
Revisiting CNNs for Trajectory Similarity Learning
Zhihao Chang

School of Software Technology,

Zhejiang University, China

changzhihao@zju.edu.cn

Linzhu Yu

Zhejiang University, China

linzhu@zju.edu.cn

Huan Li

Hangzhou High-Tech Zone (Binjiang)

Institute of Blockchain and Data

Security

Zhejiang University, China

lihuan.cs@zju.edu.cn

Sai Wu

Zhejiang University, China

wusai@zju.edu.cn

Gang Chen

Zhejiang University, China

cg@zju.edu.cn

Dongxiang Zhang
∗

Hangzhou High-Tech Zone (Binjiang)

Institute of Blockchain and Data

Security

Zhejiang University, China

zhangdongxiang@zju.edu.cn

ABSTRACT

Similarity search is a fundamental but expensive operator in query-

ing trajectory data, due to its quadratic complexity of distance com-

putation. Tomitigate the computational burden for long trajectories,

neural networks have been widely employed for similarity learning

and each trajectory is encoded as a high-dimensional vector for sim-

ilarity search with linear complexity. Given the sequential nature

of trajectory data, previous efforts have been primarily devoted to

the utilization of RNNs or Transformers.

In this paper, we argue that the common practice of treating tra-

jectory as sequential data results in excessive attention to capturing

long-term global dependency between two sequences. Instead, our

investigation reveals the pivotal role of local similarity, prompting

a revisit of simple CNNs for trajectory similarity learning. We in-

troduce ConvTraj, incorporating both 1D and 2D convolutions to

capture sequential and geo-distribution features of trajectories, re-

spectively. In addition, we conduct a series of theoretical analyses to

justify the effectiveness of ConvTraj. Experimental results on four

real-world large-scale datasets demonstrate that ConvTraj achieves

state-of-the-art accuracy in trajectory similarity search. Owing to

the simple network structure of ConvTraj, the training and infer-

ence speed on the Porto dataset with 1.6 million trajectories are

increased by at least 240x and 2.16x, respectively.

PVLDB Reference Format:

Zhihao Chang, Linzhu Yu, Huan Li, Sai Wu, Gang Chen, and Dongxiang

Zhang. Revisiting CNNs for Trajectory Similarity Learning. PVLDB, 18(4):

1013 - 1021, 2024.

doi:10.14778/3717755.3717762

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/Proudc/ConvTraj.

∗
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.

doi:10.14778/3717755.3717762

1 INTRODUCTION

Trajectory similarity plays a fundamental role in numerous trajec-

tory analysis tasks. Numerous distance measures, such as Discrete

Frechet Distance (DFD) [3], the Hausdorff distance [4], Dynamic

Time Warping (DTW) [35], and Edit Distance on Real sequence

(EDR) [13], have been proposed and employed in a wide spectrum of

applications, including but not limited to trajectory clustering [1, 6],

anomaly detection [20, 36], and similar retrieval [25, 29, 37].

Generally speaking, these distance measures involve the optimal

point-wise alignment between two trajectories. The distance calcu-

lation often relies on dynamic programming and incurs quadratic

computational complexity. This limitation poses a significant con-

straint, particularly when confronted with large-scale datasets with

long trajectories. In recent years, trajectory similarity learning has

emerged as the mainstream approach to mitigate the computational

burden. The main idea is to encode each trajectory sequence𝑇𝑖 into

a high-dimensional vector 𝑉𝑖 such that the real distance between

𝑇1 and 𝑇2 can be approximated by the distances between their de-

rived vectors 𝑉1 and 𝑉2. Consequently, the complexity of distance

calculation can be reduced from quadratic to linear.

Given the sequential nature of trajectory data, existing methods

for trajectory similarity learning can be categorized into RNN-

based or Transformer-based. RNN-based methods, including Neu-

Traj [32], Traj2SimVec [38], and T3S [31], employ RNN or its vari-

ants (e.g, GRU [14], LSTM [19]) as the core encoder, which can be

augmented with additional components such as spatial attention

memory in NeuTraj and point or structure matching mechanisms

in Traj2SimVec and T3S to enhance performance. Due to the suc-

cess of Transformer in NLP, TrajGAT [33] and TrajCL [7] adopt

Transformer to learn trajectory embedding, which can effectively

capture the long-term dependency of sequences.

However, we argue that these common practices pay excessive

attention to capturing long-term global dependency between two

trajectories while ignoring point-wise similarity, which may poten-

tially yield adverse effects. Instead, we should pay more attention

to point-wise similarity in the local context. In support of this argu-

ment, we conducted an experiment on Porto
1
dataset to evaluate

1
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-

i/data

1013

https://doi.org/10.14778/3717755.3717762
https://github.com/Proudc/ConvTraj
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717762
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Performance of Transformer with different attention window sizes. We report the hit rates for two measures: DFD and

DTW. The dataset includes 6000 items selected from Porto, with 3000 for training, 1000 for query, and 2000 as the candidate set.

DFD DTW

Method # Paras

(Train time Per

Epoch) * # Epochs

Inference

time

HR@1 HR@5 HR@10 HR@50 HR@1 HR@5 HR@10 HR@50

global attention 3.38M 17.28s * 1000 3.58s 22.10 32.58 39.11 50.11 29.40 46.22 54.60 63.41

local attention (𝑤 = 10) 3.38M 17.28s * 1000 3.58s 23.20 36.74 42.80 54.70 31.50 48.60 54.92 65.06

local attention (𝑤 = 5) 3.38M 17.28s * 1000 3.58s 21.80 35.40 41.83 54.42 33.60 46.72 52.34 63.03

1D CNN 0.17M 1.03s * 200 0.16s 33.23 43.94 50.84 64.78 30.90 46.66 53.36 65.14

the effect of applying Transformer for trajectory encoding with

different sizes of attention windows. The first variant is the original

Transformer with global attention, where each token engages in

self-attention by querying all other tokens. We also implemented

two alternative variants with local attention, in which each token

only queries its neighbors within a window of count 𝑤 , i.e., the

attention weights outside the window have been masked. We can

I need to buy some food from the store.

I need to go to the store to buy some food.

(a) Text semantic similarity (b) Trajectory similarity based DFD

Figure 1: Texts feature intercrossed matching pairs, whereas

trajectories do not.

observe from Table 1 that local attention has great potential to

significantly outperform global attention. We explain that exist-

ing trajectory distance measurements are alignment-based and the

edges for matching pairs are not intercrossed (as shown in Figure 1).

This property differs significantly from handling text data in NLP.

These observations reveal the pivotal role of local similarity. In-
stead of adopting Transformer with masked local attention, we

are interested in revisiting CNNs in the task of trajectory similar-

ity learning. The reason is that CNNs can also well capture local

similarity while offering the advantages of simplicity. As shown

in Table 1, with only 5% of the parameters, a simple 1D CNN can

remarkably outperform vanilla Transformers after convergence

on the DFD. Although slightly lower than local attention on the

DTW, 1D CNN has great advantages in efficiency. To further ex-

ploit the potential of CNNs, we present ConvTraj with two types

of convolutions. We first use 1D convolution to capture the sequen-

tial features of trajectories. Then we represent the trajectory as a

single-channel binary image and use 2D convolution to capture its

geo-distribution. Finally, these features are fused as complementary

clues to capture trajectory similarity. To justify the effectiveness

of ConvTraj, we conduct a series of theoretical analyses. We prove

that 1D convolution and 1D max-pooling can preserve effective

distance bounds after embedding, and trajectories located in distant

areas yield large distances via 2D convolution, all of which play an

important role in trajectory similarity recognition.

We conducted extensive experiments to evaluate the perfor-

mance of ConvTraj on four real-world datasets. Experimental re-

sults show that ConvTraj achieves state-of-the-art accuracy for

similarity retrieval on four commonly used similarity measure-

ments, including DFD, DTW, Hausdorff, and EDR. Furthermore,

ConvTraj is at least 240x faster in training speed and 2.16x faster in

inference speed, when compared with methods based on RNN and

Transformer on the Porto dataset containing 1.6 million trajectories.

Our contributions are summarized in the following:

• We argue that trajectory similarity learning should pay

more attention to local similarity.

• We present a simple and effective ConvTraj with two types

of CNNs for trajectory similarity computation.

• We conduct some theoretical analysis to help justify why

such a simple ConvTraj can perform well.

• Extensive experiments on four real-world large-scale datasets

established the superiority of ConvTraj over state-of-the-art

works in terms of accuracy and efficiency.

2 RELATEDWORK

2.1 Heuristic Trajectory Similarity Measures

Heuristic measures between trajectories are derived from the dis-

tance between matching point pairs, these measures fall into three

categories: (1) Linear-based methods [2, 8] only need scan tra-

jectories once to calculate their similarity but may lead to sub-

optimal point matches. (2) Dynamic programming-based methods

are proposed to tackle this issue, such as DTW [35], DFD [3], and

others [12, 13, 24, 27]. However, these measurements involve the

optimal point-wise alignment between two trajectories without

intercrossing between matching pairs and often incur quadratic

complexity. Thus it poses significant challenges for similarity search

from a large-scale dataset with long trajectories. (3) Enumeration-
based methods calculate all point-to-trajectory distance, i.e., the

minimum distance between a point to any point on a trajectory,

then aggregate it. For example, OWD [22] uses the average point-

to-trajectory distance, while Hausdorff [4] uses the maximum.

2.2 Learning-based Trajectory Similarity

In recent years, the field of trajectory similarity has witnessed a par-

adigm shift, primarily fueled by the progress in deep representation

learning. This advancement has led to the development of numer-

ous methodologies aimed at encoding trajectories into embedding

spaces. Broadly, these approaches can be classified into three cate-

gories: (1) Learn a model to approximate a measurement. The pur-
pose of these methods is to learn a neural network so that the

distance in the embedding space can approximate the true distance

between trajectories. Early attempts were generally based on re-

current neural networks, including NeuTraj [32], Traj2SimVec [38],

and T3S [31]. Subsequently, some studies tried to capture the long

dependency of trajectories based on Transformer [7, 33]. (2) No
given measurements are required to generate training signals. These

1014

F
C

R
e

L
U

F
C

F
la

tt
e

n
in

g
F

la
tt

e
n

in
g

R
e

L
U

M
a

x
P

o
o

l
1

D

T
ra

n
sf

o
rm

a
ti

o
n

N
o

rm
a

li
za

ti
o

n

latn…lat1

lonn…lon1

1D Sequence

2D Binary Image

M
e

sh
in

g

M
a

p
p

in
g

×

C
o

n
v

2
D

 3
3

R
e

L
U

A
v

g
P

o
o

l
2

D

×

C
o

n
v

1
D

2
∗

3

Figure 2: Input preprocessing and network structure of ConvTraj.

methods encode trajectories without the need to generate super-

vised signals based onmeasurements. Its purpose is to overcome the

limitations of traditional measures such as non-uniform sampling

rates and noise. These methods can be divided into RNN-based,

including traj2vec [34], t2vec [21], E2DTC [15], etc., CNN-based

TrjSR [5], and Transformer-based TrajCL [7]. (3) Road networks-
based. There have been some studies on trajectory similarity based

on road networks [9, 16, 17, 40, 41]. These works use graph neural

networks to encode road segments. Since such works introduce rele-

vant knowledge from road networks, we consider them as different

research directions and will not delve into these methods.

TrjSR [5] is a well-known CNN-based method for trajectory simi-

larity. It maps trajectories into 2D images and uses super-resolution

techniques. However, TrjSR loses the sequential features of trajecto-

ries, making it unable to differentiate between two trajectories with

the same path but opposite directions. Our ConvTraj uses both 1D

and 2D convolutions as the backbone and achieves better results.

3 PROBLEM DEFINITION

Definition 1 (Trajectory). A trajectory 𝑇 is a series of GPS points

ordered by timestamp 𝑡 , and each point 𝑝 is a location containing

latitude and longitude. Formally, a trajectory 𝑇 ∈ R𝑙×2 can be

denoted as𝑇 = [𝑝1, ..., 𝑝𝑙], with 𝑝𝑖 = (𝑝𝑙𝑎𝑡
𝑖

, 𝑝𝑙𝑜𝑛
𝑖

) is the 𝑖-th location.
Definition 2 (Trajectory Measure Embedding). Given a specific

trajectory similarity measure 𝑓 (·, ·), trajectory measure embedding

aims to learn an approximate projection function𝑔, such that for any

pair of trajectories 𝑇𝑖 with 𝑇𝑗 , the distance in the embedding space

approximates the true distance between 𝑇𝑖 and 𝑇𝑗 , i.e., 𝑓 (𝑇𝑖 ,𝑇𝑗) ≈
𝑑 (𝑔(𝑇𝑖), 𝑔(𝑇𝑗)). Besides, the vectors in the embedding space should

maintain the distance order of true distance, i.e., for any three

trajectories 𝑇𝑖 , 𝑇𝑗 , and 𝑇𝑘 , with 𝑓 (𝑇𝑖 ,𝑇𝑗) < 𝑓 (𝑇𝑖 ,𝑇𝑘), we should

ensure that 𝑑 (𝑔(𝑇𝑖), 𝑔(𝑇𝑗)) < 𝑑 (𝑔(𝑇𝑖), 𝑔(𝑇𝑘)). Here, 𝑓 (·, ·) can be

DFD, DTW, or any other measurements. At the same time, 𝑑 (·, ·)
is a measure between high-dimensional embedding vectors in the

embedding space, such as Euclidean distance, Cosine distance, etc.

4 METHODOLOGY

4.1 Input Preprocessing

Suppose there is a trajectory 𝑇 containing 𝑙 GPS points. To process

𝑇 as the input of our ConvTraj, we perform the following two steps

covering both one-dimensional and two-dimensional.

One-dimensional Input. The input of our 1D convolution is a

sequence, we thus treat the trajectory𝑇 as a sequence with length 𝑙

and width 2 (i.e., lat and lon). For each point of𝑇 , we first normalize

it using a min-max normalization, and then apply a multi-layer

perceptron (MLP) to perform a nonlinear transformation for each

point, thus the trajectory can be processed as a sequence 𝑆𝑒𝑞1𝐷 .

Two-dimensional Input. The input of our 2D convolution is

a binary image, we thus perform the following substeps to gen-

erate such an image for each trajectory. Initially, we determine

a minimum bounding rectangle (MBR) within a two-dimensional

space, encapsulating all points of the whole trajectory dataset. Sub-

sequently, the MBR is partitioned into equal-sized grids based on a

predetermined hyperparameter width 𝛿 . Then for each trajectory𝑇 ,

its coordinates are mapped onto the grid, and each pixel within the

grid cell is assigned a binary value, which is 1 if the trajectory point

falls within the grid cell and 0 otherwise. Thus each raw trajectory

is converted into a single-channel binary image 𝐵𝐼2𝐷 .

4.2 ConvTraj Network Structure

As shown in Figure 2, the ConvTraj consists of three submodules:

1D convolution, 2D convolution, and feature fusion. The 1D con-

volution extracts sequential features from the trajectory, while the

2D convolution captures its geo-distribution. The feature fusion

module then combines these features for comprehensive analysis.

Detailed descriptions of these submodules are provided below.

One-dimensional Convolution. As shown in Figure 2, 1D

convolution is stacked by 𝑛 residual blocks consisting of a 1D con-

volution layer, a non-linear ReLU layer, and a max-pooling layer.

Each operation is performed on rows of 𝑆𝑒𝑞1𝐷 . By default, the con-

volution kernel size is 2∗3, the number of channels is 32, the pooling

stride is 2, and the number of stacking layers 𝑛 is determined by

the maximum length of the trajectory in the dataset. In the end, the

features of all channels are flattened into a vector 𝑉1𝐷 .

Two-dimensional Convolution. 2D convolution is also stacked

by𝑚 residual blocks consisting of a 2D convolution layer, a non-

linear ReLU layer, and an average-pooling layer. Each operation

is performed on the single-channel binary image 𝐵𝐼2𝐷 . By default,

the convolution kernel size is 3 ∗ 3, the number of channels is 4, the

pooling stride is 2, and the number of stacking layers𝑚 is 4. In the

end, the features of all channels are flattened into a vector 𝑉2𝐷 .

Feature Fusion.After performing 1D and 2D convolution on the

trajectory in parallel, we concatenate the resulting feature vectors

1015

and pass them through an MLP. This submodule combines the

sequence order features (𝑉1𝐷) extracted by 1D convolution with

the geo-distribution features (𝑉2𝐷) extracted by 2D convolution,

providing comprehensive information for similarity recognition.

The final embedding 𝑉 of the trajectory can be formalized as:

𝑉 = 𝑀𝐿𝑃 ([𝑉1𝐷 ,𝑉2𝐷]) . (1)

4.3 Training Pipeline

We employ the mainstream training pipeline as shown in Figure 3.

Loss Function. As shown in Figure 3, we use the combination

of triplet loss [18, 28] 𝐿𝑇 and MSE loss 𝐿𝑀 as our loss function. i.e.:

𝐿𝑜𝑠𝑠 = 𝐿𝑇 (𝑇𝑎,𝑇𝑝 ,𝑇𝑛) + 𝐿𝑀 (𝑇𝑎,𝑇𝑝 ,𝑇𝑛), (2)

where 𝐿𝑇 =𝑚𝑎𝑥{0, 𝑑 (𝑉𝑎,𝑉𝑝)−𝑑 (𝑉𝑎,𝑉𝑛)−𝜂} and 𝐿𝑀 = |𝑑 (𝑉𝑎,𝑉𝑝)−
𝑓 (𝑇𝑎,𝑇𝑝) | + |𝑑 (𝑉𝑎,𝑉𝑛) − 𝑓 (𝑇𝑎,𝑇𝑛) |. In which (𝑇𝑎,𝑇𝑝 ,𝑇𝑛) is a triplet,
and 𝑇𝑎 is the anchor trajectory, 𝑇𝑝 is the positive trajectory that

has a smaller distance to 𝑇𝑎 than the negative trajectory 𝑇𝑛 . 𝑉𝑎 , 𝑉𝑝
and 𝑉𝑛 are the high-dimensional vectors corresponding to 𝑇𝑎 , 𝑇𝑝
and 𝑇𝑛 in the embedding space. 𝑓 (·, ·) represents the true distance
between trajectories, and 𝑑 (·, ·) is the Euclidean distance [32, 33]

between two vectors. Besides, 𝜂 is the margin in the triplet loss

whose value is 𝜂 = 𝑓 (𝑇𝑎,𝑇𝑝) − 𝑓 (𝑇𝑎,𝑇𝑛).
Triplet Selection Method.Many studies [11, 30, 32, 38] have

proposed various strategies to select triplets for training, but these

often bring additional training costs. In this paper, we use the

simplest strategy to select triplets. We regard each trajectory in

the training set as 𝑇𝑎 in turn. For each 𝑇𝑎 , we randomly select two

trajectories from its top-k neighbors (k=200 by default) and use the

trajectory closer to the 𝑇𝑎 as 𝑇𝑝 , and trajectory farther to 𝑇𝑎 as 𝑇𝑛 .

E

m

b

e

d

d

i

n

g

E

m

b

e

d

d

i

n

g

E

m

b

e

d

d

i

n

g

Positive

Negative

Anchor

Triplet + MSE

Anchor

  

  Triplet

Selection

ConvTraj

Network

Shared Weights

Shared Weights

ConvTraj

Network

ConvTraj

Network

Figure 3: The training pipeline of ConvTraj.

5 THEORETICAL ANALYSIS

In this section, we will conduct some theoretical analysis to help

justify why such a simple ConvTraj can work well. We take the

DFD, which is widely used for trajectory similarity [26, 29, 36, 39],

as an example for analysis. In summary, we found that: (1) After

1D max-pooling, the DFD value has almost no change. (2) For a

randomly initialized kernel of 1D convolution, the DFD between

two trajectories can still be maintained to a large extent. (3) Tra-

jectories located in distant areas not only have a large DFD value

but also have a large Euclidean distance through 2D convolution.

Since 1D convolution essentially rotates and scales the trajectories

and 2D convolution captures its geo-distribution, thus similar con-

clusions can be easily generalized to other measurements. Due to

space limitations, we will only provide the proof of 1D max-pooling

in the following, other proofs can be found here
2
. Basically, the

analysis shows that 1D convolution and max-pooling can preserve

the bounds for trajectory similarity learning, while 2D convolution

can help capture the geo-distribution. This implies CNNs are a

good choice in scenarios where trajectories need to be reduced in

dimension or geo-distribution is required. This does not mean that

RNNs or Transformers lack it, it is just difficult to analyze.

5.1 Discrete Frechet Distance

We first present the formal definition of Discrete Frechet Distance:

Definition 3 (Trajectory Coupling). A coupling 𝐿 between two

trajectories 𝑇1 = [𝑝1, 𝑝2, ..., 𝑝𝑛] and 𝑇2 = [𝑞1, 𝑞2, ..., 𝑞𝑚] is such a

sequence of alignment:

𝐿 = (𝑝𝑎1 , 𝑞𝑏1), (𝑝𝑎2 , 𝑞𝑏2), ..., (𝑝𝑎𝑡 , 𝑞𝑏𝑡),
where 𝑎1 = 1, 𝑏1 = 1, 𝑎𝑡 = 𝑛,𝑏𝑡 = 𝑚. For all 𝑖 = 1, ..., 𝑡 , we have

𝑎𝑖+1 = 𝑎𝑖 or 𝑎𝑖+1 = 𝑎𝑖 + 1, and 𝑏𝑖+1 = 𝑏𝑖 or 𝑏𝑖+1 = 𝑏𝑖 + 1.

Definition 4 (Discrete Frechet Distance). Given two trajectories

𝑇1 = [𝑝1, 𝑝2, ..., 𝑝𝑛] and 𝑇2 = [𝑞1, 𝑞2, ..., 𝑞𝑚], the Discrete Frechet
Distance 𝑑𝐹 between these two trajectories is:

𝑑𝐹 (𝑇1,𝑇2) = min

𝐿
{ max

(𝑝𝑖 ,𝑞 𝑗) ∈𝐿
𝑑 (𝑝𝑖 , 𝑞 𝑗)},

where 𝐿 is an instance of coupling between 𝑇1 and 𝑇2, and 𝑑 (·, ·) is
Euclidean distance between two points.

5.2 One-dimensional Max-Pooling

Theorem 5.1 (One-dimensional Max-Pooling Bound). Given two

sequences 𝑋 = [𝑥1, ..., 𝑥𝑀], 𝑌 = [𝑦1, ..., 𝑦𝑁], and each 𝑥𝑖 ∈ 𝑋 (𝑦𝑖 ∈
𝑌) is a 𝑙-dimensional vector, i.e.,𝑥𝑖 = [𝑥𝑖,1, ..., 𝑥𝑖,𝑙]T. A one-dimensional

max pooling operation 𝑃 (·) on 𝑋,𝑌 with size 𝑘 and stride 𝑘 , assum-

ing that𝑀 and 𝑁 are divisible by 𝑘 . Then the following holds:

𝑑𝐹 (𝑋,𝑌) − 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑑𝐹 (𝑃 (𝑋), 𝑃 (𝑌)) ≤ 𝑑𝐹 (𝑋,𝑌) + 𝑏𝑜𝑢𝑛𝑑,
in which

𝑏𝑜𝑢𝑛𝑑 =𝑚𝑎𝑥{𝑑 (𝑋 ↓
𝑖
, 𝑋

↑
𝑖
) |1 ≤ 𝑖 ≤ 𝑀

𝑘
}+𝑚𝑎𝑥{𝑑 (𝑌 ↓

𝑖
, 𝑌

↑
𝑖
) |1 ≤ 𝑖 ≤ 𝑁

𝑘
},

and 𝑋
↓
𝑖
= [𝑥↓

𝑖,1
, ..., 𝑥

↓
𝑖,𝑙
]T, 𝑥↓

𝑖, 𝑗
=𝑚𝑖𝑛{𝑥𝑡, 𝑗 |𝑡 ∈ [(𝑖 − 1) ∗ 𝑘 + 1, 𝑖 ∗ 𝑘)};

𝑋
↑
𝑖
= [𝑥↑

𝑖,1
, ..., 𝑥

↑
𝑖,𝑙
]T, 𝑥↑

𝑖, 𝑗
=𝑚𝑎𝑥{𝑥𝑡, 𝑗 |𝑡 ∈ [(𝑖 − 1) ∗𝑘 + 1, 𝑖 ∗𝑘)}.(The

same goes for 𝑌
↓
𝑖
and 𝑌

↑
𝑖
)

Proof. Based on the triangle inequality of DFD, we can get:

𝑑𝐹 (𝑋,𝑌) ≤ 𝑑𝐹 (𝑋, 𝑃 (𝑋)) + 𝑑𝐹 (𝑃 (𝑋), 𝑌)
≤ 𝑑𝐹 (𝑋, 𝑃 (𝑋)) + 𝑑𝐹 (𝑃 (𝑋), 𝑃 (𝑌)) + 𝑑𝐹 (𝑃 (𝑌), 𝑌) .

Using this property again, we have:

𝑑𝐹 (𝑃 (𝑋), 𝑃 (𝑌)) ≤ 𝑑𝐹 (𝑋,𝑌) + (𝑑𝐹 (𝑃 (𝑋), 𝑋) + 𝑑𝐹 (𝑌, 𝑃 (𝑌))).
Rearrange these two inequalities, we can get:

𝑏𝑜𝑢𝑛𝑑 = 𝑑𝐹 (𝑋, 𝑃 (𝑋)) + 𝑑𝐹 (𝑌, 𝑃 (𝑌)) .

Suppose 𝑃 (𝑋) = [𝑥𝑝
1
, ..., 𝑥

𝑝
𝑀
𝑘

], and each 𝑥𝑝
𝑖
is a 𝑙-dimensional vector,

i.e., 𝑥
𝑝

𝑖
= [𝑥𝑝

𝑖,1
, ..., 𝑥

𝑝

𝑖,𝑙
]T, where 𝑥𝑝

𝑖,𝑗
= 𝑚𝑎𝑥{𝑥𝑡, 𝑗 |𝑡 ∈ [(𝑖 − 1) ∗ 𝑘 +

2
https://arxiv.org/abs/2405.19761

1016

1, 𝑖 ∗ 𝑘)}. Then for 𝑑𝐹 (𝑋, 𝑃 (𝑋)), we can always construct such a

coupling 𝐿∗ = (𝑥1, 𝑥𝑝
1
), ..., (𝑥𝑘 , 𝑥

𝑝

1
)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

k

, ..., (𝑥𝑀−𝑘+1, 𝑥
𝑝
𝑀
𝑘

), ..., (𝑥𝑀 , 𝑥
𝑝
𝑀
𝑘

)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
k

.

Thus 𝑑𝐹 (𝑋, 𝑃 (𝑋)) ≤ 𝑚𝑎𝑥 (𝑥𝑖 ,𝑥𝑝𝑗) ∈𝐿∗
𝑑 (𝑥𝑖 , 𝑥𝑝𝑗). In this way, we divide

the coupling 𝐿∗ into 𝑀
𝑘

groups. Without loss of generality, we take

out the 𝑡-th group, that is (𝑥 (𝑡−1)∗𝑘+1, 𝑥
𝑝
𝑡), ..., (𝑥𝑡∗𝑘 , 𝑥

𝑝
𝑡) . Thus for

𝑖 ∈ [(𝑡 − 1) ∗ 𝑘 + 1, 𝑡 ∗ 𝑘), we have:
𝑚𝑎𝑥 (𝑑 (𝑥𝑖 , 𝑥𝑝𝑡)) =𝑚𝑎𝑥 (𝑑 ([𝑥𝑖,1, ..., 𝑥𝑖,𝑙]T, [𝑥

𝑝

𝑡,1
, ..., 𝑥

𝑝

𝑡,𝑙
]T))

=𝑚𝑎𝑥 (𝑑 ([𝑥𝑖,1, ..., 𝑥𝑖,𝑙]T, 𝑋
↑
𝑡))

≤𝑑 (𝑋 ↓
𝑡 , 𝑋

↑
𝑡) .

Using this bound to 𝑑𝐹 (𝑌, 𝑃 (𝑌)) completes the proof. ■

To verify the effectiveness of Theorem 5.1, we randomly selected

5000 pairs of trajectories from the Porto dataset for testing. The

size and stride of max-pooling are set to 2, i.e., 𝑘 = 2. As shown

in Figure 4a, the DFD between the trajectories after max-pooling

can accurately fall between the bounds predicted by Theorem 5.1.

In addition, Figure 4b shows that the real DFD value has almost no

change compared with the DFD after max-pooling, this implies that

max-pooling is a suitable technique that can reduce the dimensionality
of trajectory sequences with almost no loss of effective features that
are important for DFD-based similarity recognition.

0 1000 2000 3000 4000 5000

Pairs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
F
D

(a) Max Pooling

Lower Bound

Upper Bound

DFD After Pooling

0.025 0.050 0.075 0.100 0.125 0.150 0.175

True DFD

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
F
D

 A
ft

e
r

P
o
o
li
n
g

(b) Comparision

Figure 4: 1D max-pooling bound visualization on Porto.

6 EXPERIMENTS

6.1 Experimental Setting

Datasets. We evaluate ConvTraj on four widely used real-world

datasets: Geolife
3
, Porto

4
, Chengdu and TrajCL-Porto

5
. For

Geolife and Porto, we preprocess them using the method in [32], i.e.

selecting trajectories in the central area of the city and removing

items with less than 10 records. For TrajCL-Porto, it’s an open-

source dataset of TrajCL[7], we thus do not perform any processing.

For Chengdu, we randomly selected 5000 trajectories from this

dataset. The properties of these datasets are shown in Table 2.

Baselines. When we test on Geolife, Porto, and Chengdu, we

follow existing works [10, 33] and compare ConvTraj with six meth-

ods, including t2vec [21] and TrjSR [5] based on self-supervised

learning; NeuTraj [32], Traj2SimVec [38], TrajGAT [33], and

3
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-

dataset-user-guide/

4
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-

i/data

5
https://github.com/changyanchuan/TrajCL

Table 2: Trajectory Dataset Properties

Dataset Geolife Porto Chengdu TrajCL-Porto

Total Items 13386 1601579 5000 9000

Training Items 3000 3000 1000 7000

Query Items 1000 500 1000 2000

Candidate Items 9386 1598079 3000 2000

Avg-(# Points) 437.80 48.91 228.44 49.72

Min-(# Points) 11 11 29 20

Max-(# Points) 7579 3836 1575 200

Lat-Lon Area

(116.20, 116.50)

(39.85, 40.07)

(-8.73, -8.50)

(41.10, 41.24)

(104.04, 114.10)

(30.65, 30.73)

(-8.70, -8.52)

(41.10, 41.208)

TrajCL [7] based on supervised learning. For the self-supervised

method, since its goal is not to approximate the measurements, we

thus perform the following steps to handle it. We first randomly

select a part of the trajectory for pre-training (We select 10000

trajectories for Geolife and 200000 for Porto. In addition, we will

also use these data to pre-train TrajCL). Then we add an MLP in the

end and fine-tune it with the triplet selection method and loss func-

tion in subsection 4.3. For those methods which have open-source

code [5, 7, 21, 32, 33], we directly use their implementation. For

others [38], we implement it based on the settings of its paper. In

addition, since many baselines have been evaluated on the TrajCL-

Porto and the results have been reported in [7], we will directly

compare our results with those of other baselines reported in [7].

Metrics. We follow existing works [32, 33, 38] and evaluate the

effectiveness of these methods using the task of 𝑘 nearest neighbor

search. Specifically, we first use the top-𝑘 hitting rate (HR@𝑘),

which is the overlap percentage of detection top-𝑘 results with the

ground truth. The second is the top-50 recall of the top-10 ground

truth (R10@50), i.e. how many top 10 ground truths are recovered

by the generated top 50 lists. These metrics can effectively evaluate

whether the distance order in the embedding space is still preserved.

Implementation Details.We set the MLP output dimension in

1D preprocessing to 16. As the grid width 𝛿 decreases, ConvTraj

will perform better, but the training cost will also increase
6
, we

thus set 𝛿 as 250 meters when generating images. For the Geolife,

the number of residual blocks for 1D CNN is 𝑛 = 12(⌊log
2
7579⌋),

Porto is 𝑛 = 11(⌊log
2
3836⌋), and TrajCl-Porto is 𝑛 = 7(⌊log

2
200⌋).

We set the batch size to 128, the learning rate to 0.001, and the em-

bedding size to 128. We evaluated Hausdorff, DFD, DTW, and EDR

on Geolife and Porto, and evaluated Hausdorff, DFD, EDwP [24],

and EDR on TrajCL-Porto. For each measurement on Geolife and

Porto, we select three random seeds to repeat the experiment and

report its average and variance. All experiments are conducted on a

machine equipped with 36 CPU cores (Intel Core i9-10980XE CPU

with 3.00GHz), 256 GB RAM, and a GeForce RTX 3090Ti GPU.

6.2 Effectiveness

Table 3, Table 4, and Table 5 present an overview of the perfor-

mance exhibited by different methods concerning the top-𝑘 similar-

ity search task on Geolife, Porto, and Chengdu, we can observe that:

(1) On all datasets, ConvTraj significantly outperforms all methods

on all metrics. Taking the Hausdorff distance on the Geolife as

an example, compared with the state-of-the-art baseline NeuTraj,

6
https://arxiv.org/abs/2405.19761

1017

Table 3: Embedding Results On Geolife dataset (3 runs)

Geolife

Hausdorff DFD DTW EDR

Model HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50

t2vec 22.82±0.6 24.48±0.4 44.60±0.1 26.36±0.2 28.33±0.4 53.45±0.1 26.70±0.7 28.91±0.4 55.40±0.2 18.34±0.2 20.95±0.4 46.22±0.1
TrjSR 34.86±0.1 37.26±0.1 66.56±0.0 29.92±0.3 33.29±0.0 61.62±0.0 32.64±0.2 36.52±0.0 67.91±0.0 18.26±0.4 19.83±0.1 45.52±0.0
TrajCL 31.08±0.0 37.21±0.0 72.55±0.0 33.51±0.1 38.98±0.3 75.82±0.4 12.48±0.1 14.63±0.0 32.05±0.0 20.33±0.1 22.74±0.0 44.90±0.3
NeuTraj 42.31±0.1 48.40±0.1 80.38±0.0 58.50±0.1 64.47±0.4 94.44±0.4 30.57±0.0 33.68±0.2 62.87±0.5 11.98±16.4 14.28±19.8 21.63±10.9

Traj2SimVec 33.49±0.9 42.39±0.3 65.12±0.2 40.39±0.9 42.75±0.3 70.20±0.0 13.24±0.4 15.39±0.7 35.09±0.0 10.44±0.6 12.39±0.7 18.45±0.0
TrajGAT 25.80±1.2 30.57±0.7 66.69±0.2 21.20±0.9 25.87±1.2 61.91±0.9 19.98±0.2 24.77±0.4 59.36±0.2 15.58±0.7 17.84±1.3 36.78±0.2
ConvTraj 57.73±0.2 63.69±0.3 95.20±0.0 62.73±0.5 68.86±0.3 97.34±0.0 41.56±0.3 46.46±0.6 83.70±0.0 26.95±2.5 28.64±2.9 54.93±4.9

Gap with SOTA +15.42 +15.29 +14.82 +4.23 +4.39 +2.90 +8.92 +9.94 +15.79 +6.62 +5.90 +8.71

Table 4: Embedding Results On Porto dataset (3 runs)

Porto

Hausdorff DFD DTW EDR

Model HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50

t2vec 5.88±0.8 7.28±0.8 17.08±0.0 6.28±0.9 7.66±0.8 17.84±0.0 8.16±0.7 9.60±0.6 20.92±0.1 4.24±0.9 4.76±0.6 12.30±0.2
TrjSR 13.26±0.7 14.79±0.2 33.46±0.0 10.36±0.3 14.26±0.6 37.48±0.1 15.44±0.3 18.29±0.4 38.23±0.1 6.13±0.1 8.42±0.1 23.20±0.5
TrajCL 12.55±0.1 15.37±0.1 35.37±0.0 14.08±0.1 18.01±0.0 42.97±0.1 1.51±0.0 2.33±0.0 6.96±0.9 7.99±0.0 10.47±0.1 25.53±0.5
NeuTraj 19.32±0.0 24.07±0.0 51.43±0.0 27.71±0.1 33.64±0.0 66.58±0.1 13.48±0.0 16.33±0.0 34.81±0.1 2.52±0.1 3.79±0.1 10.83±0.1

Traj2SimVec 14.33±0.9 16.32±0.2 37.45±0.0 16.37±0.3 20.03±0.0 44.11±0.2 10.44±0.3 13.22±0.3 18.30±0.0 1.59±0.3 1.85±0.1 7.33±0.2
TrajGAT 16.48±0.8 18.29±0.6 43.58±0.3 13.49±0.8 20.38±0.4 39.78±0.2 11.02±0.2 12.58±0.0 20.79±0.0 4.78±0.6 6.23±0.0 12.34±0.0
ConvTraj 27.68±0.0 33.27±0.1 67.20±0.0 34.97±0.2 40.59±0.0 77.33±0.5 19.77±0.1 24.46±0.4 52.83±0.0 13.84±0.5 15.61±0.3 37.00±2.8

Gap with SOTA +8.36 +9.20 +15.77 +7.26 +6.95 +10.75 +4.33 +6.17 +14.60 +5.85 +5.14 +11.47

Table 5: Embedding Results On Chengdu dataset

Chengdu

Hausdorff DFD DTW EDR

Model HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50 HR@5 HR@10 R10@50

t2vec 16.16 16.52 30.69 21.34 22.34 44.06 21.00 22.68 46.03 14.18 16.37 37.41

TrjSR 10.44 12.09 25.44 11.08 12.77 25.96 16.42 18.32 36.63 18.80 19.78 40.02

TrajCL 22.14 27.04 61.93 19.00 21.42 51.79 23.48 27.20 59.89 17.40 20.53 48.58

NeuTraj 21.82 23.27 39.09 32.28 34.70 49.51 28.40 29.33 46.90 10.44 11.54 24.65

Traj2SimVec 18.34 20.17 43.67 25.16 28.33 42.78 18.66 19.37 40.69 6.93 8.31 19.18

TrajGAT 19.98 25.26 57.57 16.24 19.11 49.18 23.96 28.32 65.41 17.94 20.55 48.40

ConvTraj 36.26 42.78 76.67 53.34 58.18 93.14 34.90 40.40 76.23 21.50 25.34 55.21

Gap with SOTA +14.12 +15.74 +19.10 +21.06 +23.48 +41.45 +6.50 +11.07 +10.82 +2.70 +4.81 +6.63

ConvTraj exceeds by more than 11% in all metrics, with the largest

improvement of 15.42% for HR@5 and the smallest improvement

of 11.64% for HR@1. In addition, even for the Porto which contains

1.6 million trajectories, R10@50 has at least a 10.75% improvement

on four measurements. This non-negligible improvement in perfor-

mance is impressive given the fact that the sequence order features

extracted by 1D convolution and the geographical distribution of

the trajectory extracted by 2D convolution are both very beneficial

to generating high-quality trajectory embedding representations.

(2) The advantage of ConvTraj is evident in all measurements, which

shows that ConvTraj is a general framework for different measure-

ments.We can observe that nomethod can handle all measurements

well. For example, NeuTraj performs best on the Hausdorff and

DFD, while TrjSR and TrajCL have advantages on DTW and EDR

respectively, which is also mutually verified with the results in [10].

However, ConvTraj achieves state-of-the-art accuracy in all mea-

surements. Compared to the state-of-the-art, ConvTraj achieves

an average improvement of 10.22%, 8.02%, 7.59%, and 7.03% on all

metrics of the Hausdorff, DFD, DTW, and EDR in Porto respectively.

(3) We also noticed that compared with the results on the Geolife

and Porto datasets, the TrajGAT method performed better on the

Chengdu dataset. This may be because the longitude and latitude

of the Chengdu dataset cover a larger area, so the quadtree-based

modeling method of the TrajGAT is more effective.

Table 6 presents the experimental results on TrajCL-Porto, we

can observe that: (1) Similar to its performance on the Geolife and

Porto, the ConvTraj method surpasses state-of-the-art in almost all

metrics for four measurements. Compared with the state-of-the-art,

ConvTraj achieves improvements of 12%, 23%, 6.8%, and 14.2% on

the HR@5 metrics of EDR, EDwP, Hausdorff, and DFD. (2) Even

though both were tested on the Porto dataset, the performance gap

between Table 4 and Table 6 is very large. For example, the HR@5 of

the TrajCL and ConvTraj in Table 6 on the DFD are 0.618 and 0.749

respectively, but in Table 4 they are 0.141 and 0.349 respectively. The

1018

Table 6: Embedding Results On TrajCL-Porto dataset

TrajCL-Porto

EDR EDwP Hausdorff DFD

Model HR@5 HR@20 R5@20 HR@5 HR@20 R5@20 HR@5 HR@20 R5@20 HR@5 HR@20 R5@20

t2vec 0.125 0.164 0.286 0.399 0.518 0.751 0.405 0.549 0.770 0.504 0.651 0.883

TrjSR 0.137 0.147 0.273 0.271 0.346 0.535 0.541 0.638 0.880 0.271 0.356 0.523

E2DTC [15] 0.122 0.157 0.272 0.390 0.514 0.742 0.391 0.537 0.753 0.498 0.648 0.879

CSTRM [23] 0.138 0.191 0.321 0.415 0.536 0.753 0.459 0.584 0.813 0.421 0.557 0.768

TrajCL 0.172 0.222 0.376 0.546 0.646 0.881 0.643 0.721 0.954 0.618 0.740 0.955

T3S [31] 0.140 0.192 0.325 0.377 0.498 0.702 0.329 0.482 0.668 0.595 0.728 0.946

Traj2SimVec 0.119 0.163 0.285 0.172 0.253 0.390 0.339 0.429 0.543 0.529 0.664 0.894

TrajGAT 0.090 0.102 0.184 0.201 0.274 0.469 0.686 0.740 0.969 0.362 0.403 0.704

ConvTraj 0.292 0.181 0.414 0.776 0.826 0.987 0.754 0.770 0.983 0.760 0.786 0.984

Gap with SOTA +0.12 −0.041 +0.038 +0.23 +0.18 +0.106 +0.068 +0.03 +0.014 +0.142 +0.046 +0.029
ConvTraj-1D CNN 0.230 0.097 0.279 0.648 0.685 0.937 0.732 0.757 0.983 0.736 0.769 0.978

ConvTraj-2D CNN 0.285 0.174 0.387 0.611 0.586 0.949 0.746 0.769 0.983 0.565 0.528 0.908

Table 7: Efficiency Comparison

Geolife Porto

Method # Paras

Pre-trained time

𝑡𝑒𝑝𝑜𝑐ℎ * (# epoch)

Train time

𝑡𝑒𝑝𝑜𝑐ℎ * (# epoch)

Train time

Per Epoch

Inference

time

Pre-trained time

𝑡𝑒𝑝𝑜𝑐ℎ * (# epoch)

Train time

𝑡𝑒𝑝𝑜𝑐ℎ * (# epoch)

Train time

Per Epoch

Inference

time

t2vec 2.86M 17.97s * 10 0.27s * 200 18.24s 0.89s 328.12s * 10 0.27s * 200 328.39s 61.64s

TrjSR ≈ 40000 273.05s * 3 0.27s * 200 273.33s 0.09s 11800s * 3 0.27s * 200 11800.27s 11.69s

TrajCL 5.49M 14.03s * 54 145.73s * 30 159.76s 11.42s 208.73s * 75 52.14s * 30 260.87s 367.12s

NeuTraj 0.10M - 149.13s * 100 149.13s 41.48s - 230.29s * 100 230.29s 832.58s

TrajGAT 11.45M - 2613s * 50 2613s 257.49s - 1843s * 50 1843s 4946.38s

ConvTraj 0.13M - 1.57s * 200 1.57s 0.41s - 1.07s * 200 1.07s 28.53s

reason is that the TrajCL-Porto dataset contains fewer trajectories.

When performing the top-𝑘 similarity search task, the TrajCL-Porto

dataset only has 2000 candidate trajectories. However, the Porto

used in Table 4 contains 1598079 candidate trajectories, which

results in a more comprehensive result. (3) We also evaluate the

performance of ConvTraj using only 1D convolution (ConvTraj-1D

CNN) or 2D convolution (ConvTraj-2D CNN) on TrajCL-Porto, and

we can observe that ConvTraj’s performance degrades after missing

some features, but still has excellent performance.

6.3 Efficiency

We evaluate the efficiency of all baselines with open-source code on

Geolife and Porto and report the results in Table 7. We also report

the pre-training time of methods that require pre-training.

As shown, compared to existing RNN-based and Transformer-

based methods, ConvTraj not only has fewer parameters (only

0.03M more than NeuTraj) but also has great advantages in training

and inference speed. Taking the Porto with 1.6 million items as

an example, compared with the most efficient Transformer-based

model TrajCL, the training speed per epoch and the inference speed

of ConvTraj are at least 243.80x and 12.87x faster respectively. Com-

pared with the most efficient RNN-based model t2vec, the training

speed per epoch and the inference speed of ConvTraj are at least

306.91x and 2.16x faster respectively. The reason for such a huge

improvement is that compared to Transformer-based methods, Con-

vTraj has fewer parameters. Meanwhile, compared with RNN-based

methods, although the parameters of ConvTraj are relatively large,

the training and inference of ConvTraj are more efficient due to the

inherent low parallelism of RNN. We also note that: (1) Compared

with the CNN-based TrjSR, ConvTraj has no advantage in inference,

but the training is faster because TrjSR requires pre-training on

a large number of trajectories, and only uses fewer layers during

inference, which also shows the superiority of CNN in terms of

efficiency. (2) Although t2vec and NeuTraj are based on RNN, and

NeuTraj has fewer parameters, t2vec is more efficient. The reason

is that NeuTraj needs to select more triplets during training and

compute spatial attention based on adjacent grids at each time step.

6.4 Ablation Studies

6.4.1 The Role of 1D and 2D Convolution. Our ConvTraj combines

1D and 2D convolutions, we thus conducted the following experi-

ments to evaluate the contributions of each module: (1) 1D CNN.

Only using 1D convolution. (2) 2D CNN. Only using 2D convolu-

tion. (3) 1D+2D. Using 1D and 2D convolution together. The results

in Table 8 show that for all measurements, neglecting any of these

modules leads to a reduction in performance. In addition, we ob-

serve that 2D CNN outperforms most baselines, including TrjSR,

which also uses 2D convolution. A similar conclusion can also be

derived from Table 6. We explain that the goal of TrjSR is to re-

construct a high-resolution image from a low-resolution so that it

can be as close as possible to the original image, thus the backbone

and loss used are quite different from our 2D CNN. Furthermore,

although we fine-tuned TrjSR, our 2D CNN is trained end-to-end

and thus has more advantages.

1019

Table 8: Ablation Studies Results: The Role of 1D and 2D Convolution

Hausdorff DFD DTW EDR

Method HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Geolife

1D CNN 38.89 56.90 79.01 62.51 76.44 95.50 32.02 45.82 68.34 11.32 14.60 16.09

2D CNN 57.97 72.11 92.49 44.28 54.32 85.37 35.46 45.19 75.22 22.41 26.59 50.00

1D+2D 63.69 76.12 95.20 68.86 79.52 97.34 46.46 59.26 83.70 28.64 30.75 54.93

Porto

1D CNN 13.80 25.53 39.68 10.30 17.86 32.02 3.16 8.24 13.06 12.58 14.45 24.86

2D CNN 28.46 40.72 60.04 24.52 35.35 54.84 19.88 30.39 34.91 9.90 17.26 26.96

1D+2D 33.27 45.98 67.20 40.59 53.35 77.33 24.46 35.36 52.83 15.61 21.45 37.00

6.4.2 Use LSTM to Replace 1D Convolution. The role of 1D con-

volution is to capture the sequential features. Although RNNs are

commonly used for this purpose [32], we aim to show the important

role of 1D convolution in ConvTraj by replacing it with LSTM. We

will compare three methods to show its effectiveness in capturing

sequential features: (1) 2D CNN. Only using 2D convolution. (2)

LSTM+2D. Using LSTM and 2D convolution together. (3) 1D+2D.

Using 1D and 2D convolution together. The dataset is the same as

Table 1, called Porto-S, and the number of GPS points contained in

each trajectory in Porto-S ranges from 104 to 888. In addition, we

generated two more datasets, Porto-S-10 and Porto-S-70, which

contain the first 10 and 70 points of each trajectory in Porto-S re-

spectively. We can observe that the performance of LSTM+2D and

1D+2D is similar in the Porto-S-10, and LSTM+2D even performs

slightly better than 1D+2D at some measurements (e.g., DTW and

EDR), and both methods are significantly outperform than 2D CNN.

These results show that LSTM performs well in capturing sequen-

tial features when the trajectory contains fewer points. However, as

the number of points in a trajectory increases, the ability of LSTM

to capture sequential features gradually decreases. For example,

the HR@1 of 1D+2D and LSTM+2D on Porto-S-10 are 62.40% and

63.20% respectively for DTW. However, the HR@1 on Porto-S-70

are 52.40% and 46.40% respectively, and on Porto-S they are 38.60%

and 22.20%. The gaps between them are -0.80%, +6.0%, +16.4%, in-

creasing progressively. Even LSTM+2D performs nearly as well as

2D CNN alone on Porto-S. These results show that RNNs struggle to

capture the sequential features of trajectories with a large number

of GPS points, whereas 1D CNNs do not exhibit this limitation.

6.4.3 2D Image Construction. We checked the image generation

strategy used in TrjSR. We can find that when this strategy is

directly applied to ConvTraj, the performance of themodel degrades.

Replacing the average pooling in the 2D convolution with max

pooling brings performance close to ConvTraj. The reason is that for

grayscale images, more points indicate a longer duration in a grid,

allowing different pixel values to capture the temporal properties.

Average pooling can introduce noise that hinders the model’s ability

to capture geo-distribution. In contrast, max pooling effectively

extracts the strongest features from the grayscale image.

6.4.4 Loss Function. We conducted an ablation study on two loss

functions on the Geolife and found that after removing the triplet

loss, all metrics declined. However, after removing the MSE loss, the

metrics of Hausdorff and DFD declined, while the metrics of DTW

and EDR increased.We guess the reason is that the range of distance

values of DTW and EDR is relatively large compared to Hausdorff

and DFD, thus causing the MSE loss to encounter problems during

scaling. A more detailed discussion may be studied in the future.

6.5 Training and Convergence Discussion

6.5.1 Motivation Experiment. Since the Transformer-based model

has more parameters, we thus tested 200, 1000, and 2000 training

epochs for the experiments in the introduction. We can find that

even if the vanilla Transformer-based model reached convergence,

it did not show an advantage over the 1D CNN that was only trained

for 200 epochs. However, the training cost of the Transformer-based

model was very high due to its larger number of parameters. We

also evaluated the performance of each model after increasing the

training trajectories from 3000 to 6000, and 10000. The results show

that the vanilla Transformer-based model does not significantly

outperform the 1D CNN even with increased training data.

6.5.2 The Training Details of TrajCL. Since the baseline of TrajCL
performs best among all current Transformer-based baselines, we

would like to add more details about the training and convergence

of TrajCL. In our experiments, TrajCL’s results are based on its

default open-source settings for a fair comparison. For Geolife, we

pre-train TrajCL with 10000 trajectories using the default training

epoch of 100 in its open-source code, then fine-tune TrajCL with

the ground truth, with the default training epoch of 30 in its open-

source code. We can see that for Hausdorff and DFD, the model

does not seem to have converged at this time, but for DTW and

EDR, the model has overfitted. We thus increased training epochs

from 30 to 100 and we can observe that the model has converged

after 100 epochs. In addition, the performance of Hausdorff and

DFD increases after 100 epochs of training, but the performance of

DTW and EDR decreases after 100 epochs of training.

More detailed results and explanations can be found here
7
.

7 CONCLUSION

This paper argues that trajectory similarity learning should pay

more attention to local similarity and proposes a CNN-based frame-

work ConvTraj. Some analysis is conducted to help justify its effec-

tiveness and extensive experiments show its superiority.

ACKNOWLEDGMENTS

This work was sponsored by the Fundamental Research Funds for

the Central Universities (226-2024-00145, 226-2024-00216), NSFC

Grant No. 62402420, and Zhejiang University Education Foundation

Qizhen Scholar Foundation.

7
https://arxiv.org/abs/2405.19761

1020

REFERENCES

[1] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei

Pan, and Erin Taylor. 2018. Subtrajectory Clustering: Models and Algorithms. In

PODS. ACM, 75–87.

[2] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient Similar-

ity Search In Sequence Databases. In FODO (Lecture Notes in Computer Science),
Vol. 730. Springer, 69–84.

[3] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between

two polygonal curves. Int. J. Comput. Geom. Appl. 5 (1995), 75–91.
[4] Stefan Atev, Grant Miller, and Nikolaos P. Papanikolopoulos. 2010. Clustering of

Vehicle Trajectories. IEEE Trans. Intell. Transp. Syst. 11, 3 (2010), 647–657.
[5] Hanlin Cao, Haina Tang, YuleiWu, FeiWang, and Yongjun Xu. 2021. On Accurate

Computation of Trajectory Similarity via Single Image Super-Resolution. In

IJCNN. IEEE, 1–9.
[6] T.-H. Hubert Chan, Arnaud Guerquin, and Mauro Sozio. 2018. Fully Dynamic

k-Center Clustering. InWWW. ACM, 579–587.

[7] Yanchuan Chang, Jianzhong Qi, Yuxuan Liang, and Egemen Tanin. 2023. Con-

trastive Trajectory Similarity Learning with Dual-Feature Attention. In ICDE.
IEEE, 2933–2945.

[8] Yanchuan Chang, Jianzhong Qi, Egemen Tanin, Xingjun Ma, and Hanan Samet.

2021. Sub-trajectory Similarity Join with Obfuscation. In SSDBM. ACM, 181–192.

[9] Yanchuan Chang, Egemen Tanin, Xin Cao, and Jianzhong Qi. 2023. Spatial

Structure-Aware Road Network Embedding via Graph Contrastive Learning. In

EDBT. OpenProceedings.org, 144–156.
[10] Yanchuan Chang, Egemen Tanin, Gao Cong, Christian S. Jensen, and Jianzhong

Qi. 2023. Trajectory Similarity Measurement: An Efficiency Perspective. CoRR
abs/2311.00960 (2023).

[11] Zhihao Chang, Linzhu Yu, Yanchao Xu, andWentaoHu. 2024. Neural Embeddings

for kNN Search in Biological Sequence. In AAAI. AAAI Press, 38–45.
[12] Lei Chen and Raymond T. Ng. 2004. On The Marriage of Lp-norms and Edit

Distance. In VLDB. Morgan Kaufmann, 792–803.

[13] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and Fast Similarity

Search for Moving Object Trajectories. In SIGMOD. ACM, 491–502.

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation.

In EMNLP. ACL, 1724–1734.
[15] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021.

E
2
DTC: An End to End Deep Trajectory Clustering Framework via Self-Training.

In ICDE. IEEE, 696–707.
[16] Ziquan Fang, Yuntao Du, Xinjun Zhu, Danlei Hu, Lu Chen, Yunjun Gao, and

Christian S. Jensen. 2022. Spatio-Temporal Trajectory Similarity Learning in

Road Networks. In KDD. ACM, 347–356.

[17] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A Graph-

based Approach for Trajectory Similarity Computation in Spatial Networks. In

KDD. ACM, 556–564.

[18] Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In defense of the

triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017).

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (1997), 1735–1780.
[20] Rikard Laxhammar and Göran Falkman. 2014. Online Learning and Sequential

Anomaly Detection in Trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36, 6
(2014), 1158–1173.

[21] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, andWei Wei. 2018. Deep

Representation Learning for Trajectory Similarity Computation. In ICDE. IEEE
Computer Society, 617–628.

[22] Bin Lin and Jianwen Su. 2008. One Way Distance: For Shape Based Similarity

Search of Moving Object Trajectories. GeoInformatica 12, 2 (2008), 117–142.
[23] Xiang Liu, Xiaoying Tan, Yuchun Guo, Yishuai Chen, and Zhe Zhang. 2022.

CSTRM: Contrastive Self-Supervised Trajectory Representation Model for tra-

jectory similarity computation. Comput. Commun. 185 (2022), 159–167.
[24] Sayan Ranu, Deepak P, Aditya D. Telang, Prasad Deshpande, and Sriram Ragha-

van. 2015. Indexing and matching trajectories under inconsistent sampling rates.

In ICDE, Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha,

and Guy M. Lohman (Eds.). IEEE Computer Society, 999–1010.

[25] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed In-Memory

Trajectory Analytics. In SIGMOD. ACM, 725–740.

[26] Bo Tang, Man Lung Yiu, Kyriakos Mouratidis, and Kai Wang. 2017. Efficient

Motif Discovery in Spatial Trajectories Using Discrete Fréchet Distance. In EDBT.
OpenProceedings.org, 378–389.

[27] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. 2002. Discovering

Similar Multidimensional Trajectories. In ICDE, Rakesh Agrawal and Klaus R.

Dittrich (Eds.). IEEE Computer Society, 673–684.

[28] Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for

large margin nearest neighbor classification. Journal of machine learning research
10, 2 (2009).

[29] Dong Xie, Feifei Li, and Jeff M. Phillips. 2017. Distributed Trajectory Similarity

Search. Proc. VLDB Endow. 10, 11 (2017), 1478–1489.
[30] Peilun Yang, Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Wenjie Zhang.

2022. TMN: Trajectory Matching Networks for Predicting Similarity. In ICDE.
IEEE, 1700–1713.

[31] Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin

Lin. 2021. T3S: Effective Representation Learning for Trajectory Similarity

Computation. In ICDE. IEEE, 2183–2188.
[32] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-

ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.

In ICDE. IEEE, 1358–1369.
[33] Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. 2022. Traj-

GAT: A Graph-based Long-term Dependency Modeling Approach for Trajectory

Similarity Computation. In SIGKDD. ACM, 2275–2285.

[34] Di Yao, Chao Zhang, Zhihua Zhu, Qin Hu, Zheng Wang, Jian-Hui Huang, and

Jingping Bi. 2018. Learning deep representation for trajectory clustering. Expert
Syst. J. Knowl. Eng. 35, 2 (2018).

[35] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. 1998. Efficient Retrieval of

Similar Time Sequences Under Time Warping. In ICDE. IEEE Computer Society,

201–208.

[36] Dongxiang Zhang, Zhihao Chang, Sai Wu, Ye Yuan, Kian-Lee Tan, and Gang

Chen. 2022. Continuous Trajectory Similarity Search for Online Outlier Detection.

IEEE Trans. Knowl. Data Eng. 34, 10 (2022), 4690–4704.
[37] Dongxiang Zhang, Zhihao Chang, Dingyu Yang, Dongsheng Li, Kian-Lee Tan,

Ke Chen, and Gang Chen. 2023. SQUID: subtrajectory query in trillion-scale

GPS database. VLDB J. 32, 4 (2023), 887–904.
[38] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun,Weiwei

Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary

Supervision and Optimal Matching. In IJCAI. ijcai.org, 3209–3215.
[39] Jiahao Zhang, Bo Tang, and Man Lung Yiu. 2019. Fast Trajectory Range Query

with Discrete Frechet Distance. In EDBT. OpenProceedings.org, 634–637.
[40] Silin Zhou, Peng Han, Di Yao, Lisi Chen, and Xiangliang Zhang. 2023. Spatial-

temporal fusion graph framework for trajectory similarity computation. WWW
26, 4 (2023), 1501–1523.

[41] Silin Zhou, Jing Li, Hao Wang, Shuo Shang, and Peng Han. 2023. GRLSTM:

Trajectory Similarity Computation with Graph-Based Residual LSTM. In AAAI.
AAAI Press, 4972–4980.

1021

	Abstract
	1 Introduction
	2 Related Work
	2.1 Heuristic Trajectory Similarity Measures
	2.2 Learning-based Trajectory Similarity

	3 Problem Definition
	4 Methodology
	4.1 Input Preprocessing
	4.2 ConvTraj Network Structure
	4.3 Training Pipeline

	5 Theoretical Analysis
	5.1 Discrete Frechet Distance
	5.2 One-dimensional Max-Pooling

	6 Experiments
	6.1 Experimental Setting
	6.2 Effectiveness
	6.3 Efficiency
	6.4 Ablation Studies
	6.5 Training and Convergence Discussion

	7 Conclusion
	Acknowledgments
	References

