repeatedly
computes the similarity between different pairs of vertices. To speed
up the similarity computation, we store the result of 𝑠𝑖𝑚(𝑢, 𝑣) into
a table when we apply any rule related to similarity, that is, SIM,
SFS, and SFS2. In addition, when we compute 𝑠𝑖𝑚(𝑢, 𝐿) in (Line 12),
we reuse the similarity results from the parent function. That is, for
any 𝑣 ∈ 𝑃 , we store 𝑠𝑖𝑚(𝑣, 𝐿) into a hash map and send this map to
any child function (Line 18). Suppose we add a new vertex 𝑢 into
𝐿 when we call this child function, we can efficiently compute the
updated similarity, i.e., 𝑠𝑖𝑚(𝑣, 𝐿 ∪ {𝑢}) = min{𝑠𝑖𝑚(𝑣, 𝐿), 𝑠𝑖𝑚(𝑣,𝑢)}.
The base case is the computation of 𝑠𝑖𝑚(𝑢, 𝑞) (Line 3).

Theorem 3. Algorithm 3 takes 𝑂 ((𝑚 + 𝑛𝐿 log𝑛𝐿) · 2
𝑛𝐿) time.

Proof. First, we analyze the running time of Enum. In particular,
Lines 9-11 take 𝑂 (𝑚) time as the graph reduction rule takes linear
time (see Section 4.1). By the efficient similarity computation above,
Lines 12-13 require 𝑂 (

∑
𝑢∈𝑃 |𝑁𝑢 |) ⊆ 𝑂 (𝑚) time to update the

similarity. Lines 12-13 also require 𝑂 (|𝑃 | log |𝑃 |) time to sort the
vertices. Lines 14-19 (excluding Line 8) take a running time of𝑂 (𝑚),
as the cost of Line 15 is bounded by the two-hop neighborhood of
𝑃 . Therefore, Enum (excluding Line 8) requires 𝑂 (𝑚 + |𝑃 | log |𝑃 |)
time. Each time we run Enum, it either moves a node from 𝑃 to 𝐿
or excludes it from 𝐿 (by adding it to 𝑋), forming a recursive tree

with 2 |𝑃 | leaves. By multiplying 2 |𝑃 | and𝑂 (𝑚+ |𝑃 | log |𝑃 |), the time

complexity of Enum equals 𝑂
(
(𝑚 + |𝑃 | log |𝑃 |) · 2 |𝑃 |

)
.

Next, we analyze Algorithm 3. Lines 1-3 need 𝑂 (𝑚) time. After
that, the algorithm runs in |𝐿(𝐺𝑟) | iterations, the 𝑘-th of which

runs Enumwith |𝑃 | = 𝑘 and it takes𝑂
(
(𝑚 + |𝑘 | log |𝑘 |) · 2 |𝑘 |

)
time.

Then, the time complexity of Lines 4-6 equals

|𝐿 (𝐺𝑟) |∑

𝑘=1

(𝑚 + |𝑘 | log |𝑘 |) · 2 |𝑘 | ≤ (𝑚 + 𝑛𝐿 log𝑛𝐿) · 2
𝑛𝐿 . (1)

Observe that the time complexity of Algorithm 3 is bounded by the
r.h.s. of Equation 1. Thus, the theorem is proved. �

On the theory side, the algorithm has an exponential time com-
plexity. Due to the NP-hardness of the studied problems, it is im-
possible to design a polynomial time optimal solution unless P=NP.
If time is of the essence, our algorithm can return the answer when
the running time reaches a pre-set time threshold. On the practice
side, the algorithm can outperform the baseline MSBE+ in running

1027

Algorithm 4: Mosib-Exact: Global (𝐺, 𝜏)

Initialize the temporary global result 𝑟∗𝑔 = −∞ and 𝐶∗𝜏 = ∅;1

for 𝑞 ∈ 𝐿(𝐺) do2

Initialize the temporary local result 𝑟∗ = 𝑟∗𝑔 and 𝐶∗𝜏,𝑞 = 𝐶∗𝜏 ;3

Copy 𝐺 into 𝐺𝑟 ; Reduce 𝐺𝑟 with HOP, SIM, and DEG;4

Run Lines 3-7 of Algorithm 3 to update the local result;5

if 𝑟∗ > 𝑟∗𝑔 then Update 𝑟∗𝑔 = 𝑟∗ and 𝐶∗𝜏 = 𝐶∗𝜏,𝑞 ;6

return 〈𝑟∗𝑔 ,𝐶
∗
𝜏 〉;7

time by up to six orders of magnitude (and at least 2,955x), according
to our experiments in Section 6.2.

Solution Uniqueness. Given a query node 𝑞, there may be multi-
ple local most similar bicliques with the same similarity. To ensure
solution uniqueness, Algorithm 3 by default returns the first de-
tected biclique that satisfies the constraint.

However, a user may hope to obtain the most similar biclique
with the largest size (or any user-preferred property), rather than
the first detected one. We achieve this goal as follows. Given a
user-preferred property 𝑓 and a community 𝐶 = (𝐿, 𝑅, 𝐿 × 𝑅), we
can rewrite the if condition in Algorithm 3 Line 9 to

|𝐿 | ≥ 𝜏 and |𝑅 | ≥ 𝜏 and (𝑟 > 𝑟∗ or (𝑟 = 𝑟∗ and 𝑓 (𝐶) > 𝑓 (𝐶∗𝜏,𝑞))).

Besides, we can ensure the solution uniqueness of the global most
similar biclique with a similar method. That is, when we run Algo-
rithm 4 Line 5 to call the local search (Algorithm 3), we rewrite the
if condition in Algorithm 3 like what we do above.

4.4 Exact Algorithm for Global Search

Let 𝐶∗𝜏 be the global most similar biclique. Given any query node
𝑞 ∈ 𝐿(𝐶∗𝜏), it follows that 𝐶

∗
𝜏 is also a local most similar biclique

that contains 𝑞. As a result, we can obtain the global most similar
biclique using a series of local searches.

Algorithm 4 presents our exact solution for global search. Let a
𝑟∗𝑔 -similar biclique 𝐶∗𝜏 be the temporary result of the global most
similar biclique. The algorithm first initializes the global result
𝑟∗𝑔 , 𝐶

∗
𝜏 (Line 1). Then, for any 𝑞 ∈ 𝐿(𝐺𝑔𝑟), it finds the local most

similar biclique 𝐶∗𝜏,𝑞 that contains 𝑞 (Lines 3-5) and updates 𝑟∗𝑔 , 𝐶
∗
𝜏

when the similarity of 𝐶∗𝜏,𝑞 is higher than 𝐶∗𝜏 (Line 6). Lines 3-5

are almost the same to Algorithm 3, except that we set 𝑟∗ = 𝑟∗𝑔
and reduce 𝐺𝑟 with rule SIM in the initialization. Note that any
𝑟 -similar biclique with 𝑟 < 𝑟∗𝑔 is not the global most similar biclique.

After that, the global result 〈𝑟∗𝑔 , 𝐶
∗
𝜏 〉 is returned as the final answer.

Theorem 4. Algorithm 4 takes𝑂 ((𝑚 + 𝑛𝐿 log𝑛𝐿) · 𝑛𝐿 · 2𝑛𝐿) time.

Proof. Lines 2-6 run the local search for each left-side vertex 𝑞.
Therefore, Algorithm 4 is equivalent to running Algorithm 3 for up
to 𝑛𝐿 times, leading to the time complexity in the theorem. �

5 PROPOSED APPROXIMATE SOLUTION FOR
GLOBAL SEARCH

The global search of Mosib may take tens of hours on large graphs
in our preliminary test. This section proposes Mosib-GloApp, an
approximate algorithm for improving the practical performance of
global search. At a high level, Mosib-GloApp contains two phases:

= 2/3
= 1/3

= 4/9
= 5/9

0.017
0.983

Figure 5: Example of Mosib-GloApp on Figure 2.

Algorithm 5: Dividing Step of Mosib-GloApp

Initialize ℎ hash functions 𝑓 (1) , · · · , 𝑓 (ℎ) ;1

for 𝑖 = 1 to ℎ do2

for each 𝑢 ∈ 𝐿(𝐺) do 𝑓
(𝑖)
min

(𝑢) = min{𝑓 (𝑖) (𝑣) : 𝑣 ∈ 𝑁𝑢 };3

Divide the nodes in 𝐿(𝐺) into groups with 𝑓
(1)
min

(𝑢);4

Recursively divide any group with 𝑓
(2)
min

(𝑢), · · · , 𝑓
(ℎ)
min

(𝑢), until5

the size of each group is no more than𝑀 ;

Let 𝑆 (1) , · · · , 𝑆 (𝑑) be is the groups after recursive division;6

return 𝑆 (1) , · · · , 𝑆 (𝑑) ;7

1. Dividing: This phase divides the left-side nodes into groups

𝑆 (1) , · · · , 𝑆 (𝑑) such that the nodes in each group are similar to
each other and the size of each group is not large.

2. Biclique Search: This phase looks for the global most similar

biclique among the groups. For each group 𝑆 (𝑖) , the algorithm
enumerates the similar biclique within the group based on the
local search algorithm of Mosib.

OurMosib-GloApp is similar to the global search ofMosib, except
that it divides nodes into groups and only considers the similar
bicliques within each group. This avoids the search on any biclique
whose nodes are located in different groups, thus significantly im-
proving the efficiency of global search. Meanwhile, it is non-trivial
to properly divide nodes such that we can retain the global most
similar biclique in the groups and prune as many unnecessary bi-
cliques as possible. To address this challenge, we design a novel
dividing algorithm based on the well-known MinHash technique.

Example 3. Figure 5 demonstrates the idea of our Mosib-GloApp,
using the graph in Figure 2. The algorithm uses MinHash to divide
vertices with highly similar sets of neighbors into a group. After ten
iterations of dividing, we will obtain two groups {𝑎, 𝑏} and {𝑐, 𝑑}
with high probability. The biclique search is conducted on each
group, i.e., the search cost can be largely reduced. As a result, our
Mosib-GloApp can quickly detect the global most similar biclique
when its similarity is close to 1 (this happens frequently in practice).
When Mosib-GloApp returns a biclique with a similarity below 1,
we recommend using the exact solution instead.

In what follows, we first present the dividing phase of Mosib-

GloApp, then elaborate on the biclique search phase.

5.1 Dividing Phase of the Algorithm

The dividing phase of our Mosib-GloApp aims to divide the nodes

into a set of group 𝑆 (1) , · · · , 𝑆 (𝑑) such that the maximum group
size is no larger than a constant𝑀 (spec.,𝑀 = 100) and the nodes
in each group are similar to each other. To explain how our dividing
method works, we first introduce the MinHash technique:

1028

Algorithm 6: Mosib-GloApp (𝐺, 𝜏)

Divide the nodes in 𝐿(𝐺) into 𝑆 (1) , · · · , 𝑆 (𝑑) ; // Alg. 51

Initialize the temporary global result 𝑟∗𝑔 = −∞ and 𝐶∗𝜏 = ∅;2

for each 𝑆 (𝑖) ∈ {𝑆 (1) , · · · , 𝑆 (𝑑) } do3

Copy 𝐺 into 𝐺 (𝑖) ; Remove from 𝐺 (𝑖) any 𝑢 ∈ 𝐿(𝐺) \ 𝑆 (𝑖) ;4

for each 𝑞 ∈ 𝐿
(
𝑆 (𝑖)

)
do5

Initialize local result 𝑟∗ = 𝑟∗𝑔 and 𝐶∗𝜏,𝑞 = 𝐶∗𝜏 ;6

Copy 𝐺 (𝑖) into 𝐺𝑟 ;7

Reduce 𝐺𝑟 with HOP, SIM, and DEG;8

Run Lines 3-7 of Algorithm 3 to update the local result;9

if 𝑟∗ > 𝑟∗𝑔 then Update 𝑟∗𝑔 = 𝑟∗ and 𝐶∗𝜏 = 𝐶∗𝜏,𝑞 ;10

return 〈𝑟∗𝑔 ,𝐶
∗
𝜏 〉;11

The MinHash [5] is a well-known technique for estimating the
Jaccard similarity between two sets. Given a hash function 𝑓 (·) that
maps a node to an integer, the MinHash of 𝑢 is defined as the mini-
mum hash value of 𝑢’s neighbors, i.e., 𝑓min (𝑢) = min𝑣∈𝑁𝑢 {𝑓 (𝑣)}.
Then, the probability that two vertices𝑢 and 𝑣 have an identical Min-
Hash value is equal to the Jaccard similarity between the neighbor
sets of 𝑢 and 𝑣 , that is, Pr{𝑓min (𝑢) = 𝑓min (𝑣)} = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑁𝑢 , 𝑁𝑣).

By the definition of the MinHash, the vertices with the same
MinHash value are likely to have a high Jaccard similarity in their
neighbor sets. Intuitively, our Mosib-GloApp divides the nodes into
groups with an identical MinHash value, and recursively divides
any group whose size is larger than𝑀 .

Algorithm 5 presents the dividing phase of our Mosib-GloApp.
The algorithm first generates ℎ hash functions, each is a permu-
tation of the right-side nodes (Line 1). Then, we group any node

𝑢 ∈ 𝐿(𝐺) by the MinHash value 𝑓
(1)
min

(𝑢). For those groups whose
size is larger than a constant𝑀 , we recursively divide the groups

using the MinHash 𝑓
(2)
min

(·), · · · , 𝑓
(ℎ)
min

(·), until the size of each group
is below𝑀 . In practice, we set𝑀 = 100 and ℎ = 10.

Algorithm 5 takes 𝑂 (ℎ · |𝐸 |) time due to the initialization of
MinHash values. In addition, we can establish the probability that
Algorithm can retain a 𝑟 -similar biclique 𝐶:

Lemma 5. Let 𝐶 be a 𝑟 -similar biclique. Algorithm 5 can divide

𝐿(𝐶) into the same group with at least 𝑟 |𝐿 (𝐶) |−1 probability.

Proof. Let 𝑘 = |𝐿(𝐶) | and 𝑣1, 𝑣2, · · · , 𝑣𝑘 be the vertices in 𝐿(𝐶).
By the definition of 𝑟 -similar biclique, we have 𝑠𝑖𝑚(𝑣1, 𝑣𝑖) ≥ 𝑟 for
any 𝑖 from 2 to 𝑘 . Therefore, the probability that 𝑣1, 𝑣2, · · · , 𝑣𝑘 have
the same MinHash value (i.e., they are divided into the same group

by Algorithm 5) is equal to 𝑟 |𝐿 (𝐶) |−1. �

In other words, Algorithm 5 can retain a 𝑟 -similar biclique 𝐶
when its similarity 𝑟 is equal to (or close to) 1.

5.2 Algorithm Overview and Biclique Search

Algorithm 6 depicts the pseudo-code ofMosib-GloApp. Given𝐺 , the
algorithm first divides the left-side vertices into groups (discussed
in the last section), and then finds the bicliques in the groups (Lines
3-10). The algorithm initializes the global result 𝑟∗𝑔 , 𝐶

∗
𝜏 (Line 2).

Then, for any group 𝑆 (𝑖) , it removes any left-side vertices outside

Table 2: Dataset Statistics

Dataset |𝑳(𝑮)| |𝑹(𝑮)| |𝑬 | Type

YouTube (Y) 94,238 30,087 293,360 Membership

GitHub (G) 56,519 120,867 440,237 Membership

Bibsonomy (B) 767,447 5,794 801,784 Assignment

BookCross (Bo) 105,278 340,523 1,149,739 Rating

CiteULike (C) 731,769 153,277 2,338,554 Assignment

Discogs (Di) 1,754,823 270,771 5,302,276 Affiliation

Amazon (A) 2,146,057 1,230,915 5,743,258 Rating

DBLP (D) 1,953,085 5,624,219 12,282,059 Authorship

Delicious (De) 833,081 33,778,221 101,798,957 Interaction

Orkut (O) 2,783,196 8,730,857 327,037,487 Affiliation

MAG (M) 10,541,560 2,784,240 1,095,315,106 Composition

the group and stores the remaining graph into 𝐺 (𝑖) (Line 4). After
that, the algorithm finds the local most similar biclique 𝐶∗𝜏,𝑞 that

contains 𝑞 for any 𝑞 ∈ 𝐿(𝐺 (𝑖)) (Lines 6-9), and updates the global
result when the similarity of 𝐶∗𝜏,𝑞 is higher than 𝐶∗𝜏 (Line 10).

Based on Lemma 5 and Theorem 4, Algorithm 6 returns the
correct answer with a non-trivial probability:

Theorem 5. Let a 𝑟∗𝑔 -similar biclique𝐶∗𝜏 be the global most similar

biclique. Algorithm 6 returns𝐶∗𝜏 with at least 𝑟∗𝑔
|𝐿 (𝐶∗

𝜏) |−1 probability

in a running time of 𝑂 ((𝑚 + 𝑛𝐿 log𝑛𝐿) · 𝑛𝐿 · 2𝑛𝐿).

Proof. By Lemma 5, Algorithm 5 can divide the left-side ver-
tices of the global most similar biclique 𝐶∗𝜏 into the same group

with probability 𝑟∗𝑔
|𝐿 (𝐶∗

𝜏) |−1. The time complexity of Algorithm 6

is the same as Algorithm 4, which is 𝑂 ((𝑚 + 𝑛𝐿 log𝑛𝐿) · 𝑛𝐿 · 2𝑛𝐿).
More specifically, the number of different 𝑞 in Line 5 is equal to∑𝑑
𝑖=1 |𝐿(𝑆

(𝑖)) | = |𝐿(𝐺𝑟) | ≤ 𝑛𝐿 . Therefore, Algorithm 6 is also equiv-
alent to running Algorithm 3 for 𝑛𝐿 times, and its running time is
the same as Algorithm 4. �

By Theorem 5, Algorithm 6 can return the exact answer only
when 𝑟∗𝑔 = 1, or when 𝑟∗𝑔 is close to 1 and the number of left-side

vertices in𝐶∗𝜏 is not large. According to our experiments in Section
6.2, Mosib-GloApp can return the exact answer on most datasets
and is particularly accurate when 𝜏 is not large.

6 EXPERIMENTS

6.1 Experimental Setup

The code of this paper is available on GitHub1.

Datasets. Table 2 lists the real-world datasets used in the experi-
ments, and they are widely used in the literature of biclique search
[26, 35, 40]. All datasets are available on KONECT2. We remove all
edge directions, duplicated edges, and self-loops in the datasets.

Algorithms. We compare our solution with MSBE+, a baseline
algorithm based on the state-of-the-art algorithm for enumerating
similar bicliques, i.e., MSBE [40]. We implement our algorithms in
C++, and adopt the C++ implementation of MSBE [40] from the
authors. Our experiments compare the following methods:

• MSBE+: a baseline based on MSBE [40] (see Section 3). The best
version of MSBE (i.e., SS-MSBE) is used.

1https://github.com/nedchu/mosib-release
2http://konect.cc/networks/

1029

MSBE+ Mosib Mosib-GloApp

10-3

10-1

101

103

105

Y G B Bo C Di A D De O M

time (seconds)

10-3

10-1

101

103

105

Y G B Bo C Di A D De O M

time (seconds)

(a) local search

10-3

10-1

101

103

105

Y G B Bo C Di A D De O M

time (seconds)

10-3

10-1

101

103

105

Y G B Bo C Di A D De O M

time (seconds)

10-3

10-1

101

103

105

Y G B Bo C Di A D De O M

time (seconds)

(b) global search

Figure 6: Running Time of the Methods.

0
0.2
0.4
0.6
0.8

1

3 4 5 6 7

relative error

τ

(a) YouTube

0
0.2
0.4
0.6
0.8

1

3 4 5 6 7

relative error

τ

(b) GitHub, Bibsonomy, Discogs,

BookCross, CiteUlike

0
0.2
0.4
0.6
0.8

1

3 4 5 6 7

relative error

τ

(c) Amazon

0
0.2
0.4
0.6
0.8

1

3 4 5 6 7

relative error

τ

(d) DBLP, Delicious, Orkut, MAG

Figure 7: Accuracy ofMosib-GloApp (relative toMosib).

• Mosib: our proposed exact algorithm (see Section 4).

• Mosib-GloApp: our proposed approximate algorithm for the
global search (see Section 5).

Parameters. Unless otherwise specified, we set the size threshold
𝜏 = 5 for the algorithms. For Mosib-GloApp, we set the number of
hash functions ℎ = 10 by default. In each experiment, we repeat the
algorithm three times and report the average result. The program
is terminated when it cannot finish within 24 hours.

Environment. The experiments are performed on a server with
an Intel Xeon Silver 4210R 2.1GHz CPU and 256GB memory. All
algorithms are implemented in C++ and compiled with g++7.5.0
under O3 optimization.

6.2 Efficiency and Effectiveness Analysis

Running Time of Local Search. For each dataset, we select 100
random vertices from the left-side vertices with top-500 high degree,
and then report the average running time of local search on the 100
selected vertices. Figure 6a presents the average running time of
local search (𝜏 = 5) of MSBE+ and Mosib. The results show that our
Mosib can outperformMSBE+ in running time by up to six orders of
magnitude (and at least 2,955x). On the largest dataset (i.e., MAG),
our Mosib only takes 203 seconds for a local search query, while
loading the graph into memory requires 452 seconds.

Running Time ofGlobal Search. Figure 6b illustrates the running
time of the global search (𝜏 = 5) ofMSBE+,Mosib, andMosib-GloApp.
Observe that our Mosib outperforms MSBE+ in running time by
up to five orders of magnitude (and at least 126x), while our ap-
proximate solution Mosib-GloApp is faster than Mosib by up to

two orders of magnitude (and at least 2.5x). Unfortunately, our
global exact algorithm cannot terminate in 24 hours on MAG, while
Mosib-GloApp only takes 78 seconds, proving the importance of our
approximate algorithms. In practice, the algorithms slow down
when the number of vertices becomes relatively small (the aver-
age degree becomes large), e.g., on Bibsonomy and Discogs. This
phenomenon significantly influences the running time of MSBE+,
while its impact on our Mosib and Mosib-GloApp is not strong.

Accuracy ofMosib-GloApp.We evaluate the accuracy of Mosib-

GloApp with the relative error of Mosib-GloApp (compared with
Mosib) in the similarity of the resulting global most similar biclique.
In each test, we report the average of 100 independent tests, varying
𝜏 in {3, 4, 5, 6, 7}. Figure 7 presents the accuracy of Mosib-GloApp.
The results show that Mosib-GloApp can produce the exact result
on most datasets (9 out of 11) and is particularly accurate when 𝜏 is
not large (e.g., 𝜏 ≤ 5). On the other hand, Mosib-GloApp produces
inaccurate results on YouTube and Amazon when 𝜏 = 6, 7. By
Theorem 5, ourMosib-GloApp returns inaccurate results if and only
if the similarity of the resulting biclique is less than 1. In this case,
we recommend using Mosib to obtain the exact result.

6.3 Case Study: Results of Different Bipartite
Cohesive Subgraph Models (DBLP)

This case study evaluates the effectiveness of our models on a
real-world DBLP network. In particular, we construct a researcher-
venue bipartite network using the latest release of DBLP3, where a
researcher-venue relationship exists if and only if the researcher

3https://dblp.org/xml/release/dblp-2024-03-01.xml.gz

1030

(a) local most similar biclique (𝑞 = "Philip S. Yu", 𝜏 = 5). (b) local most similar biclique (𝑞 = "Fan Zhang", 𝜏 = 5).

(c) global most similar biclique (𝜏 = 8); a group of geoscience researchers.

Philip S. Yu Jiawei Han ... 114,604 Researchers ... Michael Stonebraker

KDD SIGMOD ... 277 Venues ... VLDB ICDE

eseeReeeee

VVeneee

(d) (𝛼, 𝛽)-core (𝑞 ="Philip S. Yu", 𝛼 = 𝛽 = 5). (e) personalized maximum biclique (𝑞 ="Philip S. Yu", 𝛼 = 𝛽 = 5).

Figure 8: Case Study: Results of Different Models (DBLP).

has published at least one paper in a venue. The network contains
3,509,155 researchers, 16,751 venues, and 13,303,652 edges.

We report themost similar biclique on this network, and compare
the results with well-known models such as similar biclique [40],
(𝛼, 𝛽)-core [21], and personalized maximum biclique [35].

Results of the Most Similar Biclique Search. Figure 8a depicts
the local most similar biclique containing "Philip S. Yu" (𝜏 = 5),
a professor whose H-index is among the top ten in computer sci-
ence. The biclique contains 5 researchers and 34 venues, and the
similarity between researchers is at least 0.201. All researchers
are well-established scholars interested in data management, data
mining, artificial intelligence, and information retrieval.

Figure 8b presents the local most similar biclique that contains
"Fan Zhang" (𝜏 = 5), a faculty member in Guangzhou University.
The biclique contains 5 researchers and 6 venues, and the similarity
between researchers is no less than 0.412. Interestingly, these five
researchers are all in their early careers, and they have a common
interest in top-tier data management and mining venues.

Figure 8c shows the global most similar biclique when 𝜏 = 8.
The biclique contains 8 researchers and 8 venues, and the similar-
ity between researchers is at least 0.889. All eight researchers are
researchers in geoscience and remote sensing, and they published
papers on well-known venues in geoscience.

Besides, the local search in Figure 8a (resp. 8b) takes 1.9 (resp. 0.8)
seconds, while the global search in Figure 8c takes 2,610 seconds.

Results of Similar Biclique [40]. Given a similarity threshold 𝑠
and a size constraint 𝜏 , the similar biclique problem aims to enu-
merate all maximal 𝑟 -similar bicliques that satisfy 𝑟 ≥ 𝑠 and the
size constraint. The MSBE [40] algorithm is the state-of-the-art for
enumerating similar biclique.

Suppose we set 𝜏 = 5 and start with a threshold 𝑠 = 0.5, MSBE

will not return any biclique that contains "Philip S. Yu" or "Fan
Zhang", as the local most similar biclique that contains either of

these vertices has a similarity less than 0.5. In addition, when we
set 𝑠 = 0.5 and 𝜏 = 5, MSBE cannot terminate within three days.

Results of (𝛼, 𝛽)-Core [21]. Given size thresholds 𝛼, 𝛽 , the (𝛼, 𝛽)-
core model aims to find a bipartite subgraph𝐶 such that |𝐿(𝐶) | ≥ 𝛼
and |𝑅(𝐶) | ≥ 𝛽 . Liu et al. [21] are the first to study the (𝛼, 𝛽)-core
model, and they propose an index-based algorithm for the model.

We report the (𝛼, 𝛽)-core connected component containing a
query node 𝑞. The size thresholds are set to 𝛼 = 𝛽 = 5. Figure
8d presents the (5, 5)-core that contains "Philip S. Yu", and the
community contains 114, 607 researchers and 281 venues. The (5, 5)-
core containing "Fan Zhang" has 7348 researchers and 18 venues.
Therefore, it is hard to interpret the results given by the (𝛼, 𝛽)-core
model, as the resulting communities are too large to understand.

Results of Maximum Biclique [35]. To detect the maximum
biclique containing a particular node, Wang et al. [35] develop the
personalized maximum biclique model. Given a query node 𝑞 and
size constraints 𝛼, 𝛽 , the personalized maximum biclique is the
biclique𝐶 such that (i)𝐶 contains 𝑞, (ii) |𝐿(𝐶) | ≥ 𝛼 and |𝑅(𝐶) | ≥ 𝛽 ,
and (iii) 𝐶 has the largest number of edges.

Figure 8e presents the personalized maximum biclique that con-
tains "Philip S. Yu" (𝛼 = 𝛽 = 5), and it contains 617 researchers and
5 venues. However, the researchers and venues in the biclique are
contrary to our intuition. The reason is that the maximum biclique
model seeks the most popular sets of venues (i.e., the sets that can
maximize the number of researchers), instead of the ones most
relevant to "Philip S. Yu". In addition, the size of the personalized
maximum biclique is too large to interpret. When 𝑞 ="Fan Zhang",
the personalized maximum biclique consists of 94 researchers and
5 venues, and the issues mentioned above still exist.

6.4 Parameter Analysis

In this section, we analyze how each parameter influences the per-
formance of our algorithms, and validate the effectiveness of each

1031

MSBE+ Mosib

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(a) YouTube

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(b) BookCross

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(c) Amazon

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(d) Delicious

Figure 9: Running Time vs. 𝜏 (Local Search).

MSBE+ Mosib Mosib-App

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(a) YouTube

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(b) BookCross

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(c) Amazon

10-3

10-1

101

103

105

3 4 5 6 7

time (seconds)

τ

(d) Delicious

Figure 10: Running Time vs. 𝜏 (Global Search).

technique in our algorithms. The (𝛼, 𝛽)-core [21] and personalized
maximum biclique [35] models are not considered in this experi-
ment, because the problem settings are different. For example, the
average similarity of the (5, 5)-cores is 0, and the average similarity
of the personalized maximum biclique (𝜏 = 5) is 0.01. Therefore,
these methods can hardly meet the requirements of our problem.

Running Time v.s. Size Threshold 𝜏 . Figure 9 presents the local
search time of the methods as a function of 𝜏 . On all datasets, our
Mosib can outperform the baseline MSBE+ by at least 433x in the
running time of the local search. ForMosib, increasing 𝜏 from 3 to 7
will lead to an average increase of 2.97x in the running time of the
local search, because it takes more effort to find an eligible biclique
when 𝜏 becomes large.

Figure 10 reports the global search time of the methods for dif-
ferent 𝜏 . The experimental results show that ourMosib (resp.Mosib-

GloApp) consistently outperforms the baseline MSBE+ by at least
10x (resp. 260x) in the running time of the global search. When
𝜏 increases, the running time of Mosib (resp. Mosib-GloApp) stays
almost the same. Compared with local search, global search is less
sensitive to 𝜏 as it considers the results of a series of local searches.

Ablation Study on Mosib’s Rules (Local Search). This exper-
iment evaluates the effectiveness of Mosib’s technique, including
three graph reduction rules and two similarity-first search rules
(see Section 6). For each rule (e.g., SIM), we implement a version of
Mosib without this rule (e.g., w/o SIM), and then report the running
time of this version in the relative percentage to that of Mosib.

Table 3 presents the results of this ablation study onMosib’s rules.
All of Mosib’s rules offer a non-trivial average speed up (see the
second to last column), demonstrating the effectiveness of our al-
gorithm design. Observe that rules HOP, SIM, and SFS2 can provide
an average speedup of over 18x in the running time, and that rules
SIM and SFS2 are particularly effective on large networks such as
Delicious and Orkut. This shows that the rules based on similarity
(i.e.,SIM and SFS2) are of great importance in the most similar bi-
clique search. On sparse networks (e.g., Amazon and DBLP) whose
average degree is relatively small, rulesHOP andDEG are useful, be-
cause the degrees of vertices and the size of the 2-hop neighborhood
are also relatively small on these networks.

Scalability v.s. Different Topological Properties. Figure 11 re-
ports the scalability of the methods, varying the size and topological
properties of datasets. The linear scalability is marked with a dashed
line. In Figure 11a, when the number of edges increases, the running
time ofMosib (local) andMosib-GloApp grows almost linearly while
that of Mosib (global) grows a little faster than linear scalability.
Figure 11b plots the scalability regarding the average number of
2-hop neighbors of each dataset, where the running time of our
methods still scales almost linearly.

6.5 Degree Distributions

The skewed degree distribution in real-world bipartite graphs may
be a potential issue to the performance of our algorithms. Figure
12 analyzes the degree distributions of Orkut. The degree follows

1032

Table 3: Ablation Study onMosib’s Rules (Local Search). The mark “–" means the test cannot terminate in 24 hours.

YouTube GitHub Bibsonomy BookCross CiteULike Discogs Amazon DBLP Delicious Orkut MAG Average Min – Max

Mosib 0.009s 0.017s 0.006s 0.034s 0.014s 1.67s 0.051s 0.006s 4.20s 12.23s 203s 20.1s 0.006s – 203s
w/o HOP 438% 306% 413% 559% 1,857% 332% 4,380% 22,727% 450% 217% 120% 2,891% 120% – 22,727%
w/o DEG 823% 141% 165% 168% 129% 103% 4,440% 212% 106% 109% 103% 591% 103% – 4,440%
w/o SIM 302% 1,588% 133% 1,029% 600% 25,478% 280% 111% 20,643% – – 5,574% 111% – 25,478%
w/o SFS 115% 147% 117% 159% 171% 163% 220% 112% 145% 134% 157% 149% 112% – 220%
w/o SFS2 146% 312% 167% 471% 171% 173% 160% 105% 13,882% 2,584% 189% 1,669% 105% – 13,882%

Mosib (local) Mosib (global) Mosib-App Linear

2-8

20

28

216

218 222 226 230

time (seconds)

m

(a)𝑚: number of edges

2-8

20

28

216

20 24 28 212 216 220

time (seconds)

 d

(b) 𝑑2: average number of 2-hop neighbors

Figure 11: Scalability v.s. Dataset Topological Properties.

10-6

10-4

10-2

100

100 102 104 106

Probability P(d)

d

(a) 𝑑 : the degree

d
610410210010

0 Probability P(d)
10

-2

-4

-6

10

10

10

2

2

(b) 𝑑2: the 2-hop degree

Figure 12: Degree Distributions (Orkut).

a skewed power-law distribution (see Figure 12a). In addition, the
2-hop degrees of vertices are high and skewed, i.e., many areas are
extremely dense (see Figure 12b). Such a skewed degree phenom-
enon exists in all datasets used in our experiments. Despite the
skewed degrees of Orkut, our Mosib can answer the local search
within 12 seconds while loading Orkut into memory takes 88 sec-
onds. Our proposed algorithms can handle real-world graphs with
skewed degrees, because they can quickly find high-similarity bi-
cliques and prune the unpromising vertices in the graph.

7 RELATEDWORKS

Biclique Search and Enumeration. The biclique search aims to
find a single biclique with the desired properties. Lyu et al. [26, 27]
study the maximum edge biclique problem (i.e., finding the biclique
with the largest number of edges), and they develop an efficient
algorithm that can scale to billion-scale graphs. Wang et al. [35]
aim to find the maximum edge biclique containing a query node 𝑞.
The maximum vertex biclique problem can be solved in polynomial
time via integer programming or maximum matching [17].

There is also a line of works on enumerating maximal bicliques.
Zhang et al. [44] propose an efficient branch-and-bound algorithm
for enumerating bicliques. Abidi et al. [1] propose a pivot-based
algorithm for maximal biclique enumeration that significantly im-
proves efficiency. After that, Chen et al. [9] design an algorithm
based on unilateral order and batch-pivot, and the algorithm achieves
state-of-the-art performance. Zhao et al. [45] and Wang et al. [37]
study the maximal biclique enumeration on uncertain bipartite
graphs. The algorithms above cannot solve our studied problems,
as they do not consider the structural similarity between vertices.

Simlarity-based Community Search. Yao et al. [40] propose
MSBE, an efficient algorithm to enumerate all similar bicliques.
Zhang et al. [43] propose the (𝑘, 𝑟)-core model on attributed graphs.
For a specific (𝑘, 𝑟)-core, each vertex has at least 𝑘 neighbors, and

the attribute similarity of every vertex pair is at least 𝑟 . Given a
road network, Rai et al. [28] aim to retrieve 𝑘 communities with
high POI similarities and spatial closeness. These works require
unipartite input graphs and auxiliary information (i.e., attributes
or POI), so they cannot be applied to solve our studied problems.

Other Cohesive Subgraph Models. Cohesive subgraphs are fun-
damental models in analyzing large networks [13, 37–39, 45]. Be-
sides the biclique model, there is a large body of literature on bipar-
tite cohesive subgraphs, e.g., (𝛼, 𝛽)-core [21, 36], bi-plex [25, 41],
bi-truss [30, 34, 48]. Notably, this book [16] presents a comprehen-
sive survey of bipartite cohesive subgraph mining. On unipartite
graphs, there are various models for finding cohesive subgraphs, in-
cluding 𝑘-core [3, 12, 14, 18, 46], 𝑘-truss [15, 32], and clique [10, 42].

8 CONCLUSION

This paper is the first to study the local/global most similar biclique
search problem. Despite the NP-hardness, we develop an exact al-
gorithm Mosib. The algorithm incorporates three graph reduction
rules and two similarity-first search rules that can significantly
improve practical efficiency. Besides, we devise an approximate
algorithm Mosib-GloApp that can speed up the global most similar
biclique search. The experiments show that our algorithms can out-
perform the baseline in running time by orders of magnitude, and
provide meaningful insights into a network with the case studies.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Sci-
ence Foundation of China (U2436208, 62372129), the Guang-
dong S&T Programme under Grant 2024B0101010002, the
Guangdong Basic and Applied Basic Research Foundation
(2024A1515011501, 2023A1515012603) and the Australian Research
Council (DP230101445, FT210100303). Deming Chu is supported by
the scholarship of the China Scholarship Council (202006140012).

1033

REFERENCES
[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal

Biclique Enumeration.. In IJCAI. 3558–3564.
[2] Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem Benatallah, Seyed-

Mehdi-Reza Beheshti, Elisa Bertino, and Norman Foo. 2013. Collusion detection
in online rating systems. In APWeb. Springer, 196–207.

[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An o (m) algorithm for cores
decomposition of networks. arXiv preprint cs/0310049 (2003).

[4] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and
Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep
behavior in social networks. InWWW. 119–130.

[5] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
2000. Min-Wise Independent Permutations. J. Comput. Syst. Sci. 60, 3 (2000),
630–659.

[6] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. CACM 16, 9 (1973), 575–577.

[7] Lijun Chang. 2019. Efficient maximum clique computation over large sparse
graphs. In KDD. 529–538.

[8] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2021. Efficient exact
algorithms for maximum balanced biclique search in bipartite graphs. In SIGMOD.
248–260.

[9] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient
maximal biclique enumeration for large sparse bipartite graphs. PVLDB 15, 8
(2022), 1559–1571.

[10] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.
2011. Finding maximal cliques in massive networks. TODS 36, 4 (2011), 1–34.

[11] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
PVLDB 8, 12 (2015), 1804–1815.

[12] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia,
and Chenyi Zhang. 2020. Finding the best k in core decomposition: A time and
space optimal solution. In ICDE. IEEE, 685–696.

[13] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong
Xia, and Chenyi Zhang. 2024. Discovering and Maintaining the Best k in Core
Decomposition. TKDE (2024).

[14] Deming Chu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2022.
Hierarchical core decomposition in parallel: From construction to subgraph
search. In ICDE. IEEE, 1138–1151.

[15] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report 16, 3.1 (2008), 1–29.

[16] Yixiang Fang, KaiWang, Xuemin Lin, andWenjie Zhang. 2022. Cohesive subgraph
search over large heterogeneous information networks. Springer.

[17] Michael R Garey and David S Johnson. 1979. Computers and intractability.
(1979).

[18] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-core decomposition of large networks on a single PC. PVLDB 9, 1 (2015),
13–23.

[19] Janez Konc and Dušanka Janezic. 2007. An improved branch and bound algorithm
for the maximum clique problem. proteins 4, 5 (2007), 590–596.

[20] Michael Ley. 2002. The DBLP computer science bibliography: Evolution, re-
search issues, perspectives. In International symposium on string processing and
information retrieval. Springer, 1–10.

[21] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.
2019. Efficient (𝛼 , 𝛽)-core computation: An index-based approach. In WWW.
1130–1141.

[22] Guimei Liu, Kelvin Sim, and Jinyan Li. 2006. Efficient mining of large maximal
bicliques. In Data Warehousing and Knowledge Discovery. Springer, 437–448.

[23] Jinze Liu and Wei Wang. 2003. Op-cluster: Clustering by tendency in high
dimensional space. In ICDM. IEEE, 187–194.

[24] Can Lu, Jeffrey Xu Yu, Hao Wei, and Yikai Zhang. 2017. Finding the maximum
clique in massive graphs. PVLDB 10, 11 (2017), 1538–1549.

[25] Wensheng Luo, Kenli Li, Xu Zhou, Yunjun Gao, and Keqin Li. 2022. Maximum
Biplex Search over Bipartite Graphs. In ICDE. IEEE, 898–910.

[26] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren
Zhou. 2020. Maximum biclique search at billion scale. PVLDB (2020).

[27] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren
Zhou. 2022. Maximum and top-k diversified biclique search at scale. VLDB J. 31,
6 (2022), 1365–1389.

[28] Niranjan Rai and Xiang Lian. 2021. Top-k community similarity search over
large road-network graphs. In ICDE. IEEE, 2093–2098.

[29] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer
Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph
processing. PVLDB 11, 4 (2017), 420–431.

[30] Jessica Shi and Julian Shun. 2022. Parallel algorithms for butterfly computations.
In Massive Graph Analytics. Chapman and Hall/CRC, 287–330.

[31] Amos Tanay, Roded Sharan, and Ron Shamir. 2002. Discovering statistically
significant biclusters in gene expression data. Bioinformatics 18, suppl_1 (2002),
S136–S144.

[32] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.
PVLDB 5, 9 (2012).

[33] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In SIGIR.
501–508.

[34] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient
bitruss decomposition for large-scale bipartite graphs. In ICDE. IEEE, 661–672.

[35] Kai Wang, Wenjie Zhang, Xuemin Lin, Lu Qin, and Alexander Zhou. 2022. Effi-
cient personalized maximum biclique search. In ICDE. IEEE, 498–511.

[36] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang.
2021. Efficient and effective community search on large-scale bipartite graphs.
In ICDE. IEEE, 85–96.

[37] Kai Wang, Gengda Zhao, Wenjie Zhang, Xuemin Lin, Ying Zhang, Yizhang He,
and Chunxiao Li. 2023. Cohesive Subgraph Discovery over Uncertain Bipartite
Graphs. TKDE (2023).

[38] Yiqi Wang, Long Yuan, Zi Chen, Wenjie Zhang, Xuemin Lin, and Qing Liu. 2023.
Towards efficient shortest path counting on billion-scale graphs. In ICDE. IEEE,
2579–2592.

[39] Jiadong Xie, Zehua Chen, Deming Chu, Fan Zhang, Xuemin Lin, and Zhihong
Tian. 2024. Influence Maximization via Vertex Countering. PVLDB 17, 6 (2024),
1297–1309.

[40] Kai Yao, Lijun Chang, and Jeffrey Xu Yu. 2022. Identifying similar-bicliques in
bipartite graphs. PVLDB 15, 11 (2022), 3085–3097.

[41] Kaiqiang Yu, Cheng Long, P Deepak, and Tanmoy Chakraborty. 2021. On efficient
large maximal biplex discovery. TKDE 35, 1 (2021), 824–829.

[42] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. Diversi-
fied top-k clique search. VLDB J. 25, 2 (2016), 171–196.

[43] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When En-
gagement Meets Similarity: Efficient (k, r)-Core Computation on Social Networks.
PVLDB (2017).

[44] Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler,
and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological data types.
Bioinformatics 15 (2014), 1–18.

[45] Gengda Zhao, Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Yizhang
He. 2022. Efficient computation of cohesive subgraphs in uncertain bipartite
graphs. In ICDE. IEEE, 2333–2345.

[46] Zhongxin Zhou, Wenchao Zhang, Fan Zhang, Deming Chu, and Binghao Li. 2022.
VEK: a vertex-oriented approach for edge k-core problem. World Wide Web 25, 2
(2022), 723–740.

[47] Zhiguo Zhu, Jingqin Su, and Liping Kong. 2015. Measuring influence in online
social network based on the user-content bipartite graph. Computers in Human
Behavior 52 (2015), 184–189.

[48] Zhaonian Zou. 2016. Bitruss decomposition of bipartite graphs. In DASFAA.
Springer, 218–233.

1034

