
A Blockchain System for Clustered Federated Learning with
Peer-to-Peer Knowledge Transfer

Honghu Wu
∗

State Key Laboratory for Novel

Software Technology

Nanjing University, China

hhwu.nju@gmail.com

Xiangrong Zhu
∗

State Key Laboratory for Novel

Software Technology

Nanjing University, China

xrzhu.nju@gmail.com

Wei Hu
†

State Key Laboratory for Novel

Software Technology

Nanjing University, China

whu@nju.edu.cn

ABSTRACT
Federated Learning (FL) is a novel distributed, privacy-preserving

machine learning paradigm. Conventional FL suffers from draw-

backs such as single point of failure and client drift. Blockchain

is a distributed computing architecture famous for decentraliza-

tion, transparency, and traceability. Incorporating blockchain as

the underlying basis for FL decentralizes the FL process and brings

opportunities to resolve the drawbacks. However, there still remain

challenges to fulfilling FL with blockchain, regarding effectiveness,

efficiency, and security. In this paper, we propose a new blockchain

system for FL, called FedChain. To mitigate client drift and accel-

erate training, we present a clustered semi-asynchronous method

for model aggregation. To optimize the local training in FL, we

introduce a knowledge transfer method using other clients on the

peer-to-peer network of blockchain. Moreover, we implement an

access control mechanism to store and transmit models safely and

efficiently. Extensive experiments on various benchmark datasets

show that FedChain achieves superior results in accuracy, conver-

gence, throughput, and latency.

PVLDB Reference Format:
Honghu Wu, Xiangrong Zhu, and Wei Hu. A Blockchain System for

Clustered Federated Learning with P2P Knowledge Transfer. PVLDB, 17(5):

966 - 979, 2024.

doi:10.14778/3641204.3641208

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/nju-websoft/FedChain.

1 INTRODUCTION
Federated Learning (FL) is a novel distributed, privacy-preserving

machine learning paradigm [30], where multiple clients with local

data work together for improved model performance without raw

data sharing. Currently, FL has been widely employed in various

privacy-sensitive applications such as financial services [50], smart

healthcare [32], and recommender systems [49].

∗
The two authors contributed equally to this work.

†
Wei Hu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.

doi:10.14778/3641204.3641208

In a common FL framework [4], a central server coordinates all

clients for aggregating local models. It often suffers from several

inherent limitations. First, the client-server architecture of FL de-

pends highly on the single central server, which raises the risk of a

single point of failure (SPOF). Second, mainstream FL frameworks

aggregate the local models of all clients to learn a global model

fitting different local data. However, the heterogeneity in local data

may lead to inconsistent optimization directions of the local models,

slow convergence of the global model, and unsatisfied performance

on local datasets, which is referred to as client drift [17]. Third,
FL follows a data-parallel distributed training strategy [51], either

synchronous [43] or asynchronous [47]. Synchronous FL means

that all clients train with the same model parameters. The server

awaits clients to complete the mini-batch training and performs the

aggregation of local models and the update of the global model. In

the case of imbalanced computing power or communication speed,

there would be a serious short-board effect, that is, a straggler slows

down the overall process. In asynchronous FL, the clients update

model parameters separately without waiting for each other. Al-

though the asynchronous strategy seems more efficient, it raises the

problem of gradient expiration during training, which may result

in unstable convergence or a suboptimal solution.

Blockchain is a novel distributed storage architecture and com-

puting paradigm famous for decentralization, openness and trans-

parency, traceability and tamper resistance. Many blockchain sys-

tems [33, 34, 48] have been deployed in e-commerce, security trad-

ing, IoT, etc. Incorporating blockchain as the underlying architec-

ture for FL decentralizes the FL process and enhances it in the

aforementioned aspects.

First, as a replicated distributed storage system, blockchain en-

sures data consistency through the consensus mechanism [13]. The

characteristic of decentralized consistency would eliminate the de-

pendence of FL on the single central server and reduce the risk of

SPOF. Moreover, the updated models can be recorded and traced

on blockchain, and whether a model is maliciously tampered with

can be verified. These are difficult to be realized in traditional FL.

Second, the blockchain network follows the peer-to-peer (P2P)

architecture, where peers are connected to each other. Traditional

FL generally adopts the client-server architecture, which relies

on bidirectional communication between the server and clients to

transmit model parameters and gradient updates. Through the P2P

architecture, the clients can learn from similar models flexibly to

mitigate the impact of data heterogeneity.

Third, blockchain offers an immutable, verifiable, and trace-

able distributed storage solution to FL. Under the protection of

966

https://doi.org/10.14778/3641204.3641208
https://github.com/nju-websoft/FedChain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3641204.3641208
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Cluster 1

Client 2

Client 1

Client 3
(aggregator)

Cluster 2

Client 5

Client 4

Client 6
(aggregator)

𝒘𝒘𝟏𝟏

Dataset Model

Local storage

Clustered aggregation

𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 𝒘𝒘𝟑𝟑𝒘𝒘𝑪𝑪𝟏𝟏

Clustered aggregation

𝒘𝒘𝟒𝟒 𝒘𝒘𝟓𝟓 𝒘𝒘𝟔𝟔𝒘𝒘𝑪𝑪𝟐𝟐

𝒘𝒘𝟐𝟐

𝒘𝒘𝟒𝟒

soft prediction
soft label

distillation loss

hard prediction

hard label
prediction loss

P2P knowledge transfer

On-chain
part

Block header
Client ID

Model ID

Hash code

Similarity
calculation

Collaborator
selection

𝑠𝑠𝑖𝑖𝑖𝑖(1,1) ⋯
⋮ ⋱ ⋮

⋯

Client
clustering

Access
control

Off-chain
Part

Legend:
aggregation
transfer
encryption

Smart contracts

Figure 1: System architecture of FedChain

blockchain, there can be more than one trusted aggregator, and the

clients can access reliable models in parallel. It brings the probabil-

ity of combining synchronous and asynchronous FL to achieve a

balance between time efficiency and model accuracy.

In this paper, we propose a blockchain system for FL, dubbed

FedChain, which innovatively improves the global aggregation and

local training of traditional FL. FedChain focuses on the following

two key challenges to fulfilling FL with blockchain.

Challenge 1. What is a good architecture to combine blockchain
and FL? As far as we know, a few works [35] design blockchain-

based FL systems to handle SPOF. However, they are a naive combi-

nation of blockchain and FL without considering the improvement

of the training process. These works mainly focus on the security

and privacy of FL systems. But simply using blockchain to record in-

formation cannot solve other inherent drawbacks of FL mentioned

above. Our goal is to strengthen the correlation between blockchain

and the training process of FL. This demands a new architecture

to deeply integrate blockchain into various phases of FL such as

global aggregation, local training, and model management.

Challenge 2. How to improve the performance of FL with block-
chain while not bringing much extra burden? The P2P network of

blockchain naturally provides more channels for data exchange.

It can break the isolation between clients in traditional FL and

raise the probability of improving the accuracy of models. However,

the naive combination of blockchain and FL does not solve the

problem of synchronous waiting in traditional FL. Furthermore, as

the parameter size of large models is much larger than the general

block size (e.g., the regular block size threshold of Hyperledger

Fabric is 64MB [1]), uploading models to blockchain would cause a

significant communication overhead. On one hand, we introduce a

dynamic clustered FL method in this paper. We implement smart

contracts to divide clients into groups for reducing idle time (i.e., the

time from local model update to global model synchronization). On

the other hand, we leverage the P2P network to transfer knowledge

among clients during the local training phase to alleviate the poor

performance caused by data heterogeneity.

The main contributions of this paper are outlined as follows:

• We propose a novel FL architecture built upon blockchain.

FedChain couples blockchain and FL in depth by fully de-

centralizing the training process of FL, making the strengths

of blockchain better applicable to FL. (Sect. 3)

• We introduce a clustered semi-asynchronous aggregation

method. Clients are divided into different clusters through

smart contracts, and model aggregation is constrained to

the clients in each cluster. This mitigates the heterogeneity

in aggregation and accelerates training. (Sect. 4)

• We present a P2P knowledge transfer method for enhanc-

ing the local training in FL. We formulate the collabora-

tive client selection problem and leverage smart contracts

to find solutions with a guaranteed approximation ratio.

Clients distill knowledge from collaborators to improve the

performance on imbalanced data. (Sect. 5)

• With a general threat model, we implement FedChain based

on an efficient and secure model storage and access control

mechanism, defending against potential attacks. (Sect. 6)

• We carry out extensive experiments on different types of

benchmark datasets. The experimental results show the

superiority of FedChain in accuracy, convergence, through-

put, and latency against state-of-the-art baselines. (Sect. 7)

2 PRELIMINARIES
2.1 Federated Learning
With the explosive growth of smart devices and rising concerns

about data privacy, FL becomes one of the most popular distributed

learning paradigms. As a pioneering work, FedAvg [30] consists of

967

three steps: model initialization, local training, and global aggre-

gation. A server first initializes model parameters and distributes

them to all clients. After receiving the global model, each client

trains a local model with its local data and returns it to the server.

The server collects all the local updates and aggregates them into

the global model. After a few rounds of communication, the con-

verged global model can achieve similar performance to the model

centrally trained on all local datasets. The vanilla FedAvg suffers

badly from the data and device heterogeneity in real applications.

The data heterogeneity problem in FL is mainly due to the fact

that the datasets on local clients are independently distributed and

do not follow the same sampling strategy, a.k.a., non-independent

and identically distributed (abbr. non-IID). Data heterogeneity leads

to inconsistent gradient directions during local training and poor

performance of the global model on local datasets. FedProx [26] and

MOON [25] attempt to constrain the optimization directions of the

local models via regularization and contrastive loss, respectively, to

achieve a converged global model faster. However, this may lead to

underfitting over local datasets. FedChain enhances the specificity

of federated models and avoids the local optimum by dynamically

dividing clients into clusters based on data features.

As clients vary in storage, computation, and communication

capabilities, device heterogeneity is another pressing problem in FL.

As with FedAvg, a server awaits all clients to train and upload the

local updates before aggregation, resulting in a significant overall

delay, particularly when facing SPOF. A number of asynchronous FL
algorithms [12, 47] are proposed to cope with device heterogeneity.

FedAsync [47] adopts an asynchronous communication protocol

with an adaptive learning rate. However, fully asynchronous com-

munication leads to inconsistency of model parameters and slow

convergence of the global model. Semi-asynchronous FL [7, 54] com-

bines synchronous and asynchronous FL to mitigate the influence

of stragglers. FedAT [7] classifies clients into logical tiers based on

response latency and combines synchronous intra-tier training and

asynchronous cross-tier training to minimize the straggler effect.

Clustered FL [10, 24, 37, 54] groups clients with similar data dis-

tributions, computation capabilities, etc. FedHiSyn [24] presents

a hierarchical synchronous FL framework, which clusters devices

in terms of computing capacity and leverages a ring topology for

communication among devices. In this paper, we design a clustered

semi-asynchronous method, which clusters clients based on both

data distribution and training latency. Synchronous FL is performed

within clusters to ensure performance and asynchronous update is

performed across clusters to ensure efficiency.

For P2P FL, BrainTorrent [36] is a decentralized framework de-

signed for medical applications, which enables collaborative train-

ing among medical centers without a central server. The work [22]

defines FL as social learning on a graph and gives high probability

guarantees on the minimal number of training samples to learn the

optimal global model. In its P2P learning, clients take a Bayesian-

like method via beliefs over the model parameter space and update

the beliefs by aggregating information from their neighbors. To re-

solve client drift caused by data heterogeneity and model averaging,

Def-KT [23] performs decentralized FL via mutual knowledge trans-

fer. Due to the lack of a global view to guide the general optimization

direction, it is hard for these methods to achieve stable promotion in

accuracy. We present a P2P knowledge transfer method to enhance

the local training in FL and a multi-client selection algorithm to

improve the effectiveness of collaboration among clients.

2.2 Blockchain-based Federated Learning
Blockchain, stemming from the Bitcoin network [31], is a dis-

tributed ledger managing transactions and states across the whole

network. Smart contracts are code deployed on each blockchain

client with predefined logic for data manipulation and external

calls [42]. FedChain builds a blockchain system based on Hyper-

ledger Fabric [1], enabling clients to register for FL participation.

It also maintains flexibility in accommodating other blockchains

such as R3 Corda [14] and FISCO BCOS [3].

Much progress has been made in combining FL with blockchain

in recent years. Existing blockchain systems for FL have different

design directions. In [19, 27, 55], blockchain is used as an incentive

factor to promote the FL process. Rewards are assigned to clients

according to their training contributions. To enhance the security

of FL and protect the model privacy, blockchain acts as a distributed

database [9]. Encrypted model parameters are stored and verified

with blockchain. Also, a few works [29, 45] are devoted to analyzing

and optimizing the computation and communication overhead of

blockchain systems, in which we are particularly interested.

BlockFL [19] uploads all local updates of a federated regression

model on blockchain. Clients can download local updates to aggre-

gate a new global model. They get rewards by training local models,

verifying local updates, and generating new blocks. BlockFL ana-

lyzes and assesses the end-to-end latency of FL with blockchain.

BFLC [27] proposes a blockchain-based FL framework and devises

a committee consensus mechanism to reduce malicious attacks and

consensus computing costs. Each client is assigned a score based on

the verified local model, and the score is used to elect the committee.

Honest clients constitute the committee in charge of the verifica-

tion of local models. ScaleSFL [29] designs a sharding solution with

shard-level consensus and mainchain consensus for blockchain-

based FL. Clients are assigned to different shards and each shard

generates a local shard-aggregated model with shard-level con-

sensus. The verified shard-aggregated models are coordinated for

global aggregation with mainchain consensus.

In summary, existing works on blockchain-based FL suffer from

three drawbacks. First, involving blockchain brings additional pro-

cesses like verification, auditing, and assignment, which leads to

extra computation costs compared with traditional FL. Second, to
achieve consistency among distributed clients, uploading model pa-

rameters to blockchain goes through the consensus process, which

is a performance bottleneck for current systems. Third, to our best

knowledge, little work attempts to unleash the potential of the P2P

architecture of blockchain for improving the model accuracy of

FL. In this paper, we go beyond the existing works with clustered

semi-asynchronous aggregation and P2P knowledge transfer.

3 SYSTEM ARCHITECTURE
Fig. 1 shows the system architecture of FedChain. The P2P network

on which FedChain is built coordinates the on-chain and off-chain

parts and ensures communication among clients. There are three

functional modules, namely clustered FL, P2P knowledge transfer,
and blockchain-based access control. They correspond to the global

968

aggregation, local training, and model management in vanilla FL,

respectively. The on-chain part is responsible for metadata storage

and automatic execution of these modules, and the off-chain part

is engaged in specific computation and storage. Multiple smart

contracts are deployed on FedChain to provide key computing

functions for each module.

• Clustered FL. We divide clients into clusters according

to their data features and computing power. The clients

in each cluster collaborate for one individual model, and

one client is selected as the aggregator within the cluster.

Learning multiple intra-cluster models instead of one single

global model can alleviate the client drift problem and im-

prove overall accuracy [37]. Furthermore, dividing clients

with similar computing power for synchronization can ef-

fectively reduce idle time. The automatic execution of this

module depends on the similarity calculation smart contract
and the client clustering smart contract.

• P2P knowledge transfer. In local training, clients train

their local models on private datasets. To reduce the effect

of client drift, local updates are optimized collaboratively

based on the P2P network of blockchain. A client improves

the performance of its local model by transferring knowl-

edge from a few other models. The collaborative clients are

obtained by the collaborator selection smart contract.
• Blockchain-based access control. To ensure model pri-

vacy and reduce consensus overhead, we store all model

parameters locally on clients and only upload relevant meta-

data on-chain. We leverage the traceability and immutabil-

ity of blockchain to provide access control, enabling clients

to legally and safely read the model parameters managed

by other clients. Model replication is also used to balance

the access workload.

The architecture design of FedChain is based on our understand-

ing of decentralized FL. We replace the aggregation of a single

central server with multiple clusters. Based on the P2P network, we

transfer knowledge among clients. In addition, the traceable and

immutable features ensure the security of model access and trans-

mission. Compared to existing systems [19, 27], our architecture

transfers heavy training and model storage to off-chain devices, and

blockchain is responsible for core, lightweight metadata storage

and contract operations. Thus, FedChain is guaranteed in terms of

performance and efficiency. See the technical details below.

4 CLUSTERED FEDERATED LEARNING
We leverage blockchain for decentralizing global aggregation to

avoid SPOF. Also, we cluster similar clients and aggregate models in

parallel to mitigate the heterogeneity in model aggregation and ac-

celerate the training process. In this section, we first present feature

extraction, the technique employed to capture the data distributions

of clients and measure their similarity to build clusters. Then, we

propose a semi-asynchronous FL approach based on clusters.

4.1 Feature Extraction
Feature extraction is the basis for clustered FL. Its purpose is to

generate a digest that can reflect the data distribution of each client

for similarity calculation. Existing clustered FL systems [37] use

the gradient direction to measure the similarity, which requires

the central server to collect the gradients from all clients in each

aggregation iteration. As the size of the model gradients is equal to

that of the model parameters, uploading the gradients directly for

similarity calculation is inefficient.

PFA [28] leverages the sparsity property of neural networks to

represent the raw data in clients and group clients with similar data

distributions, which achieves personalization and privacy. We bor-

row this idea and design a feature extraction method based on local

training. As the feature map is often unique to a particular input,

we use it as a signature to distinguish different data distributions.

Given the set of clients K , each client 𝐾𝑖 ∈ K has a private

dataset D𝑖 =
{︁
(xℎ, 𝑦ℎ)

}︁𝑁𝑖

ℎ=1
, where 𝑖 denotes the serial number in

K ,𝑁𝑖 represents the size of the dataset, xℎ and𝑦ℎ are the feature and
label of theℎ-th data sample, respectively. At each local round, client

𝐾𝑖 trains a local model𝑤𝑖 onD𝑖 . We select 𝑛 kernel functions from

the intermediate layers in𝑤𝑖 and record them in the genesis block

of blockchain for clients to perform consistent feature mapping.

In the feed-forward process, client 𝐾𝑖 extracts the feature matrix

𝐹𝑘 (xℎ) ∈ R𝐻×𝑊 from the output of the 𝑘-th selected kernel given

input xℎ , where 𝐻 and 𝑊 are the height and width of 𝐹𝑘 (xℎ),
respectively. We compute the 𝑘-th signature of xℎ as follows:

𝑠𝑖𝑔𝑘 (xℎ) =
𝑧𝑒𝑟𝑜𝑠

(︁
𝐹𝑘 (xℎ)

)︁
𝐻 ×𝑊 , (1)

where 𝑧𝑒𝑟𝑜𝑠 (·) is a function counting how many zeros are there

in the matrix. The signature of the 𝑘-th kernel on dataset D𝑖 is
calculated by averaging all sample features:

𝑠𝑖𝑔𝑘 (D𝑖) =
1

𝑁𝑖

𝑁𝑖∑︂
ℎ=1

𝑠𝑖𝑔𝑘 (xℎ). (2)

In this way, client 𝐾𝑖 extracts the signatures during local train-

ing and forms a signature vector S𝑖 =
(︁
𝑠𝑖𝑔1 (D𝑖), 𝑠𝑖𝑔2 (D𝑖), . . . ,

𝑠𝑖𝑔𝑛 (D𝑖)
)︁
. Each client generates a signature vector reflecting the

local data distribution and uploads it to blockchain.

Take VGGNet [39], a well-known image recognition model, for

example. The size of the convolution kernel is 3×3 and suppose that
the input data size is 224 × 224. The size of the generated signature

does not exceed 4KB, which is much smaller than the size of the

gradients 528MB, making both uploading and consensus efficient.

4.2 Similarity Calculation
FedChain divides clients into different groups according to their

data distributions and training efficiency for aggregation. Here, we

first consider the similarity of data distributions. The signature vec-

tor of each client is stored on-chain, and we use cosine similarity as

the metric to calculate the similarity between vectors. Given the sig-

nature vectors S𝑖 , S𝑗 of clients𝐾𝑖 , 𝐾𝑗 , respectively, their distribution
similarity is calculated as follows:

𝑠𝑖𝑚
distr
(𝐾𝑖 , 𝐾𝑗) = cos(S𝑖 , S𝑗) . (3)

To divide clients with similar training efficiency into the same

group, we require each client to track and upload the time consump-

tion of local training at each local round. Given the training time

sequences (𝑇𝑖,1,𝑇𝑖,2, . . . ,𝑇𝑖,𝑡𝑖) and (𝑇𝑗,1,𝑇𝑗,2, . . . ,𝑇𝑗,𝑡 𝑗) of clients 𝐾𝑖
and 𝐾𝑗 , respectively, 𝑡𝑖 and 𝑡 𝑗 are not necessarily equal because

969

there may be a greater number of iterations with faster computing

capacity. We first truncate the two sequences to the same length by

T𝑖 = (𝑇𝑖,𝑡𝑖−min(𝑡𝑖 ,𝑡 𝑗)+1, . . . ,𝑇𝑖,𝑡𝑖), (4)

T𝑗 = (𝑇𝑗,𝑡 𝑗−min(𝑡𝑖 ,𝑡 𝑗)+1, . . . ,𝑇𝑗,𝑡 𝑗). (5)

For example, given 𝑡𝑖 = 10, 𝑡 𝑗 = 3, we intercept the latest {𝑇𝑖,8,
𝑇𝑖,9,𝑇𝑖,10} of client 𝐾𝑖 as T𝑖 and {𝑇𝑗,1,𝑇𝑗,2,𝑇𝑗,3} of client 𝐾𝑗 as T𝑗 .

Then, given the above two training time sequences of equal

length, the speed similarity between 𝐾𝑖 and 𝐾𝑗 is calculated as

𝑠𝑖𝑚
speed
(𝐾𝑖 , 𝐾𝑗) = cos(T𝑖 ,T𝑗). (6)

The similarities of data distributions and training speed are com-

bined to measure the overall similarity between clients:

𝑠𝑖𝑚(𝐾𝑖 , 𝐾𝑗) = 𝛼 · 𝑠𝑖𝑚distr
(𝐾𝑖 , 𝐾𝑗) + (1 − 𝛼) · 𝑠𝑖𝑚speed

(𝐾𝑖 , 𝐾𝑗), (7)
where 𝛼 is a hyperparameter to adjust the similarity weights.

The data involved in similarity calculation is uploaded by clients

and stored on-chain. We deploy a smart contract named similarity
calculation smart contract to complete the entire calculation process.

At the current global round 𝑡 , the contract calculates the similarity

matrix M𝑡 ∈ R |K |× |K | with M𝑡 [𝑖] [𝑗] = 𝑠𝑖𝑚(𝐾𝑖 , 𝐾𝑗) and stores it

on-chain. The execution of the contract is in parallel with the local

training of the clients for efficiency.

4.3 Clustered Aggregation
Fig. 2 shows a graphical comparison of three types of FL methods.

For synchronous FL, each client waits for the server to finish aggre-

gation before a new round of local training, and the waiting time

depends on the straggler, e.g., Client 3 in Fig. 2(a). For asynchronous

FL, every time the server receives a local model, it immediately

updates the global model. This indicates that clients do not need to

await updates from stragglers. However, we have already discussed

the weakness of asynchronous FL in the introduction.

To improve efficiency and ensure performance, we design clus-

tered semi-asynchronous FL in FedChain. Synchronous FL is per-

formed within each cluster, and clusters do not affect each other.

Let us see Fig. 2(c). Suppose that four clients are divided into two

clusters, where Clients 1 and 2 form Cluster 1, and Clients 3 and

4 form Cluster 2. Server 1 and Server 2 are selected from clients

in the two clusters for aggregation, respectively. Clients train the

local models on the local datasets based on the cluster models. A

server within the cluster detects a new local update and resets the

timer. The server performs aggregation when enough updates are

received or timeout. Clients pull the new cluster models to start the

next round of local training. When more than half of the clusters

submit the metadata of cluster models, clients are re-clustered into

different clusters. Clients discover the change of clusters and submit

the local updates to the new servers accordingly. The workflow is

terminated until the clusters no longer change and cluster models

reach convergence.

We implement a smart contract named client clustering smart
contract to divide clients into clusters. It takes the similarity ma-

trix M𝑡 as input and the output is a set of clusters G𝑡 = {C1, C2,
. . . , C𝑛𝑡 }, where 𝑛𝑡 is the number of clusters. Since the number of

clusters is uncertain, we leverage M𝑡 to generate an agglomerative

hierarchical clustering dendrogram. In this process, each client is

initially a cluster, and the closest clusters are merged by calculating

Server

Client 1
Client 2
Client 3

(a) Synchronous

Client 4

wait
wait

wait Client 4

Server
Client 1
Client 2
Client 3

(b) Asynchronous

Client 1
Client 2
Client 3

Server 1

Client 4

aggregate(Client 1, Client 2)
Server 2

(c) Clustered semi-asynchronous

aggregate(Client 3, Client 4)
timeout
wait

timeout
wait

Figure 2: Synchronous, asynchronous, and clustered semi-
asynchronous FL

the distance between the clusters until one large cluster remains.

We employ the average linkage [18] to measure the distance for

reducing the influence of outliers. For two clusters C𝑎 and C𝑏 , we
compute the average distance of all client pairs as follows:

𝑠𝑖𝑚avg (C𝑎, C𝑏) =
1

|C𝑎 | · |C𝑏 |
∑︂
𝐾𝑖 ∈C𝑎

∑︂
𝐾𝑗 ∈C𝑏

𝑠𝑖𝑚(𝐾𝑖 , 𝐾𝑗) . (8)

The time complexity of the clustering process is 𝑂
(︁
|K |3

)︁
. Since

the clustering process is in parallel to the local training of clients,

it does not cause an efficiency bottleneck in FedChain.

Although we divide clients with similar efficiency into the same

cluster, the aggregation process within the cluster is still synchro-

nous. The timeout mechanism avoids continuously awaiting strag-

glers, who may upload local updates optimized based on earlier

cluster models. Directly adopting the stale updates slows down the

convergence [46], while discarding them wastes training efforts.

To properly utilize stale updates without affecting convergence,

we propose a freshness-based aggregation method. Given the local

round number set {𝑡 𝑗 |𝐾𝑗 ∈ C𝑎} within cluster C𝑎 , the freshness of
the updated local model𝑤𝑖 from client 𝐾𝑖 ∈ C𝑎 is calculated by

𝑓 𝑟𝑒𝑠ℎ(𝑤𝑖) =
(︂
max

𝐾𝑗 ∈C𝑎
(𝑡 𝑗 − 𝑡𝑖 + 1)

)︂−𝜇
, (9)

where 𝜇 is the hyperparameter for adjusting the freshness value.

With the freshness as weight, the aggregator generates the clus-

ter model𝑤C𝑎 as follows:

𝑤C𝑎 =
∑︂
𝐾𝑖 ∈C𝑎

𝑓 𝑟𝑒𝑠ℎ(𝑤𝑖)∑︁
𝐾𝑗 ∈C𝑎 𝑓 𝑟𝑒𝑠ℎ(𝑤 𝑗)

𝑤𝑖 . (10)

FedChain produces a set of cluster models, denoted byW =

{𝑤C1 ,𝑤C2 , . . . ,𝑤C𝑛𝑡 }. Within the cluster C𝑎 , client 𝐾𝑖 pulls the
cluster model𝑤C𝑎 for local training. After the re-clustering process

is completed, client 𝐾𝑖 may be divided into another cluster C𝑏 . As
a result, the local model𝑤𝑖 updated based on the previous cluster

model𝑤C𝑎 is uploaded to the aggregator of 𝐶𝑏 for aggregation.

5 PEER-TO-PEER KNOWLEDGE TRANSFER
The conventional FL architecture [26, 30] pays much attention to

the client-server connection. Forwarding messages from a client to

other clients through the server would impose a heavy traffic bur-

den on the server. Model exchange between clients is considered in

970

a few existing works on P2P FL [22, 23, 36]. Benefiting from the P2P

network of blockchain, clients can communicate with each other

without extra burden. Furthermore, transferring knowledge from a

global scope can prevent the local optimum caused by intra-cluster

aggregation. In this section, we present a knowledge distillation

method to improve the effectiveness of local training.

5.1 Collaborative Client Selection
Previous studies [23] randomly pick clients as teachers for knowl-

edge transfer. However, the randomly selected teachers may per-

form poorly due to large divergence in data features. To improve

the performance of the local model for client 𝐾𝑖 , we seek to select

informative clients as teachers. Furthermore, compared with a sin-

gle teacher [15], multiple teachers can provide richer knowledge to

enhance the generalization of the model and help avoid overfitting

and resist noise [52]. In this paper, in addition to multiple teach-

ers, we propose two constraints for the selection policy: (1) clients

holding stale models should not be selected as they may lead to

performance degradation; (2) the probability of repeatedly selecting

the same client should be reduced as this would cause overfitting

due to excessive distillation. Together, we define the collaborative

client selection problem for client 𝐾𝑖 as follows:

max

K∗⊆K

∑︂
𝐾𝑗 ∈K∗

𝑠𝑖𝑚
distr
(𝐾𝑖 , 𝐾𝑗), (11)

s.t.

∑︂
𝐾𝑗 ∈K∗

𝐿𝑖, 𝑗 ≤ 𝜓𝑖 , (12)

𝑡 𝑗 ≥ 𝑡 − 𝜆, ∀𝐾𝑗 ∈ K∗ . (13)

The objective is to maximize the overall similarity of data distribu-

tions between 𝐾𝑖 and other clients in K∗. In the first constraint,𝜓𝑖
denotes the cost threshold for client 𝐾𝑖 . L𝑖 = {𝐿𝑖,1, 𝐿𝑖,2, . . . , 𝐿𝑖, |K | }
is a cost vector of length |K | maintained by client 𝐾𝑖 . The value 𝐿𝑖, 𝑗
indicates the cost of selecting client 𝐾𝑗 for knowledge distillation.

Specifically, the cost 𝐿𝑖, 𝑗 is calculated as follows:

𝐿𝑖, 𝑗 =
1∑︁

(xℎ,𝑦ℎ) ∈D𝑖
𝐾𝐿(P𝑖,ℎ,P𝑗,ℎ)

, (14)

where 𝐾𝐿(·, ·) is the Kullback-Leiber divergence to measure the

difference between two probability distributions. P𝑖,ℎ and P𝑗,ℎ
denote the soft labels for the ℎ-th data sample generated by the

local model𝑤𝑖 and the teacher model𝑤 𝑗 , which are computed as

P·,ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(︂ 𝑓 (xℎ ;𝑤 ·)
𝜏

)︂
, (15)

where 𝑓 (·) is the predicted probability distribution over the classes

and 𝜏 is the temperature of distillation [15]. The second constraint

ensures that the model of client 𝐾𝑗 ∈ K∗ is not outdated, and 𝜆 is
the freshness threshold. We do not consider 𝑠𝑖𝑚

speed
for knowledge

distillation here, because it measures the time costs of local training,

which is irrelevant to informative collaborator selection.

Theorem 5.1. Collaborative client selection is NP-hard.

This problem is a variation of the max-min diversification prob-

lem. More precisely, it is a max-sum diversification problem [6, 11].

Therefore, collaborative client selection is NP-hard. We solve the

collaborative client selection problem in a greedy manner with

Algorithm 1: Collaborator selection smart contract

Input: client set K , requester client 𝐾𝑖 , distribution
similarities

{︁
𝑠𝑖𝑚

distr
(𝐾𝑖 , 𝐾𝑗) |𝐾𝑗 ∈ K

}︁
, cost vector

L𝑖 , local rounds
{︁
𝑡 𝑗 |𝐾𝑗 ∈ K

}︁
, global round 𝑡 , loss

threshold𝜓𝑖 , freshness threshold 𝜆

Output: optimal collaborative client set K∗
1 initialize K∗ ← ∅,R← [],𝑈 ← 0;

2 foreach 𝐾𝑗 ∈ K do
3 𝑟 𝑗 ←

𝑠𝑖𝑚distr (𝐾𝑖 ,𝐾𝑗)
𝐿𝑖,𝑗

;

4 R.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟 𝑗);
5 sort R in descending order;

6 foreach 𝑟 𝑗 ∈ R do
7 if 𝑡 𝑗 < 𝑡 − 𝜆 then continue; // ignore stale models

8 𝑈 ← 𝑈 + 𝐿𝑖, 𝑗 ;
9 if 𝑈 > 𝜓𝑖 then break; // exceed cost threshold

10 K∗ ← K∗ ∪ {𝐾𝑗 };
11 return K∗;

Algorithm 1. The sorting step in Line 5 costs the most time. Thus,

the time complexity of the algorithm is 𝑂
(︁
|K | log (|K |)

)︁
.

Theorem 5.2. Algorithm 1 gives a 2-approximation guarantee to
solve the collaborative client selection problem [11].

5.2 Multi-client Knowledge Distillation
During the local training process of vanilla FL, each client derives

the local model from the global model and optimizes it with the

local dataset. In FedChain, we replace the local training of client 𝐾𝑖
by transfer learning from other models with an increasing proba-

bility 𝑝𝑡𝑖 . Specifically, we increase 𝑝𝑡𝑖 from an initial probability to

the maximal probability with a fixed stride. There are three main

reasons why the probability should grow with the rounds. The

first reason is that the student needs to fetch the teacher model

to its local storage in knowledge transfer, which incurs additional

communication costs. If we replace all local training with knowl-

edge transfer, the time cost of the system may become unaffordable.

Second, knowledge transfer requires the teacher model to have high

accuracy on the specific task so that it can transfer useful infor-

mation. It is more beneficial to perform knowledge transfer as the

round increases, which better improves the model performance.

Third, as local training and knowledge transfer are both important

for FedChain, clients should pay more attention to local training in

the early rounds to acquire local knowledge. Formally, for client 𝐾𝑖
in cluster C𝑎 with its local dataD𝑖 , the prediction loss is defined as

Lpredict =
1

𝑁𝑖

∑︂
(xℎ,𝑦ℎ) ∈D𝑖

𝐶𝐸
(︁
𝑓 (xℎ ;𝑤𝑖), 𝑦ℎ

)︁
, (16)

where𝐶𝐸 (·) denotes the cross-entropy measure and𝑤𝑖 is initialized

by the cluster model𝑤C𝑎 .
For knowledge transfer, client 𝐾𝑖 first calls Algorithm 1 and

gets the current optimal collaborator set K∗. Then, it requests the
models of clients in K∗, and the whole workflow is specified in

Sect. 6. Here, we focus on the knowledge distillation details. We

971

compute the distillation loss as follows:

Ldistill =
∑︂

(xℎ,𝑦ℎ) ∈D𝑖

𝐾𝐿(P𝑖,ℎ,PK∗,ℎ), (17)

where PK∗ denotes the soft labels averaged by teachers [52]. We

calculate it similarly to Eq. (15) as follows:

PK∗,ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(︂
1

|K∗ |
∑︂

𝐾𝑗 ∈K∗

𝑓 (xℎ ;𝑤 𝑗)
𝜏

)︂
. (18)

The knowledge distillation is equipped with the two jointly

optimized losses as follows:

Ljoint = 𝛿 · Lpredict + (1 − 𝛿) · Ldistill, (19)

where 𝛿 is a hyperparameter to balance the two losses.

After client 𝐾𝑖 finishes the knowledge distillation from teachers,

we update the values in L𝑖 as shown in Eq. (14) for the next selection.
Overall, the objective in FedChain is to minimize the global loss:

Lglobal =
∑︂
C𝑎∈G𝑡

∑︂
𝐾𝑖 ∈C𝑎

𝑓 𝑟𝑒𝑠ℎ(𝑤𝑖)∑︁
𝐾𝑗 ∈C𝑎 𝑓 𝑟𝑒𝑠ℎ(𝑤 𝑗)

Ljoint (D𝑖 ;𝑤𝑖) . (20)

6 THREAT MODEL AND ATTACK DEFENSE
Threat model. We follow the widely-adopted threat model in FL,

regarding clients as honest-but-curious (a.k.a. semi-honest) [40]. In
this setting, all clients strictly follow the instructions of FedChain.

They do not deviate from the defined procedures but are still curious

to learn information about other clients from communication.

With the threat model above and potential attacks, FedChain

implements an access control mechanism guided by the following

goals: (1) it should ensure secure and authenticated access by veri-

fying the requesters’ identities, thereby preventing unauthorized

access; (2) it should guarantee the integrity and confidentiality of

models for tampering resistance; and (3) it should be efficient and

scalable, realizing fault tolerance and load balancing.

Fig. 3 shows the access control mechanism. 𝑒𝑛𝑐 (·), 𝑃𝑟𝑖𝐾, 𝑃𝑢𝑏𝐾
are the encryption function, private and public keys, respectively:

S1. Client𝐾𝑖 uploads the metadata of local model𝑤𝑖 , consisting

of the client identifier 𝐼𝐷𝑖 , the identifier of model𝑀𝑜𝑑𝐼𝐷𝑖 ,

and the hash code ℎ𝑎𝑠ℎ(𝑤𝑖).
S2–3. As a requester, client 𝐾𝑗 generates a random number 𝑋 . It

sends amessage 𝑒𝑛𝑐 (𝑋, 𝑃𝑢𝑏𝐾𝑖) to blockchain and amessage(︁
𝐼𝐷 𝑗 , 𝑀𝑜𝑑𝐼𝐷𝑖 , 𝑒𝑛𝑐 (𝑋, 𝑃𝑟𝑖𝐾𝑗)

)︁
to client 𝐾𝑖 off-chain.

S4–6. Client 𝐾𝑖 decrypts 𝑒𝑛𝑐 (𝑋, 𝑃𝑟𝑖𝐾𝑗) and 𝑒𝑛𝑐 (𝑋, 𝑃𝑢𝑏𝐾𝑖) using
the public key 𝑃𝑢𝑏𝐾 𝑗 and the private key 𝑃𝑟𝑖𝐾𝑖 . 𝐾𝑖 verifies

the identity of client 𝐾𝑗 by comparing the two values of

𝑋 . Client 𝐾𝑗 would be granted access if it is the cluster ag-

gregator or𝑤𝑖 is one of 𝐾𝑗 ’s selected teacher models. Once

granted, client 𝐾𝑖 sends the model encrypted by 𝑃𝑢𝑏𝐾 𝑗 to

client 𝐾𝑗 and commits (𝐼𝐷 𝑗 , 𝑀𝑜𝑑𝐼𝐷𝑖 , 𝐺𝑟𝑎𝑛𝑡𝑒𝑑) on-chain.
S7. Client 𝐾𝑖 sends the model encrypted by 𝑃𝑢𝑏𝐾𝑗 to client 𝐾𝑗

and commits (𝐼𝐷 𝑗 , 𝑀𝑜𝑑𝐼𝐷𝑖 , 𝐺𝑟𝑎𝑛𝑡𝑒𝑑) on-chain, indicating
that 𝐾𝑗 keeps a replica of the model.

We introduce a replica mechanism for fault tolerance and load

balancing without extra communication costs. In S7, the authorized

clients store the model locally as a replica to avoid SPOF. To bal-

ance the communication overhead of model transmission, a model

requester calculates the replica number by taking the hash code

S1. upload metadata of 𝑤!
S4. read from chain to verify 𝑋
S5. grant or deny access
S6. send 𝑒𝑛𝑐(𝑤! , 𝑃𝑢𝑏𝐾") to 𝐾" & commit

S2. write to chain 𝑒𝑛𝑐(𝑋, 𝑃𝑢𝑏𝐾!)
S3. send 𝑒𝑛𝑐(𝑋, 𝑃𝑟𝑖𝐾") to 𝐾!
S7. save model 𝑤! in local storage

𝑃𝑟𝑒𝑣𝐻𝑎𝑠ℎ

𝐼𝐷"

𝑀𝑜𝑑𝐼𝐷!
𝑒𝑛𝑐(𝑋, 𝑃𝑢𝑏𝐾!)

𝑃𝑟𝑒𝑣𝐻𝑎𝑠ℎ

𝐼𝐷"
𝑀𝑜𝑑𝐼𝐷!
𝐺𝑟𝑎𝑛𝑡𝑒𝑑

Model owner: 𝐾!

Origin

Model requester: 𝐾"

S7. Replica

S3. (𝐼𝐷" , 𝑀𝑜𝑑𝐼𝐷! , 𝑒𝑛𝑐 𝑋, 𝑃𝑟𝑖𝐾")

S6. 𝑒𝑛𝑐(𝑤! , 𝑃𝑢𝑏𝐾")

𝑃𝑟𝑒𝑣𝐻𝑎𝑠ℎ

𝐼𝐷!
𝑀𝑜𝑑𝐼𝐷!
ℎ𝑎𝑠ℎ(𝑤!)

𝑃𝑟𝑒𝑣𝐻𝑎𝑠ℎ

𝐼𝐷"

𝑀𝑜𝑑𝐼𝐷!

S2.S1. S5. S6. S4.

Figure 3: Workflow of the model access request, authoriza-
tion, and replication

of its own identifier and performing a modulo operation with the

total number of available replicas.

Attack defense. We analyze common attacks and explain how

the access control mechanism in FedChain defends against them:

• Under an access control bypass attack [38], the attacker

requests the model directly from the owner without com-

mitting to blockchain. As the access control in FedChain is

blockchain-based, the bypass requests are ineffective.

• Under a Sybil attack [44], the attacker fakes a large number

of identities to gain access to the model. But, the attacker

cannot replicate multiple blockchain certificates, and any

requests from fake identities would not be processed. Thus,

a Sybil attack is unable to interfere with the operation.

• Under a man-in-the-middle attack [8], the attacker inter-

feres with and manipulates the communications between

the model owner and the requester, attempting to steal the

model by impersonating the requester. But, the attacker is

unable to forge or tamper with the data on-chain. Further-

more, the random number verification presented in S5 can

detect a replay attack.
• Under a model tampering attack [21], as the model owner,

the attacker tampers with the local model and sends it to

the requester. In FedChain, this attack can be detected when

the requester verifies the integrity of the model with the

hash code on-chain.

Note that the access control mechanism in FedChain mainly fo-

cuses on ensuring the security of model storage and access. Attacks

from malicious clients targeting model performance such as model

backdoor and data poisoning will be studied in future work.

7 EXPERIMENTS AND RESULTS
7.1 Experiment Preparation
Environment.We develop FedChain in Python 3.7 and deploy it

on a server with two Intel Xeon Gold 6326 CPUs, 512GB memory,

and four NVIDIA RTX A6000 graphics cards. Hyperledger Fabric

[1] is employed as the blockchain network, which runs with the

PBFT service for ordering transactions based on endorsements.

972

Table 1: Federated learning datasets

Datasets Samples Classes Task descriptions

CIFAR-10 [20] 60,000 10 Image classification

CIFAR-100 [20] 60,000 100 Image classification

Shakespeare [30] 417,469 80 Character prediction

Cora [16] 2,708 7 Graph node classification

CiteSeer [16] 3,312 6 Graph node classification

Datasets. Table 1 lists the five benchmark datasets picked. The

samples in each dataset are randomly split with the ratio 8:1:1 for

training, validation, and testing. We experiment with both IID and

non-IID data distributions. Under the IID setting, the whole dataset

is randomly divided into local datasets with the same data size for

each client. Under the non-IID setting, we use a Dirichlet distri-

bution Dir(𝛽) to simulate the non-IID data distribution between

clients, where a smaller 𝛽 indicates higher data heterogeneity and

size deviation. Following [53], we set 𝛽 to 0.1 and 0.05.

FL competitors. We compare FedChain with two baselines,

namely independent and centralized, as well as eight state-of-the-

arts, namely FedAvg [30], FedProx [26], FedAsync [47], MOON

[25], CSAFL [54], FedAT [7], FedHiSyn [24], and Def-KT [23]. The

independent setting means training separately for each client with

its local dataset, and the centralized setting means training a global

model with the whole dataset by giving up data privacy. Except

for Def-KT, other competitors adopt the client-server architecture.

Additionally, FedAvg, FedProx, MOON, FedHiSyn, and Def-KT are

synchronous. FedAsync is asynchronous, and CSAFL and FedAT

are semi-asynchronous. We uniformly call FedAsync, CSAFL, and

FedAT asynchronous for simplicity. See Section 2.1 for more details.

Blockchain competitors. We compare FedChain with three

blockchain-based FL systems in Section 2.2, namely BlockFL [19],

BFLC [27], and ScaleSFL [29], which all use synchronous FL and

have open-source implementations. Since the training processes in

BlockFL and BFLC are based on FedAvg, we only choose ScaleSFL

for comparing the performance in the aspect of FL.

Implementation details. For CIFAR-10 and CIFAR-100, we

pick VGG16 [39] as the backbone model. We tune the hyperparam-

eters with grid search. We set the convolution kernel size to 3 × 3.
For Shakespeare, we use randomly initialized embeddings with a

dimension of 80 as the input to train a TextCNN model. For Cora

and CiteSeer, we adopt GCN with an embedding dimension of 64.

We use 10 clients (i.e., nodes in Hyperledger Fabric) in the main

experiments. The maximum global round is set to 200. We use early

stop based on the average accuracy on the validation sets with a

patience of 5 global rounds. The number of local training epochs per

round for each client is set to 5, and the learning rate is set to 0.01.

For clustering, we set the inter-cluster distance threshold to 0.3. The

similarity weight 𝛼 to adjust the distribution and speed similarity

is set to 0.7. The parameter 𝜇 for calculating the freshness is set

to 0.9. For P2P knowledge transfer, we increase the collaboration

probability 𝑝𝑡𝑖 from 0.01 to 0.1 with stride 0.01 for every 10 local

rounds. The local round threshold 𝜆 in collaborator selection is set

to 2 and the cost threshold𝜓 is set to 0.1. The distillation tempera-

ture 𝜏 is set to 2. The hyperparameter 𝛿 to tune the prediction loss

and distillation loss is set to 0.6. For access control, we use RSA [5]

for asymmetric digital signature and SipHash [2] for hashing. The

parameters of the competitors are set according to their papers. We

repeat all experiments five times and report the average results.

7.2 Performance in Federated Learning
Accuracy. Table 2 depicts the comparison results of the average

accuracy, where accuracy is defined as the proportion of correctly

predicted samples over the whole test set. (1) FedChain outperforms

all competitors under most settings. Compared with the second-

best method MOON, it improves accuracy by 1.20 on average. (2)

Data distribution has a significant influence on accuracy. The ac-

curacy of all methods decreases under the non-IID setting. (3) The

centralized setting achieves the highest accuracy and the indepen-

dent setting obtains the lowest. The two baselines represent the

upper and lower bounds of accuracy, respectively. (4) The accuracy

of asynchronous methods is much worse than that of synchronous

methods as they sacrifice accuracy in exchange for high efficiency.

As a semi-asynchronous method, FedChain outperforms asynchro-

nous methods and even synchronous ones, showing the effective-

ness of clustering and P2P knowledge transfer. (5) FedChain largely

outperforms Def-KT, which uses P2P mutual knowledge transfer

without model aggregation. The reason is that pure P2P knowledge

transfer lacks a consistent gradient optimization direction. (6) Fed-

Chain holds a lead of clustered FL, FedHiSyn and CSAFL, because it

considers data and device heterogeneity to cluster clients. Moreover,

FedChain is capable of re-clustering to avoid local optimum.

Training time. Table 3 lists the comparison results of the av-

erage training time to get a converged global model. (1) FedAsync

achieves the shortest training time, but its accuracy is far worse

than that of many others. (2) On average, FedChain has the third-

shortest training time and it is more obvious under the non-IID

setting. Faster convergence is one main reason for reducing the

training time. Another reason is the parallel aggregation of multiple

clusters. (3) The training time of FedChain is not the best among

semi-asynchronous methods, but it strikes a balance between effi-

ciency and accuracy. (4) FedChain performs more efficiently than

other clustered FL. In addition to mitigating the straggler effect

caused by device heterogeneity, FedChain also considers data het-

erogeneity for clustering, which leads to faster convergence, espe-

cially under the non-IID setting.

Convergence curves. Fig. 4 depicts the convergence curves of
the training processes based on the average accuracy of the val-

idation sets. We compare with synchronous methods and asyn-

chronous methods under the IID and non-IID settings, respec-

tively. (1) FedChain converges faster than other methods because

re-clustering divides clients with similar data features and comput-

ing power into the same cluster. (2) FedChain shows less superiority

on the IID datasets as each cluster model owns less knowledge than

one global model. The non-IID setting causes data imbalance among

clients, but FedChain shows larger superiority in speed and accu-

racy. The main reason is that P2P knowledge transfer enables local

models to acquire knowledge from a global scope, which resolves

data heterogeneity and client drift. (3) FedChain converges with

higher accuracy than asynchronous methods and the convergence

speed is often faster than other synchronous methods. This verifies

the effectiveness of clustered FL and P2P knowledge transfer.

973

Table 2: Average accuracy comparison

Accuracy

CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05

Centralized 90.62 90.62 90.62 67.83 67.83 67.83 61.76 61.76 61.76 82.31 82.31 82.31 76.55 76.55 76.55

Independent 78.56 46.23 40.77 45.61 25.09 20.81 41.21 30.42 25.19 49.27 25.96 23.16 61.78 37.61 23.17

FedAvg 87.52 82.64 77.78 61.23 55.41 50.92 53.55 40.06 34.02 81.37 74.03 64.78 73.15 67.66 61.97

FedProx 87.65 81.67 78.72 61.74 56.97 51.41 52.04 41.14 32.52 81.68 74.48 65.46 73.67 67.84 62.33

MOON 90.03 83.91 76.39 62.91 58.85 52.69 52.17 39.29 34.31 82.11 75.29 66.61 74.12 68.47 62.45

FedHiSyn 89.54 83.04 77.85 62.59 57.92 51.27 53.91 40.34 33.01 82.07 74.12 65.29 74.23 67.21 60.95

Def-KT 79.42 71.41 62.13 50.62 47.62 40.29 51.74 36.42 29.03 80.12 65.02 59.61 72.08 64.55 52.05

ScaleSFL 86.37 80.03 74.31 61.52 55.16 47.35 52.68 37.28 29.43 81.91 72.19 63.63 72.32 65.31 57.23

FedAsync 85.04 80.71 71.78 58.14 51.37 41.23 43.81 35.09 28.64 77.39 64.65 61.17 67.83 63.41 51.14

CSAFL 87.06 82.21 76.15 62.43 56.76 52.06 51.49 40.01 31.17 80.52 73.53 64.12 72.59 67.14 59.74

FedAT 87.83 81.25 74.98 61.37 54.87 47.89 52.11 38.57 30.16 81.55 74.29 64.07 73.59 67.33 59.39

FedChain 89.51 84.28 80.41 63.24 60.33 54.26 54.15 42.31 36.61 82.23 76.65 68.73 74.55 69.35 63.34
The best and second-best scores are marked in bold and with underline, respectively, except where otherwise indicated.

Table 3: Average training time comparison

Time (min.)

CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05 IID 𝛽 = 0.1 𝛽 = 0.05

Centralized 25.03 25.03 25.03 30.19 30.19 30.19 41.33 41.33 41.33 3.01 3.01 3.01 3.34 3.34 3.34

Independent 11.32 14.47 17.55 12.94 13.81 15.69 18.91 22.12 25.19 2.04 2.15 2.27 2.12 2.34 2.66

FedAvg 46.44 41.63 42.41 66.84 57.61 48.93 72.53 67.17 63.34 4.75 4.23 4.03 5.12 4.93 4.68

FedProx 45.29 42.37 43.87 67.29 58.25 48.58 71.26 66.15 62.39 4.26 4.25 4.07 5.01 4.71 4.59

MOON 44.18 41.25 41.33 62.17 56.86 47.34 69.32 65.73 64.27 4.33 4.22 4.01 4.89 4.56 4.23

FedHiSyn 47.15 44.12 41.94 64.92 59.02 50.13 70.37 67.59 65.22 4.43 4.34 4.12 5.19 5.07 4.77

Def-KT 50.23 47.89 46.41 65.31 62.09 52.19 75.67 71.23 67.36 4.68 4.51 4.26 5.47 5.24 4.99

ScaleSFL 52.38 45.14 43.46 70.21 60.71 50.47 73.84 69.26 66.11 4.84 4.61 4.18 5.35 5.29 4.86

FedAsync 37.55 32.19 30.06 44.37 38.25 34.46 58.23 55.61 50.45 3.19 2.91 2.54 3.67 3.23 3.05
CSAFL 45.03 40.98 39.21 64.55 55.97 44.96 67.26 64.25 60.19 4.29 4.17 3.89 4.83 4.68 4.54

FedAT 40.12 35.39 36.27 58.95 50.22 42.63 62.34 58.83 55.34 3.73 3.58 3.42 4.57 4.25 4.06

FedChain 47.12 38.37 35.41 65.28 54.11 42.27 68.45 62.74 58.47 4.21 3.99 3.74 5.06 4.41 4.18

7.3 Performance in Blockchain
System throughput and latency. We assess the throughput and

latency of different blockchain-based FL systems with the open-

source tool Caliper.
1
Throughput refers to the number of processed

transactions per second (TPS), and latency refers to the average time

from commitment to confirmation for a transaction. We evaluate

the core interfaces of blockchain systems for FL with different

numbers of clients, which include uploading the updated models

and querying the latest global models.

Fig. 5 presents the results of throughput and latency compari-

son on the CIFAR-10 dataset. (1) Generally, the update uploading

interface of FedChain exhibits the highest throughput and second-

lowest latency compared to other systems. The main reason is that

FedChain writes the updated metadata into blockchain. BlockFL

and BFLC upload the complete updated parameters on-chain, result-

ing in an efficiency bottleneck. ScaleSFL performs better with 25

clients. A possible reason is that ScaleSFL implements a shard-level

consensus mechanism, which can improve the efficiency of process-

ing write requests. (2) The query interface of FedChain shows the

1
https://hyperledger.github.io/caliper/ (last accessed date: Jan. 11, 2024)

highest throughput and the lowest latency. On one hand, FedChain

minimizes the communication overhead by storing only metadata

on-chain. On the other hand, replication-based concurrency control

is used in our model access mechanism to enable load balancing.

(3) As the number of clients deployed on blockchain increases, the

latency of the update uploading interface increases due to the order-

ing and consensus of transactions by clients. Due to the small size of

metadata, the increased latency of update uploading does not cause

the bottleneck in FedChain, but uploading parameters directly in

BlockFL and BFLC results in linearly increasing latency. The query

interface remains low latency because queries do not change the

ledger state and the read-only transactions are not submitted for

ordering. These observations hold on the other four datasets.

Idle time.We record the idle time of each client at each round.

By dividing the data of idle time into different intervals and mea-

suring the proportion of each interval, we compare the efficiency of

blockchain-based FL systems. Fig. 6 reports the results. (1) FedChain

consistently achieves the lowest proportion on all large intervals

(≥ 15 seconds). The main reason is that clients with similar training

efficiency are grouped into the same cluster, allowing them to query

the latest model in the cluster without waiting for a long time. This

974

https://hyperledger.github.io/caliper/

CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

A
cc

ur
ac

y

Communication rounds

Sy
nc

Sy
nc

A
sy

nc
A

sy
nc

IID
no

n-
IID

FedAvg FedProx MOON FedHiSyn Def-KT ScaleSFL FedChain
FedAsync CSAFL FedAT FedChain

Sync methods:
Async methods:

Figure 4: Convergence comparison

0

20

40

60

0 5 10 15 20 25

BlockFL BFLC ScaleSFL FedChain

0
20
40
60
80
100

0 5 10 15 20 25

0

20

40

0 5 10 15 20 25
0

20

40

0 5 10 15 20 25
Clients Clients

Update uploading Queries

Th
ro

ug
hp

ut
 (T

PS
)

La
te

nc
y

(s
ec

.)

Figure 5: System throughput and latency comparison

shows that FedChain can alleviate the impact of stragglers during

the training process. (2) The FL algorithms used by the competing

systems are based on FedAvg, and the idle time of clients signifi-

cantly increases due to waiting for stragglers. This shows that there

exists an efficiency bottleneck in synchronous FL.

BlockFL
BFLC
ScaleSFL
FedChain

0

0.2

0.4

0.6

0.8

(0, 0.5] (0.5, 1.0](1.0, 1.5] ≥1.5

Cora

(0, 0.5] (0.5, 1.0](1.0, 1.5] ≥1.5

CiteSeer

0

0.2

0.4

0.6

0.8

(0, 5] (5, 10] (10, 15] ≥15

CIFAR-10

(0, 5] (5, 10] (10, 15] ≥15

CIFAR-100

(0, 5] (5, 10] (10, 15] ≥15

Shakespeare

Pr
op
or
tio
n

Pr
op
or
tio
n

sec.

sec.

Figure 6: System idle time comparison

Impact of blockchain configuration.We conduct an exper-

iment with varying block sizes and transaction arrival rates to

evaluate the performance of FedChain. We adjust the configuration

of block size with MaxMessageCount. Fig. 7 records the through-

put and latency of the update uploading interface on the CIFAR-10

dataset. (1) There is a distinct saturation point at around 200 TPS for

the transaction arrival rate. Before reaching the point, the through-

put increases linearly with the transaction arrival rate and the la-

tency increases slightly. The throughput decreases and the latency

increases significantly after the saturation. The saturation repre-

sents the bottleneck of consensus efficiency in FedChain, which

975

20
30
40
50
60
70

50 100 150 200 250
Transaction arrival rate (TPS)

1
1.2
1.4
1.6
1.8

2
2.2

50 100 150 200 250
Transaction arrival rate (TPS)

La
te

nc
y

(s
ec

.)

Th
ro

ug
hp

ut
 (T

PS
)

Blocksize: 10 BS: 20 BS: 30 BS: 40 BS: 50

Figure 7: System throughput and latency w.r.t. block size and
transaction arrival rate

0
0.5
1
1.5
2
2.5
3
3.5

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(s
ec

.)

Th
ro

ug
hp

ut
 (T

PS
)

Model copies

Throughput
Latency

Figure 8: System throughput and latency w.r.t. number of
model replicas using 25 clients

mainly comes from the communication cost of consensus process.

FedChain leverages the PBFT consensus with a time complexity of

𝑂
(︁
|K |)2

)︁
. The CPU computing overhead of the consensus process

is 110ms on average. Due to the network congestion caused by

the increase of transaction arrival rate, the communication cost

increases from 137ms to 359ms. This is a possible reason for the

apparent increase in latency after the saturation. (2) Before the sat-

uration, increasing the block size causes a slight increase in latency

due to a longer block creation time. After the saturation, with the

increase of the block size, the latency decreases slightly. This sug-

gests that when consensus efficiency hits the bottleneck, a larger

block size can improve throughput and reduce latency. Therefore,

at an arrival rate of 200 TPS, increasing the block size from 10 to

50 yields a 12.7% increase in throughput. These observations hold

on the other datasets.

Performance w.r.t. number of model replicas. To evaluate
the efficiency of access control, we conduct an experiment with

25 clients and varying numbers of replicas for a model to measure

the throughput and latency of processing query requests. Fig. 8

presents the results. (1) Increasing the number of model replicas

can effectively improve the efficiency of access control. When the

number of replicas is less than 12, the throughput increases rapidly

and the latency decreases. The main reason is that requests can

be distributed across multiple clients with replicas to balance the

workload of FedChain. (2) The impact on the efficiency of increasing

the number of replicas exhibits marginal utility. When the num-

ber of replicas exceeds 8, the growth of the throughput begins to

decelerate. Furthermore, the latency increases slightly when the

number of replicas exceeds 12. One possible explanation is that

the number of requests for model replicas processed in parallel

reaches the threshold of transaction processing and ordering on-

chain. Therefore, to balance efficiency and replica redundancy, the

Table 4: Ablation study under 𝛽 = 0.05

Accuracy CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 80.41 54.26 36.61 68.73 63.34
w/o clustered FL 78.56 52.71 35.28 67.42 62.28

w/o P2P transfer 79.05 53.74 35.75 67.61 62.17

Time (min.) CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 35.41 42.27 58.47 3.74 4.18

w/o clustered FL 41.16 46.58 63.65 4.11 4.75

w/o P2P transfer 33.67 40.05 56.29 3.46 3.84

maximum number of replicas for a model may be set to no more

than half of the number of clients.

7.4 Further Analysis
Ablation study. First, we modify FedChain with two variants: (1)

FedChain w/o clustered FL, which aggregates all updates into a

single global model. (2) FedChain w/o P2P transfer, where clients

only perform local training in clustered FL. Table 4 shows the com-

parison results of average accuracy and training time. (1) Removing

either module decreases the performance. The accuracy drops by

1.42 and 1.01 of removing the clustered FL module and the P2P

knowledge transfer module, respectively. This indicates that both

of them are useful. (2) The training time of FedChain without clus-

tered FL is the highest. The main reason is that certain clients have

to wait for the inefficient stragglers to complete their local training.

This verifies that the clustered FL plays a key role in improving

efficiency. (3) The training time of FedChain is a bit higher than

that of FedChain without P2P transfer, but its performance is better,

because FedChain selects models from multiple clients as teach-

ers for knowledge distillation instead of pure local training, which

requires extra training time.

Second, to assess the impact of the similarity weight 𝛼 , we com-

pare with FedChain w/o 𝑠𝑖𝑚
distr

and FedChain w/o 𝑠𝑖𝑚
speed

in

Table 5. (1) The accuracy of FedChain without 𝑠𝑖𝑚
distr

is lower than

the original FedChain, indicating that the effect of clustering is

reduced since the similarity of features is not considered. Another

reason for the extended training time is that inaccurate clustering

leads to slower convergence. (2) The accuracy of FedChain without

𝑠𝑖𝑚
speed

drops slightly but the training time increases significantly.

This is because clients with similar features may have significant

differences in training efficiency and slow down the training speed.

Third, we compare the collaborative client selection policy with

the random selection and the top-1 selection policy in Table 6. (1)

The accuracy of random selection is lower and the training time is

higher than the original FedChain. The reason is that the randomly

selected teacher models may not be helpful due to freshness or data

heterogeneity, which leads to slower convergence. (2) FedChain

with top-1 selection has higher accuracy than random selection

but converges at lower accuracy than the original FedChain. The

reason is that repeatedly distilling from the most similar client may

not lead to sustained knowledge gains.

Hyperparamter setting. First, we assess the impact of the fresh-

ness threshold 𝜆 on overall performance. 𝜆 = 0 means dropping

outdated updates directly. Table 7 depicts the results and we ob-

serve that FedChain with 𝜆 = 2 performs better than FedChain

976

Table 5: Analysis of similarity weight 𝛼 under 𝛽 = 0.05

Accuracy CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 80.41 54.26 36.61 68.73 63.34
w/o 𝑠𝑖𝑚

distr
78.69 53.08 35.41 67.76 62.07

w/o 𝑠𝑖𝑚
speed

80.22 54.15 36.44 68.42 63.25

Time (min.) CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 35.41 42.27 58.47 3.74 4.18
w/o 𝑠𝑖𝑚

distr
38.77 44.32 60.25 3.93 4.53

w/o 𝑠𝑖𝑚
speed

40.82 46.34 62.34 4.08 4.68

Table 6: Analysis of client selection policies under 𝛽 = 0.05

Accuracy CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 80.41 54.26 36.61 68.73 63.34
w/ random 79.16 53.78 35.31 67.64 62.21

w/ top-1 79.83 53.95 35.92 68.12 62.67

Time (min.) CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

FedChain 35.41 42.27 58.47 3.74 4.18

w/ random 37.33 43.59 60.14 4.07 4.39

w/ top-1 35.11 41.72 56.98 3.61 4.05

with 𝜆 = 0 or 𝜆 = 4, which verifies that recent updates contribute

to accuracy improvement and convergence acceleration.

Second, we adjust the cost threshold𝜓 and show the results in

Table 8. (1) The accuracy and efficiency with𝜓 = 0.01 are slightly

worse than those with 𝜓 = 0.1. This is due to that the number

of selected teacher models at each local round is smaller. Clients

require more rounds to obtain knowledge from all clients and build

a global view. (2) The accuracy with𝜓 = 1 is lower and the training

time is higher. Similar to the impact of 𝜆, a large 𝜓 leads to an

increasing number of teacher models, which introduces unrelated

models as noise and slows down the convergence.

Re-clustering visualization. To show the effectiveness of clus-

tered FL in FedChain, we plot the t-SNE [41] visualization of the

data features on CIFAR-10 for five clients. As shown in Fig. 9, we

observe that: (1) As the number of rounds increases, both FedChain

and ScaleSFL gradually improve their classification abilities based

on the data features. FedChain demonstrates more distinct and

well-defined categories and boundaries in sample classification. It

is because ScaleSFL performs FL based on FedAvg, where a unified

global model may struggle to fit all local datasets. In contrast, Fed-

Chain achieves a better balance between global convergence and

local optimization by clustering clients according to data distribu-

tions. (2) Compared to the t-SNE plot of FedChain in 50 rounds,

the figure in 100 rounds shows a noticeable shift in client cluster-

ing, with increasing distinct boundaries in sample classification.

This suggests that the clustered FL in FedChain is capable of adapt-

ing dynamically and avoiding local optimum. Furthermore, client

clustering and model optimization complement each other. As the

models fit more in the local datasets, the clustering accuracy in-

creases. Also, accurate client clustering further results in compatible

intra-cluster aggregation towards a converged cluster model.

Table 7: Analysis of freshness threshold 𝜆 under 𝛽 = 0.05

Accuracy CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

𝜆 = 0 80.19 54.01 36.15 68.38 63.12

𝜆 = 2 80.41 54.26 36.61 68.73 63.34
𝜆 = 4 79.21 52.85 35.14 66.02 62.29

Time (min.) CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

𝜆 = 0 35.97 42.68 58.95 3.85 4.29

𝜆 = 2 35.41 42.27 58.47 3.74 4.18
𝜆 = 4 37.25 45.01 60.23 4.03 4.51

Table 8: Analysis of cost threshold𝜓 under 𝛽 = 0.05

Accuracy CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

𝜓 = 0.01 80.24 53.87 36.29 68.45 63.19

𝜓 = 0.1 80.41 54.26 36.61 68.73 63.34
𝜓 = 1 79.22 53.02 35.34 67.19 62.58

Time (min.) CIFAR-10 CIFAR-100 Shakespeare Cora CiteSeer

𝜓 = 0.01 35.26 43.16 59.63 3.81 4.26

𝜓 = 0.1 35.41 42.27 58.47 3.74 4.18
𝜓 = 1 39.18 47.33 63.11 4.31 4.69

Fe
dC
ha
in

Sc
al
eS
FL

Figure 9: t-SNE plot of features on CIFAR-10, where red, blue,
green, pink, and orange dots represent samples from clients
1, 2, 3, 4, and 5, respectively.

8 CONCLUSION
In this paper, we combine blockchain and FL in depth to develop

FedChain. We design a clustered semi-asynchronous FL method for

model aggregation, mitigating client drift and accelerating train-

ing. To optimize local training, we define the NP-hard problem of

collaborative client selection and give a multi-client knowledge dis-

tillation method based on the P2P network of blockchain. Moreover,

we implement an access control mechanism to exchange models

safely and efficiently. Experiments on different types of benchmark

datasets show that FedChain achieves superior results in accuracy,

convergence, throughput, and latency. In future work, we plan to

extend FedChain to the IoT scenario, where edge devices are re-

sponsible for collecting data while agents carry out model training.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-

tion of China (No. 62272219).

977

REFERENCES
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolic, SharonWeed Cocco, and Jason Yellick. 2018. Hy-

perledger Fabric: A Distributed Operating System for Permissioned Blockchains.

In EuroSys. ACM, Porto, Portugal, 1–15.

[2] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-

Input PRF. In INDOCRYPT. Springer, Kolkata, India, 489–508.
[3] FISCO BCOS. 2017. Financial Blockchain Open Source Platform FISCO BCOS

Whitepaper. Technical Report. Financial Blockchain Shenzhen Consortium.

[4] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi,

Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and

Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In

MLSys. mlsys.org, Stanford, CA, USA, 374–388.

[5] Dan Boneh. 1999. Twenty Years of Attacks on the RSA Cryptosystem. Notices of
the AMS 46, 2 (1999), 203–213.

[6] Allan Borodin, Hyun Chul Lee, and Yuli Ye. 2012. Max-Sum diversification,

monotone submodular functions and dynamic updates. In PODS. ACM, Scottsdale,

AZ, USA, 155–166.

[7] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rang-

wala. 2021. FedAT: a high-performance and communication-efficient federated

learning system with asynchronous tiers. In SC. ACM, St. Louis, MO, USA, 1–16.

[8] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The

Middle Attacks. IEEE Commun. Surv. Tutor. 18, 3 (2016), 2027–2051.
[9] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In

SIGMOD. ACM, Amsterdam, The Netherlands, 123–140.

[10] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An

Efficient Framework for Clustered Federated Learning. In NeurIPS. Curran Asso-

ciates, Inc., Online, 19586–19597.

[11] Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result

diversification. InWWW. ACM, Madrid, Spain, 381–390.

[12] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. 2022. Privacy-

Preserving Asynchronous Vertical Federated Learning Algorithms for Multiparty

Collaborative Learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 11 (2022), 6103–
6115.

[13] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2020.

Building High Throughput Permissioned Blockchain Fabrics: Challenges and

Opportunities. Proceedings of the VLDB Endowment 13, 12 (2020), 3441–3444.
[14] Mike Hearn. 2016. Corda: A distributed ledger. Technical Report. R3.
[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-

edge in a Neural Network. CoRR 1503.02531 (2015), 1–9.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. In NeurIPS. Curran Associates, Inc., Online,

22118–22133.

[17] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic

Controlled Averaging for Federated Learning. In ICML. PMLR, Online, 5132–

5143.

[18] Leonard Kaufman and Peter J. Rousseeuw. 1990. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, Inc., New York, NY, USA.

[19] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2020.

Blockchained On-Device Federated Learning. IEEE Commun. Lett. 24, 6 (2020),
1279–1283.

[20] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis. University of Toronto.

[21] Ashish Kundu and Elisa Bertino. 2008. Structural Signatures for Tree Data

Structures. Proceedings of the VLDB Endowment 1, 1 (2008), 138–150.
[22] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. 2019.

Peer-to-peer Federated Learning on Graphs. CoRR 1901.11173 (2019), 1–9.

[23] Chengxi Li, Gang Li, and Pramod K. Varshney. 2022. Decentralized Federated

Learning via Mutual Knowledge Transfer. IEEE Internet Things J. 9, 2 (2022),

1136–1147.

[24] Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and Dejing

Dou. 2022. FedHiSyn: A Hierarchical Synchronous Federated Learning Frame-

work for Resource and Data Heterogeneity. In ICPP. ACM, Bordeaux, France,

1–11.

[25] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Model-Contrastive Federated

Learning. In CVPR. IEEE, Online, 10713–10722.
[26] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In

MLSys. mlsys.org, Austin, TX, USA, 1–22.

[27] Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan.

2021. A Blockchain-Based Decentralized Federated Learning Framework with

Committee Consensus. IEEE Netw. 35, 1 (2021), 234–241.
[28] Bingyan Liu, Yao Guo, and Xiangqun Chen. 2021. PFA: Privacy-preserving Feder-

ated Adaptation for Effective Model Personalization. In WWW. ACM, Ljubljana,

Slovenia, 923–934.

[29] Evan Madill, Ben Nguyen, Carson K Leung, and Sara Rouhani. 2022. ScaleSFL:

A Sharding Solution for Blockchain-Based Federated Learning. In BSCI. ACM,

Nagasaki, Japan, 95–106.

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In AISTATS. PMLR, Fort Lauderdale, FL, USA,

1273–1282.

[31] Satoshi Nakamoto and A Bitcoin. 2008. Bitcoin: A Peer-to-Peer Electronic Cash

System. https://bitcoin.org/bitcoin.pdf.

[32] Dinh C. Nguyen, Quoc-Viet Pham, Pubudu N. Pathirana, Ming Ding, Aruna

Seneviratne, Zihuai Lin, Octavia A. Dobre, and Won-Joo Hwang. 2023. Federated

Learning for Smart Healthcare: A Survey. Comput. Surveys 55, 3 (2023), 60:1–
60:37.

[33] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. 2020. Fal-

conDB: Blockchain-based Collaborative Database. In SIGMOD. ACM, Portland,

OR, USA, 637–652.

[34] Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu, Yuxiao Gao, Xiaohua Li,

and Ge Yu. 2022. NeuChain: A Fast Permissioned Blockchain System with

Deterministic Ordering. Proceedings of the VLDB Endowment 15, 11 (2022), 2585–
2598.

[35] Youyang Qu, Md Palash Uddin, Chenquan Gan, Yong Xiang, Longxiang Gao,

and John Yearwood. 2022. Blockchain-enabled Federated Learning: A Survey.

Comput. Surveys 55, 4 (2022), 1–35.
[36] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Chris-

tian Wachinger. 2019. BrainTorrent: A Peer-to-Peer Environment for Decentral-

ized Federated Learning. CoRR 1905.06731 (2019), 1–9.

[37] Felix Sattler, Klaus-RobertMüller, andWojciech Samek. 2021. Clustered Federated

Learning: Model-Agnostic Distributed Multitask Optimization under Privacy

Constraints. IEEE Trans. Neural Netw. Learn. Syst. 32, 8 (2021), 3710–3722.
[38] Erez Shmueli, Ronen Vaisenberg, Yuval Elovici, and Chanan Glezer. 2010. Data-

base Encryption – An Overview of Contemporary Challenges and Design Con-

siderations. ACM SIGMOD Record 38, 3 (2010), 29–34.

[39] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR. OpenReview.net, San Diego,

CA, USA, 1–14.

[40] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A Hybrid Approach to Privacy-Preserving Federated

Learning. In AISec. ACM, London, UK, 1–11.

[41] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9, 11 (2008), 2579–2605.

[42] Ángel Jesús Varela-Vaca and Antonia M Reina Quintero. 2021. Smart Contract

Languages: A Multivocal Mapping Study. Comput. Surveys 54, 1 (2021), 1–38.
[43] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim

Verbelen, and Jan S Rellermeyer. 2020. A Survey onDistributedMachine Learning.

Comput. Surveys 53, 2 (2020), 1–33.
[44] YueWang, KeWang, and Chunyan Miao. 2020. Truth Discovery against Strategic

Sybil Attack in Crowdsourcing. In KDD. ACM, Virtual, 95–104.

[45] Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen

Zhang, and Boon Thau Loo. 2022. FlexChain: An Elastic Disaggregated

Blockchain. Proceedings of the VLDB Endowment 16, 1 (2022), 23–36.
[46] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen A.

Jarvis. 2021. SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning

With Low Overhead. IEEE Trans. Comput. 70, 5 (2021), 655–668.
[47] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2020. Asynchronous Federated Op-

timization. In International OPT Workshop on Optimization for Machine Learning.
OPT, Online, 1–11.

[48] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: Scaling

Blockchain Transactions through OffChain Storage and Parallel Processing.

Proceedings of the VLDB Endowment 14, 11 (2021), 2314–2326.
[49] Qiang Yang. 2019. Federated Recommendation Systems. In BigData. IEEE, Los

Angeles, CA, USA, 1.

[50] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. 2019. FFD:

A Federated Learning Based Method for Credit Card Fraud Detection. In BigData
Congress. Springer, Milan, Italy, 18–32.

[51] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2022. A Comprehensive Survey

of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future

Directions. Comput. Surveys 54, 6 (2022), 131:1–131:36.
[52] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Learning from Multiple

Teacher Networks. In KDD. ACM, Halifax, NS, Canada, 1285–1294.

[53] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald,

Trong Nghia Hoang, and Yasaman Khazaeni. 2019. Bayesian Nonparametric

978

Federated Learning of Neural Networks. In ICML. PMLR, Long Beach, CA, USA,

7252–7261.

[54] Yu Zhang, Moming Duan, Duo Liu, Li Li, Ao Ren, Xianzhang Chen, Yujuan Tan,

and Chengliang Wang. 2021. CSAFL: A Clustered Semi-Asynchronous Federated

Learning Framework. In IJCNN. IEEE, Shenzhen, China, 1–10.

[55] Zhebin Zhang, Dajie Dong, YuhangMa, Yilong Ying, Dawei Jiang, Ke Chen, Lidan

Shou, and Gang Chen. 2021. Refiner: A Reliable Incentive-Driven Federated

Learning System Powered by Blockchain. Proceedings of the VLDB Endowment
14, 12 (2021), 2659–2662.

979

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Federated Learning
	2.2 Blockchain-based Federated Learning

	3 System Architecture
	4 Clustered Federated Learning
	4.1 Feature Extraction
	4.2 Similarity Calculation
	4.3 Clustered Aggregation

	5 Peer-to-Peer Knowledge Transfer
	5.1 Collaborative Client Selection
	5.2 Multi-client Knowledge Distillation

	6 Threat Model and Attack Defense
	7 Experiments and Results
	7.1 Experiment Preparation
	7.2 Performance in Federated Learning
	7.3 Performance in Blockchain
	7.4 Further Analysis

	8 Conclusion
	Acknowledgments
	References

