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ABSTRACT
We present a logical timestamping mechanism for ordering transac-

tions in distributed databases, eliminating the single point of failure

(SPoF) that bother existing timestamp “oracles”. The main innova-

tion is a bipartite client–server architecture, where the servers do

not communicate with each other. The result is a highly available

timestamping “service” that guarantees the availability of time-

stamps, unless half the servers are down at the same time.

We study the fundamental needs of timestamping, and formalize

its availability and correctness properties in a distributed setting.

We then introduce the TaaS (timestamp as a service) algorithm,

which defines a monotonic spacetime over multiple server clocks.

We prove, mathematically: (i) Availability that the timestamps are

always computable, provided any majority of the server clocks

being observable; and (ii) Correctness that all the computed time-

stamps must increase monotonically over time, even if some clocks

become unobservable.

We evaluate our algorithm by prototyping TaaS and benchmark-

ing it against state of the art timestamp oracle in TiDB. Our ex-

periment shows that TaaS is indeed immune to SPoF (as we have

proven mathematically), while exhibiting a reasonable performance

at the same order of magnitude with TiDB. We also demonstrate

the stability of our bipartite architecture, by deploying TaaS across

datacenters and showing its resilience to datacenter-level failures.
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Figure 1: Bipartite architecture of TaaS.

1 INTRODUCTION
1.1 Motivation towards a timestamping service
1.1.1 Monotonicity. Distributed databases are concurrent in na-

ture, processing transactions in parallel to exploit scalability. The

transactions should be processed in a correct order, for atomicity,

consistency, and isolation, so called “concurrency control” [12].

To order transactions in a way that meets the users’ intention,

an intuitive way is to timestamp them with logical clocks [14],

which extends the precedence relation “≺” among transactions into

a consistent total ordering “≤” among timestamps.

1.1.2 Simplicity. The vanilla logical clock by Lamport [14] requires

carrying timestamps along every inter-process communication. In

other words, such clocks only capture causality by the “passing of

timestamps”, but not the “flowing of time”, making them impractical

for distributed systems, whose participants may communicate via

arbitrary backchannels.

To avoid modifying all the backchannels just for adapting with

logical clocks, industrial systems may deploy a centralized logical

clock that serves as the “wall time”: If transaction 𝜏1 precedes 𝜏2,

then the timestamp assigned for 𝜏1 is smaller than that of 𝜏2.

1.1.3 Availability. The centralizd clock should be fault-tolerant.
For example, PolarDB-X [3] backs up its timestamp oracle (TSO)

with a Raft cluster; and OceanBase [26] utilizes Paxos. If the leader

clock becomes irresponsive, then the cluster re-elects a new leader

to continue serving timestamps.

However, the leader-based TSO exhibits blackout periods—i.e.,

the cluster cannot serve any timestamp during the re-election pe-

riod, until the new leader takes office. Such single point of failure

(SPoF) makes the TSO an “oracle”, rather than a “service”.
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1.2 Contribution
This paper presents Timestamp as a Service (TaaS), a distributed
algorithm that computes logical timestamps from a consensusless

cluster of clocks. The idea is to observe “multiple clocks” simulta-

neosly, rather than focusing on “a distinguished clock”.

As shown in Figure 1, our timestamp service consists of clients

and servers that are bipartite—without client–client or server–

server communications. The server clocks work independently

without synchronizing with each other. The clients compute time-

stamps by ticking multiple server clocks.

The result is a highly availabile timestamping service that is

immune to SPoF: Suppose the cluster consists of 𝑁 = 2𝑀 − 1 clock

servers, then any 𝑀 servers being “up” (i.e., responsive to client

ticks) guarantees the client to get a timestamp.

In addition to the high availability, the TaaS algorithm also fea-

tures low latency: If all the 𝑁 servers are up, then the client can get

the timestamp within 1RTT (round-trip time) to the farthest server.

If some servers are down or too slow, then the latency is no greater

than 2RTT to the median (i.e.,𝑀-th nearest) server.

This paper is structured as follows: §2 discusses how today’s

databases timestamp transactions and live with the limitations of

“timestamp oracles”.We introduce the TaaS theory in §3, and discuss

how to apply the theory to real-world practices in §4. We prototype

and evaluate the TaaS algorithm in §5, simulating failures of servers

or the entire datacenter. We discuss related and future works in §6,

and conclude in §7.

2 STATE OF THE ART
2.1 Clocks in distributed systems
The concept of timing distributed computations was first formalized

by Lamport [14], and developed into four flavors of clocks that suit

different scenarios:

2.1.1 Scalar logical clocks. The original logical clock by Lamport

[14] linearizes the “happen before” relation ≺ into a total order ≤ or

scalar timestamps, and exhibits completeness when ticked properly:

Definition 1 (Timestamp completeness). A timestamping mecha-

nism is complete if: For all pairs of events where 𝜎 “precedes” 𝜏 , the

timestamp assigned to 𝜎 is less than that assigned to 𝜏 :

∀𝜎,∀𝜏, (𝜎 ≺ 𝜏 =⇒ timestamp of 𝜎 < timestamp of 𝜏)

2.1.2 Vector logical clocks. Mattern [16] extends the scalar clocks

into vector clocks that yields a lattice with partial order <, achieving

soundness in addition to completeness:

Definition 2 (Timestamp soundness). A timestamping mechanism

is sound if: For all pairs of events 𝜎 and 𝜏 , if the timestamp assigned

to 𝜎 is less than that assigned to 𝜏 , then 𝜎 must “precede” 𝜏 :

∀𝜎,∀𝜏, (timestamp of 𝜎 < timestamp of 𝜏 =⇒ 𝜎 ≺ 𝜏)

2.1.3 Hybrid logical clocks (HLC). Kulkarni et al. [13] implement

scalar logical clocks with the system’s crystal oscillator, to associate

timestamps with the “time in physical world”. Such physical and

logical timing technique was implemented by CockroachDB [23],

MongoDB [25], and YugabyteDB [27], and enables synchronizing

transactions across databases.

2.1.4 Synchronized clocks. An alternative to “synchronizing dif-

ferent clocks” is to deploy “one clock that synchronizes all”, either

physically or logically:

TrueTime. Spanner [4] timestamps transactions by the TrueTime

API, where the “timeslave daemon” polls multiple “time masters”

equipped with GPS receivers and atomic clocks. The result is a

highly accurate timer with uncertainties less than 10 milliseconds.

Centralized timestamping. To avoid the cost of atomic clocks

(which aren’t cheap enough as of 2023), serveral databases generate

timestamps from a centralized “timestamp oracle”, e.g., CORFU

sequencer [2], PolarDB-X TSO [3], TiDB placement driver [10],

Percolator TSO [19], Postgres-XL global transaction manager [20],

Omid TO [21], and OceanBase global timestamp service [26].

Centralized timestamping drops the dependency on highly-precise

hardware clocks. The lightweight and simple design makes it popu-

lar among databases deployed within the same datacenter, or across

co-located datacenters—where the round-trip overhead for fetching

timestamps does not significantly affect the performance.

Scope. This paper focuses on centralized timestamping. We are

especially concerned about the availability of the timestamp “ora-

cles”, which we further discuss in §2.2.

2.2 Availability of timestamp oracles
As its name suggests, the “centralized” timestamp oracle plays a

critical part in the database system: If the oracle is down, then no-

body can propose any transactions. Therefore, all timestamp oracles

to our knowledge are backed up with a failover cluster organized

by consensus—more specifically, leader-based consensus such as

Multi-Paxos [15] and Raft [18]—and thus inherit their drawbacks.

2.2.1 Leader, single point of failure. Leader-based timestamp ora-

cles are bottlenecked in both availability and performance:

(1) When the leader crashes or hangs, all existing timestamp ora-

cles stop service, until the cluster re-elects a new leader that

continues to serve timestamps. Such blackout period can be

tuned with consensus algorithm parameters, but never elimi-

nated in a leader-based setting.

(2) The latency of fetching timestamps depends on the network

connection between the client and the leader. If the leader’s

network stack is overloaded, then the clients might immediately

experience downgraded performance.

Goal 1. We want to eliminate the bottleneck, and provide a lead-
erless timestamping service that is resistant to single-point failures.

2.2.2 Performance vs Completeness vs Availability. Apart from the

SPoF issue, timestamp oracles face another problem that: Given

a leader-based consensus, how to request timestamps from it?

(i) “Write through” all timestamps to the quorum, or (ii) Use the

leader as a “write back” cache?

“Writing through” bases completeness on the consistency of

consensus. The leader propagates every requested timestamp to

its followers. Upon re-election, the new leader serves on top of the

previously issued timestamp, and thus guarantees completeness.

To reduce the performance overhead of propagating each request,

real-world oracles choose the write-back approach (ii), where the
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leader allocates a range of timestamps, and propagates the allocated

range to the followers. Upon client request, the leader may imme-

diately respond with an in-range timestamp, without propagating

the response to its followers. When the leader fails, the new leader

starts from above the allocated range, i.e., above the upper bound

of the old leader’s timestamps.

The outperformance of write-back over write-through requires

careful maintenance of leader uniqueness [18]. Otherwise, the old

and new leaders may serve timestamps simultaneously, which

breaks monotonicity. Therefore, every write-back timestamp oracle

must implement a lease-based leadership [8]: Before re-election,

the cluster must wait for the old leader’s lease to expire. This results

in a longer blackout period during failover.

Goal 2. We aim for optimal performance and rigorous complete-

ness, while keeping the service continuously available.

These goals motivate us to think outside the “consensus” box,

and design a “consensusless” mechanism where the servers work

collaboratively (i.e., each contributes a subset to the result) yet

independently (i.e., without communicating with other servers).

3 ALGORITHM
This section presents the TaaS algorithm. We begin with the easiest

scenario in §3.1, where all the servers are always up and respon-

sive. We then handle fault tolerance in §3.2: if some servers are

down, then compute the timestamp from the remaining subset of

servers. We prove the correctness and availability of TaaS in §3.3,

and illustrate some edge-case examples in §3.4.

3.1 Assuming all the servers are up
3.1.1 Motivation. We first address correctness before tolerating

faults, by formalizing the correctness of timestamping services:

Definition 3 (Client sessions). A session is a series of client inter-

actions for computing a timestamp. For a session named 𝜎 , we say

it begins at time 𝑄𝜎 , and ends at time 𝐴𝜎 (as in Query&Answer).

Here we restrict that each client process executes only one ses-

sion at a time. A computer may execute multiple sessions simulta-

neosly, by launching parallel client processes.

Definition 4 (Correctness). A timestamping service is correct if it
is session-complete: For all pairs of sessions 𝜎 and 𝜏 , if the end of 𝜎

precedes the beginning of 𝜏 (written as “𝐴𝜎 ≺ 𝑄𝜏 ”), then the result

timestamp computed by session 𝜎 is less than that of session 𝜏 :

∀𝜎,∀𝜏, (𝐴𝜎 ≺ 𝑄𝜏 =⇒ result of 𝜎 < result of 𝜏)
Note that sessions 𝜎 and 𝜏 may be executed by the same client or

by different clients. The sessions may or may not depend on each

other, which we system designers cannot tell, as the clients may

implement arbitrary backchannels for synchronization. Instead, we

capture the fact that causality implies ordering of time, and define

correctness for all pairs of sessions that are disjoint in time.
1

Next, we will show how the clients interact with servers and

compute the timestamps correctly. At this stage, we assume fast and

reliable network connection between the clients and the servers.

1
Here the definition of “time” may be relative [5]—i.e., the clients and servers needn’t

be synchronized with any specific clock—as the observation of causality is absolute.

Table 1: Result upon different choices of parameter𝑀 .

𝑀 𝑀@𝛼̌ 𝑀@𝛽ˇ 𝑀@𝛾

1 1 1 2

2 1 2 3

3 2 3 3

3.1.2 Logical clocks. Each server implements a logical clock by

Lamport [14], i.e., a logical counter that advances monotonically:

TS c; // TS for TimeStamp

TS tick (TS t) {

c = c ⊕ t;

return c;

}

A client may “tick” a server with a timestamp. When ticked by

timestamp 𝑡 , the server clock advances from 𝑐 to “𝑐 ⊕ 𝑡”—a time-

stamp greater than the client’s input 𝑡 and greater than the server’s

previous timestamp 𝑐:

𝑐 ⊕ 𝑡 > 𝑐 ∧ 𝑐 ⊕ 𝑡 > 𝑡

For example, when the timestamps are integers, we may implement

(𝑐 ⊕ 𝑡) as (max(𝑐, 𝑡) + 1). Note that our theory does not require the

timestamps to be integral, i.e., does not assume that 𝑐 ⊕ 𝑡 ≥ 𝑐 + 1.

3.1.3 Syntax. We assume that timestamps form a total order ≤,
and define an operation called “𝑀-th smallest”: Let Σ be a set of

cardinality card(Σ), then the𝑀-th smallest element in Σ (written

as “𝑀@Σ”) is no less than 𝑀 elements of Σ, and no greater than

card(Σ) −𝑀 + 1 elements of Σ:

card{𝑥 ∈ Σ | 𝑥 ≤ 𝑀@Σ} ≥ 𝑀

card{𝑥 ∈ Σ | 𝑀@Σ ≤ 𝑥} ≥ card(Σ) −𝑀 + 1

We also define a bottom timestamp (written as “⊥”) that is no
greater than any timestamp:

∀𝑡,⊥ ≤ 𝑡

3.1.4 Semantics. A client begins a session by broadcasting ⊥ to all

servers. It then waits for all the servers to respond. Let Σ be the set

of responses from all the servers, then the client concludes with

𝑀@Σ, where𝑀 is some parameter shared by all the clients.

For example, consider two clients interacting with three servers

in Figure 2. This example consists of three sessions: Client Cv

does not launch session 𝛾 until the conclusion of session 𝛼—i.e.,

𝐴𝛼 ≺ 𝑄𝛾—while client Cw runs session 𝛽 in parallel.

The result of each session depends on the choice of parameter𝑀 ,

as listed in Table 1. We can see that the𝑀-th smallest response in

session 𝛼 (written as “𝑀@𝛼̌”) is always less than𝑀@𝛾 , regardless

of what𝑀 we choose. Here we sketch such correctness proof that

“earlier sessions conclude with smaller timestamps”, with underly-

ing lemmas proven in the appendices.

Theorem 1 (Basic correctness). For all pairs of sessions 𝜎 and 𝜏 ,

if 𝜎 ends earlier than 𝜏 begins, then for any choice of parameter

𝑀 , the𝑀-th smallest response received in session 𝜎 is always less

than the𝑀-th smallest received in session 𝜏 :

∀𝜎,∀𝜏, (𝐴𝜎 ≺ 𝑄𝜏 =⇒ ∀𝑀,𝑀@𝜎̌ < 𝑀@𝜏)
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Figure 2: Example where all three servers (Sx, Sy, and Sz) are
always up, serving two clients (Cv and Cw) for three sessions
(𝛼 , 𝛽, and 𝛾). Each session begins at time 𝑄 and ends at time
𝐴. The servers’ timelines are annoated with their internal
states, i.e., logical timestamps. The clients’ timelines record
their send and receive events: “?𝛼⊥” is pronounced “sending
bottom timestamp in session𝛼”; while “!𝑥1”means “receiving
timestamp 1 from server 𝑥”.

Proof. Let “𝑀@(Ω : 𝑇 )” be the 𝑀-th smallest among the

servers’ internal states at time 𝑇 .2 We then have:

(1) The𝑀-th smallest response received in session 𝜎 is less than

or equal to the𝑀-th smallest server state at the conclusion of

session 𝜎 , per Lemma 5 in the appendix:

𝑀@𝜎̌ ≤ 𝑀@(Ω : 𝐴𝜎 )
(2) The𝑀-th smallest server state at the conclusion of session 𝜎 is

less than or equal to the𝑀-th smallest server state at the start

of session 𝜏 , per Lemma 6:

𝑀@(Ω : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝑄𝜏 )
(3) The𝑀-th smallest state at the start of session 𝜏 is less than the

𝑀-th smallest response received in session 𝜏 , per Lemma 7:

𝑀@(Ω : 𝑄𝜏 ) < 𝑀@𝜏

Therefore:𝑀@𝜎̌ ≤ 𝑀@(Ω : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝑄𝜏 ) < 𝑀@𝜏 □

Note that different sessions might conclude with the same result,

e.g., 1@𝛼̌ = 1@𝛽ˇ = 1. In other words, our TaaS kernel is not

linearizable to “ticking” a logical clock, but to “looking at” a clock

on the wall. To conclude each session with a unique result, we

may have the servers to produce disjoint timestamps, with details

described in §4.2.

Summary. So far, we have presented the core algorithm of the

TaaS client. Themain idea is to bound the conclusion of each session

𝜎 within the range of (𝑀@(Ω : 𝑄𝜎 ), 𝑀@(Ω : 𝐴𝜎 )], which we will

revisit in the fault tolerance design in §3.2.

2
As mentioned in Footnote 1, our theory is relativity-consistent. The “time” here may

be relative to any frame of reference that observes𝐴𝜎 ≺ 𝑄𝜏 .

SySx SzCu
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Figure 3: Example where server Sx is down since session 𝛿 .

3.2 When some servers are down
The core mechanism in §3.1 assumes the client–server connection

to be fast and reliable.Whereas in reality, the requests and responses

might be indefinitely delayed en route. This section shows how to

tolerate the potential packet losses/delays, and compute timestamps

using responses received from a subset of servers.

3.2.1 Motivation. Before showing our fault tolerance algorithm,

we exemplify it in Figure 3, with parameter𝑀 = 2.

Consider session 𝛿 : Suppose client Cu remembers a response

!𝑥5 received in a previous session, then the client believes that Sx’s

response to ?𝛿⊥ (if it ever arrives) must be greater than 5. Therefore,

if the client has observed !𝑦4 and !𝑧5 in session 𝛿 , then it can safely

conclude that 2@𝛿ˇ = 5 without hearing from Sx.

Now suppose server Sx remains irresponsive in session 𝜖 , and

the client has received !𝑦5 and !𝑧6. The client cannot assert the

response from Sx to be no less than 6 (as our theory doesn’t assume

the timestamps to be integral), and thus cannot conclude based on

its observation up to time 𝑇𝜖 .

3.2.2 Analysis. Let’s take a step back and ask: Why do we conclude

with “the𝑀-th smallest among all the responses”?

Because Theorem 1 bases correctness on the conclusion of each

session 𝜎 being: (i) greater than 𝑀@(Ω : 𝑄𝜎 ); and (ii) no greater

than𝑀@(Ω : 𝐴𝜎 ). Taking the𝑀-th smallest response guarantees

the conclusion within range (𝑀@(Ω : 𝑄𝜎 ), 𝑀@(Ω : 𝐴𝜎 )].
Consider session 𝛿 : Why may we conclude session 𝛿 with 5,

without waiting for the response from server Sx?

Because the conclusion is guaranteed: (i) greater than 2@(Ω :

𝑄𝛿 )—whose upper bound is less than !𝑧5—needless to hear from

Sx; and (ii) no greater than 2@(Ω : 𝐴𝛿 )—whose lower bound is no

less than !𝑥5 and !𝑧5—based on the monotonicity of logical clocks.

Now let’s revisit time𝑇𝜖 : Having observed !𝑦5 and !𝑧6, the client

is confident that 2@(Ω : 𝑄𝜖 ) < 6. It only needs to make sure that

2@(Ω : 𝐴𝜖 ) ≥ 6 to justify 6 as a correct conclusion.
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Therefore, to raise the lower bound of 2@(Ω : 𝐴𝜖 ) without
assuming that Sx would ever respond, the client can advance the

state of Sy by sending ?𝜖6 to it. If Sy responds, then its state must

have become greater than 6. Upon hearing from Sy, the client gains

confidence that 2@(Ω : 𝐴𝜖 ) ≥ 6, and thus concludes with 6.

3.2.3 Solution. Our algorithm is shown in Figure 4 as pseudo C++.

The client is a function that interacts with the server and returns a

timestamp. It maintains two mappings from servers to timestamps:

(1) A localmapping 𝜎̌—pronounced “session”—that stores the small-

est response sent by each server for the current session, initiated

in Line 4 to “⊤”, a top timestamp (e.g., infinity) that is greater

than all other timestamps:

∀𝑡, 𝑡 ≤ ⊤
(2) And a global mapping $

ˆ
—pronounced “cache”—that stores the

largest response ever sent by each server, regardless of for

which session, initiated to ⊥ in Line 1.

Syntax. The local and global mappings are manipulated dur-

ing runtime by the update function defined in Line 40. Function

update(𝑓 , 𝑘, 𝑣) maps 𝑘 to 𝑣 , and maps all other keys by 𝑓 :

update(𝑓 , 𝑘, 𝑣) (arg) ≜
{︄
𝑣 arg = 𝑘

𝑓 (arg) otherwise

Semantics. Each session 𝜎 begins by launching the client() func-

tion in Line 3, and concludes by returning in Line 21.

The client broadcasts ?⊥ as the first hop, and waits for the

servers’ responses (by polling the set of acknowlegements). For

each response received from server src: If it is greater than the

cached value, then the client updates $
ˆ
increasingly in Line 36; If it

is less than the previous response from src in the current session
3

(or trivially less than⊤ if src has not responded yet), then the client

updates 𝜎̌ decreasingly in Line 15.

Candidacy. If the client has received responses from at least𝑀

servers—i.e., there exist at least𝑀 servers whose local record in 𝜎̌

were decreased from ⊤ in Line 18—then the client takes𝑀@𝜎̌ as a

candidate conclusion, as it is guaranteed greater than𝑀@(Ω : 𝑄𝜎 ):
𝑀@(Ω : 𝑄𝜎 ) < 𝑀@𝜎̌ = candidate

The client considers the candidate “conclusive” if it is no greater

than 𝑀@$
ˆ
in Line 20. Let “CC𝜎 ” be the conclusive candidate of

session 𝜎 , then at the conclusion of 𝜎 , there exist at most 𝑀 − 1

servers whose states are less than CC𝜎 :

CC𝜎 ≤ 𝑀@$
ˆ ≤ 𝑀@(Ω : 𝐴𝜎 )

Promoting the candidate. If the client has processed all the re-

sponses in Line 22 but still finds the candidate inconclusive, then it

“promotes” the candidate by broadcasting it as a second hop. The

second hop only targets “slow” servers—whose cache records are

below the candidate—to make𝑀@$
ˆ
catch up with the candidate.

After broadcasting the second hop, the client continues to wait for

responses to arrive at the input channel, until reaching a conclusion.

If a client cannot conclude within a certain timeout period, then

the client may abort the starved session and start a new one, using

a fresh local mapping and reusing the current global mapping.

3
Suppose in a session, a client sends two requests to a server. The server’s responses

must monotonically increase, but the first response might be delayed en route, and

arrive at the client later than the second response.

1 function $
ˆ = [](Server _) { return ⊥; };

2

3 TS client() { // 𝑄𝜎

4 function 𝜎̌ = [](Server _) { return ⊤; };

5 Set acks;

6

7 // broadcast the first hop

8 for (dst: servers) {

9 thread _(snd_rcv, ⊥, dst, acks);

10 }

11

12 while (true) {

13 // wait for the next response

14 !srcresponse = acks.next();

15 𝜎̌ = update(𝜎̌, src, min(𝜎̌(src),response));

16

17 // find a candidate

18 if (𝑀@𝜎̌ < ⊤) {

19 TS candidate = 𝑀@𝜎̌;

20 if (candidate <= 𝑀@$
ˆ) {

21 return candidate; // 𝐴𝜎

22 } else if (acks.empty()) {

23 // promote the candidate

24 for (dst: servers) {

25 if ($
ˆ(dst) < candidate)

26 thread _(snd_rcv, candidate, dst, acks);

27 } // end for (servers)

28 } // end if (acks.empty())

29 } // end if (𝑀@𝜎̌ < ⊤)
30 } // end while

31 } // end client

32

33 void snd_rcv(Request qst, Server srv, Set &acks) {

34 send(?qst, srv);

35 Response rsp = recv(srv);

36 $
ˆ = update($

ˆ, srv, max($
ˆ(srv),rsp));

37 acks.insert(!srvrsp);

38 }

39

40 function update(function f, Server k, TS v) {

41 return [](Server arg) {

42 return arg == k ? v : f(arg);

43 };

44 }

Figure 4: TaaS client algorithm, handling server failures by
broadcasting a promotional second hop. In each session, let
𝜎̌ store the smallest response sent by each server. If the client
has received at least𝑀 responses to the first hop in Line 18,
then it takes𝑀@𝜎̌ as a candidate, and decides whether this
candidate is ready to conclude or not in Line 20. For the servers
whose cache (i.e., largest response ever received by the client,
stored in “$

ˆ”) is less than the candidate, the client broadcasts
the candidate as the second hop to keep those servers up to
date in Line 26.
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3.3 Proof of correctness and availability
Theorem 2 (Functional correctness). The TaaS client algorithm in

Figure 4 satisfies the correctness with respect to Definition 4.

Proof. We show correctness by proving that for each pair of

sessions 𝜎 that ends before 𝜏 begins, their conclusive candidates

CC𝜎 and CC𝜏 satisfy the following inequation:

CC𝜎 ≤ 𝑀@($ˆ𝜎 : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝐴𝜎 )
≤ 𝑀@(Ω : 𝑄𝜏 ) < 𝑀@𝜏 = CC𝜏

Here syntax “$
ˆ
𝜎

: 𝐴𝜎 ” is pronounced “the global mapping at time

𝐴𝜎 , observed by the client that executes session 𝜎”.4

(1) CC𝜎 ≤ 𝑀@($ˆ𝜎 : 𝐴𝜎 ) is the if condition in Line 20.

(2) 𝑀@($ˆ𝜎 : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝐴𝜎 ) is proven as Lemma 5.

(3) 𝑀@(Ω : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝑄𝜏 ) is proven as Lemma 6.

(4) 𝑀@(Ω : 𝑄𝜏 ) < 𝑀@𝜏 is proven as Lemma 7.

(5) 𝑀@𝜏 = CC𝜏 is the candidate’s definition in Line 19.

Therefore:

∀𝜎,∀𝜏, (𝐴𝜎 ≺ 𝑄𝜏 =⇒ CC𝜎 < CC𝜏 ) □

Theorem 3 (Availability of timestamps). Let 𝑁 be the cardinality

of servers. For each session 𝜎 , if there exist max(𝑀, 𝑁 − 𝑀 + 1)
servers that are up, then the session will eventually conclude.

Proof. We need to show that, provided max(𝑀, 𝑁 − 𝑀 + 1)
servers being responsive: (1) The client can find a candidate; and

(2) The candidate will eventually become conclusive.

(1) Since all the up servers will respond to the first hop, the client

can receive at least𝑀 responses in 𝜎 , thus candidate𝑀@𝜎̌ .

(2) Consider the cache record of 𝑁 −𝑀 + 1 up servers: Some of

them might be less than the candidate, but will become greater

after they respond to the promotinal second hop. Therefore,

at most 𝑁 − (𝑁 −𝑀 + 1) = 𝑀 − 1 cache records may remain

below the candidate, thus𝑀@$
ˆ ≥ candidate.

Therefore, anymax(𝑀, 𝑁 −𝑀 + 1) servers being up guarantees the

session to conclude. □

Corollary 3.1 (Recommendation on parameter𝑀). While the choice

of parameter𝑀 does not affect correctness, here we recommend𝑀

to be

⌈︁
𝑁+1

2

⌉︁
, for the following reasons:

(1) The system allows at most min(𝑁 − 𝑀,𝑀 − 1) downs while
continuing its service. Therefore, for maximum fault tolerance,

we should take𝑀 ≈ 𝑁+1

2
, i.e.,𝑀edian.

(2) If a client hasn’t heard from at least 𝑁 −𝑀 + 1 servers when

looking for a candidate, then the client should not naïvely be-

lieve that at least 𝑁 − 𝑀 + 1 servers would ever respond to

the second hop that promotes the candidate. Therefore, the

client should wait for𝑀 ≥ 𝑁 −𝑀 + 1 servers to respond before

choosing the candidate, to gain confidence in promoting it.

For the rest of this paper, we assume that 𝑀 =
⌈︁
𝑁+1

2

⌉︁
, unless

otherwise mentioned. This allows us to discuss liveness in a simpler

way: “A session would eventually conclude if and only if there exist
𝑀 servers being up.”

4
In this theorem, sessions 𝜎 and 𝜏 may be executed by the same client or by different

clients, so they may observe the same or different global mappings. Therefore, we

explicitly specify the mapping(s) they observe, as well as the time of observation.
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Figure 5: Network partition example.

3.4 Additional examples
To better explain our client algorithm, we illustrate some edge cases,

featuring network partition and message delays.

3.4.1 Network partition. As a consensusless protocol, TaaS servers
do not communicate with each other. In this case, the concept

of “partition” refers to disrupted client–server connections. For

example, in Figure 5, client Ct cannot reach server Sx, and client

Cr loses connection to server Sz.

First consider session 𝜁 : When Ct has received !𝑦8 and !𝑧8, the

client updates its local and global mappings to:

𝜁ˇ = {𝑥 ↦→ ⊤;𝑦 ↦→ 8; 𝑧 ↦→ 8}

$
ˆ
𝜁
= {𝑥 ↦→ ⊥;𝑦 ↦→ 8; 𝑧 ↦→ 8}

The client then candidates 2@𝜁ˇ = 8, and finds it conclusive, i.e.,

2@$
ˆ
𝜁 ≥ 8. So the client concludes with 8 without waiting for Sx or

broadcasting a second hop.

Now consider session𝜂: The client first broadcasts ?𝜂⊥ and starts

processing the responses, i.e., enters the while loop in Line 12 of

Figure 4. After processing !𝑥6 and !𝑦9, the client has:

𝜂̌ = {𝑥 ↦→ 6;𝑦 ↦→ 9; 𝑧 ↦→ ⊤}

$
ˆ
𝜂
= {𝑥 ↦→ 6;𝑦 ↦→ 9; 𝑧 ↦→ ⊥}

The client candidates 2@𝜂̌ = 9 in Line 19, and finds it inconclusive,

i.e., greater than 2@$
ˆ
𝜂
= 6. Since the connection to Sz is cut, the

client observes no more responses, i.e., the acks set becomes empty.

So the client enters the if branch at Line 22, and immediately

promotes the candidate 9, without waiting for Sz to respond. Upon

receiving !𝑥10, the client returns the conclusive candidate CC𝜂 = 9,

which is greater than CC𝜁 = 8.

3.4.2 Delayed messages. Instead of waiting for any specific server

to respond, the TaaS algorithm asynchronously processes the re-

sponses from all the servers. The client may conclude a session

after processing a subset of the responses, so as to optimize latency.

Then what happens when some responses arrive too slow?
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Figure 6: Delayed messages example.

Consider sessions 𝜃 and 𝜄 in Figure 6: At time 𝑇𝜃 , client Cq has

received !𝑧9 and !𝑦10, while the response by Sx was delayed en

route. The client’s local and global mappings are:

𝜃ˇ : 𝑇𝜃 = {𝑥 ↦→ ⊤;𝑦 ↦→ 9; 𝑧 ↦→ 10}

$
ˆ

: 𝑇𝜃 = {𝑥 ↦→ ⊥;𝑦 ↦→ 9; 𝑧 ↦→ 10}
The client candidates 2@(𝜃ˇ : 𝑇𝜃 ) = 10, and promotes the candi-

date by broadcasting ?𝜃 10 as a second hop. The client then receives

the delayed first-hop response !𝑥7, and updates its mappings to:

𝜃ˇ : 𝐴𝜃 = {𝑥 ↦→ 7;𝑦 ↦→ 9; 𝑧 ↦→ 10}

$
ˆ

: 𝐴𝜃 = {𝑥 ↦→ 7;𝑦 ↦→ 9; 𝑧 ↦→ 10}
So the client recalculates the candidate 2@(𝜃ˇ : 𝐴𝜃 ) = 9, and finds

it conclusive, i.e., 2@($ˆ : 𝐴𝜃 ) ≥ 9. Thus, the client concludes with

9 without waiting for the response to ?𝜃 10, in the same way as §3.1

that takes the𝑀-th smallest among all the first-hop responses.

The client then launches session 𝜄 and receives !𝑥8 and !𝑦11.

Meanwhile, the asynchronous thread sending ?𝜃 10 wasn’t killed,

but received !𝑧11. Recall our definition in §3.2.3 that—𝜄̌ represents

“the smallest response by each server for session 𝜄”, and $
ˆ
stores “the

largest response ever sent by each server, regardless of for which

session”, these mappings become:

𝜄̌ = {𝑥 ↦→ 8;𝑦 ↦→ 11; 𝑧 ↦→ ⊤}

$
ˆ

: 𝐴𝜄 = {𝑥 ↦→ 8;𝑦 ↦→ 11; 𝑧 ↦→ 11}
So the client candidates 2@𝜄̌ = 11, and finds it conclusive, i.e., no

greater than 2@($ˆ : 𝐴𝜄 ). Thus, it concludes session 𝜄 with 11.

Summary. So far, we have explained the client side logic for

tolerating down servers. The main idea is to bound the “conclusive

candidate” of each session 𝜎 strictly greater than𝑀@(Ω : 𝑄𝜎 ), and
no less than𝑀@(Ω : 𝐴𝜎 ), using the following inequation:

𝑀@(Ω : 𝑄𝜎 ) < 𝑀@𝜎̌ = CC𝜎 ≤ 𝑀@($ˆ : 𝐴𝜎 ) ≤ 𝑀@(Ω : 𝐴𝜎 )
This inequation relies on the servers to advance monotonically,

despite errors like power outage and disk corruption. In §4.1, we

present two ways to protect the monotonicity of each server.

Table 2: Differentiating timestamps by server identifiers.

𝑀 𝑀@𝛼̌ 𝑀@𝛽ˇ 𝑀@𝛾

1 1.x 1.z 2.x

2 1.y 2.y 3.y

3 2.z 3.x 3.z

4 PRACTICAL CONSIDERATIONS
4.1 Monotonic clocks via stable storage
Theorem 3 allows some servers to be down without disrupting the

service. We want to resume the down servers up, before there are

too many of them that make the service unavailable.

The “downs” of servers can be classified as follows:

(1) A disconnection is a server being unable to receive requests

from and/or send responses to some clients or any client.

A disconnected server works fine (i.e., monotonically) as a

logical clock if it ever gets ticked, and can be safely resumed

by fixing the client–server connection.

(2) A failure is a server forgetting the largest timestamp it has ever

sent, i.e., forgetting the largest state it has ever reached. For

example: (i) The server stored the timestamp in non-persistent

RAM, and lost it in a power outage; or (ii) The server wrote its

state to a hard disk, but the disk was broken in an earthquake.

A failed server must be recovered before resumed. To keep

monotonicity that the server’s next response is greater than all

its previous responses, we need to set the server to a resumption
state that is greater than its pre-failure state.

To recover a failed server without breaking monotonicity, we

need to compute the upper bound of the server’s pre-failure state,

and use this upper bound as the resumption state. Herewe introduce

two flavors of solutions:

(1) Cloud style: trust the disk.

The clock server may periodically allocate a range of time-

stamps that it can serve, and store the range on a reliable disk,

e.g., our triplicate disks on Alibaba Cloud [1] that provides

99.9999999% data durability.

(2) Garage style: bring your own cluster.

To deploy TaaS on bare metal, a simple solution is to allocate

the timestamps on a cenceptual “metadata node”—a highly-

available cluster that replicates timestamps on multiple disks.

By exploiting the redundancy of consensus, such architecture

may achieve durability comparable to cloud storages.

As mentioned in §2.2.2, CORFU [2], PolarDB-X [3], TiDB [10],

Percolator [19], and Omid [21] all preserve timestamps on consen-

sus facilities such as etcd [7] and Apache Zookeeper [11]. Upon fail-

ure, the server simply resumes from above the previously-allocated

range, thus guarantees its monotonicity.

We adopt this allocation-based strategy from existing timestamp

oracles into our TaaS prototype evaluated in §5. To prevent the

cloud disk from bottlenecking the server, our servers allocate new

ranges of timestamps before exhausting the old ones.
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Table 3: Experiment variables. The Availability experiment
measures throughput and latency qualitatively (Qual.). The
Stability experiment measures the latency quantitatively
(Quant.) and disregards the throughput (N/A).

RQ Availability Scalability Stability

# of Datacenters 1,3 1 1

# of Servers (N) 5 3,5,7,9 5

# of Clients 100 1,2,4,8,16 1

Interference Outage% N/A Delay%

Throughput Qual. Quant. N/A

Latency Qual. Qual. Quant.

4.2 Unique timestamps via disjoint clocks
As mentioned in §3.1.4, TaaS by default does not linearize to sequen-

tially ticking a logical clock, but to looking at a clock on the wall,

where simultaneus observations may result in the same conclusion.

To make the conclusions unique, we may annotate each time-

stamp with its sending server’s identifier. For the example in Fig-

ure 2, the annotated timestamps are shown in Table 2. Timestamps

of the same counter (higher bits) are ordered by their server identi-

fers (lower bits), e.g., 1.𝑥 < 1.𝑦 < 1.𝑧.

As a result, when𝑀 = 1, sessions𝛼 , 𝛽 , and𝛾 would concludewith

timestamps 1.𝑥 , 1.𝑧, and 2.𝑥 , respectively, which are distinguishable

by their lower bits.

Theorem 4 (Uniqueness of Conclusions). No two sessions may

result in the same server-identified conclusion.

Proof. For each session, the candidate must be among the re-

sponses received within that session. A server never responds with

the same counter twice, so no two sessions may receive the same

annotated response. Therefore, each session’s candidate (and thus

conclusion) is unique. □

5 EVALUATION
5.1 Experiment Design
The empirical evaluation of the TaaS algorithm is to answer the

following research questions (RQ’s):

• RQ1 (Availability): Does TaaS exhibit—in practice—the high avail-

ability we proved mathematically in Theorem 3?

• RQ2 (Scalability): How does TaaS behave when scaled up?

• RQ3 (Stability): Is TaaS prone to network interference?

These RQ’s motivate us to compare TaaS against state of the art

timestamp oracle qualitatively and quantitatively. The baseline we

choose is TiDB, a hybrid transactional and analytical processing

(HTAP) database. TiDB’s placement driver (PD) module can “gen-

erate about a million timestamps per second” [10].

Our TaaS prototype is implemented by injecting the client and

server algorithms into the TiDB-PD codebase. We reuse the remote

process call (RPC) interface in TiDB, so as to evaluate the algorithms

using the most similar facilities possible.

We compare TaaS with TiDB in three experiments, as shown in

Table 3. We explain the experiments’ variables and invariables in

§§5.1.1–5.1.2, and present the results in §§5.2–5.4.

Beijing Zone H

!

TaaS

Client

Servers

tick

GetTS

TiDB

Client

PD cluster

Figure 7: Single-datacenter experiment architecture.
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Beijing F

!

(a) TiDB-PD

Beijing HBeijing G

Beijing F

(b) TaaS

Figure 8: Tri-datacenter experiment architecture.

5.1.1 Variables. To answer the different RQ’s, we manipulate the

timestamping systems in various directions, emphasizing outages

(RQ1), parallelism (RQ2) and delays (RQ3).

Servers. To evaluate the availability of TaaS with different levels

of outages (server-level and datacenter-level), we deploy the servers

in two settings: Figure 7 puts all servers in the same datacenter.

Figure 8 distributes the servers into three datacenters—namely

Zones F, G, and H—all in Beijing.

The scalability and stability experiments are conducted within

Beijing Zone H. To measure the performance of TaaS as the system

scales up, we change the number of servers 𝑁 ∈ {3, 5, 7, 9}, with
parameter𝑀 ∈ {2, 3, 4, 5}, as recommended by Corollary 3.1.

Clients. As mentioned in Definition 3, a computer may launch

parallel client processes that execute sessions simultaneously. For

example, TiDB-PD benchmarks its timestamp throughput by run-

ning 100 clients per machine. We replicate this level of parallelism

in the availability experiment, and analyze the performance of

running {1, 2, 4, 8, 16} parallel clients in the scalability experiment.

The single-datacenter experiments hosts all client(s) on the same

machine. The tri-datacenter availability experiment puts one client-

hosting machine per zone, each running 100 clients in parallel.

Workload. The original TiDB experiment by Huang et al. had the

clients to request timestamps as quickly as possible, to measure the

maximum throughput they can achieve by exhausting the machines.

When replicating such flooding workload on TaaS, we observe

a significant increase of latency, and blame the concurrent nature

of TaaS clients for it: Unlike the TiDB client that only sends one
GetTS request to the cluster’s leader synchronously, the TaaS client
interacts with all servers asynchronously, and thus involves heavier
concurrency for both the operating system and the network stack.
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Table 4: Single-zone outage schedule.

Time TaaS TiDB-PD

0’00” All five servers up

1’00” Stop a random server Stop the leader

2’00” Stop another server Stop the then leader

3’00” Resume a random server

4’00” Resume the remaining server

5’00” End of experiment

Table 5: Tri-zone outage schedule.

Time TaaS TiDB-PD

0’00” All three zones up

1’00” Stop a random zone Stop the leader’s zone

2’00” Resume the stopped zone

3’00” Stop another zone Stop the then leader’s zone

4’00” Resume the stopped zone

5’00” Stop the third zone Stop the then leader’s zone

6’00” Resume the stopped zone

7’00” End of experiment

We then doubt: To answer RQ’s in §5.1, is it really worth mea-

suring the latency at the extreme workload (approximately 600,000

requests per second) that overloads the client machine?

When benchmarking on TPC-C [24], TiDB “requests at most

6000 timestamps per second per server
5
”. So in the availability

experiment, we choose to overload TiDB and TaaS by five times,

i.e., requesting a fixed rate of 30,000 timestamps per second per

client. Our scalability experiment studies how the TaaS client gets

exhausted, by flooding it with requests at unlimited rate.

Outages. We demonstrate the high availability of TaaS by stop-

ping arbitrary servers. Our deployment consist of five servers that

are all up initially. We then reduce the number of ups, by randomly

choosing servers and killing their processes. We expect the service

to be continuously available provided any three servers being up.

As for TiDB-PD, we show its single point of failure by delib-

erately killing the leader, and expect no timestamp to be served

during the failover period, until the cluster re-elects a leader.

We simulate server-level outages in the single-zone experiment,

and simulate zone-level outages (where the entire datacenter be-

comes unavailable) in the tri-zone experiment. The per-minute

schedules are listed in Table 4 and Table 5, respectively.

Delays. To emulate interferences that may delay network pack-

ets, we use NetEm [9] to add network delays at nearly
6
exponential

distribution [22] with standard deviation of 1 millisecond.

When testing TaaS, we measure the latency when {0, 1, 2, 3, 4, 5}
out of 5 servers are interfered with the delay. As for TiDB-PD, we

find that delaying the followers does not affect the latency, so we

compare the latency under the leader being interfered vs intact.

5
Here the “server” corresponds to a “TiDB client” in Figure 7.

6
NetEm can only produce delays within 4 times of the standard deviation, so the added

delay ranges between [0, 4𝜎 ] rather than [0, +∞) .
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Figure 11: Tri-zone: median and 99% latency in each zone.

5.1.2 Invariables. Software wise, we re-use the benchmarking tool

for TiDB-PD.We inject the TaaS algorithm as a replacement module

in the TiDB codebase, switched on/off via command line.

Hardware wise, we run all clients and servers on Alibaba Elastic

Compute Service, using instance type ecs.c5.8xlarge equipped
with 32-virtual-core Intel Xeon Platinum CPUs at 2.5GHz, RAM

of 64GB, and network of bandwidth 10Gbps. The round-trip time

(RTT) is 0.1–0.2ms within datacenter, or 1–2ms across datacenters.

5.2 Upon server outage
5.2.1 Within the same datacenter. The TaaS and TiDB clients count

the number of timestamps they fetched per second, and measures

the latency distribution.

As shown in Figure 9, when the leader is stopped, TiDB-PD stops

serving timestamps for nearly 10 seconds. We believe the blackout
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period can be shortened by tuning the parameters of the consensus

algorithm, but never eliminable due to the SPoF nature of the leader.

In comparison, the consensusless design keeps TaaS immune

from SPoF. Stopping one or two servers increases the median la-

tency by 0.1ms—i.e., one additional RTT for promoting the candidate—

but never disrupts the timestamp service.

5.2.2 Across datacenters. We compare the total throughput be-

tween TaaS and TiDB, by summing up the number of timetamps

fetched by the three clients, each requesting 30,000 per second.

As shown in Figure 10, during normal execution, both TaaS and

TiDB meet the throughput expectation of 90,000 per second. When

the TiDB leader’s zone fails, the service discontinues for nearly 10

seconds, in the same way as Figure 9. In contrast, the TaaS service

remains stable, no matter which zone fails.

Latency. TiDB clients in different zones experience distinct la-

tency: The client in the same zone as the leader can conclude within

0.1–0.2ms, and clients in different zones need to wait for 1–1.5ms.

The latency of TaaS is less distinct among different zones, as

shown in Figure 11. When all the servers are up, the clients in all

three zones exhibit a similar latency of 1–1.5ms.

Upon zone-level outages, e.g., Beijing H,
7
all clients need to tick

all three remaining servers, one in F and two in G. The client in H

is impacted most (median 3.3ms), followed by F (2.5ms). The impact

on G is less significant (1.5ms), due to colocation with two servers.

7
We simulate zone-level failures by stopping all the TaaS servers, rather than shutting

down our datacenter. So the clients are still alive and analyzing the performance.

5.3 As the system scales
As shown in Figure 12, running more sessions in parallel increases

the total throughput of the client machine, but also increases the

latency of each timestamp. And when deploying more TaaS servers,

the latency significantly increases as more clients run in parallel.

We locate this scalability issue by measuring the CPU load of the

client machine running one session at a time. As shown in Figure 13,

the TaaS client’s CPU load linearly increases with the number of

servers, which matches our expectation: To compute a timestamp,

the TaaS client needs to tick all servers once, or tick a majority of

the servers twice, i.e., at complexity𝑂 (𝑁 ). In comparison, TiDB-PD

only needs to tick the leader once, i.e., at complexity𝑂 (1). We view

the client-side complexity as a trade-off for higher availability.

As a result, running multiple TaaS sessions may overload the

CPU (e.g., 16 parallel sessions with 𝑁 = 9), resulting in excessive

latency and sublinear throughput. Note that real-world clients do

not fetch timestamps floodingly as the benchmarks do, but only

on demand per transaction. The sub-millisecond latency of TaaS is

negligible for database transactions that take dozens of milliseconds.

On the server side: When serving 90,000 timestamps per second

(i.e., 15 times of TiDB’s TPC-C throughput) in the tri-datacenter

experiment, the peak CPU load varies among TaaS servers, ranging

from 7 to 23 (during outage).
8
In comparison, the TiDB-PD leader

exhibits a constant CPU load around 7.

5.4 Under network interference
As shown in Figure 14, when a minority of the servers are interfered

by network delays, the latency of TaaS increases by 0.1ms, i.e., one

additional RTT. If the interference expands to a majority (≥ 𝑀),

then the latency significantly increases, as the client needs to tick

at least𝑀 servers before reaching a conclusion.

In comparison, the latency of TiDB-PD only depends on the

client–leader connection: If the leader is interfered by the network

delay, then the latency expectation exceeds 1 millisecond.

We also observe that the latency distribution of TiDB-PD (solid

red line) exhibits a bell curve, which differs from the client–leader

ping (dotted black line) that follows exponential distribution. This

indicates that the timestamping latency of TiDB-PD should not be

simply modelled as 1RTT, and is worth studying beyond this paper.

8
We read this result qualitatively—Each session ticks different subsets of servers, based

on (i) “what” the servers respond with and (ii) “when” the responses arrive.
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Figure 14: Latency distribution under network inference.

Summary. These results allow us to answer the RQ’s in §5.1:

RQ1: TaaS is immune to server-level and zone-level failures,

which reflects our mathematical proof in Theorem 3.

RQ2: As the number of servers increases, TaaS tolerates more

outages, at the cost of higher client loads and increased latency.

RQ3: Upon network interference, TaaS exhibits a more pre-

dictable performance that depends on the number of affected servers,

compared to TiDB-PD that varies with “which” server being slow.

6 RELATED AND FUTUREWORKS
This section locates TaaS in the area of timestamping transactions,

and projects how to expand TaaS for more scenarios: §6.1 compares

centralized and decentralized approaches of timestamping. Within

the scope of centralized timestamping—which this paper studies—

§6.2 compares the consensusless TaaS algorithm against consensus-

based solutions. §6.3 then discusses how to use timestamps in end-

to-end solutions—whether deploying it as standalone service, or

embedding it into the protocol design.

6.1 Centralized / Decentralized
As mentioned in §2.1, clocks in distributed systems consist of:

(i) “Centralized” ones that are ticked by all participants, e.g., TaaS

and consensus-based oracles; and (ii) “Decentralized” ones that are

maintained by each participant, e.g., TrueTime [4] and scalar/vec-

tor/hybrid logical clocks [13, 14, 16]. Here we discuss the pros and

cons of centralized timestamping, and explore the possibility of

combining centralized and decentralized techniques.

Pros. Centralized clocks are easy to understand and implement:

• Theoretically: All the participants tick the same clock, so the

only logic is that “earlier ticks get smaller timestamps”.

In contrast, logical clocks introduces the concept of “advanc-

ing one clock to above another clock”, and TrueTime involves

uncertainty—both require careful reasoning.

• Practically: Centralized timestamps are requested “on demand”,

where the participant calls a stateless (except for caching) func-

tion that queries the clock service.

Whereas, logical clocks require each participant to maintain its

own timer state, and carry timestamps along all synchronizations,

so as to track the causality among transactions. TrueTime lifts

the demand on modifying the communication protocol, but relies

on GPS satellites to keep its atomic clocks tightly synchronized.

Cons. Centralized timestamping is limited by lightspeed: When

the data spreads across continents, the RTT for ticking the central-

ized clock might reach hundreds of milliseconds, which is unac-

ceptable for a cloud service.

In contrast, decentralized clocks are colocated with their users,

and thus impose less latency overhead: TrueTime clients only need

to wait for the uncertainty range to expire, which takes less than

10ms. Logical clocks are continuously synchronized per communi-

cation, so the latency of ticking locally becomes negligible.

Next step: Combining centralized + decentralized timestamping.
To exploit the locality of decentralized clocks, while keeping the

simplicity of centralized clocks, the PolarDB-X database [3] parti-

tions data across datacenters, and deploys a timestamp oracle per

region that orders local transactions. Each region also equipts a

hybrid logical clock for synchronizing cross-region transactions.

We will explore the possibility of substituting the region-specific

timestamp oracles with a TaaS-per-region for higher availability,

in combination with the decentralized HLC, to achieve optimal

latency for both local and global transactions.

6.2 Consensus / Consensusless
One innovation of TaaS is the bipartite architecture, where the

server only connects to the clients—unlike consensus-based mech-

anisms that synchronize among servers. So what makes TaaS dif-

ferent? What do we mean by “consensusless”?

Consistency. We read the concept of “consistency” (i) generically

as “refining a single representation for the convenience of reason-

ing”; and (ii) specifically to the consensus world, “converging all

replicas to the same representation”.

Now we can define “consensusless” as “achieving consistency

without converging representations”: The “representation” that

TaaS reasons about is𝑀@Ω—the𝑀-th smallest server state—that

deliminates the lower and upper bounds of each conclusion. Pro-

vided any𝑀 servers being up, the client can deduce and advance

this representation, so as to achieve timestamp completeness.

Partition. The requirement of “convergence” results in the com-

pletely interconnected architecture of consensus-based systems.

But for the timestamping problem, we find “completeness” (Def-

inition 1) a weaker yet sufficient goal, that can be satisfied by a

bipartite architecture whose servers are naturally partitioned. In

this paper, “partition” refers to “disconnecting some clients from

some servers”, as shown in Figure 5.
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Availability. As proven in Theorem 3, a TaaS client can conclude

if and only if it can reach any max(𝑀, 𝑁 −𝑀 + 1) out of 𝑁 servers.

As a result, for any pair of clients that are simultaneously available,

they must reach some server in common, per pigeon-hole principle.

Such restriction motivates us to formalize the concepts of CAP in a

consensusless setting, which we leave as future work.

6.3 Standalone / Embedded
Distributed systems utilize timestamps in two styles:

(1) Deploying a standalone service that assigns a timestamp for

each event, e.g., TrueTime and centralized timestamp oracles.

(2) Embedding timestamps into the concurrency control protocol,

e.g., two-phase commit [3, 26], timestamp stability [6], logical

clocks [13, 14, 16], and consensus protocols [15, 18].

Comparison. Standalone timestamping reduces the order of events
to the order of their timestamps. It keeps the communication proto-

col simple that all participants query the timestamp service, rather

than negotiating with each other. Therefore, mainstream prod-

ucts choose the standalone style whenever it is affordable—e.g.,

deploying within the same region (where the latency overhead is

acceptable), or having sufficient budget for TrueTime.

Embedded timestamping deduces the event order by reasoning

on the timestamps transmitted among the events. Such methods

avoid the overhead of explicitly fetching timestamps, but requires

modifying the communication protocol to carry timestamps dur-

ing all synchronizations. As a result, embedded timestamping is

widely used for systems that care about reducing the round-trips of

transactions, e.g., databases that scale geographically [3, 23, 25–27].

Next step: Embedding the TaaS theory. The TaaS client deduces
timestamps from the collection of server states, in a deterministic

process that doesn’t require conflict detection. Such simplicity mo-

tivates us to expand the standalone TaaS service into an embedded

mechanism for ordering transactions.

For example, we may squeeze the “timestamp and then com-

mit” processes into one phase, by smuggling data payloads along

with the ticks. This results in a consensusless distributed journal

whose append operation normally takes only one (client–server)

hop—regardless of conflicts—unlike leader-based consensus [15, 18]

that take two hops (i.e., client–leader–followers) or leaderless so-

lutions [6, 17] that require detecting and resolving conflicts. Our

next paper will introduce the TaaS-inspired journaling mechanism.

7 CONCLUSION
This paper shows how to generate logical timestamps correctly,

quickly, and smoothly. We study the fundamental need for time-

stamps, and define a monotonic spacetime over a cluster of logical

clocks. We tolerate single-point errors by computing timestamps

from the entire cluster, rather than prioritizing any specific server.

TaaS introduces an alternative to consensus for fault-tolerance:

We demonstrate how to build a consistent service, without syn-

chronizing among the servers. TaaS inspires us to think out of the

“consensus” box when (re)designing distributed databases.

Appendices
The correctness of the TaaS algorithm proven in Theorem 1 and

Theorem 2 are based on the following lemmas:

Lemma 5 (Lower bound of ending server states). By the end of

session 𝜎 : if the client has received—during any session—responses

that are no less than 𝑋 from at least 𝑁 −𝑀 + 1 servers, then at the

end of session 𝜎 , there exist at least 𝑁 −𝑀 + 1 servers whose states

are no less than 𝑋 :

∀𝑀,∀𝜎,∀𝑋, 𝑀@($ˆ : 𝐴𝜎 ) ≥ 𝑋 =⇒ 𝑀@(Ω : 𝐴𝜎 ) ≥ 𝑋

i.e.,𝑀@(Ω : 𝐴𝜎 ) ≥ 𝑀@($ˆ : 𝐴𝜎 )

Proof. Consider the 𝑁 − 𝑀 + 1 servers that responded with

no less than 𝑋 before the end of session 𝜎 : Their states have been

advanced to no less than 𝑋 when sending the responses.

Therefore, at the end of session 𝜎 , these 𝑁 −𝑀 + 1 server states

are still no less than 𝑋 , per monotonicity. □

Lemma 6 (Global monotonicity). For any pair of time 𝑇1 that is

earlier than 𝑇2, the 𝑀’th smallest server state at 𝑇1 is no greater

than the𝑀’th smallest server state at 𝑇2:

∀𝑇1,∀𝑇2, (𝑇1 ≺ 𝑇2 =⇒ ∀𝑀,𝑀@(Ω : 𝑇1) ≤ 𝑀@(Ω : 𝑇2))

Proof. Let 𝑋 = 𝑀@(Ω : 𝑇1) and 𝑌 = 𝑀@(Ω : 𝑇2). Assume to

the contrary that 𝑋 > 𝑌 , then at time𝑇1, at least 𝑁 −𝑀 + 1 servers

have states no less than 𝑋 . Therefore at time 𝑇2, these 𝑁 −𝑀 + 1

servers’ states are still no less than 𝑋 , thus greater than 𝑌 .

At time 𝑇2, at least𝑀 servers have states no greater than 𝑌 . We

then count the total number of servers—whose states either greater

than or no greater than 𝑌—no less than (𝑁 −𝑀 + 1) +𝑀 = 𝑁 + 1,

which contradicts the fact that there exist only 𝑁 servers. □

Lemma 7 (Upper bound of beginning server states). For requests
sent within session 𝜏 : if the client has received responses to those

requests from at least 𝑀 servers that are no greater than 𝑋 , then

at the beginning of session 𝜏 : there exist at least 𝑀 servers whose

states are less than 𝑋 :

∀𝑀,∀𝜎,∀𝑋, 𝑀@𝜎̌ ≤ 𝑋 =⇒ 𝑀@(Ω : 𝑄𝜎 ) < 𝑋

i.e.,𝑀@(Ω : 𝑄𝜎 ) < 𝑀@𝜎̌

Proof. Consider the𝑀 servers that responded with no greater

than𝑋 : Their states were less than𝑋 before processing the requests,

which arrived after the beginning of 𝜎 .

Therefore, at the beginning of session 𝜎 , these𝑀 server states

must be less than 𝑋 , per monotonicity. □
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