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ABSTRACT

Denial constraints (DCs) are well-known to express business rules
on data. They subsume other integrity constraints (ICs), such as
key constraints or functional dependencies. One can use traditional
DBMS or specialized algorithms to validate such dependencies on a
dataset. However, no known approach exists to detect DC violations
incrementally. Data typically changes over time, and recomputing
the entire violation set after every update is wasteful. Alerting data
practitioners of data quality issues immediately, enables them to
take measures earlier and can help prevent follow-up issues.

We present Weever, the first incremental approach to detect
all violations of a given set of DCs. It uses a novel index struc-
ture to process inequality predicates and a new method to plan
the execution order of predicates depending on their selectivity,
reducing redundant computations when handling multiple DCs.
Our evaluation shows that Weever outperforms a DBMS-based
baseline by up to two orders of magnitude. And in the same time
that a state-of-the-art static approach takes to analyze an entire
dataset,Weever processes up to 200 000 insertions.
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1 INTRODUCTION

Integrity constraints (ICs) are a cornerstone in enhancing data qual-
ity by ensuring consistency across database records. Most DBMSs
support key constraints such as primary and foreign keys. How-
ever, supporting more complex constraints is needed for higher data
quality standards, as production data usually contains much more
complex data relationships. Consider the product shipping records
in Table 1. It is fair to assume that shipping operation companies
would like to maintain such records consistent with data quality
ICs, for instance (i) package codes must be unique; (ii) two records
must have equal distances between pairs of tracked packages where
the origin of one package matches the destination of the other, and
vice versa; or (iii) for any two packages traveling the same distance,
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Table 1: Example relation of tracked packages

package origin destination distance volume postage
code [km] [m3] [$]

0 London Cape Town 9700 8 100
1 Cape Town Lima 9700 18 50
2 London New Delhi 6600 30 25
3 Cape Town London 9700 45 200
4 New Delhi London 6700 45 50

insert 5 Mexico City Monaco 9700 18 10

delete 4 New Delhi London 6700 45 50

the postage cost for the smaller package should not be higher than
that for the larger package.

Constraint (i) is easily captured as a primary key, but Con-
straints (ii) and (iii) require a more powerful formalism. As shown
in [3, 13], denial constraints (DCs) are a practical way to model
these and many other types of constraints. Typically, DCs are ex-
pressed as a conjunction of relational predicates over a relation.
A relation instance is inconsistent (dirty) if it contains any set of
tuples that satisfy the predicate conjunction, i.e., all the predicates
of the DC simultaneously. These sets of tuples are DC violations

and point to problematic combinations of values, i.e., data errors.
For the tracked packages example, the three constraints can be

captured with the following DCs:
𝜑1 : ∀𝑡, 𝑡 ′ : ¬(𝑡 .id = 𝑡 ′ .id)
𝜑2 : ∀𝑡, 𝑡 ′ : ¬(𝑡 .origin = 𝑡 ′ .destination ∧ 𝑡 .destination = 𝑡 ′ .origin

∧ 𝑡 .distance ≠ 𝑡 ′ .distance)
𝜑3 : ∀𝑡, 𝑡 ′ : ¬(𝑡 .distance = 𝑡 ′ .distance ∧ 𝑡 .volume < 𝑡 ′ .volume

∧ 𝑡 .postage > 𝑡 ′ .postage)
Note that for example, tuples 𝑡2 and 𝑡4 violate DC 𝜑2: the dis-

tance between London and New Delhi varies. Such violations can
occur during data ingestion or disappear when data is deleted, as
illustrated by the operations marked in the example. We defer the
more formal definition of DCs to Section 3.

Several data cleaning solutions have been proposed to identify
and (potentially) repair DC violations and other data errors [6,
11, 21]. However, most existing solutions treat data cleaning as a
one-time, offline task. Unfortunately, this approach is not practical
in many scenarios: data changes rapidly, and since data-cleaning
algorithms are computationally demanding, rerunning them at each
update becomes cost-prohibitive.

Also, it is often impossible to fix violations immediately since
there are many possible data repairs [13], and experts who can
check each repair are usually not readily available. Nonetheless,
tracking violations as soon as they occur can serve users with
an immediate alert system that helps prevent cascading problems
caused by unnoticed data errors. While the database might contain
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errors, data reporting can leverage (and avoid) these errors to return,
for instance, consistent query answers [1, 3].

The need for dynamic computation in scenarios where compu-
tation is expensive, and data changes frequently have long been
acknowledged [20]. In data cleaning systems, the error detector
serves as a critical bottleneck. A few studies have explored the
challenges and applications of dynamic violation detection [7, 9],
focusing on conditional functional dependencies, a type of con-
straint that is subsumed by DCs. For DC violation detection, in
particular, this component has been implemented, for example,
using SQL queries [21]. Recent work has shown performance prob-
lems with this approach [17]: some DBMS can take days to process
the queries for typical DCs. Alternative solutions have been in-
vestigated, but so far, they have considered only static datasets,
requiring rerunning for dynamic data.

In a quest towards dynamic data cleaning, our main contribu-
tion is the first efficient incremental DC violation detection approach:
Weever. It adapts static DC violation detection concepts to the
dynamic paradigm (Section 3). We introduce a novel data structure,
the LT-tree, to efficiently process inequality predicates incremen-
tally (Section 4). Additionally, Weever schedules the predicates of
the given DCs optimally and maximizes the computational reusage
when processing multiple DCs (Section 5). We conduct a compre-
hensive evaluation of Weever, comparing it against state-of-the-art
static approaches and a baseline across various scenarios (Section 6).

2 RELATEDWORK

Generally speaking, error detection is a primary stage in data clean-
ing [13]. Several data cleaning tools implement this stage by trig-
gering SQL queries to a DBMS [8, 10, 11, 21]. For example, Fan et
al. devised a set of SQL-based techniques for commercial DBMS to
detect violations of conditional functional dependencies [8]. Post-
greSQL has also been used in [11] and [21] to detect errors. The
system in [10] also uses entity enhancement rules that were trans-
lated into SQL queries and user-defined functions.

As experimentally shown in [17], DBMS are not equipped to
handle certain workloads, in particular, some types of DCs with
complex predicates. Thus, efficient DC violation detection has been
studied before [17, 18]. Additionally, some discovery methods for
DCs share the sub-problem of validating possible DC candidates on
the entire dataset [4]. These three approaches are closely related,
building upon each other. All use the concept of refining a compact
candidate representation with specialized algorithms for each op-
erator.Weever adapts this concept for the incremental scenario,
because it does not need to process pairs of tuples for inserts, but
rather compares the newly inserted tuple to the existing data.

Similarly toWeever, [18] uses compressed bitsets to represent
the candidate set. While [17] argues that switching between differ-
ent representations of candidate sets improves performance, our
approach benefits from fast set operations in each step. Thus, we
avoid the overhead of transforming the representation. Finally, [17]
shows the importance of the processing order of predicates in a
DC. The authors propose a sketch-based method to better predict
the selectivity of predicates. SinceWeever creates an inverted in-
dex for every predicate up front, there is no need for cardinality
estimation, and we can order predicates differently.

A different perspective is taken in [16]: Rapidash focuses on
DC verification, i.e., finding the first violation in a dataset.Weever
cannot be easily adapted to this scenario, as it always processes the
predicates for all tuples. We could abort execution after identifying
the first violation, but the performance would not be comparable
to [16]. Nonetheless, the system also allows detecting all violations
in a dataset. Its specialized index structure for inequality predicates
is inspired by orthogonal range search, and processes multiple
inequality predicates simultaneously. We develop our own index
structure for inequality predicates, the Less-Than-tree (LT-tree),
which is geared to the incremental scenario and can be used to
validate multiple DCs simultaneously, in contrast to [16].

The incremental DC discovery problem is studied in [19]. How-
ever, that approach can handle only insertions, while ours can
additionally process deletions (and updates as a deletion plus inser-
tion). Thus, the discovered DCs might become non-minimal after
a deletion or update. Since the predicate space in DC-discovery is
larger, the approach only indexes one predicate per DC and loops
over all tuple pairs generated by the index to validate DCs. As the
DCs are predefined in our use case, we can keep an index for every
predicate. The authors of [19] propose a new index structure for
inequality predicates, which we discuss in detail in Section 4.1 and
evaluate in Section 6.3.1.

3 DENIAL CONSTRAINTS

We use the denial constraint (DC) formalism to define business
rules to ensure data quality. DCs subsume other known integrity
constraints, such as unique column constraints (UCCs), functional
dependencies (FDs) and order dependencies (ODs), and can express
evenmore complex rules. We use the notation from [5] and formally
define a DC as follows.

Definition 3.1. Given a relation 𝑅 and a relational instance 𝑟 , let
𝐴, 𝐵 ∈ 𝑅 be possibly equal attributes, 𝑡, 𝑡 ′ ∈ 𝑟 two tuples, and 𝜃 an
operator. A predicate 𝑝𝑖 is defined as 𝑡 .𝐴 𝜃 𝑡 ′ .𝐵. A DC 𝜑 is of the
form 𝜑 : ∀𝑡, 𝑡 ′¬(𝑝1 ∧ ... ∧ 𝑝𝑚).

We restrict the types of DCs considered in this work in ac-
cordance to previous works [4, 5, 17]: (1) inequality predicates
(<, ≤, >, ≥) for text data are not supported, as the order typically
has no semantic link to other ordered columns; and (2) the number
of tuples participating in a DC is set to two. On the one hand, the
definition above can be extended to use more tuples in different
predicates, but most interesting dependencies can be found when
comparing tuple pairs. On the other hand, we might compare a
single tuple to a constant. However, in the context of DC violation
detection, these predicates work as a simple filter, as they do not
require other tuples to validate the predicate. Since all further DCs
use the all quantifier ∀𝑡, 𝑡 ′, we omit it from now on to improve
visual clarity. Our algorithm Weever supports the comparison op-
erators 𝜃 ∈ {=, <, ≤, >, ≥,≠}. While we refer to = as equality and ≠
as non-equality, the other operations are generalized as inequalities.

3.1 DC violations

To violate a given DC, a tuple pair 𝑡, 𝑡 ′ must fulfill all its predicates.
As a DC is a negated conjunction of predicates, a single unfulfilled
predicate prevents a violation. We can use this property to effi-
ciently validate DCs, by considering only those tuple pairs that
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already fulfilled all previously regarded predicates. Therefore, the
predicates of a DC naturally resemble a pipeline. Each predicate
receives the candidate set of still possible violating tuple pairs from
the previous predicate and removes those tuple pairs that do not
fulfill it. The candidate set is referred to as intermediate and the pro-
cess of reducing it as refinement. Like related work, our refinement
uses specialized algorithms for each operator [4, 17].

We continue our running example and examine the refinement
pipeline for DC 𝜑2 as shown below. Initially, the candidate set con-
tains all tuple pairs. The intermediate is refined by each predicate,
until it contains all DC violations at the end, namely {(𝑡2, 𝑡4), (𝑡4, 𝑡2)}.
In most approaches, the intermediate does not contain the actual
tuple pairs, but uses a compact representation.

Step Processed predicate Intermediate

1 𝑡 .origin = 𝑡 ′ .destination {(𝑡0, 𝑡3), (𝑡0, 𝑡4), (𝑡1, 𝑡0), (𝑡2, 𝑡3),
(𝑡2, 𝑡4), (𝑡3, 𝑡0), (𝑡4, 𝑡2)}

2 𝑡 .destination = 𝑡 ′ .origin {(𝑡0, 𝑡3), (𝑡2, 𝑡4), (𝑡3, 𝑡0), (𝑡4, 𝑡2)}
3 𝑡 .distance ≠ 𝑡 ′ .distance {(𝑡2, 𝑡4), (𝑡4, 𝑡2)}

3.2 Incremental DC violation detection

In static DC violation detection, the intermediate consists of tuple
pairs – in an incremental scenario, we use a different structure.
Because every new insertion can create new violations with the
existing tuples, our initial candidate set contains all existing tuples.
Implicitly, the new tuple forms a possible violating pair with all
tuples in the intermediate set. As a DC is defined on tuple pairs,
the inserted tuple can either be 𝑡 or 𝑡 ′ for validation purposes.
Let 𝑛𝑒𝑤𝑇 be the newly inserted tuple and 𝑇 the set of all tuples.
We create two independent intermediates, namely 𝐼 and 𝐼 ′ with
𝐼 = {𝑡 ∈ 𝑇 | (𝑛𝑒𝑤𝑇, 𝑡) ̸|= 𝜑} and 𝐼 ′ = {𝑡 ∈ 𝑇 | (𝑡, 𝑛𝑒𝑤𝑇 ) ̸|= 𝜑}.
However, we do not need a second intermediate for reflexive DCs.
The two intermediates are always the same if there is neither a
predicate that uses two attributes nor an inequality predicate. For
example, 𝜑1 is reflexive, but 𝜑2 and 𝜑3 are not. Furthermore, a
predicate can refine the two intermediates simultaneously if both
𝐴 and 𝐵 refer to the same attribute.

For our example DC 𝜑3, let us insert tuple 𝑡5. We show the
refinement pipeline below. Initially, the two intermediates contain
all other tuples. As each predicate contains only one column, we
can simultaneously refine both intermediates. As one intermediate
is empty in the end, only (𝑡0, 𝑡5) violates 𝜑3. In Section 5.4, we show
how Weever processes inserted tuples in detail.

Step Processed predicate 𝐼 𝐼 ′

1 𝑡 .distance = 𝑡 ′ .distance {𝑡0, 𝑡1, 𝑡3} {𝑡0, 𝑡1, 𝑡3}
2 𝑡 .volume < 𝑡 ′ .volume {𝑡3} {𝑡0}
3 𝑡 .postage > 𝑡 ′ .postage ∅ {𝑡0}

As deletions cannot create new violations, we do not need to
process the predicate pipeline. Instead, deletions can only elim-
inate existing violations, so we have to efficiently keep track of
them. For example, deleting 𝑡4 removes both violating tuple pairs
(𝑡2, 𝑡4), (𝑡4, 𝑡2) from our previously discovered result for 𝜑2. In Sec-
tion 5.6, we detail our handling of existing violations under dele-
tions. Finally, updates can efficiently be processed by modelling
them as a deletion and an insertion of the updated tuple.

4 LESS-THAN-TREE (LT-TREE)

We present a novel index structure, the LT-tree to efficiently val-
idate inequality predicates (i.e., <, ≤, >, ≥), as these are the most
expensive predicate class. As inequality predicates rely on ordering,
hashing can speed up neither insertion nor querying. Therefore,
our index structure extends a traditional Red-black tree[12] and
represents an inverted index of the attribute values to the tuple ids
that have that value. Additionally, tree nodes store a Less-Than-
set (LT-set), which is the set of all tuple ids in the left subtree below
them, i.e., the tuple ids that have a smaller value in the indexed
column. Thus, the LT-tree has similarities to a segment tree [2]. The
LT-sets allow our solution to achieve logarithmic time complexity
for insertion, deletion, and both querying a single value and all
smaller values. By retrieving all smaller values, we can also handle
other inequality predicates by using the complement set.

4.1 Related approaches

Traditional DC validation approaches propose multiple algorithms
to handle the different kinds of inequality predicates. However,
none of them can be applied in our scenario. FACET [17] proposes
three algorithms. The first, Hash-Sort-Merge (HSM), uses hashmaps
to deduplicate the attribute values and sorts the keys in a second
step. Afterward, it generates the result refinements while iterating
through the sorted key lists of the involved columns. While we
could use the idea of hash maps for deduplication, we would need
to re-sort the keys for every inserted value. Binning-Hash-Sort-
Merge (BHSM) [17] is an improvement to efficiently handle cases
with many distinct values. Here, the key space is partitioned into
fixed buckets and HSM is run within these buckets. The key space
in an incremental scenario is constantly changing, so the bucket
boundaries shift often. Finally, [17] also employs the IEJoin [14]
whenever two inequality predicates with many distinct values need
to be processed. The method sorts the affected columns and uses a
permutation array to store references to the other columns. Thus,
it linearly scans the data only once after sorting. However, as the
data structures used to optimize the access are fixed size arrays,
they cannot be efficiently updated, which inhibits performance in
our update-heavy scenario.

Qian et al. present an alternative way to process two inequality
predicates jointly in an incremental setting [19]. They store ordered
value pairs of both predicates in a skip list and traverse it to find the
first violation. Then, they iterate through the rest of the list, as these
values violate the predicates. However, the performance quickly
degrades. First, the list must be sorted individually according to both
pair values. Therefore, they must create entirely new lists when
there are out-of-order values for even one predicate. For each new
insertion, every list has to be processed separately. Second, the final
iteration takes linear time if there are many errors because they
must handle every violating tuple individually. Thus, their solution
“Fetch” outperforms the LT-tree in an ideal setting, but for more
realistic workloads it performs worse, as we show in Section 6.3.1.

4.2 What is stored?

The LT-tree is based on a Red-black tree [12]. According to the
balancing rules of [12], the longest path from the root to a leaf is
no more than twice as long as the shortest path from the root to
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Figure 1: Exemplary state of the LT-tree; including the insert

of 𝑡5 (dashed node) and a necessary rebalance operation.

another leaf. An overview of the structures in memory are provided
in Figure 1. Each node contains three components: (1) a distinct
attribute value as its key. The value sorts the data. Like FACET [17],
we allow only numeric attributes in inequality predicates, so there
is a natural ordering between the values; (2) the tuple set of tuple
ids that contain that attribute as a value; and (3) the LT-set, which
is a union of all tuple sets in the left subtree below the node, i.e., all
nodes with a smaller value. Thereby, we save approximately half of
all tuple ids in every level of the tree.

Theorem 4.1. Let 𝑛 be the number of tuples that are uniformly

distributed over 𝑑 distinct values. The space complexity of a LT-tree

is 𝑂 (𝑙𝑜𝑔(𝑑) · 𝑛 + 𝑑).

Proof. There exist 𝑑 nodes in the tree and each tuple set is on
average of size 𝑛/𝑑, since every distinct value occurs on average 𝑛/𝑑
times. Let ℎ be the height of the tree. On each level 𝑖 of the tree
from 0 (root level) to ℎ − 1 (leaf level), there are up to 2𝑖 nodes.
Additionally, for each node in each level, we store the union of the
tuple sets of their left subtree in the LT-set. The number of nodes in
the left subtree for a node on level 𝑖 is 2ℎ−𝑖−1 − 1. Thus, the size
of the LT-sets in each level 𝑖 are 2𝑖 · (2ℎ−𝑖−1 − 1) · 𝑛/𝑑. We combine
the size of tuple sets and LT-sets for each level 𝑖 .

𝑛

𝑑
· 2𝑖 + 𝑛

𝑑
· 2𝑖 · (2ℎ−𝑖−1 − 1) = 𝑛

𝑑
· 2ℎ−1

Therefore, every level of the tree stores the same amount of tuple ids.
Sinceℎ = 𝑙𝑜𝑔(𝑑) for a balanced tree, we hold 𝑙𝑜𝑔(𝑑) ·2𝑙𝑜𝑔 (𝑑 )−1 ·𝑛/𝑑 =

𝑙𝑜𝑔(𝑑) ·𝑑/2 ·𝑛/𝑑 = 𝑙𝑜𝑔(𝑑) ·𝑛/2 tuple ids in the LT-tree. To also store the
𝑑 distinct values, the overall space complexity is𝑂 (𝑙𝑜𝑔(𝑑)·𝑛+𝑑). □

Compared to a standard tree with a space complexity in𝑂 (𝑛+𝑑),
the additional overhead is feasible. The real-world space implica-
tions are even less severe: tuple id sets are represented as com-
pressed bit sets, so the actual memory consumption is rather low,
as shown in Section 6.3.1.

4.3 How is it accessed?

The LT-tree is traversed as a traditional binary tree for a search
operation. For each visited node, the query value is compared to the
current node’s value. If the query value matches the value of the
current node, we return the current node. Else, the left (smaller) or
right (larger) child is selected as appropriate. However, we must ex-
tend the insertion and deletion procedures to maintain the LT-sets.
We show that we can do so with no complexity overhead and how
we query the tree for all tuples that have a smaller value than a
given query value in logarithmic time complexity.
Insertion. Inserting into an LT-tree follows the same pattern of a
traditional binary tree. However, we need to additionally update
the LT-sets. We show the LT-tree after the insert of 𝑡5 in Figure 1.

The insert procedureworks as follows. Let 𝑡 be the newly inserted
tuple, 𝑣 the value of 𝑡 in the index attribute and 𝑡𝑖 the tuple id of 𝑡 .

(1) Traverse the tree to find the node that has 𝑣 as its value.
(2) Whenever the smaller child is selected, add 𝑡𝑖 to the LT-set

of currently visited node.
(3) If 𝑣 does not yet exist in the tree, create a new leaf node and

initialize it with a value of 𝑣 , a tuple set containing only 𝑡𝑖
and an empty LT-set. Otherwise, simply insert 𝑡𝑖 into the
tuple set of the node with the value of 𝑣 .

(4) If necessary, rebalance the tree (described below).

Theorem 4.2. Let 𝑑 be the number of distinct values. The time

complexity of inserting in a balanced LT-tree is 𝑂 (𝑙𝑜𝑔2 (𝑑)).
Proof. To insert a value in a balanced LT-tree, we have to visit

𝑂 (𝑙𝑜𝑔(𝑑)) nodes, as in a traditional binary tree. The additional
insert in the LT-sets is a logarithmic operation in the bit set [15]. □

Deletion. The deletion procedure closely resembles the insertion.
There are only two differences to the procedure described above. In
Step 2, we remove the tuple id from the LT-set instead of inserting
it. And in Step 3, we remove the node if the tuple set is empty after
removing 𝑡𝑖 from it. Thus, the time complexity is also 𝑂 (𝑙𝑜𝑔2 (𝑑)).
Rebalance. To ensure the worst-case guarantees, we might need
to rebalance the tree. Rebalancing occurs according to the rules of
a traditional Red-black tree [12], rotating the necessary subtrees
either left or right. Here, we need to also maintain the LT-sets.
We can describe which LT-sets need to be updated based on the
example in Figure 1. In the following paragraph, we identify the
tree nodes by their values.

First, there is no need to update any LT-sets above $25 or $50,
as only the order of these nodes changes. If they were the right
child of an upper node, this also holds. Second, $25’s LT-set does
not need to be updated, as the left subtree of $25 always remains
$10. Third, $50’s LT-set needs to be updated because the left subtree
changes from $25 ∪ $10 to ∅ or vice versa. If $25 has a right subtree,
it would become $50’s new left subtree and, thus, part of its LT-set.
We can reuse the previous LT-sets to speed up the update. For a
right rotation, we subtract $25’s tuple set and LT-set from $50’s
LT-set. For a left rotation, we build $50’s LT-set by the union of
$25’s tuple set and LT-set.

As shown in [12], we need at most two rotations for an inser-
tion and three rotations for a deletion. Therefore, both procedures
modify at most three LT-sets. However, these sets can hold up to all
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tuple ids, so the time complexity of the set operations can become
linear in the worst-case. The real-world impact is mitigated by our
usage of a compressed bit set, which offers fast set operations [15].
Search. The main use case for the LT-tree is to efficiently find all
tuples that have smaller values than a given query value. The tree
supports those queries by leveraging the LT-sets. We show how to
use the index for > and ≥ in Section 5.1. When we traverse the tree
and select the larger child, we add the LT-set to our result as shown
in Algorithm 1. By adding the tuple id set of the matching node (if
it exists) to the result, the method can be extended to ≤-queries.

Algorithm 1 Searching the LT-tree for all ids of those tuples that
have a indexed value that is smaller than the search value

Data: searchValue 𝑣
Return smallerTuples

1: function FindAllSmaller

2: 𝑥 ← rootNode, smallerTuples← ∅
3: while 𝑣 ≠ 𝑥 .value do
4: if 𝑣 > 𝑥 .value then
5: smallerTuples← ∪𝑥 .tuple set ∪𝑥 .LT-set
6: 𝑥 ← 𝑥 .rightChild

7: else 𝑥 ← 𝑥 .leftChild

8: return smallerTuples

Theorem 4.3. Let 𝑛 be the number of tuples and 𝑑 the number

of distinct values. The number of nodes to visit to search all smaller

values in a LT-tree is 𝑂 (𝑙𝑜𝑔(𝑑)). The worst-case time complexity to

generate the set of all tuple ids of the found tuples is 𝑂 (𝑛).
Proof. Algorithm 1 visits 𝑂 (𝑙𝑜𝑔(𝑑)) nodes to search for a spe-

cific value because it traverses the tree at most once from the root
to a leaf. Notice that the procedure generates the correct result, let
𝑥 be a node of a LT-tree and 𝑣 the search value. We start with 𝑥 as
the root of the LT-tree and distinguish three cases.
𝑣 = value of 𝑥 : By construction of the tree, all values in the left

subtree are smaller than 𝑣 . Therefore, all tuple ids in the tuple
sets of the subtree belong to the result, i.e., the LT-set of 𝑥 . We
union 𝑥 ’s LT-set to the result. Additionally, all values in the
right subtree are larger than 𝑣 . Thus, we can abort the search
at this point.

𝑣 < value of 𝑥 : By construction of the tree, all values in the right
subtree are larger than 𝑣 . Thus, the tuple sets of those nodes
and 𝑥 do not belong in the result. Some values in the left
subtree might still be larger than 𝑣 , so we set 𝑥 to its left child.

𝑣 > value of 𝑥 : By construction, all values in the left subtree are
smaller than 𝑣 . Thus, all tuple ids in the tuple sets of the subtree
belong to the result, i.e., the LT-set of 𝑥 . We union 𝑥 ’s LT-set
and 𝑥 ’s tuple set to the result. Some values in the right subtree
might still be smaller than 𝑣 , so we set 𝑥 to its right child.

In the worst-case, 𝑣 is larger than all values in the LT-tree making
all tuple ids part of the result. However, every tuple id is added to
the result set at most once. By construction, the ids in the tuple sets
cannot appear in any sets of the subtree below it. While tuple ids
in a LT-set can appear again in the LT-set of its left child, we only
add the LT-set if we select the right child. □

5 DETECTION ALGORITHM: WEEVER

The Weever algorithm detects violations of a given set of business
rules expressed as DCs. It creates specific indices for each attribute
in the DCs. For every change, indices and result sets are updated.
The output of Weever consists of all tuple pairs that violate the
given DC set. Alternatively, it can restrict the output to all new
violations for insertions or all removed violations for deletions.

Since deletions cannot produce any new violations, we first detail
the more complex insert processing. We introduce our method to
process a single predicate in Section 5.1, followed by our approach
to order multiple predicates in Section 5.2, and handle multiple DCs
efficiently in Section 5.3. We present the overall insertion routine
in Section 5.4 and a batch-based variant in Section 5.5. Finally, we
show howWeever handles deletions in Section 5.6.

5.1 Predicate processing

Processing a single predicate generally requires two steps. First,
we access the appropriate index to obtain the operand. Second, the
intermediates of all affected DCs are refined using the operand.The
operand is a set of tuple ids that is used to refine the intermediate, i.e.,
the candidate set of possible violations, as described in Section 3.

To efficiently obtain operands, we create an index for each col-
umn present in a predicate: if a column is part of an inequality
predicate, we use an LT-tree, and a simple hash map otherwise.
The specific operand needed depends on the predicate type. Let
𝑡 .𝐴 𝜃 𝑡 ′ .𝐵 be a predicate and 𝑛𝑒𝑤𝑇 the newly inserted tuple. For
equality and non-equality predicates, we select tuples with the same
value as 𝑛𝑒𝑤𝑇 . For inequality predicates, we obtain the tuples with
a smaller value than 𝑛𝑒𝑤𝑇 . This operation is natively supported by
the LT-tree (see Section 4.3). For predicates of type 𝑡 .𝐴 > 𝑛𝑒𝑤𝑇 .𝐵

and 𝑡 .𝐴 ≤ 𝑛𝑒𝑤𝑇 .𝐵, we build the union of the tuple set of smaller
tuples and the tuple set of equal tuples.

The intermediate and the operand are internally stored as a
compressed bit set [15]. Thus, they allow fast set operations, but
also save on space in practice. The operand bit set is independently
created for each predicate. By generating a DC-agnostic operand,
we can apply this operand to all DCs that share a predicate.

Weever applies the operands to the intermediate based on the
predicate type. On the one hand, it builds the intersection of the
intermediate and the operand for predicates of the types

𝑡 .𝐴 = 𝑛𝑒𝑤𝑇 .𝐵 𝑡 .𝐴 < 𝑛𝑒𝑤𝑇 .𝐵 𝑡 .𝐴 ≤ 𝑛𝑒𝑤𝑇 .𝐵

For these predicates, the operand contains those tuples that fulfill
the predicate. By intersecting with the intermediate, we remove
those tuples that cannot form a violation anymore. For example,
the predicate 𝑡 .distance = 𝑡 ′ .distance in 𝜑3 retains only {𝑡0} in the
intermediate. On the other hand,Weever performs a set difference
between the intermediate and the operand for the predicate types

𝑡 .𝐴 ≠ 𝑛𝑒𝑤𝑇 .𝐵 𝑡 .𝐴 > 𝑛𝑒𝑤𝑇 .𝐵 𝑡 .𝐴 ≥ 𝑛𝑒𝑤𝑇 .𝐵

Here, the operand contains exactly those tuples that do not fulfill
the predicate. Thus, we remove them from the intermediate. For
example, the predicate 𝑡 .distance ≠ 𝑡 ′ .distance in 𝜑2 removes {𝑡0}
from the intermediate in contrast to its equality counterpart.

For single-column predicates, i.e., those of the form 𝑡 .𝐴 𝜃 𝑡 ′ .𝐴,
we can reuse the operand to refine both intermediates. Equality
and non-equality predicates are reflexive, so we do not even need
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to reapply the operand as long as both intermediates were equal
before the predicate. While inequalities require the re-application
of the operand, we do not need to access the index again. Every
inequality predicate can be mirrored as 𝑛𝑒𝑤𝑇 becomes 𝑡 and 𝑡 ′, e.g.,
the counterpart of 𝑡 .𝐴 < 𝑛𝑒𝑤𝑇 .𝐴 is 𝑡 ′ .𝐴 > 𝑛𝑒𝑤𝑇 .𝐴. Thus, only the
application of the operand differs, but not the operand itself.

5.2 Scheduling predicates of an individual DC

The order in which predicates are executed plays an important
role in determining performance. In particular, we can abort a
predicate pipeline if the intermediate is empty. However, we cannot
accurately predict the chance of the intermediate being empty after
a predicate. Therefore, we classify the predicates of a DC into the
following six groups and devise rules to handle them individually.
We execute the classes in the following order.

(1) uni-column equality: 𝑡 .𝐴 = 𝑡 ′ .𝐴
(2) bi-column equality: 𝑡 .𝐴 = 𝑡 ′ .𝐵
(3) uni-column non-equality: 𝑡 .𝐴 ≠ 𝑡 ′ .𝐴
(4) bi-column non-equality: 𝑡 .𝐴 ≠ 𝑡 ′ .𝐵
(5) uni-column inequality: 𝑡 .𝐴 < 𝑡 ′ .𝐴
(6) bi-column inequality: 𝑡 .𝐴 < 𝑡 ′ .𝐵

Processing inequalities is costlier than all other predicates, as they
require more set operations. Thus, predicates (5) and (6) are exe-
cuted last. Additionally, we take the number of involved columns
of a predicate into account. Uni-column predicates (1), (3), and
(5) can simultaneously refine both intermediates. Finally, we sep-
arate equalities (1) and (2) from non-equalities (3) and (4) for two
reasons. First, equalities are more selective for any column with
cardinality > 2. Second, the initial intermediate construction is
faster for equalities because we can simply copy the operand. For
non-equalities, we need to copy all present tuple ids and build the
set difference with the operand.

Within each class, the actual predicates are sorted based on two
methods. For classes (1) – (4), we use selectivity to sort the predi-
cates. As the index access does not depend on the cardinality of the
column, we use the selectivity as a proxy for the chance of the inter-
mediate being empty. Given an equality predicate, the intermediate
is empty afterward, iff either the query value is unique or none of
the previous members of the intermediate have an equal value to
the query value. The more selective a predicate, the more likely
the query value is unique or the smaller the operand to compare
to the intermediate. Thus, we sort descending by selectivity. In
contrast, FACET sorts by selectivity ascending because it results in
smaller index sizes [17]. However, we index the column fully, so
we are not concerned about the index size. We can reason similarly
for non-equality predicates, but they are more selective for lower
cardinalities. Since we separated equalities and non-equalities into
different classes, we do not have to calculate the selectivity and can
use the column cardinalities, which we already track for the index.

For classes (5) and (6), half of all other tuples are smaller on
average, independent of the cardinality of the involved columns.
Therefore, we sort by cardinality ascending, as the index access is
logarithmic in the number of unique values.

Since the indices are updated for every insert, we would need to
sort the predicates within each class after each insert. However, two
strategies limit the number of times we need to sort. First, we sort

only if a change could have occurred, i.e., if the cardinality of two
columns change their order. Since the cardinality can only change
by 1 per inserted tuple, we save the minimum cardinality difference
for two adjacent predicates. While it might be low initially, usually
column cardinalities drift further apart as more values are inserted.
Second, we iterate the predicates before sorting to check whether
a change in order really occurred. We observe that cardinalities
change order frequently for smaller data sets, but over time we see
fewer changes and reduce sort overhead for larger datasets.

5.3 Scheduling multiple DCs

Weever efficiently processes multiple DCs at the same time using
the following four steps.

(1) Create an optimal schedule for each DC individually.
(2) Determine an execution order of the DCs.
(3) Identify common subsequences between DCs.
(4) Merge and schedule common prefixes.

First,Weever creates an optimal schedule for each DC as shown in
the previous section. We do not aim for a single, optimal schedule of
all used predicates, because the priority of a predicate depends on
the state of the affected DCs. By keeping the individual schedules,
we do not need to reorder the schedule if a DC finishes. We simply
execute the next DC. As shown in Section 5.1, the operands to refine
the intermediates are independent of the previous state. Thus, they
can be applied to an arbitrary number of DCs. If we encounter an
already processed predicate in another DC, it is skipped. For the
example DCs in Table 2, the individual schedules are depicted in
each row of the table.

Table 2: Example of multiple DCs with shared predicates

DC predicates

𝜑4 𝑝2 𝑝4 𝑝5 𝑝6
𝜑5 𝑝2 𝑝3 𝑝4 𝑝5
𝜑6 𝑝1 𝑝2 𝑝3

Second, after creating an optimal schedule within each DC,Wee-
ver determines the execution order of the DCs as a global ordering
of all predicates based on the rules of the previous section. We do
not alter the order based on the frequency of a predicate. Neither
sorting by frequency nor by the quotient of frequency and selectiv-
ity performs better, as we experimentally show in Section 6.3.2. The
lower refinement power of less selective predicates offsets the po-
tential gain of refining more DCs at the same time. Given the global
order of the predicates, we sort the DCs descending by their start
position, i.e., the position of their first predicate in the global order.
In our example in Table 2, we execute the DCs in the following
order:𝜑4, 𝜑5, 𝜑6. While we execute globally lower ranked predicates
first, they are at the beginning of a DC and thus optimal for that
DC. In return, we can potentially refine other DCs already. Thereby,
we minimize the number of overall processed predicates. For 𝜑6,
it would be optimal to execute 𝑝1 first. However, if we execute 𝑝2
first, which is still optimal for 𝜑5 and 𝜑6, we can simultaneously
refine all three DCs. Thus, we potentially never have to execute 𝑝1.
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Third,Weever identifies common subsequences of predicates
in the DCs. As these subsequences represent the same refinement
pipeline, we want to avoid the redundant computation. We propose
a new method for handling common subsequences because our
state-independent operands allow for more flexible schedules than
the traditional technique of prefix trees used in [4, 17]. As we
do not want to lose optimality of the DC schedules, the common
subsequences need to start at the beginning of one DC. However,
we neither restrict the position nor forbid other predicates in the
other DCs. Simply put, we check if the prefix of a DC is the subset
of any other DC. Therefore, we call them common prefixes. In our
example in Table 2, 𝑝2 ∧ 𝑝4 ∧ 𝑝5 of 𝜑4 is part of 𝜑5, and 𝑝2 ∧ 𝑝3 of
𝜑5 is part of 𝜑6. A prefix tree only finds an overlap of 𝑝2 in 𝜑4, 𝜑5.

Fourth,Weever decides which common prefix to schedule. To
share the intermediate of a common prefix, it can be copied to
the other DCs after executing its predicates. To allow copying, the
intermediate must only be refined by exactly the predicates in the
common prefix. Therefore, if we decide to use the start of a DC as
a common prefix, other common prefixes cannot refine that DC
anymore. Therefore, we define two measures and compare them to
decide. First, we calculate the benefit of a common prefix, which is
defined as the number of intermediate refinements it saves. Second,
we count the number of predicates of the respective DC, which
can be part of other common prefixes and call that measure the
optimization potential of a DC. In the example of Table 2, the benefit
of the prefix of 𝜑4 is 2 and that of 𝜑5 is 1. The optimization potential
of 𝜑4 is 0, while it is 2 for 𝜑5. Therefore, we schedule only the
common prefix of 𝑝2, 𝑝4, 𝑝5 of 𝜑4.

The decision for one common prefix changes the parameters for
other common prefixes, because the respective DC cannot be opti-
mized anymore. Therefore, we sort the potential common prefixes
ascending by their start position. The intuition is the following: a
potential common prefix at the front of a DC optimizes other DCs,
while the back of the respective DC is optimized by other common
prefixes. Thus, the benefit of a common prefix cannot be changed
by later common prefixes. Then, for each common prefix, we decide
whether we want to execute it and update the following common
prefixes accordingly. While this entails a quadratic time complexity,
the number of potential common prefixes is at most the number of
DCs – typically, it is even lower (≤ 5).

In the end, the schedule of Weever to process multiple DCs
contains the individual DC schedules in the execution order of the
DCs and the common prefixes that shall be executed.

5.4 Insert processing

When inserting a tuple, we need to re-validate all given DCs and
detect any new violations. We show the procedure in Algorithm 2.
First, we preprocess the inserted tuple to obtain a unique identifier
(Line 2) and a unified numeric representation (Line 3). We require a
primary key for the change data to uniquely identify tuples.Wee-
ver uses a simple hashmap to store the mapping of the key to the
id. Additionally, the tuple is transformed to a purely numeric repre-
sentation to allow for easier handling. To this end, we also use a
hashmap to map unique strings to an id. As we do not allow inequal-
ities, we do not need to consider the content of the string and can
simply use its id afterward. Second, the validation procedure itself

Algorithm 2 Inserting a tuple
Data: insertedTuple, allIds, allViolations, schedule
Return: violations

1: function Insert

2: tId← CreateNewKey(insertedTuple)

3: tuple← CreateNumericTuple(insertedTuple)

4: newViolations← ∅
5: for prefix← schedule.prefixes do
6: intermediate← ProcessAllPredicates(prefix, tuple)

7: if intermediate = ∅ then
8: MarkAsFinished(prefix.belongsToDC)

9: else SetIntermediate(prefix.belongsToDC, intermediate)

10: for DC← schedule.DCs do
11: intermediate← ProcessAllPredicates(DC, tuple)

12: if intermediate ≠ ∅ then
13: allViolations[DC][tId]← intermediate

14: newViolations← ∪ {intermediate}
15: InsertIntoIndices(tuple)

16: allIds← ∪ {tId}
17: UpdateSchedule(schedule)

18: return newViolations

is executed (Lines 4 – 14). It is composed of the steps detailed in the
previous sections. Given the schedule, we execute the prefixes first
and transfer their state to the affected DCs, if the intermediate is not
already empty. Afterward, the DCs are refined by processing the
remaining predicates. In the end, the new violations are collected
and stored to allow deleting them later. Third, the values of the
inserted tuple are inserted into the indices (Line 15) and the tuple
id is added to the set of all ids (Line 16). Fourth, the schedule is
updated to ensure the next tuple can be inserted efficiently (Line 17).
Finally, any new violations are returned. Alternatively, Weever
can also return all violations.

5.5 Batch processing

Under batch-processing, our input is not a single update or delete,
but rather a set of such changes, affording the potential to more ef-
ficiently process them. While batch processing does not change the
handling of equality and non-equality predicates using hashmaps,
we adapt the procedure for inequality predicates. Recall that the
LT-tree stores a set of all tuples with smaller values in each node.
Thus, we only need to union a logarithmic number of LT-sets. How-
ever, these operations are executed for every inserted tuple. By
intelligently sorting the tuples in the indexed column, we can re-
duce the number of union operations.

Let 𝑡1, 𝑡2 be two tuples that are inserted consecutively, 𝑖 is the
indexed column and 𝑠1 is the set of tuples with a smaller value
than 𝑡1, i.e., 𝑠1 = {𝑡 ′ | 𝑡 ′ [𝑖] < 𝑡1 [𝑖]}, and 𝑠2 is defined similarly for
𝑡2. Now, if 𝑡1 [𝑖] < 𝑡2 [𝑖], then 𝑠1 ⊂ 𝑠2. Thus, we need to add only
those tuples 𝑡 ′ to the operand of 𝑡2, where 𝑡1 [𝑖] < 𝑡 ′ [𝑖] < 𝑡2 [𝑖].
Weever sorts the batch by the first inequality predicate, according
to the order described in Section 5.2. While we could extend this
procedure to all inequality predicates, we would need to store all
intermediates of the entire batch simultaneously. Thus, we only
use the first predicate, as it is also the most likely to be executed.

1006



5.6 Delete processing

Algorithm 3 Deleting a tuple
Data: deletedTuple, indices
Return: allViolations

1: function Delete

2: tId← GetKey(deletedTuple)

3: for violationMap← allViolations do
4: DeleteFromViolationMap(violationMap, tId)

5: DeleteFromIndices(CreateNumericTuple(deletedTuple))

6: allIds← − {tId}
7: schedule← UpdateSchedule(schedule)

8: return allViolations

Algorithm 3 shows the procedure of processing a deleted tuple
in Weever. The handling of deletions does not need a predicate
schedule, as it cannot find any new violations. The preprocessing
step is equal to the insert handling in Algorithm 2. After obtaining
the unique identifier, the violations are removed for eachDC (Line 3).
Next, the tuple values are deleted from the indices and the id is
removed from the set of all ids. As the removal of values can change
column cardinalities, we need to check if the schedule needs to
be updated. Thereby, we guarantee that the next insert can be
efficiently processed. While this is overhead, usually we can skip
the expensive schedulingwith the strategies described in Section 5.2.
Finally, the set of all violations is returned.

5.7 Complexity analysis

The time complexity of the different steps (as depicted in Table 3)
in processing a change are clearly dominated by enumerating the
violations. In theory, a tuple can form a violating tuple pair with
every other tuple, so the number of violations scales linearly and
therefore also the enumeration. We mitigate this effect by our usage
of a compressed bit set [15], making use of native bitwise operations.
The tuple insertion and deletion time complexity is dictated by the
LT-tree. At most, a tuple is added or removed from a logarithmic
number of nodes. Each update to the compressed bit set [15] has
logarithmic complexity, too, because they use a sorted data structure
internally. The predicate scheduling does not occur for every change
to the dataset, but its worst-case complexity is the sorting of the
predicates. The DC scheduling is dominated by the updates of all
other common prefixes after the decision for one common prefix.
Since there are at most as many prefixes as there are DCs, the
worst-case complexity is quadratic in the number of DCs.

Table 3: Worst case complexity for all operations for input

size 𝑛, number of unique predicates 𝑝 and constraints 𝑐.

Operation Complexity Example input sizes
Tax dataset (Section 6.2.1)

Violation enumeration 𝑂 (𝑛) 1 000 000
Tuple insertion or deletion 𝑂 (𝑙𝑜𝑔2 (𝑛) ) 400
Predicate scheduling 𝑂 (𝑝 ∗ 𝑙𝑜𝑔 (𝑝 ) ) 234
DC scheduling 𝑂 (𝑐2 ) 400

6 EXPERIMENTAL EVALUATION

In this section, we evaluate Weever. We compare it to a DBMS-
based solution, Facet and Rapidash, described in Section 6.2. Then,
we analyze the index and both the individual DC and multi-DC
scheduling techniques in Section 6.3.

6.1 Experimental Setup

All experiments were run on an Ubuntu-based (20.04 LTS) server,
equipped with an Intel Xeon E5-2650 processor and 256 GB of RAM.
All algorithms are single-threaded, running on Java 11 and reading
their input data from CSV files. We set an explicit memory limit
of 50 GB. Moreover, we set a time limit of 4 hours, aborting execu-
tions that exceeded that time threshold. Unless stated otherwise,
all experiments were run on three randomly shuffled permutations
of the datasets, and we present the mean of the runs. In a separate
experiment, we observed superior runtime forWeever when the
dataset was sorted by the columns used in the DC (up to an order of
magnitude). The main reason is the improved performance of the
compressed bitmap. However, in the incremental scenario, we do
not have prior knowledge of the tuples, e.g., a known value range,
nor can expect a sorted input.

We use the three datasets of [17] to evaluate Weever, and a
subset of the DCs presented in [17]. We excluded some DCs because
almost all tuple pairs produce a violation. Nevertheless, the DCs
represent a broad set of different characteristics, including all types
of predicates and both highly and low selective predicates. A short
summary of our datasets and the DCs, as in [17], is shown in Table 4.

We compare Weever with three approaches. First, we created a
DBMS-based baseline with PostgreSQL 12.18. We translated each
DC into a SQL-based trigger function that counts violations before
inserting a new tuple. Thus, the approach also operates on a tuple-
by-tuple basis and keeps a violation count for every tuple at the time
of insertion. Since the baseline does not maintain the actual violat-
ing tuples, it does not support deletes. To improve performance, we
create an index for every column used in the respective DC: B+-tree
indices for columns appearing in inequality predicates, and hash
indices for columns in other predicates. To minimize unnecessary
index maintenance, we remove all other indices.

Second, we choose Facet [17] as one traditional static DC viola-
tion detection algorithm using the authors’ implementation. It does
not output the violating tuple pairs, but also counts the number
of violations. Third, we use Rapidash, as it outperforms Facet in
some cases. While it’s main focus is finding the first violation for a
given DC, it can also detect all violations. As Facet, Rapidash also
outputs the number of violations only. We obtained the authors’
implementation only for the Tax dataset, as every DC is hard-coded
as its own function and the dataset needs specific preprocessing.
As both Facet and Rapidash do not support incremental changes,
we simply run them for the different dataset sizes.

6.2 Runtime evaluation

In this section, we evaluate Weever on the presented DCs and
compare it to the three baselines. The overall results for process-
ing single DCs are presented in Figure 2. For Weever and the
DBMS-based baseline, we show the runtime needed to process 1000
individual inserts (vertical axis) for a given number of tuples already
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Table 4: Summary of dataset and DC characteristics

Dataset Tuples denial constraint # Violations

𝜑7 Tax 6M ¬(𝑡 .AreaCode = 𝑡 ′ .AreaCode ∧ 𝑡 .Phone = 𝑡 ′ .Phone) 0
𝜑8 Tax 6M ¬(𝑡 .ZipCode = 𝑡 ′ .ZipCode ∧ 𝑡 .City ≠ 𝑡 ′ .City) 0
𝜑9 Tax 6M ¬(𝑡 .State = 𝑡 ′ .State ∧ 𝑡 .HasChild = 𝑡 ′ .HasChild ∧ 𝑡 .ChildExemp ≠ 𝑡 ′ .ChildExemp) 0
𝜑10 Tax 6M ¬(𝑡 .State = 𝑡 ′ .State ∧ 𝑡 .Salary > 𝑡 ′ .Salary ∧ 𝑡 .Rate < 𝑡 ′ .Rate) 1438
𝜑11 Flights 3.6M ¬(𝑡 .Origin = 𝑡 ′ .Dest ∧ 𝑡 .Dest = 𝑡 ′ .Origin ∧ 𝑡 .Distance ≠ 𝑡 ′ .Distance) 141 844 328
𝜑12 Flights 3.6M ¬(𝑡 .Orgin = 𝑡 ′ .Origin ∧ 𝑡 .Dest = 𝑡 ′ .Dest ∧ 𝑡 .Flights > 𝑡 ′ .Flights ∧ 𝑡 .Passengers < 𝑡 ′ .Passengers) 193 512 571
𝜑13 TPC-H 6M ¬(𝑡 .Customer = 𝑡 ′ .Supplier ∧ 𝑡 .Supplier = 𝑡 ′ .Customer) 1544
𝜑14 IMDB 2.5M ¬(𝑡 .Title = 𝑡 ′ .Title ∧ 𝑡 .ProductionYear = 𝑡 ′ .ProductionYear ∧ 𝑡 .Kind ≠ 𝑡 ′ .Kind) 87 252
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Figure 2: Comparison of the DBMS-based baseline, Facet and Rapidash toWeever

inserted (horizontal axis). For Facet and Rapidash, we simply de-
pict the runtime to process a dataset of the given dataset size. We
compare the runtime of the static approaches to the insertion-only
performance because processing insertions is costlier. We show that
Weever outperforms the other approaches even in this scenario
and evaluate the independent deletion performance in Section 6.3.5.

6.2.1 Weever runtime behavior. Before a comparison with com-
petitors, we examine the runtime behavior of Weever itself. First,
there are noticeable spikes in the runtime (Figure 2). These are
prominent for DCs, whose structure typically leads to quick pro-
cessing, such as reflexive and highly selective predicates, but occur
in every experiment. They arise for two reasons. First, Java garbage
collection led to occasional increases in runtime. We tried manually
initiating garbage collection after every 1000 inserts for a small
sample of the data. While most spikes were thus eliminated, the
overall runtime increased vastly. Therefore, we retained the default
Java garbage collector for all experiments. Second, other spikes
can be attributed to the overhead of occasionally enlarging hash
maps. The largest spikes occur when the key map doubles in size.
As our incremental method cannot know how many tuples shall be
inserted, we cannot size our hash maps from the beginning.

Apart from the occasional spikes, we observe two kinds of scal-
ing trends. For DCs 𝜑7, 𝜑8, 𝜑13, and 𝜑14, the runtime grows very
slowly and stays low for the entire experiment. In contrast, it grows
faster for DCs 𝜑9, 𝜑10, 𝜑11, and 𝜑12. The main reason for the differ-
ence is the size of the operands and the intermediate. As presented
in Section 4.3, the set operations can comprise all existing tuples.
Thus, the time spent on these set operations can grow linearly. We
observe that this mostly happens whenever inequality predicates
or low-cardinality columns (e.g., binary flags) are part of the DC.
Interestingly, the node accesses in the LT-tree present a negligible
overhead compared to the set operations. Similarly, the index ac-
cesses for the hash indices are always fast, but processing large
operands and consequently intermediates due to the low selectivity
leads to the linear growth.

Weever cannot finish computing 𝜑12 because just storing the
violations exceeds the main memory. The large runtime spikes
at the end of its runtime are caused by the heavy interference
from the garbage collector, as it tries to free memory frequently
to allow processing to continue. This presents an extreme case:
individual violations do not have a semantic meaning anymore. To
process 𝜑12, we ranWeever without storing the violations. Thus,
we lose the ability to process deletes and simply count violations as
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Figure 3: Comparison of Facet and Weever for the Top-20

DCs (ranked by [5]) in the Tax, TPC-H, and IMDB dataset

the baselines do. We observe no difference in runtime for all DCs,
showing the effectiveness of Weever’s method to handle violations.
Since we do not need to re-identify tuples, we can omit the key
mapping when we do not store violations. Consequently, the large
runtime spikes of the map resizing were eliminated.

Weever can also process multiple DCs at the same time. There-
fore, we created DC sets for the Tax, TPC-H, IMDB dataset. Inspired
by [17], we first discovered DCs on a sample of 10 000 tuples. Since
there are thousands of DCs, we then ranked them using the method
from [5] and finally picked the top 20 DCs. We filtered the DC
sets, so Facet can also process them [17]. As depicted in Figure 3,
Weever can process these DCs for all three datasets. We observe
similar spikes as in the single DC experiment. The runtime scales
linearly with the input size for all datasets, but more prominently
for the TPC-H and IMDB datasets. This is a result of the picked
DCs, as they require more processing time for these datasets.

6.2.2 Comparison to other approaches. In comparison to the other
approaches, we observe that Weever is the fastest approach for
all DCs (Figure 2). However, the runtime difference varies between
DCs. The gap to the runtime of Facet and Rapidash depends on the
scaling behavior of Weever. While a sizeable difference exists for
the DCs for which Weever’s runtime scales slowly, the other DCs
are closer in runtime and exhibit a more similar scaling behavior.
We can explain the difference by looking at the predicate selectivity.
WhileWeever benefits from processing highly selective predicates
because they quickly reduce the intermediate size, Facet benefits
from processing less selective predicates. Since Facet can group
tuples based on their predicate values, less selective predicates lead
to fewer groups, which speeds up computation. Rapidash also
benefits from less selective predicates because its internal index
structure grows with the number of distinct values.

Additionally, the processing of inequality predicates in a static
scenario can make use of the order to save set operations. The
overall asymptotic complexity for sorting is the same as querying
the LT-tree, but Facet traverses the sorted list and re-uses operands
from smaller values to quickly refine the intermediate of larger
values. Rapidash also exploits the sort-order and especially, in a
low violation scenario like 𝜑10, its index structure works best. It
outperforms Facet consistently and for some dataset sizes, it even
processes the dataset faster thanWeever processes 1000 inserts.

We can also compute the tipping point between Weever and
the static approaches by counting the number of insertsWeever
can handle within the runtime of a static approach. Simply put, if
the violations should be updated more often than the tipping point,
it is beneficial to useWeever. In our examples, the tipping point
ranges between ∼950 (𝜑10) and ∼200 000 (𝜑13) inserts.
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Figure 4: Index behavior for increasing number of violations

and LT-tree storage consumption overhead, comparing the

LT-set to the traditional tuple set for 1 000 000 tuples

The DBMS baseline shares a closer resemblance toWeever. Both
approaches validate each insert individually and compute the vi-
olations with the existing dataset. In turn, their scaling behavior
is also quite comparable. Especially for DCs with highly selective
predicates, the runtime of both Weever and the baseline stay al-
most constant. While we see fewer spikes in the baseline’s runtime,
the overall runtime is much higher. We observe that Weever is
20 to 200 times faster, for 𝜑11 and 𝜑13, respectively. Additionally,
some runs of the DBMS baseline hit our time limit and could not be
fully computed. Since it cannot use a specialized index structure for
inequality predicates, those DCs are particularly time-consuming.
Only Facet supports processing multiple DCs natively. The other
competitors can only sequentially validate the DCs. In comparison
toWeever, we observe a difference of around two orders of mag-
nitude. The tipping point for all datasets is around 50 000 inserts.

6.3 Analysis of Weever’s design

In this section, we evaluate the design decisions of Weever, namely
the LT-tree, the predicate ordering for a single DC, the scheduling
of multiple DCs together, and the deletion handling.

6.3.1 LT-tree. First, we examine the storage and maintenance cost
of the LT-tree. We compare the cardinality and storage size of the
LT-sets to the traditional tuple sets, i.e., the usual index content,
in Figure 4. The usual cardinality increase factor is below the the-
oretical value of 𝑂 (𝑙𝑜𝑔(𝑛)) = 20. For a unique set of values, we
roughly match the expected value of 10. However, we also observe
the efficiency of the compressed bit sets, as the actual space penalty
is lower than the cardinality difference. In practice, the LT-tree for
the unique set takes 60MB (accounting for the values, tuple sets,
and LT-sets) in memory. Additionally, we measured the insertion
time for the unique set from Figure 4. It scales linearly, as both the
tuple set and LT-set do, but the overall performance remains fast.
The average insert in the dataset of a million tuples takes ∼4.5𝜇s.

Second, we compare our novel LT-tree to the index structure
from [19] (see Section 4), called Fetch. We compare to Fetch be-
cause it is the only available index structure to incrementally val-
idate inequality predicates. To highlight the strengths and weak-
nesses of both index structures, we evaluate them on an artificial
dataset that consists of two columns of integers. As Fetch is de-
signed to handle exactly two inequality predicates at the same time,
we use both indices in two scenarios: first, a DC consisting of two
greater-than predicates (abbreviated as𝐺𝐺), i.e., 𝜑𝐺𝐺 = ¬(t.A > t’.A
∧ t.B > t’.B); second, a DC consisting of one greater-than and one
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Figure 5: Comparison of the predicate order chosen by Wee-

ver to all possible permutations

less-than predicate (𝐺𝐿), i.e., 𝜑𝐺𝐿 = ¬(t.A > t’.A ∧ t.B < t’.B). A DC
consisting of two less-than predicates behaves like the 𝐺𝐺 case.

In our initial setup, both columns contain 10 000 distinct values
and the tuples are constructed such that there are no violations. We
achieve this by generating the columns as two ascending sequences
in the 𝐺𝐿 case and an ascending and a descending sequence in
the 𝐺𝐺 case. After constructing the correct tuples, we shuffle the
dataset to avoid any side effects due to a sorted input.We investigate
the performance of both indices for increasing violating tuples
by modifying a fixed number of tuples. For each violating tuple,
we change the value in column B to a randomly chosen smaller
value in the 𝐺𝐿 case, and a larger value in the 𝐺𝐺 case. Thus, the
exact number of violating tuple pairs is random, as in real life
scenarios, but every modified tuple produces at least one violating
tuple pair. We vary the number of violating tuples between 0 and
5000, i.e., half of the data. Even the high number of violating tuples
presents a realistic scenario because these inequality predicates
are usually accompanied by different predicates that significantly
reduce the number of DC violations. For example, while the number
of violations of 𝜑10 on a random sample of 10 000 tuples is 0, the
number of violating tuples in the inequality predicates is 4800.

We present the overall runtime to process 10 000 inserts for differ-
ent numbers of pre-existing violations in Figure 4.We observe a very
large difference between the 𝐺𝐿 and 𝐺𝐺 scenarios for the Fetch
algorithm. It is caused by the requirement to sort both columns
at the same time. As this is not possible for the violation-free 𝐺𝐺
DC, it is necessary to create a linear amount of sublists, and, thus,
the query time complexity is linear. In contrast, the violation-free
𝐺𝐿 DC requires just one sorted sublist and is very fast to process.
However, for increasing violating tuples, we also observe a linear
growth, as the number of required sublists increases linearly with
the number of violations. Thus, the LT-tree is faster in both scenar-
ios if there are more than 1000 violating tuples. Overall, the runtime
of the LT-tree is very stable and is almost constant regardless of the
number of violating tuples. The𝐺𝐿 case is slightly faster because
we do not need to perform set operations with the allIds set. In
general, the set operations make up about 70% of processing time
in the LT-tree. Only the remainder of time is spent on traversing
the nodes and updating the tree.

6.3.2 Predicate Ordering. To evaluate our approach of ordering the
predicates of a single DC, we compare it to all possible permutations.

0 10

300

600

900

Ru
nt
im

e
to

in
se
rt

10
00

tu
pl
es

(m
s) High

0 1
Number of tuples already inserted ×106

0

50

100

150
Medium

0 10

150

300

450
Low

selectivity
frequency

frequency / selectivity
combined prefix (WeeveR)

1
Figure 6: Comparison of the different methods to schedule

multiple DCs for different predicate overlap levels

We choose 𝜑7 to 𝜑10, as they exhibit all the different characteristics:
on the one hand, 𝜑7 represents a key and 𝜑8 a selective FD, so they
are very fast to discover. On the other hand, 𝜑9 is a less selective
FD and 𝜑10 contains an inequality predicate, resulting in a slower
runtime. The DCs have a low number of violations, so there are
opportunities to abort the refinement pipeline early.

We present their runtime for 3 000 000 tuples in Figure 5. The
plot shows the rolling average for 10 000 inserts, as the variance
for fixed permutations is high. Weever can adapt its predicate
order based on the current state to choose the best order for differ-
ent states. Overall, Weever is either faster than or very close to
the fastest permutation in all cases. The experiment indicates that
there are sizeable differences between the different permutations.
The gap between the permutations is lowest in 𝜑7, because both
equality predicates are efficient to process. Nonetheless, there is
a better order andWeever consistently chooses it. Thus, sorting
by their selectivity descending really determines the faster sched-
ule. Nearing the end of the experiment, the difference between the
two permutations is lower, but Weever outperforms both. In these
cases, it can switch between schedules to even further improve per-
formance. For 𝜑8, we observe a larger discrepancy between the two
permutations. The faster schedule processes the equality predicate
first. If the non-equality is processed first, the runtime scales worse.
This effect is caused by the initial intermediate construction being
costlier for non-equalities. Our rule of always prioritizing equality
predicates over non-equalities proofs useful here.

The runtime of all predicate permutations of 𝜑9 and 𝜑10 scales
linearly. There still are superior permutations for both DCs. The gap
between different permutations is larger for 𝜑10, because of the ex-
pensive inequality predicates. For 𝜑9, we observe some points, e.g.,
at a dataset size of 900 000 tuples, where the fastest permutation out-
performs Weever. At these points, the scheduling method causes
some overhead, but overall, the scheduling overhead is negligible.

6.3.3 Scheduling multiple DCs. In this experiment, we evaluate
our approach to schedule multiple DCs. We compare our method
(Section 5.3) to sorting based on different criteria: descending by
selectivity only, by frequency only, and by frequency divided by
selectivity, as in [4]. Inspired by [17], we evaluate the different
approaches on three sets of DCs on the Tax dataset with different
numbers of shared predicates. First, we handpicked a set of FD
candidates that share their left-hand side, i.e., high predicate overlap.
Second, we extracted all UCCs on a sample of 10 000 tuples and
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Figure 7: Comparison of the runtime for different batch sizes

transformed them to DCs, i.e., medium predicate overlap. They
share some predicates, as high cardinality columns are typically
part of multiple DCs. Third, we use the Top-20 DCs from Section 6.2,
i.e., low predicate overlap. They share only a few predicates because
these DCs cover a wider variety of predicates.

We present the results in Figure 6 and observe that our method
performs best in all three scenarios, with varying improvement.
Intuitively, the higher the overlap, the better combining prefixes
works. Furthermore,Weever can process more tuples in the high
overlap scenario. Due to the otherwise redundant intermediate in
multiple FDs, the combined prefix reduces the memory consump-
tion considerably. Additionally, the saved intermediate refinements
also yield a performance improvement. In the medium overlap sce-
nario, the gap to other methods is closer, but we outperform them
still consistently. In contrast, for a small existing dataset size in the
low overlap scenario, the traditional methods perform better. This
is to be expected, as there is some overhead to find and combine
prefixes. Nevertheless, our method performs best or close to best for
larger dataset sizes, even in the low overlap scenario. Except for the
low overlap scenario, all other scheduling methods perform quite
similar. In the low overlap scenario, the frequency method is by far
the slowest. Overall, sorting based only on the selectivity performs
best. While we can re-use the operand of a predicate to refine all
affected DCs, the overhead for processing worse predicates earlier
is not offset by the larger number of DCs that can be refined. Other
methods, such as [4, 17], can only share refinements if they are at
the front predicates of all involved DCs. Therefore, it is worthwhile
to favor more common predicates for these methods. Our method
can focus on generating the best schedule for each DC and still
benefit from shared predicates.

6.3.4 Batch processing. Since batch processing speeds up only
inequality predicates, we compare the performance of different
batch sizes for 1 000 000 tuples on 𝜑10 and 𝜑12. The performance
gain depends on the specific DC. For𝜑10, the performance improves
for all batch sizes, while only larger batch sizes benefit in 𝜑12. To
improve the throughput and still update the violations more often
than the static baselines, we would choose a batch size of 100 for
𝜑10. It improves the runtime by about 25%. Thus, the tipping point
from Section 6.2 would improve to ∼1200 insertions.
6.3.5 Delete Handling. This final experiment evaluates our method
for handling deletions. We delete randomly chosen tuples one by
one and report the required processing time for 1000 deletions. We
start by deleting from the full dataset and continue until we have
removed the entire dataset. The results for all DCs are presented in
Figure 8. To improve visual clarity, we show the rolling average of
10 000 tuples, as the variance of the low runtimes is large.
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Figure 8: Comparison of the deletion runtime for all DCs

In general, the deletion runtimes are orders of magnitude smaller
than the time needed to process inserts. Since deleting tuples cannot
introduce new violations, we do not need to consider the predicates
and can simply update the index structures. We observe a difference
in runtime for DCs that contain inequality predicates. The runtime
of both𝜑10 and𝜑12 is worse than the other DCs on the same dataset.
For these DCs, we see a decrease in runtime for smaller dataset sizes
(≤ 1 500 000 tuples), whereas other DCs present a more constant
runtime. The decrease does not span the entire dataset because the
number of nodes in the LT-tree depends on the number of distincts.

Besides the general scaling behavior, we observe some runtime
spikes. They partially occur for the same reason as in the insertion
scenario, namely garbage collection and key map resizing (this time
shrinking). However, there are larger runtime spikes in DCs that
contain violations, i.e., 𝜑10, 𝜑11, 𝜑12, 𝜑13, and 𝜑14. They are caused
by the deletion of actual violations. First, the garbage collector needs
to process more data as more objects become irrelevant, namely
deleted violations. Second, whenever we delete a tuple that is part
of violating tuple pairs, we need to update the data structure for the
other tuple. As 𝜑11 has large clusters of violations, the processing
takes longer. Nevertheless, the absolute runtime is still very low.

7 CONCLUSION

This work presented the first approach to detect DC violations incre-

mentally: Weever. Thus, it is no longer necessary to recompute
all violations for every dataset change. We introduced the novel
LT-tree data structure to process complex inequality predicates.
It extends traditional RB-trees by storing additional LT-sets and
efficiently allows retrieving all tuples that are smaller than a query
value.Weever employs the LT-tree and hash maps to detect vio-
lations quickly. In contrast to existing approaches, it outputs the
explicit violation tuple id pairs. We propose new scheduling meth-
ods for single DCs and introduce the notion of state-independent
operands to refine multiple DCs simultaneously. Our evaluation
shows that our system efficiently handles both insertions and dele-
tions. Compared to a traditional static approach, Weever updates
the violations faster than rediscovering from scratch and outper-
forms an DBMS-based baseline by a factor of up to 200.

WhileWeever’s performance suffices formost use-cases, it could
be enhanced by employing multiple threads or nodes. In our initial
experiments, we noticed that incrementally refining the intermedi-
ate outperforms simultaneously retrieving operands and combin-
ing them all at once. Thus, it is not trivial to use multiple workers.
Future research shall extend Weever by adding support for disk
storage and specialized index structures to minimize I/O operations.
In addition, approaches that relax the limitation of two tuples per
DC would be a worthwile and challenging research topic.
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