
HyBench: A New Benchmark for HTAP Databases
Chao Zhang

Tsinghua University

cycchao@mail.tsinghua.edu.cn

Guoliang Li

Tsinghua University

liguoliang@tsinghua.edu.cn

Tao Lv

China Software Testing Center

lvtao@cstc.org.cn

ABSTRACT
In this paper, we propose, HyBench, a new benchmark for HTAP

databases. First, we generate the testing data by simulating a rep-

resentative HTAP application. We particularly develop a time-

dependent generation phase and an anomaly generation phase

for testing HTAP with large cardinality and various anomalies. Sec-

ond, we propose a set of hybrid workloads. Specifically, we design

18 read/write transactions, 13 analytical queries, and a mix work-

load of 6 analytical transactions and 6 interactive queries. We also

develop a graph-based parameter curation method to control the

access patterns including skew access and data contention of the

hybrid workload. Third, we propose a unified metric for quanti-

fying the overall HTAP performance. Particularly, we introduce a

query-driven method that evaluates the data freshness (lag time

between analytics and transactions). Then we introduce a three-

phase execution rule to compute a unified metric, combining the

performance of OLTP (TPS), OLAP (QPS), and OLXP (XPS) and data

freshness. To verify the effectiveness of HyBench and to debunk the
myth of different HTAP architectures, extensive experiments have

been conducted over five HTAP databases.

PVLDB Reference Format:
Chao Zhang, Guoliang Li, and Tao Lv. HyBench: A New Benchmark for

HTAP Databases. PVLDB, 17(5): 939 - 951, 2024.

doi:10.14778/3641204.3641206

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Rucchao/HyBench-2023.

1 INTRODUCTION
Since Gartner coined the term Hybrid Transactional and Analytical

Processing (HTAP), we have recently witnessed a surge of various

HTAP databases, ranging from standalone HTAP databases [12, 13,

21, 26], distributed HTAP databases [10, 20, 34], to the cloud-native

HTAP databases [14, 27]. Different HTAP databases emphasize

different characteristics [15]. For instance, row-based architectures

favor OLTP-oriented workloads; column-based architectures excel

at OLAP-oriented workloads; HTAP architectures with both row

store and column store aim to balance the performance onOLTP and

OLAPworkloads; Unfortunately, it is still unclear how they perform

on complicated workloads that include the OLTP, OLAP, and OLXP

(i.e., a mix of transactions and analytical queries) simultaneously.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.

doi:10.14778/3641204.3641206

Database benchmarking [4, 6, 8, 31, 32, 36–38] is a common

practice for evaluating the database performance with three key

elements: data, workload, and metric. Over the past fifty years, many

remarkable benchmarks have been proposed and widely used to

facilitate the development of database techniques. Four key criteria

should be considered for a domain-specific benchmark: relevant,
portable, scalable, and simple. However, existing benchmarks [2, 3,

11, 18] are far from an ideal HTAP benchmark. The major concern

is that they were adapted from the established OLTP or OLAP

benchmarks (e.g., CH-Benchmark [3] combines TPC-C and TPC-H;

HATrick [18] extends SSB [22] with TPC-C), thus they lack HTAP-

oriented data, workload, and metric. Consequently, it calls for a new

benchmark that is designed for HTAP databases in the beginning.

Motivation 1: Data Generation. Existing benchmarks simply

generate testing data based on the original data generators, leading

to an impedance mismatch between the testing scenario and the

realistic applications. First, those data schemas originated from

the OLTP or OLAP applications that were not developed for any

HTAP applications such as online finance, e-commerce, and fraud

detection. Second, those generators produced the data uniformly,

but did not simulate any data distributions for HTAP operations.

For instance, they cannot generate large cardinality for the queries

and cannot produce anomalies (e.g., illegal transactions and risky

operations) to evaluate the HTAP performance.

Motivation 2: HTAP Workload. Existing benchmarks mainly

blend the original OLTP and OLAP workloads, thus lacking re-

alistic hybrid workloads. For instance, CH-Benchmark [3] has a

mixed workload of TPC-C transactions and TPC-H queries, but the

“OLTP first, OLAP later” applications, such as finance and banking,

treat the transactional throughput as the primary metric, and they

normally do not allow for running bandwidth-intensive analytical

queries simultaneously. Moreover, existing works did not control

the access patterns for the HTAP workload, which can not provide

testing cases for simulating various degrees of data contention,

version traversal cost, hot-spot access, and deadlock occurrence.

Motivation 3: HTAP Metric. Existing benchmarks lack effec-

tive metrics to quantify the HTAP performance. First, they fall

short of efficient evaluation on throughput and freshness. Second,

they lack a unified metric that can intuitively reflect the important

aspects of HTAP performance, including transactional throughput,

analytical throughput, data freshness, and workload isolation. For

instance, HATtrick [18] introduced an excellent way to visualize

the 2D curve of Transactions Per Second (TPS) and Queries Per

Second (QPS), but it needs to evaluate the performance many times

(at least 72 times) to obtain the throughput frontier. It also added a

cross-join operation to every analytical query for calculating the

average freshness score using the timestamps of transaction ids.

Comparison with Existing Benchmarks. Table 1 gives a com-

parison between existing benchmarks [2, 3, 11, 18] and HyBench. It

939

https://doi.org/10.14778/3641204.3641206
https://github.com/Rucchao/HyBench-2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3641204.3641206
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: A Comparison between HyBench and Existing End-to-End HTAP Benchmarks

Features Description CH-Benchmark[3] HTAPBench[2] OLxPBench[11] HATtrick[18] HyBench
HTAP Application HTAP schema and data generation × × × × √

Multi-Set Workload OLTP, OLAP, and OLXP workloads × × × × √

Analytical Transaction Data analytic in the transaction × × √ × √

Real-Time Query Data analytic over transaction data × √ √ × √

Data Access Control Control the access pattern for HTAP × × × × √

Isolation Evaluation Evaluate the isolation for HTAP

√ × × √ √

Freshness Evaluation Evaluate the data freshness for HTAP × × × √ √

Unified Metric Quantify the overall HTAP performance × × × × √

summarizes eight important HTAP features and shows that exist-

ing works only support at most two features while HyBench covers

all these features. For instance, existing work blends the original

OLTP and OLAP workload while HyBench has the separated OLTP,

OLAP, and OLXP workloads; HyBench has a unified metric that can

quantify the overall HTAP performance while existing works eval-

uate the partial performance, e.g., TPS or QPS. More importantly,

HyBench designs a realistic HTAP application in the field of finance

technology (FinTech) and it simulates the real-world workloads that

existing benchmarks do not take into account. For example, both

Alipay [17] and WeBank [29] allow for automatic loan reviewing

and risk controlling during transaction processing, i.e., analytical

transactions, and they can perform the fraud detection over the

transaction data directly, i.e., real-time queries. These two kinds of

workloads are often handled in a unified HTAP system [28, 35].

Challenges and Solutions. In order to develop an HTAP-specific

benchmark, there are three challenges (refers to C1, C2, C3).

(C1) HTAP Workload Design. HTAP applications have differ-

ent kinds of workloads, e.g., OLTP, OLAP, and OLXP. However, it

is challenging to design an HTAP workload to cover all the aspects

due to the large design space. On the one hand, the workload should

mimic typical operations and use cases. On the other hand, it should

present unique benchmarking challenges for HTAP databases. To

address C1, we propose the three-phase execution, simulating the

OLTP, OLAP, and OLXP workloads separately. Regarding each

phase, we propose the choke-point method that designs HTAP-

oriented testing points for the transactions and queries, and each

template has an associated use case. For instance, we design the

analytical transactions that contain joins and aggregations for risk

controlling; we design the interactive queries that analyze the latest

transaction data for tracing abnormal transactions.

(C2) Access Pattern Control. In order to simulate skew access

distributions and real-time anomaly detection, it is necessary to

control the workload access patterns such as access distribution,

transaction rollback rate, and data contention between queries and

transactions. However, it is challenging to control the access pat-

terns simultaneously as the HTAP workloads have complex depen-

dencies (e.g., one query could correlate with multiple transactions).

To address C2, we introduce a query-driven anomaly generation

phase and a graph-based parameter curation method. It works in

two steps. First, it generates various anomalies as the by-product

of data generation based on specific risk-controlling operations.

Second, it builds a data dependency graph that can find the related

transactions and queries with data contention. Consequently, given

Unified Metric

 Workload Generator

T1 — T18 Q1— Q13 AT1—AT6
IQ1—IQ6

OLTP OLAP OLXP

FreshnessThroughput
Worker Manager
AP workerTP worker Data Access Control

 Data Generator
Time-Dependent
Data Generation

Anomaly Generation

HTAP Databases

Figure 1: HyBench Overview

the specified risk rate and access distributions, it can control the

access patterns for the transactions and queries simultaneously.

(C3) Freshness Evaluation. Quantifying the data freshness for

an analytical query is challenging from two aspects. On the one

hand, evaluating the freshness during the benchmarking process

could incur additional overhead, thereby affecting the results of the

throughput evaluation. On the other hand, calculating the freshness

after the benchmarking process requires an extra analysis process

and may not accurately reflect the real-time freshness. To address

C3, we adopt a non-intrusive and piggyback method that analyzes

the freshness while evaluating the throughput. Specifically, we

introduce a contrastive method that compares the query result

sets from the OLTP instance and OLAP instance. Since the result

sets contain the real-time timestamps, the max difference of their

timestamps reflects the data freshness.

In this paper, we propose an end-to-end benchmark for HTAP

databases, named HyBench. It features a new data generator, a multi-

set workload, and a unified metric. First, we design a schema by

simulating a realistic online finance HTAP scenario, then we de-

velop a data generator based on a time-dependent generation phase

and an anomaly generation phase. Regarding the workload, we de-

sign three sets of workloads for OLTP, OLAP, and OLXP, evaluating

the performance of transaction processing, analytical processing,

and hybrid processing, respectively. To quantify the overall HTAP

performance, we propose a unified metric, H-Score, that combines

the performance of OLTP (TPS), OLAP (QPS), and OLXP (XPS) and

data freshness.

To summarize, we make the following contributions:

(1) We propose a new benchmark for HTAP databases based on a

realistic HTAP application.

(2) We develop a data generator based on a time-dependent gener-

ation phase and an anomaly generation phase.

940

COMPANY(CO)

CHCEKINGACCOUNT(CA)
SF*32,000

LOANAPPKEY

LOANAPP(LA)
SF*600,000

APPLICANTID

CHECKING(CH)
SF*600,000

LOAN(LO)
SF*600,000

ACCOUNTKEY
BALANCE

TIMESTAMP
ISBLOCKED

TRANSKEY

TRANSFER(TR)
SF*6,000,000

SOURCEID
TARGETID
AMOUNT
TYPE

TIMESTAMP
FRESH_TS

ACCOUNTKEY

SAVINGACCOUNT(SA)
SF*32,000

BALANCE
TIMESTAMP
ISBLOCKED
FRESH_TS

CUSTKEY

CUSTOMER(CU)
SF*30,000

COMPANYKEY
NAME

PROVINCE
CITY

LOANBALANCE

GENDER

ISBLOCKED
FRESH_TS

FRESH_TS

CHECKKEY
SOURCEID
TARGETID
AMOUNT
TYPE

TIMESTAMP
FRESH_TS

COMPANYKEY
SF*2,000

NAME
CATEGORY

PROVINCE
CITY

LOANBALANCE
ISBLOCKED
FRESH_TS

AMOUNT
DURATION
STATUS

LOANKEY

APPLICANTID
AMOUNT
DURATION
STATUS

FRESH_TS

LOANAPPKEY

TIMESTAMP
CONTRACTDATE

DELINQUENCY

STAFFSIZE

TIMESTAMP
FRESH_TS

Figure 2: The Data Schema of HyBench

(3) We propose a hybrid workload of OLTP, OLAP, and OLXP,

based on the choke-point design. To control the access patterns

of the hybrid workload, we introduce a graph-based parameter

curation method.

(4) We design a unified metric to make a holistic evaluation of

HTAP databases, including freshness, transactional, analytical,

and hybrid throughput. We also propose a contrastive method

to evaluate the freshness effectively.

(5) We have utilized HyBench to evaluate and analyze five widely-

used databases with various HTAP architectures. The experi-

mental results show that it provides a more principled approach

to quantify the overall HTAP performance.

2 HTAP-NATIVE BENCHMARK
Figure 1 depicts an overview of HyBench, including the workload
generator, data generator, worker manager, and the unified metric.

2.1 Data Generation
Figure 2 presents the schema of HyBench that is based on an online

finance scenario, which contains many transactional operations

(e.g., transferring and checking) and real-time data analytics (e.g.,

risk controlling for blocked accounts).

2.1.1 Data Schema. HyBench is based on an online finance applica-

tion inspired by the real-world HTAP applications of Alipay [16, 35]

and WeBank [28, 30]. Both Alipay and WeBank have HTAP applica-

tions in the field of finance technology (FinTech). Alipay from Ant

Group is a leading platform for payments and digital services in

China. While handling highly concurrent payment and loan trans-

actions, it also needs to provide high system security by analyzing

the data during transaction processing. A typical application is the

3-1-0 model [17] where customers can make a loan application in

3 minutes, and the application can be processed in 1 second with

risk controlling, and the whole reviewing process has 0 human

intervention. Particularly, 3 is associated with the transaction pro-

cessing (TP) and 1 pertains to the analytical processing (AP) in

risk controlling. WeBank from Tencent Group is a leading internet

bank supporting many online banking services, targeting at small

and medium sized companies and customers. Similar to Alipay, it

has a risk-controlling HTAP application: it supports the automated

approval for loan applications within 1 minute [29] by identifying

core risks such as credit fraud during transaction processing.

HyBench’s schema consists of eight tables that exist in the real

schema of Alipay and WeBank. Specifically,the main entities are

CUSTOMER and COMPANY, and all the financial activities are

involved by them with the associated saving or checking accounts.

Particularly, TRANSFER table records the payment transactions

by SAVINGACCOUNT; CHECKING table saves the check trans-

actions by CHECKINGACCOUNT. LOANAPP table contains the

loan applications issued by customers or companies, and LOAN

manages all the loan transactions. Note that the primary key (PK)

of each table is marked in green, and each PK points at the ref-

erenced foreign key (FK) of the other tables, e.g., CU.CUSTKEY

→ LA.APPLICANTID. The TIMESTAMP field stores the synthetic

timestamps and FRESH_TS stores the real-time timestamps for

freshness evaluation. The DELINQUENCY of a delayed loan will

be set to 1. If any fraudulent transaction (e.g., overdue loan) is de-

tected, the related users and accounts will be blocked by setting the

ISBLOCKED to 1. Consequently, a risk-controlling operation will

rollback the transactions for the related blocked accounts.

2.1.2 Time-Dependent Data Generation. HyBench generates the

testing data based on the scaling model defined in Figure 2. To de-

termine the table size, we design the scaling models based on those

in SSB [22] andHATtrick [18]. For instance, three tables ofCustomer,
Company, Transfer have the same scaling of Customer, Supplier, Li-
neorder in SSB and HATtrick. The sum of the table sizes of Customer
and Company amounts to the table size of Savingaccount. Since cus-
tomers normally make much more transfers than loans and checks,

we reduce the table size of Loanapp, Loan, and Checking in an order

of magnitude. Particularly, a testing dataset is generated based on

a given scale factor (SF), and the data size grows linearly as the SF

increases. Similar to the existing works [2, 3, 11, 18], the data is

mainly generated based on a uniform distribution for the simplicity

of benchmarking. Nevertheless, we incorporate the time-dependent

data generation to generate data efficiently and make the data more

realistic. For example, transfers are only made by customers if they

have saving accounts. By dividing the time ranges, transfers can

be generated in streams without accessing the full information of

saving accounts.

2.1.3 Skew Data Generation. To generate skewed data distribu-

tions with HyBench, we have developed a skew data generator based

on power law distribution and exponential distribution. Specifically,

we use the realistic GDP ranks for the provinces and cities, then

generate the data with the specified skew distribution. We also use

the correlation to generate the transactions. For example, customers

and companies in the same city are more likely to have transfers or

make checks than those in different cities.

941

Table 2: A Summary of Choke Points of HyBench Workload

Category Description Choke Points
OLTP 18 Operational Transactions ACID Test, Row Storage, Batch Write, Hot Spot, Chain Logic, Concurrency Control for High Parallelism

OLAP 13 Analytical Queries Window Function, Dependent Group-by, Flattening Subqueries, Large IN, Join Ordering, CTE Pushdown

OLXP

6 Analytical Transactions (AT) Joins and Aggregations within the Transaction, Join Cycle, Left Join Optimization, Concurrency Control

6 Interactive Queries (IQ) Few Column Selection, Bi-directional Search, Left Join Optimization, Result Reuse, Join Ordering

Hybrid Execution (AT & IQ) High Data and Resource Contention, Long Chain Traversing, Skewed Data Access, Data Freshness

Specifically, since the year of 2014 is the time when the HTAP

term was formally defined, we set the start date of data genera-

tion to “2014-01-01”. With a ten-year range, we assume the cur-

rent date is “2024-01-01”. The generator produces the data in three

phases. For phase one (2014-2019), it generates the base data of

CUSTOMER, COMPANY, SAVINGACCOUNT, and CHECKINGAC-

COUNT. We collect the realistic dictionary data of popular names,

citys, provinces and company categories in China, then generate

the data uniformly. For phase two (2019-2023), it generates the

transfers and checkings uniformly. For phase three (2023-2024), it

produces the loan applications and accepted loans.

2.1.4 Anomaly Generation. When generating the data, HyBench
deliberately generates various anomalies for risk controlling. Specif-

ically, given a probability 𝑝 , it generates the blocked accounts with

𝑝 , which is 1% by default. Given a probability for the delinquency

loans, it generates the loan applications with curated time range.

We use a query-driven method to produce the anomalies based on

the analytical transactions. For instance, given an analytical transac-

tion that examines if a target account has related blocked accounts,

we will check such a condition while generating the transfers, and

the satisfied accounts will be recorded and be written into a file.

Similarly, we can generate anomalies for other cases. However,

as it is costly to curate a large set of parameters in the runtime,

we employ the reservoir sampling to keep a small set of samples.

Given a curation parameter 𝛾 , it selects a random sample without

replacement with the equal probability.

2.1.5 Algorithm Description. As shown in Algorithm 1, given the

scale factor SF, four dates, and two probabilities, the data generation
procedure is divided into three phases, and the table aliases are

given in Figure 2, e.g., 𝐶𝑈 refers to Customer. The anomaly genera-

tion has been plugged into the data generation, and the generated

anomalies are used to simulate various risk controlling cases during

transaction processing. Specifically, line 1 gets all the scaling mod-

els concerning SF ; line 2 utilizes the DataGen function to generate

the base data uniformly and the timestamps are generated between

𝑑1 and 𝑑2; line 3 employs the AnomalyGen function to generate the

blocked accounts with a probability of 𝑝1. That is, if a customer or a

company is selected to be an abnormal one, we set the ISBLOCKED

field to 1 and we also set the ISBLOCKED fields of its associated

saving and checking accounts to 1; line 4 produces the transfer and

checking transactions between 𝑑2 and 𝑑3; line 5 identifies the query-

driven anomalies based on the analytical transactions (AT) and the

generated data. For example, for a generated transfer transaction

in 𝑇𝑅, we treat a target account in 𝑆𝐴2
ˆ as an abnormal account

when its source account in 𝑆𝐴1
ˆ is a blocked account according to

Algorithm 1: Time-Dependent Data Generation

Input: Scale Factors: 𝑆𝐹 , Dates: 𝑑1, 𝑑2, 𝑑3, 𝑑4, Probabilities: 𝑝1, 𝑝2
Output: A HyBench Dataset 𝐷 and Anomaly Parameters �̂�.

1 N = S(𝑆𝐹) ; // Get all the scaling models

// Phase one: generate the base data

2 𝐶𝑈 ,𝐶𝑂, 𝑆𝐴,𝐶𝐴 = DataGen(𝑠𝑒𝑒𝑑,𝑑1, 𝑑2,N𝐶𝑈 ,𝐶𝑂,𝑆𝐴,𝐶𝐴) ;
3 𝐶�̂� ,𝐶�̂�, 𝑆�̂�1,𝐶�̂�1 = AnomalyGen(𝑝1,𝐶𝑈 ,𝐶𝑂, 𝑆𝐴,𝐶𝐴);

// Phase two: generate the payment transactions

4 𝑇𝑅,𝐶𝐻 = DataGen(𝑠𝑒𝑒𝑑,𝑑2, 𝑑3,N𝑇𝑅,𝐶𝐻) ;
5 𝑇�̂�,𝐶�̂� , 𝑆�̂�2,𝐶�̂�2 = AnomalyGen(𝑇𝑅,𝐶𝐻, 𝐼𝑄, 𝑆�̂�1,𝐶�̂�1);

// Phase three: generate the loan transactions

6 𝐿𝐴, 𝐿𝑂 = DataGen(𝑠𝑒𝑒𝑑,𝑑3, 𝑑4,N𝐿𝐴,𝐿𝑂) ;
7 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = [30, 60, 90, 180, 365] ;

8 𝐶𝑢𝑟𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑒 = DateCurate(𝑝2, Duration, 𝑑4) ;

9 𝐿�̂�, 𝐿�̂� = AnomalyGen(𝑠𝑒𝑒𝑑,𝐶𝑢𝑟𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑒,𝑑4, 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ;
10 �̂� = 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (𝑆�̂�1, 𝑆�̂�2,𝐶�̂�1,𝐶�̂�2,𝑇 �̂�,𝐶�̂�, 𝐿�̂�, 𝐿�̂�) ;
11 return 𝐷 = {𝐶𝑈 ,𝐶𝑂, 𝑆𝐴,𝐶𝐴,𝑇𝑅,𝐶𝐻, 𝐿𝐴, 𝐿𝑂 }, �̂� ;

AT1; line 6 generates loan transactions between 𝑑3 and 𝑑4; line 7

defines the loan duration in days; line 8 curates the date based on a

given probability 𝑝2, the duration, and end date 𝑑4; line 9 generates

the delayed loans between 𝐶𝑢𝑟𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑒 and 𝑑4. As a result, we

can control the number of delayed loans with probability 𝑝2. For

instance, given the delinquency probability of 0.1, it generates the

loan applications between the curated date “2023-11-01” and end

date “2023-12-31”, then samples a duration item uniformly from

the candidates {30,60,90,180,365}, so the probability to generate a

delay loan is 1/2 * 1/5= 1/10 where the delayed loans were signed

before “2023-12-01” and had the duration of 30; line 10 selects the

anomaly parameters with reservoir sampling such that each param-

eter is sampled with the same probability, and these parameters are

used for simulating the given risk rate; line 11 finally returns the

generated dataset and the sampled parameters.

2.2 Hybrid Workload
We have designed three types of workload: OLTP, OLAP, and OLXP.

The rationale for having the separating OLTP phase and OLAP

phase is that the HTAP databases are often employed to handle

these two types of workloads in different time ranges in real scenar-

ios, e.g., process the OLTP workload in the morning and perform

the OLAP workload in the evening. The OLXP workload is mainly

used for a risk-controlling scenario, where customers can transfer

money and apply for loans, and the service provider can analyze

the data and control the risks simultaneously.

942

Table 2 presents a summary of the HyBench’s workload, and we

design the workloads based on choke-point design [1, 5, 9], which

presents many benchmarking challenges for HTAP databases. The

first part contains 18 read/write transactions, and the choke points

include ACID test, batch write, hot spot, chain logic, etc. The second

part includes 13 analytical queries, and the choke points include

window function, dependent group-by, flattening subqueries, join

ordering, etc. The third part mixes 6 analytical transactions (AT)

and 6 interactive queries (IQ) to form a hybrid workload with new

HTAP choke points. Hybrid execution refers to the concurrent

execution of ATs and IQs, and it also brings new choke points

including high data and resource contention, long version chain

traversing, skewed data access, and data freshness.

2.2.1 OLTP Workload. We have designed 18 transactions to cover

the typical operations in the finance applications.

example 1 (T10: Salary Payment). Given the salary @s, this
transaction pays the salary to all the employees of a company, which
comprises a long transaction as the staff size can be up to 100.

BEGIN; # Begin the transaction
custList= (SELECT custID FROM CUSTOMER

WHERE COMPANYID = @ID)
IF(balance < size*@s)
ROLLBACK; # Rollback the transaction
For custID in custList:
@ID.balance = @ID.balance - @s
custID.balance = custID.balance + @s
COMMIT; # Commit the transaction

The OLTP workload contains 8 read-only transactions (T1-T8),

and 10 write transactions (T9-T18). T1-T8 frequently view the ac-

count information and the related balance; T9 adds a transfer be-

tween two accounts, and T10 is the salary payment transaction;

T12-T16 involve the loan management. T17-T18 focus on transfer-

ring between the saving accounts and the checking accounts.

2.2.2 OLAP Workload. We have designed 13 analytical queries in

three levels: customer (Q1-Q4), company (Q5-Q8), and provider

(Q9-Q13). Similar to existing benchmarks, each query is associated

with a common business case. For instance, Q2 summarizes the

loans of a customer, Q7 reports the big accounts for a company.

example 2 (Q9: Summarize the revenue of the new loan

applicants). Given two dates, this query aggregates the related
transfers for the companies that have loan applications but have no
loans yet. Since the query has the clause of EXISTS and NOT EXISTS,
it examines if the query optimizer can make the proper optimization,
e.g., transform them to a semi-join and an anti-join.

SELECT c.name , sum(tr.amount) as revenue
FROM Company co, Transfer tr
WHERE @Date1 < TIMESTAMP <@Date2
AND co.companyId = tr.targetId
AND EXISTS Subquery with EXISTS
(SELECT * FROM loanapp la
WHERE la.applicantid=c.companyid)
AND NOT EXISTS Subquery with NOT EXISTS
(SELECT * FROM loan lo
WHERE lo.applicantid=c.companyid)
GROUP BY co.name
ORDER BY revenue DESC;

2.2.3 OLXP Workload. We propose an OLXP workload that blends

6 analytical transactions (AT) and 6 interactive queries (IQ). The

rationale of the OLXP workload is that current level of risk con-

trolling is high, thus the transactions and queries need to be ran

concurrently to avoid losing money. On the one hand, analytical

transactions need to detect the users or transactions with the po-

tential risk. On the other hand, interactive queries need to analyze

the newly-emerged abnormal users and transactions immediately.

The new set of OLXP workload not only mimics many use cases

in a real HTAP application, but also introduces new benchmark-

ing challenges for HTAP databases. For instance, it checks if the

long version chain can be traversed and vacuumed efficiently; it

examines if the systems can achieve high throughput and high

data freshness when the write concurrency and the data contention

degree are high; it exercises if the deadlocks can be detected imme-

diately and be addressed properly.

Analytical Transaction (AT).We have carefully designed six ATs

(AT1-AT6). Particularly, each AT is associated with one or more

risk-controlling cases, if any risking case is detected, it performs the

corresponding operations, e.g., rollback the transactions or block

the accounts. Take AT1 as an example as follows:

example 3 (AT1: Risk controlling for a transfer). This trans-
action incorporates the operations of risk controlling into a transfer
operation from a sourceId to a targetId. Firstly, it verifies two condi-
tions: (1) the accounts are not blocked, and (2) the balance is sufficient.
Secondly, it checks if the target account has related transfers to any
blocked users. If these conditions are satisfied, the related balance will
be updated and the transaction will be committed. Otherwise, the
transaction will be rolled back.

BEGIN; # Begin the transaction
IF(Isblocked ==1 or balance < @a)
ROLLBACK; # Rollback the transaction
SELECT COUNT (*) AS CNT
FROM Transfer tr, SavingAccount sa
WHERE sa.isblocked =1
AND tr.targetId=sa.accountId
AND tr.sourceId=@targetId;
IF (CNT >0) ROLLBACK; # Risk controlling
sourceId.balance = sourceId.balance - @a
targetId.balance = targetId.balance + @a
COMMIT; # Commit the transaction

Specifically, AT1 identifies the risk that the transferring target

has the related blocked accounts; AT2 detects the risk that the

checking source has the related blocked accounts; AT3 analyzes if

the loan applicant has a balance expenditure; AT4 analyzes a gang

analysis case in loan application. AT5 checks if the accepted loan

has delayed to repay. AT6 blocks the account that has a delayed loan

contract over a duration. To simulate the real distribution, we set

the default ratio to { 35%, 25%, 15%, 15%, 7%, 3%} by referring to the

real statistic of a hybrid workload from Alipay that was collected

by the OceanBase [35] team.

Interactive Query (IQ).We have also designed interactive queries

in the hybrid workload. Takes IQ1 as an example:

example 4 (IQ1: Find related transfers for a blocked user).

Given a blocked user, this query returns the related transfers. It con-
tains a bi-directional search on the related transfers, and then merges
the transfers and returns the top-10 recent transfers. Since a blocked

943

user could be found in real time, thus such a query examines if the
HTAP databases can successfully find the related accounts in time.

SELECT tr.timestamp , cu.custId
FROM Transfer tr, Customer cu
WHERE tr.sourceId=@blockedId
AND tr.targetId=cu.custId
UNION # Union the transfers
SELECT tr.timestamp , cu.custId
FROM Transfer tr, Customer cu
WHERE tr.targetId=@blockedId
AND tr.sourceId=cu.custId
ORDER BY tr.timestamp LIMIT 10

The OLXP workload contains six IQs. Specifically, IQ1 aims to

pinpoint the related transfers for a blocked user; IQ2 finds the re-

lated checks for a blocked company; IQ3 returns all the employee’s

information for a blocked company; IQ4 finds the invested compa-

nies and individuals from a blocked company; IQ5 searches for the

related customers and companies for a delayed loan; IQ6 returns

all the related loans and applications for a delayed loan.

2.3 Worker Manager
2.3.1 Worker Control. Given a configuration (𝑛, 𝑚), the worker

manager will launch 𝑛 TP workers for the OLTP workload and𝑚

AP workers for the OLAP workload, and (𝑛, 𝑚) workers for the

OLXP workload (i.e., launch 𝑛 workers for the ATs and𝑚 workers

for the IQs. Then they are executed concurrently).

2.3.2 Data Access Control. Worker manager can also control the

data access patterns for the hybrid workload of ATs and IQs. The

basic idea is to control the transaction rollback rate and data con-

tention with the given risk rate and access distribution. Recall that

we have curated the parameters by generating the anomalies dur-

ing the data generation phase, we can utilize such information to

control the rollback rate. We also introduce three types of access

distributions with different degree of the data contetion: uniform,
power law, and latest. The first mode accesses the data uniformly;

the second mode generates the parameters with a skewed distribu-

tion following a power law distribution; the third one access the

latest 𝑛 newly-inserted data.

Since the ATs and IQs have different data dependencies, we

introduce a graph-based parameter curation method that is based

on a dependency graph. As a result, the curationmethod can control

the data access patterns with the risk rate and access distribution

simultaneously. It works in three steps as follows:

Step 1. for each IQ, it builds a dependency graph that identifies

the related transactions with data contention. Particularly, the de-

pendency graph depicts their source tables by start edges, read

tables by read edges, and write tables by write edges, e.g., AT1 has

a start edge from SA, read edges from TR and SA, and write edges

to TR and SA. The dependency contains two parts: (1) static depen-

dency and (2) dynamic dependency. The former one is identified

by tracing their common start edges, and the latter one is found by

intersecting their start edges and end edges.

Step 2. given a risk rate 0 < 𝛼 < 1, the IQs and the ATs with static

dependency samples the anomalies parameters with the probability

TR

CO

LA

CA

CU

SA

LO

AT1 AT6

IQ1
 Workload

Table

Start Edge

End Edge

Read Edge

Write Edge

CH

Static Dependency: IQ1->AT1 Dynamic Dependency: IQ1->AT6

Figure 3: Data Access Control with the Dependency Graph

𝛼 . Otherwise, it samples normal parameters with the specified ac-

cess distribution. Hence, the higher the 𝛼 is, the higher the transac-

tion rollback rate is. Note that the size of the anomalies parameters

does not affect the rollback rate but has impact on data contention.

Step 3. If the given distribution is uniform, it samples the normal

parameters randomly. If the specified distribution is power law, it

samples the normal parameters with the specified law’s exponent

(the smaller the exponent is, the more skewed the access distribu-

tion is). We implement a binary search to obtain the index, thus

both integer and categorical parameters can be sampled with the

particular power law distribution. If the target distribution is latest,
it creates a fixed-size queue to maintain the dynamic parameters,

and the dependent IQs and ATs operate the queue simultaneously.

When the number of queue reaches the limit, it remove the head

item to keep the latest parameters.

example 5 (Data Access Control). Figure 3 depicts a depen-
dency graph for IQ1. Tables and workload are represented as square
nodes with different colors. We can see that IQ’s start edge is from SA,
and its read edges are from TR and CU. By tracing the start edges,
IQ1 has a static dependency with AT1. By intersecting the start edge
with the end edges, IQ1 has a dynamic dependency with AT1 and
AT6. When running the hybrid workload with a risk rate 𝛼 , IQ1 and
AT1 sample the related anomalies parameters with the probability 𝛼 .
Otherwise, they sample the normal parameters following the specified
distributions (e.g., uniform or power law distributions). Note that
AT6 will sample the related parameters with other IQs. If the specified
distribution is latest, IQ1, AT1, and AT6 will have the probability
of 1 − 𝛼 to access the latest data written by AT1 and AT6.

3 HTAP METRICS
3.1 Freshness Evaluation
Data freshness reflects how fresh the data is accessed by the analyt-

ical queries. We define F-Score to quantify the data freshness.

3.1.1 F-Score Definition. Concerning a query 𝑄 , the result sets in

OLTP and OLAP are denoted as 𝑅
𝑄

𝑇𝑃
and 𝑅

𝑄

𝐴𝑃
, respectively; each

tuple in the result set is defined as 𝑟 = (𝑖, 𝑑, 𝑡𝑠), where 𝑖 is the tuple
ID, 𝑑 is the data, and 𝑡𝑠𝑟 is its timestamp. We define the F-Score 𝑓𝑠
as follows:

944

OLXP Execution
Interval

OLTP
instance

OLAP
instance

AT IQ

OLXP Execution

OLTP
instance

OLAP
instance

Sync Sync

AT IQ

Q Q<latexit sha1_base64="+9OUMH8swfjOMzWbiLnHURlHVZQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHgxWMieUGyhtnJJBkyO7vO9AphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFsRQGXffbWVvf2Nzazu3kd/f2Dw4LR8dNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4dua3nrg2IlJ1nMTcD+lQiYFgFK3Uvn+o9dJ6ddorFN2SOwdZJV5GipCh2it8dfsRS0KukElqTMdzY/RTqlEwyaf5bmJ4TNmYDnnHUkVDbvx0fu+UnFulTwaRtqWQzNXfEykNjZmEge0MKY7MsjcT//M6CQ5u/FSoOEGu2GLRIJEEIzJ7nvSF5gzlxBLKtLC3EjaimjK0EeVtCN7yy6ukWS55VyWvdlmslLM4cnAKZ3ABHlxDBe6gCg1gIOEZXuHNeXRenHfnY9G65mQzJ/AHzucPwA6PvA==</latexit>

RQ
TP

<latexit sha1_base64="+9OUMH8swfjOMzWbiLnHURlHVZQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHgxWMieUGyhtnJJBkyO7vO9AphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFsRQGXffbWVvf2Nzazu3kd/f2Dw4LR8dNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4dua3nrg2IlJ1nMTcD+lQiYFgFK3Uvn+o9dJ6ddorFN2SOwdZJV5GipCh2it8dfsRS0KukElqTMdzY/RTqlEwyaf5bmJ4TNmYDnnHUkVDbvx0fu+UnFulTwaRtqWQzNXfEykNjZmEge0MKY7MsjcT//M6CQ5u/FSoOEGu2GLRIJEEIzJ7nvSF5gzlxBLKtLC3EjaimjK0EeVtCN7yy6ukWS55VyWvdlmslLM4cnAKZ3ABHlxDBe6gCg1gIOEZXuHNeXRenHfnY9G65mQzJ/AHzucPwA6PvA==</latexit>

RQ
TP

<latexit sha1_base64="VP496EXZNAxB87KwHRdtp/lz6kQ=">AAAB73icbVDLTgJBEOz1ifhCPXqZSEw8kV1i1CPGi0cw8khgJbPDABNmZ9eZXhOy4Se8eNAYr/6ON//GAfagYCWdVKq6090VxFIYdN1vZ2V1bX1jM7eV397Z3dsvHBw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm6nffOLaiEjd4zjmfkgHSvQFo2il1t1DrZteVyfdQtEtuTOQZeJlpAgZqt3CV6cXsSTkCpmkxrQ9N0Y/pRoFk3yS7ySGx5SN6IC3LVU05MZPZ/dOyKlVeqQfaVsKyUz9PZHS0JhxGNjOkOLQLHpT8T+vnWD/yk+FihPkis0X9RNJMCLT50lPaM5Qji2hTAt7K2FDqilDG1HehuAtvrxMGuWSd1HyaufFSjmLIwfHcAJn4MElVOAWqlAHBhKe4RXenEfnxXl3PuatK042cwR/4Hz+AKMcj6k=</latexit>

RQ
AP

<latexit sha1_base64="VP496EXZNAxB87KwHRdtp/lz6kQ=">AAAB73icbVDLTgJBEOz1ifhCPXqZSEw8kV1i1CPGi0cw8khgJbPDABNmZ9eZXhOy4Se8eNAYr/6ON//GAfagYCWdVKq6090VxFIYdN1vZ2V1bX1jM7eV397Z3dsvHBw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm6nffOLaiEjd4zjmfkgHSvQFo2il1t1DrZteVyfdQtEtuTOQZeJlpAgZqt3CV6cXsSTkCpmkxrQ9N0Y/pRoFk3yS7ySGx5SN6IC3LVU05MZPZ/dOyKlVeqQfaVsKyUz9PZHS0JhxGNjOkOLQLHpT8T+vnWD/yk+FihPkis0X9RNJMCLT50lPaM5Qji2hTAt7K2FDqilDG1HehuAtvrxMGuWSd1HyaufFSjmLIwfHcAJn4MElVOAWqlAHBhKe4RXenEfnxXl3PuatK042cwR/4Hz+AKMcj6k=</latexit>

RQ
AP

Figure 4: Freshness Evaluation with the Contrastive Method

𝑓𝑠 =𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡𝑠𝑟𝑎 − 𝑡𝑠𝑟𝑏 |𝑟𝑎 ∈ 𝑅

𝑄

𝑇𝑃
, 𝑟𝑏 ∈ 𝑅

𝑄

𝐴𝑃
, 𝑖𝑟𝑎 = 𝑖𝑟𝑏 𝑢𝑝𝑑𝑎𝑡𝑒

𝑡𝑠𝑄 − 𝑡𝑠𝑟𝑎 |𝑟𝑎 ∈ 𝑅
𝑄

𝑇𝑃
, 𝑟𝑏 ∉ 𝑅

𝑄

𝐴𝑃
, 𝑖𝑟𝑎 = 𝑖𝑟𝑏 𝑖𝑛𝑠𝑒𝑟𝑡

𝑡𝑠𝑄 − 𝑡𝑠𝑟𝑎 |𝑟𝑎 ∉ 𝑅
𝑄

𝑇𝑃
, 𝑟𝑏 ∈ 𝑅

𝑄

𝐴𝑃
, 𝑖𝑟𝑎 = 𝑖𝑟𝑏 𝑑𝑒𝑙𝑒𝑡𝑒

(1)

where max takes the maximum value of the timestamp differences

between the result sets of 𝑅
𝑄

𝑇𝑃
and 𝑅

𝑄

𝐴𝑃
concerning the cases of

update, insert, and delete; 𝑡𝑠𝑄 is the starting time of query 𝑄 ;

3.1.2 Evaluation Method. To quantify the F-Score effectively, we

propose a contrastive method that compares the query result sets

from the OLTP instance and OLAP instance while performing the

OLXP workload. Since we have added a fresh_ts to each table, the

query result set should contain the real-time timestamps that are

injected by the transactions, and we compute the difference of their

max timestamps as the freshness. As shown in Figure 4, AT and

IQ are operating over the data consistently, and we launch two IQ

threads for fresh evaluation simultaneously. To reduce the evalu-

ation overhead, the fresh is evaluated periodically, and we use a

parameter (20 by default) to indicate the number of freshness eval-

uation. For instance, if the measuring time is 1 min, the freshness

evaluation interval is 1*60/20=3s. We launch the additional thread

to update the instance periodically, which has the same target id as

that of the corresponding fresh query.

We design a query-driven evaluation method to support the F-

Score calculation with updates, inserts, and deletes. Specifically,

given the result sets of 𝑅
𝑄

𝑇𝑃
and 𝑅

𝑄

𝐴𝑃
, it takes their full outer join on

the column of tuple ID. Regarding a tuple that appears both in 𝑅
𝑄

𝑇𝑃

and 𝑅
𝑄

𝐴𝑃
with the same ID, it computes the differences of the times-

tamps to quantify the data freshness, i.e., 𝑡𝑠𝑟𝑎 − 𝑡𝑠𝑟𝑏 . For an inserted

tuple that has not yet emerged in 𝑅
𝑄

𝐴𝑃
, it computes the difference

between the query’s starting time and the tuple’s inserting time,

i.e., 𝑡𝑠𝑄 − 𝑡𝑠𝑟𝑎 . According to the consistent read protocol [12, 19],

every transaction is associated with a monotonically increasing

timestamp, and a query only sees changes made by transactions

with smaller timestamps. Hence, the timestamp difference quanti-

fies the data freshness at the time of 𝑄’s starting. To support the

delete cases, we record the deleted ID and timestamp in a deleted

map. Then for a deleted tuple that exists in 𝑅
𝑄

𝐴𝑃
but disappears in

𝑅
𝑄

𝑇𝑃
, we compute the difference between the query’s starting time

and the tuple’s deleting time, i.e., 𝑡𝑠𝑄 − 𝑡𝑠𝑟𝑎 . Finally, we take the

maximum value among the timestamp differences.

3.2 The Evaluation of Workload Isolation
We use the percentage of performance regression/degradation to

quantify it by comparing the performance between a sequential

execution and a hybrid execution with the OLXP workload. Let𝑊TP
and𝑊AP denote the workload isolation for AT and IQ, respectively.

The definitions are as follows:

𝑊TP = (𝐴𝑇𝑆 (𝑛,0) −𝐴𝑇𝑆 (𝑛,𝑚))/𝐴𝑇𝑆 (𝑛,0) (2)

𝑊AP = (𝐼𝑄𝑆 (0,𝑚) − 𝐼𝑄𝑆 (𝑛,𝑚))/𝐼𝑄𝑆 (0,𝑚)
(3)

where 𝐴𝑇𝑆 is the processed analytical transactions per second, and

𝐼𝑄𝑆 is the processed interactive queries per second. (𝑛,𝑚) is the

configured number of TP and AP workers. We define the minimum

value of workload isolation is zero.

3.3 Unified Metric
3.3.1 Execution rule. We design a three-phase execution rule to

execute the HyBench’s workload in a row, then we obtain a unified

metric. Given the concurrency number (𝑛,𝑚) and the dataset with

scale factor SF, the first phase executes the OLAP workload with

𝑚 streams, and each stream contains all the 13 queries with a ran-

dom order. The main metric is the number of processed queries

per second (QPS). We ensure each stream is completely processed,

and calculate QPS based on its processed queries and actual run-

ning time. The second phase performs the OLTP workload with 𝑛

streams. The main metric is the number of processed transactions

per second (TPS). The third phase executes the OLXP workload by

running the ATs and IQs concurrently, and they are running with

𝑛 and𝑚 workers, respectively. Two main metrics are the XPS (i.e.,

the sum of processed AT and IQ operations per second) and F-Score

for data freshness.

3.3.2 H-Score Definition. Consequently, we propose a unified met-

ric, named H-Score, to quantify the overall HTAP performance

concerning the concurrency of TP workers and AP workers (𝑛,𝑚):

H-Score = 𝑆𝐹 ∗
3

√
𝑇𝑃𝑆 ∗𝑄𝑃𝑆 ∗ 𝑋𝑃𝑆

𝑓𝑠 + 1

(4)

where XPS = ATS+IQS, and SF is the used scale factor; We adopt

the geometric mean of the throughput quantifies the overall per-

formance; 𝑓𝑠 is measured in seconds and serves as a scaling down

factor; it is added with 1 to avoid that the denominator is zero.

H-Score is beneficial as solely relying on one aspect cannot re-

flect the true HTAP performance. The five components (scale factor,

transactional throughput, analytical throughput, hybrid process-

ing throughput, and freshness) in H-Score are widely recognized

as the most important factors for quantifying the HTAP perfor-

mance. However, previous benchmarks [2, 3, 18] only emphasize

the hybrid throughput and freshness but neglecting the pure trans-

actional throughput and analytical throughput. In contrast, H-Score

combines them into a unified metric for a horizontal comparison.

Moreover, it inherently reflects the trade-off between workload

isolation and freshness, i.e., the higher the workload isolation, the

higher the XPS is, but the freshness could also be larger.

.

945

4 EXPERIMENTS
4.1 Experimental Setting
Experimental Environment. All experiments are performed on

the same type of servers, each of which has a 2.2 GHz Intel Xeon(R)

CPU E5-2630 processor with 40 physical cores, 128GB RAM, and

a 1T SSD disk. We deploy a four-node cluster, which contains one

primary node and three secondary nodes.

BenchmarkConfiguration.We deploy the benchmark tool on the

primary node for ease of data loading. We produce testing datasets

with three scale factors, SF1, SF10, and SF100, with raw data of sizes

518MB, 5.3GB, and 56GB respectively. To obtain steady performance

results, each phase includes a warm-up run and the measurement

run. Particularly, 3 min warm-up and 3 min measurement phase for

SF1, 3 min+6 min for SF10, and 6 min+9 min for SF 100. In order to

evaluate different workload patterns, e.g., read-heavy, read-write,

and write-heavy, we choose most commonly-used combinations

with relative ratios of TP and AP workers. Namely, (n:m) ∈ {(50:50),

(20:80), (80:20)}. We also evaluate the peak performance with the

highest numbers of concurrency, denoted as T-max and A-max for

TP and AP workers, respectively. For SF1 and SF10, we set both

T-max and A-max to 100. For SF100, we change it to 10 to avoid the

out-of-memory issue. We repeat each execution three times and

report the average results. We set the buffer size of each database to

100GB for a fair comparison. That is, the testing data fits in memory

for all the SUTs. The risk rate is set to 10% by default. For the row

store of each database, we built the same indices on all the primary

keys and foreign keys.

4.2 Evaluated HTAP Databases
We study five state-of-the-art HTAP architectures. For each archi-

tecture, we evaluate one representative. In addition to PostgreSQL,

we refer the commercial SUTs to the architecture names (i.e., A1,

A2, A3, A4). We anonymize the systems’ names because they are

commercial databases and have the "Dewitt Clause" [33] that forbids
the publication of database benchmarks when the database vendor

has not sanctioned. Therefore, we discuss the benchmarking results

from the perspective of HTAP architectures rather than discussing

the specific products. All the results could be reproduced and the

configuration files could be found under the conf folder, and the

README and wiki pages give all the detailed instructions.

Primary Row Store with Streaming Replication. PostgreSQL
is an open-sourced relational database supporting HTAP with

MVCC. We evaluate PostgreSQL 14 with streaming replication,

called PostgreSQL-SR, which contains a primary node and three

read-only secondary nodes. The primary node processes the read-

/write transactions and periodically ships the (Write-Ahead-Log)

WAL logs to the secondary seconds for data synchronization. The

secondary nodes are used to handle the read queries to achieve

better workload isolation. To achieve high freshness, we set the

parameters synchronous_commit and hot_standby_feedback to on
mode. Nevertheless, it may have lag time due to the log replay

latency in the secondary nodes. We route the transactions to the

primary node’s endpoint, and route the queries to one of the sec-

ondary node’s endpoints in a round-robin fashion.

(A1) Primary Row Store with In-Memory Column Store. A1
is a kind of HTAP databases, which handle the transactions using

the primary row store, and they speed up the queries with the

in-memory column store (IMCS). The columns are automatically

selected into the main memory based on the historical queries, and

the queries can be accelerated by the column store based on the

cost model. An in-memory delta store is utilized for recording the

recent DML operations, which will be merged into the column store

periodically. Representatives of A1 are Oracle Dual-Format [12],

SQL Server [13], and DB2 BLU [24].

(A2) Distributed Row Store with Column Replica. A2 is a sort

of distributed HTAP databases that rely on hybrid row and column

store to enable HTAP. The primary row store is partitioned into

multiple segments stored in different nodes. Transactions are han-

dled in the primary node and the logs are replicated to the column

store asynchronously. We deploy A2 with three row-based nodes

and one columnar replica. A2 only exposes a unified endpoint to

the client, and it automatically routes the query or operator to ei-

ther the row store or the column store based on its cost model. To

evaluate its freshness, we force the evaluating queries to read the

column replica with the corresponding hint. Representatives of A2
are TiDB [10] and F1 Lightning [34].

(A3) PrimaryRow StorewithDistributed In-MemoryColumn
Store. A3 is a class of of cloud-based HTAP databases, which utilize

a row store with a distributed IMCS to support HTAP. Compared

with A1, it has better isolation as the transactions and queries are

executed in the isolated nodes. The columns are automatically

selected to the main memory based on the historical queries, and

the analytical queries could be processed with a hybrid scan of row

store and column store. Data updates will be synchronized from the

primary node to the secondary nodes with streaming replications.

Representatives of A3 are AlloyDB [7] and MySQL Heatwave [20].

(A4) Primary Column Store with Delta Row Store. A4 is a

kind of HTAP databases, which utilize the primary column store

as the basis for query processing, and they handle transactions

with a delta row store. The primary column store stores the whole

data in the main memory. Data updates are appended to the row-

based delta store. The system periodically merges the delta data

into the column store. We deploy its latest public release on the

primary node. However, we only evaluate the performance on SF1

and SF10 due to its memory constraint. Representatives of A4 are
SAP HANA [26] and Hyper [21].

4.3 Overall Throughput
Figure 5 illustrates the overall throughput of all SUTs with varied

scale factors and concurrency numbers. The first three groups of

bars are the QPS, TPS, and XPS, respectively. The last group of bars

shows the total throughput. The results are presented in a log scale

for better illustration.

It is clearly visible that the total throughput of A4 is the highest.

We attribute its performance gain to its in-memory columnar query

processing, which achieves the average QPS of 386 and 46 on SF1

and SF10, respectively. Moreover, it also achieves the highest TPS of

218 using its delta-based transaction processing on SF10. However,

it is not good at processing the OLXP workload, leading to the an

XPS of 5.1 on SF10. A2 has the best performance on SF100, and it

can achieve the highest average throughput (QPS: 1.39, TPS: 30.64,

XPS: 14.27) simultaneously. We attribute its performance gain to

946

QPS TPS XPS Total

102

Th
ro

ug
hp

ut

(n:m)=(20:80)
PostgreSQL-SR A1 A2 A3 A4

QPS TPS XPS Total

102

(n:m)=(50:50)

QPS TPS XPS Total
101

102

SF
 1

(n:m)=(80:20)

QPS TPS XPS Total

101

102

Th
ro

ug
hp

ut

QPS TPS XPS Total

101

102

QPS TPS XPS Total

101

102

SF
 1

0

QPS TPS XPS Total

100

101

Th
ro

ug
hp

ut

QPS TPS XPS Total

100

101

QPS TPS XPS Total
10−1

100

101

SF
 1

00

Figure 5: Overall Throughput with Varied Scale Factors and Concurrency Numbers

G-Mean F-Score H-Score
10−1

101

103

Sc
or

e

0.68ms 1.16ms

407ms
92.69

(n:m)=(20:80)
PostgreSQL-SR A1 A2 A3 A4

G-Mean F-Score H-Score
10−1

101

103

0.11ms 0.63ms

608ms
114.52

(n:m)=(50:50)

G-Mean F-Score H-Score
10−1

100

101

102

SF
 1

1.95ms 4.79ms

128ms 143.39
(n:m)=(80:20)

G-Mean F-Score H-Score
10−1

101

103

Sc
or

e

0.11ms
1.21ms

1382ms
243.6

G-Mean F-Score H-Score
10−1

101

103

0.16ms 0.21ms

203ms 456.4

G-Mean F-Score H-Score
10−1

101

103

SF
 1

0

3.26ms 0.15ms

77ms
535.5

G-Mean F-Score H-Score
10−2

100

102

Sc
or

e

1.17ms
16.8ms

570

G-Mean F-Score H-Score
10−2

100

102

1.73ms 0.4ms

872

G-Mean F-Score H-Score
10−2

100

102

SF
 1

00

1.72ms 6.5ms

991

Figure 6: Overall Scoring with Varied Scale Factors and Concurrency Numbers

its distributed storage and MPP-based columnar query processing,

which has good scalability for processing large datasets. Although

it has the worst overall throughput on SF1 due to high contention

on a small dataset, the throughput of A2 is on par with that of A4 on
SF10 when (n:m)= (80:20). PostgreSQL-SR has the most balanced

performance across all the workloads and datasets. Particularly,

it is good at processing OLXP workload because of its isolated

OLTP and OLAP engines, resulting in the highest XPS of 176 on

SF1. With the parallel workers and MVCC mechanism, it can also

achieve good performance on QPS and TPS. The most striking one

is A3, which has worse performance than pure row-based solution,

PostgreSQL-SR. By analyzing the query plans, we find the reason

is that the hybrid scan with the in-memory column store has worse

performance than the pure row-based scan for half of the analytical

queries. For example, as the row store with index scan will have less

planning time and execution time, it outperforms the hybrid scan

on Q9 and Q10, resulting in a higher overall QPS. Such an issue also

results in a lower IQS than the row store. A1 achieves the highest
TPS in all cases and has the highest average TPS of 369 on SF1.

However, it has poor performance on OLAP and OLXP workloads.

First, its processing engine excels at transaction processing and

the in-memory columnar engine bring a little performance gain on

QPS even all the columns are loaded into the column store. Second,

it favors high freshness when processing OLXP workload, thus it

spends a lot of resources synchronizing the data, leading to the

lowest XPS on SF1, SF10, and SF100.

4.4 Overall Scoring
Figure 6 depicts the overall scoring in a log scale including the

Geometric mean of the throughput (G-Mean for short), F-Score,

and H-Score. We label the F-Score in milliseconds and highlight

the winner with H-Score for each plot.

We have five main observations. (1) it is surprising that the one

copy solution, A4, has a relatively larger F-Score than others, which

has an average of 381ms and 554ms on SF1 and SF10, respectively.

By analyzing the query results, we find the reason is that the con-

current queries read the inconsistent data from its versioning delta

store. Nevertheless, it still has the highest average H-Score on SF1

(i.e., 115.13) because its higher G-Mean pays off. (2) A2 can always

achieve zero freshness as it has a particular validation protocol

with the global timestamp oracle (TSO) to ensure read consistency

among the replicas. Only when the data version is consistent with

the latest version, does it process the queries and returns the results

to the client. This also explains why it has the lowest XPS on SF1

as it has an additional validation process for data synchronization.

Nevertheless, A2 strikes a good balance between workload isolation

and data freshness as it has the highest average H-Score of 412

and 810 on SF10 and SF100, respectively. (3) following A4 and A2,

947

Table 3: Evaluation on Workload Isolation.

System 𝑊𝑇𝑃

2,8
𝑊𝐴𝑃

2,8
𝑊𝑇𝑃

5,5
𝑊𝐴𝑃

5,5
𝑊𝑇𝑃

8,2
𝑊𝐴𝑃

8,2
𝑊𝑇𝑃

max
𝑊𝐴𝑃

max
PG-SR 21% 3% 4% 0% 2% 1% 3% 0%

A1 10% 26% 0% 2% 0% 0% 55% 50%

A2 83% 0% 73% 6% 39% 26% 95% 11%

A3 8% 2% 5% 7% 0% 1% 6% 0%

A4 53% 76% 75% 27% 31% 65% 92% 27%

PostgreSQL-SR ranks the second one and third one on SF1 and

SF100. As the number of TP workers increases, it incurs a larger

F-Score since the workload touches more data to be synchronized

to the secondary nodes. (5) A3 has a generally larger F-Score than

PostgreSQL-SR due to the additional data synchronization cost for

the in-memory column store. Meanwhile, it has the smaller through-

put due to the inappropriate hybrid scan, leading to a smaller overall

H-Score. (5) A1 has the best performance on SF10 since its TPS is

high enough to achieve the highest H-Score. It has also the zero

F-Score because of the in-memory delta store.

4.5 Evaluation of Workload Isolation
We run HyBench with run_xp mode on SF10, and we compare the

results with two sequential executions (e.g., (2,0) and (8,0)) and a

hybrid execution (e.g., (2,8)). We also evaluate the max workload

isolation with (T-max, A-max) =(100, 100).

Table 3 shows the workload isolation of all SUTs. Overall, A3
and PostgreSQL-SR have good workload isolation because they

handle transactions and queries in separate nodes. When the con-

currency numbers reach the max, PostgreSQL-SR and A3 have no

performance degradation in IQS and have only 3% and 6% drop

in ATS, respectively. A side observation is that executing the hy-

brid workload occasionally outperforms executing the workloads

separately because more related data could be cached. A2 utilizes
a unified engine to enable HTAP and it can route queries to the

follower nodes for reducing the peak pressure of the primary node.

However, since it forces zero freshness, it will wait for the data to

be updated until the replica is fresh enough, leading to significant

performance degradation. Particularly, it has 95% and 11% drop on

ATS and IQS for peak performance. The standalone solutions, A1
and A4, have large workload isolation as they support HTAP in a

unified memory space, which causes higher resource contention.

Particularly, A1 has a roughly half drop in ATS and IQS and A4 has

92% drop in ATS and 27% decrease in IQS. A1 is better than A4 as A1
has the primary row store and an in-memory column store while

A4 relies on one copy of data.

4.6 Evaluation of Freshness and Throughput
We run HyBench with run_freshmode to evaluate the freshness and

throughput of all the SUTs. We use SF10 and report the ATS and IQS

by varying the ratio of A-max (resp. T-max) with the fixed T-max

(resp. A-max). In the upper part of Figure 7, we set the number of

TP workers to T-max and vary the number of AP workers. Hence,

𝑥-axis stands for the number of AP workers. For instance, we take

(T-max, A-max) = (100, 100), so (T-max, 20) refers to 100 TP workers

0 10 20 50 80 100
0

20

40

34.58ms
1.11ms

0ms

PostgreSQL-SR with T-max
ATS IQS

0 10 20 50 80 100
0

5

10

15

1ms

27ms

0.14ms

A1 with T-max

0 10 20 50 80 100
0

20

18.32ms
16ms

4.2ms

A3 with T-max

0 10 20 50 80 100
0.0

2.5

5.0

7.5

0ms

0ms 19.6s

A4 with T-max

0 10 20 50 80 100
0

20

40

0.44ms
2ms 16.63ms

PostgreSQL-SR with A-max

0 10 20 50 80 100
0.0

2.5

5.0

7.5

0ms

9.5ms
0.17ms

A1 with A-max

0 10 20 50 80 100
0

20 0ms
0.11ms

0.4ms

A3 with A-max

0 10 20 50 80 100
0

2

4

0ms

0ms
0ms

A4 with A-max

Figure 7: Evaluation of Freshness and Throughput

QPS TPS XPS
101

102

Row With Column

QPS TPS XPS
0

100

QPS TPS XPS
0

100

200

QPS TPS XPS

102

103

SF
 1

QPS TPS XPS

101

(a) A1
QPS TPS XPS

0

50

100

(b) A2
QPS TPS XPS

0

20

(c) A3
QPS TPS XPS

101

102

SF
 1

0

(d) A4

Figure 8: Performance Comparison with Columnar Engine

and 20 AP workers. In the lower part with A-max, 𝑥-axis stands for

the number of TP workers and 𝑦-axis depicts the throughput.

Figure 7 shows the experimental results. For PostgreSQL-SR, it
has the highest ATS and IQS for both cases of T-max and A-max.

The results also indicate that it achieves good workload isolation

because of its isolated architecture. As the concurrency number in-

creases, the ATS line and IQS line are relatively steady. The F-Score

increases gradually ranging from 34.58ms to 0ms. A3 also achieves

good throughput and workload isolation but its F-Score is higher

than PostgreSQL-SR on average. For the T-max case, it incurs a

F-Score ranging from 18.32ms to 4.2ms. Besides, it has a lower IQS

due to the negative impact of the hybrid scan. The performance of

A1 and A4 is significantly affected when the concurrency numbers

increase. For the T-max case, the ATS of A1 ranges from 15 to 5 and

IQS is below 5. In addition, it can no longer ensure zero freshness

and the F-Score increases from 1ms to 27ms. For the A-max case,

A1 has the smaller ATS and IQS. Besides, its F-Score increases from

0ms to 9.5ms. A4 has a significant performance degradation for the

T-max case with ATS decreases from 7.99 to 1.08. Surprisingly, we

observe that it incurs an F-Score of 19.6s in the case of (100, 20). For

the A-max case, A4 can ensure zero freshness, but this is achieved

by delivering a small ATS and IQS.

4.7 Benefit Evaluation of Columnar Engine
We compare the performance of two processing paradigms: (1)

row-only solution and (2) column-based solution. For A2, we build
the columnar replica for the entire database. For A3 and A1, we
evaluate two column selection strategies: (i) manually selecting all

the columns and (ii) using the automatic feature to select and evict

the columns with several warm runs. We report the results for the

selection strategy that achieves higher throughput.

948

Figure 8 presents the comparison results with (n:m)=(50:50). Re-

garding A1, A2, and A4, the results clearly indicate that the column-

based solutions significantly outperform the row-based solutions

in the overall throughput, which has 1.3x, 2.4x, 2.7x speedup on

SF1, and 1.5x, 1.3x, 5.4x on SF10, respectively. It is visible that the

performance gain mainly comes from the QPS and XPS. Concerning

transaction processing, A2 has a decrease TPS of 15% on SF1 with

the columnar replica due to additional synchronization overhead.

On the contrary, A1 has an increase of 25% and 35% TPS on SF1 and

SF10, respectively. A4 achieves 6.3x better TPS than the row-based

solution. Unfortunately, A3 has the worse throughput with the col-

umn store, which decreases the overall throughput of 21% and 33%

on SF1 and SF10, respectively.

4.8 Peak Performance Evaluation
In this part, we evaluate the peak performance of all SUTs with

(T-max, A-max) = (100, 100) for SF1 and SF10, and (T-max, A-max) =

(10, 10) for SF100. Table 4 presents the results and Figure 9 depicts

a radar chart. Each dimension is graded from 1 to 5: we grade the

max value 𝑎𝑚 and min value 𝑎𝑛 with a score of 5 and 1, respectively.

Then we measure the score for the value 𝑣 as follows: 𝑠 = 𝑖 + 1

if 𝑣 ≥ 𝑎𝑛 + 𝑖 ∗ (𝑎𝑚 − 𝑎𝑛)/4. In addition, we define the grading of

F-Score as [(5: 0ms), (4: 0-5ms), (3: 5ms-100ms), (2: 100ms-1s), (1:

1s-10s), (0: >10s)].

For SF1, PostgreSQL-SR is the winner and it achieves the highest
H-Score of 320. The performance gain comes from the highest

TPS and XPS because of its sophisticated concurrency control and

isolated HTAP architecture. It achieves an F-Score of 24ms. A4 has

the highest QPS of 676.29. However, it has the low XPS of 45.49 and

incurs the largest F-Score of 78ms, leading to an H-Score of 200.

A1 has the zero F-Score of 0ms, but its XPS is largely affected by

the hybrid workload processing. Still, its TPS is the highest when

it comes to highly concurrent workload. A3 incurs an F-Score of

34ms, and its performance bottleneck is the lowest QPS due to the

hybrid scan. A2 has the lowest H-Score as it has the lowest TPS for

handling the workload of high contention. For SF10, the ranks of

H-Score are A2 > A4 > A1 > PostgreSQL-SR > A3. As the data size
increases, A2 achieves the highest TPS and tops the list with the

highest H-Score. A4 achieves the highest QPS, but it has the lowest

XPS of 4.72. The performance bottleneck for PostgreSQL-SR and
A3 is the low TPS and A1 suffers from the low XPS. For SF100, the

ranks are A2 >PostgreSQL-SR >A3 >A1. The H-Score of A2 is 4.2x
higher than A1, and it achieves zero freshness and the highest QPS,

TPS, and XPS with the tailored validation protocol, columnar query

processing, and distributed transaction processing.

4.9 HyBench Evaluation
Varying the risk rate.We evaluate the performance by varying

the risk rate from 0% to 100% with the run_fresh mode. We adjust

the transaction ratio to evaluate the risk-controlling operations.

Figure 10 depicts the XPS lines with the marked F-Score. Regarding

PostgreSQL-SR, as the risk rate increases, the throughput increases
sharply. The reason is that the higher the risk rate is, the higher

the transaction rollback rate is. Hence, more abnormal transactions

will be processed with a rollback operation. Moreover, the F-Score

decreases gradually as the number of write transactions is decreased.

Table 4: Evaluation on Peak Performance

SF System QPS TPS XPS F-Score H-Score

SF1

PG-SR 82.85 748.65 569.45 24ms 320
A1 138.86 777.45 12.19 0 109

A2 120.49 189.91 133.4 0 201

A3 48.79 765.62 561.28 34ms 266

A4 676.29 327.63 45.49 78ms 200

SF10

PG-SR 8.15 96.85 74.74 14ms 384

A1 15.38 285.87 12.96 0 385

A2 12.54 237.2 59.04 0 559
A3 6.07 95.21 65.75 43ms 322

A4 68.23 252.93 4.72 0 433

SF100

PG-SR 0.59 7.17 4.84 68ms 256

A1 0.6 13.48 1.25 0 216

A2 1.56 36.49 13.49 0 916
A3 0.56 6.04 4.49 2ms 247

H-Score

QPS

TPS F-Score

XPS

1
2

3
4

5

(a) SF1

PostgreSQL-SR A1 A2 A3 A4

H-Score

QPS

TPS F-Score

XPS

1
2

3
4

5

(b) SF10

H-Score

QPS

TPS F-Score

XPS

0
1

2
3

4
5

(c) SF100

Figure 9: Radar Chart for Peak Performance

0% 10% 20% 50% 80% 100%
1600

1800

2000

XP
S

55ms

5ms

0ms
(n:m)=(20:80)

0% 10% 20% 50% 80% 100%
4000

4250

4500

4750

5000

460ms

207ms

6ms
(n:m)=(50:50)

0% 10% 20% 50% 80% 100%

6500

7000

7500

Po
st

gr
eS

QL
-S

R

756ms
7ms

0ms
(n:m)=(80:20)

0% 10% 20% 50% 80% 100%

35

40

45

50

XP
S

F-Score: 0ms

0% 10% 20% 50% 80% 100%
120

130

140 F-Score: 0ms

0% 10% 20% 50% 80% 100%

450

500

550

A2

F-Score: 0ms

Figure 10: Varying Risk Rate and Concurrency Numbers

1 10 20 50 80 100
0

50

100

150

200

XP
S

(a) Varying TP workers with A2

Uniform PowerLaw-0.1 PowerLaw-0.01 Latest-100 Latest-10

1 10 20 50 80 100

30

35

40

XP
S

(b) Varying TP workers with PostgreSQL

Figure 11: Varying Access Distribution and TP Worker

As for A2, it has a fluctuating XPS line as the risk rate increases.

Besides, the more the AP workers are, the more fluctuating the line

is. The reason is that it strikes to guarantee zero freshness, thereby

blocking the queries that access the stale data.

949

(2,8) (5,5) (8,2) (100,100)
0

5

10

15

0 0 0 0

3.37
1.37 1.89

15.33
Freshness-SF1 (ms)

HATtrick HyBench

(2,8) (5,5) (8,2) (100,100)
0

10

20

30

40

0 0 0 01.21 2.79 1.84

39.37
Freshness-SF10 (ms)

SF1 SF10
0

50

100

150

41

170

3 6

Evaluation Time of Workload Isolation (min)

Figure 12: Comparison Between HyBench and HATtrick

Varying the access distribution. Figure 11 shows the XPS with
varied access distributions, including a uniform distribution, two

power law distributions with an exponent of 0.1 and 0.01, and two

latest distributions that access the latest 10 and 100 updated items.

We fix𝑚 to 10 and vary𝑛 from 1 to 100. Intuitively, the more skewed

the access distribution is, the higher the data contention is, thereby

having a larger impact on the throughput. Particularly, we have

the contention ranks: PowerLaw-0.01 > Latest-10 > Latest-100 >

PowerLaw-0.1 > Uniform. The throughput of A2 reflects such a

phenomenon. Overall, the throughput of Uniform is 1.1x, 3.4x, 4.1x,

and 4.9x than PowerLaw-0.1, Latest-100, Latest-10, and PowerLaw-

0.01, respectively. For PostgreSQL-SR, the XPS lines are rather

close, indicating PostgreSQL-SR is less sensitive to the skewed

access distributions. Particularly, the throughput of Uniform is 5%,

6%, 2%, and 5% higher than PowerLaw-0.1, PowerLaw-0.01, Latest-

100, and Latest-10, respectively.

Comparison with HATtrick.We make the experimental compar-

ison between HyBench and HATtrick. Regarding freshness evalu-

ation, we conduct the experiments on PostgreSQL-SR by varying

the TP and AP workers. As shown in Figure 12, HATtrick got

the zero freshness for all the cases. In principle, we expect to see

some lag time as the streaming replication in ON mode replays

the logs asynchronously, and some WAL records may not be ap-

plied to the OLAP instance in time. In contrast, HyBench found that
PostgreSQL-SR can have up to a latency of 39.37ms when the con-

currency is increased to 100. Regarding the evaluation of workload

isolation, HATtrick computes the throughput frontier by fixing one

dimension (e.g., the number of TP workers) and varying another

dimension (e.g., the number of AP workers). Then users have to

plot the curve and interpret what the curve indicates on their own.

Instead, HyBench has the qualitative metric to measure the perfor-

mance degradation with varied TP and AP workers, which is more

intuitive. More importantly, our metric is much more efficient to

compute while HATtrick has to perform many runs in each evalua-

tion. As shown in Figure 12, with the same duration for each run

(i.e., 1-min for SF1 and 2-min for SF10), HATtrick spent 41 min and

170 min to obtain the results while HyBench only took 3 min and 6

min to perform the evaluation.

4.10 Summary of Main Findings
(1) Overall HTAP Performance. Measuring the overall HTAP

performance is crucial as the HTAP databases are defined to handle

the OLTP-oriented, OLAP-oriented, and hybrid workload together.

Previous studies mainly focus on the hybrid throughput but pay

little attention to the unified metric that takes into account fresh-

ness, transactional, analytical, and hybrid throughput. For example,

HATtrick reported that system-X with the A1 architecture is better

than PG-SR and A2. But in our evaluation, A1 can not achieve the

highest H-Score when considering the overall performance.

(2) Workload Isolation and Caching. Previous studies conclude
that running concurrent OLXP workload can only degrade the

performance. We found that the query performance can also benefit

from the transaction processing because of caching. Thus, if the

resource contention is not intensive, it is preferable to accept a

certain amount of transactional requests for better performance.

(3) Fine-Grained Freshness Evaluation. Previous studies mainly

adopted the coarse-grained way to quantify the data freshness by

using either the database statistics [25] or transaction committed

information [18]. Instead, our method leverages the query results

to quantify the data freshness, which is a fined-grained method. In

our evaluation, we found that both A1 and A4 cannot ensure zero
freshness when processing the OLXP workload. Therefore, it is

critical to have a particular validation protocol to guarantee the

zero freshness regardless of the architecture.

(4) Data Access Controlling. It is important to vary the data

access patterns to simulate realistic cases in HTAP applications. The

experiments in Section 4.9 have revealed that the HTAP databases

perform differently under varied risk rates and access distributions.

To the best of our knowledge, HyBench is the first benchmark that

can control the data access patterns for the hybrid workload.

(5) Hybrid Scan. Existing systems [7, 23] report that the column

store always improves the performance of the hybrid scan. However,

the techniques of hybrid scans have a large room to be improved.

First, the cost model should be improved. Second, the column se-

lection should consider the memory budget.

(6) HTAP Architecture. We found that different HTAP archi-

tectures have their pros and cons. First, PostgreSQL-SR has good

workload isolation and high freshness, but it cannot achieve the

highest overall throughput on large datasets without a column store.

Second, A1 favors high TPS and zero freshness, but has low XPS

with the in-memory columnar store. Third, A2 has high throughput

and scalability, but is more sensitive to the skew access distribution

and hybrid workload. Fourth, introducing the column store into

A3 may degrade the overall HTAP performance due to the worse

query plan and synchronization overhead. Fifth, A4 has the highest

QPS, but suffers high workload interference.

5 CONCLUSION
We propose a new benchmark HyBench, for HTAP databases with a

hybrid workload of OLTP, OLAP, and OLXP, supporting throughput

evaluation and freshness evaluation simultaneously. Experimental

results over five representative HTAP databases verify the effec-

tiveness of HyBench and offer a number of gained insights.

ACKNOWLEDGMENTS
This paper was supported by National Key R&D Program of China

(2023YFB4503600), NSF of China (61925205, 62232009, 62102215),

Science and Technology Research and Development Plan of China

Railway (K2022S005), Huawei, CCF-Huawei Populus Grove Chal-

lenge Fund (CCF-HuaweiDBC202309), TAL education, and Beijing

National Research Center for Information Science and Technology

(BNRist). Thank database teams of GaussDB, OceanBase, Dameng,

Alibaba Cloud, and Tencent Cloud for benchmark discussion and

evaluation. Guoliang Li is the corresponding author.

950

REFERENCES
[1] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:

Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC
(Lecture Notes in Computer Science), Vol. 8391. Springer, 61–76.

[2] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, and Rui Oliveira. 2017.

HTAPBench: Hybrid Transactional and Analytical Processing Benchmark. In

Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. 293–304.

[3] Richard Cole, Florian Funke, Leo Giakoumakis, et al. 2011. The Mixed Workload

CH-benCHmark. In Proceedings of the Fourth International Workshop on Testing
Database Systems. 1–6.

[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[5] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.

Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (2020), 1206–1220.

[6] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social network

benchmark: Interactive workload. In SIGMOD. 619–630.
[7] Google AlloyDB. 2023. AlloyDB Omni overview. https://cloud.google.com/

alloydb/docs/omni

[8] Jim Gray. 1993. Database and Transaction Processing Performance Handbook.

[9] Qingsong Guo, Jiaheng Lu, Chao Zhang, Calvin Sun, and Steven Yuan. 2020.

Multi-model data query languages and processing paradigms. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
3505–3506.

[10] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-based HTAP

Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.
[11] Guoxin Kang, Lei Wang, Wanling Gao, Fei Tang, and Jianfeng Zhan. 2022. OLxP-

Bench: Real-time, Semantically Consistent, and Domain-specific are Essential

in Benchmarking, Designing, and Implementing HTAP Systems. In ICDE. IEEE,
1822–1834.

[12] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,

Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.

2015. Oracle Database In-Memory: A Dual Format In-Memory Database. In ICDE.
IEEE, 1253–1258.

[13] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal

Nowakiewicz, and Vassilis Papadimos. 2015. Real-Time Analytical Processing

with SQL Server. VLDB 8, 12 (2015), 1740–1751.

[14] Guoliang Li, Haowen Dong, and Chao Zhang. 2022. Cloud Databases: New

Techniques, Challenges, and Opportunities. VLDB 15, 12 (2022), 3758–3761.

[15] Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and What is

Next. In SIGMOD. 2483–2488.
[16] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.

2018. Heterogeneous Graph Neural Networks for Malicious Account Detection.

In CIKM. ACM, 2077–2085.

[17] Lerong Lu. 2018. How a little ant challenges giant banks? The rise of Ant Finan-

cial (Alipay)’s fintech empire and relevant regulatory concerns. International

Company and Commercial Law Review (2018), Sweet & Maxwell, ISSN (2018),

0958–5214.

[18] Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel,

and Xiangyao Yu. 2022. How Good is My HTAP System?. In SIGMOD. ACM,

1810–1824.

[19] MySQL 8.0. 2023. Consistent Nonlocking Reads. https://dev.mysql.com/doc/

refman/8.0/en/innodb-consistent-read.html

[20] MySQL Heatwave. 2021. Real-time Analytics for MySQL Database Service.

[21] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

SIGMOD. 677–689.
[22] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak. 2009.

The Star Schema Benchmark and Augmented Fact Table Indexing. In TPCTC
(Lecture Notes in Computer Science), Vol. 5895. Springer, 237–252.

[23] Oracle 21c. 2023. Automating Management of In-Memory Objects. https:

//docs.oracle.com/en/database/oracle/oracle-database/21/inmem/configuring-

memory-management.html

[24] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David

Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,

Guy M Lohman, et al. 2013. DB2 with BLU Acceleration: So Much More Than

Just A Column Store. VLDB 6, 11 (2013), 1080–1091.

[25] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia Ail-

amaki. 2020. Adaptive HTAP Through Elastic Resource Scheduling. In SIGMOD.
2043–2054.

[26] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,

and Christof Bornhövd. 2012. Efficient Transaction Processing in SAP HANA

Database: The End of A Column Store Myth. In SIGMOD. 731–742.
[27] Snowflake Unistore. 2022. Getting Started with Transactional and Analytical

data in Snowflake.

[28] Tecent. 2021. WeBank. https://segmentfault.com/a/1190000040792825/en

[29] Tecent. 2023. WeBank. https://www.webank.com/en/product/000001

[30] Tecent. 2023. WeBank. https://www.webank.com/en/characteristic/tech/bigdata

[31] Transaction Processing Performance Council. 2021. TPC-C.

[32] Transaction Processing Performance Council. 2021. TPC-H.

[33] Wikipedia. 2023. David DeWitt. https://en.wikipedia.org/wiki/David_DeWitt

[34] Jiacheng Yang, Ian Rae, Jun Xu, et al. 2020. F1 Lightning: HTAP as a Service.

Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.
[35] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,

Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao,Wenhui Shi, Huafeng Xi, Huang Yu,

Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, and Quanqing Xu. 2022. OceanBase:

A 707 Million tpmC Distributed Relational Database System. Proceedings of the
VLDB Endowment 15, 12 (2022), 3385–3397.

[36] Chao Zhang and Jiaheng Lu. 2020. Selectivity estimation for relation-tree joins.

In 32nd International Conference on Scientific and Statistical Database Management
(SSDBM). 1–12.

[37] Chao Zhang and Jiaheng Lu. 2021. Holistic evaluation in multi-model databases

benchmarking. Distributed Parallel Databases 39, 1 (2021), 1–33.
[38] Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. 2018. UniBench: A Bench-

mark for Multi-model Database Management Systems. In TPCTC, Vol. 11135.
Springer, 7–23.

951

https://cloud.google.com/alloydb/docs/omni
https://cloud.google.com/alloydb/docs/omni
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/configuring-memory-management.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/configuring-memory-management.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/configuring-memory-management.html
https://segmentfault.com/a/1190000040792825/en
https://www.webank.com/en/product/000001
https://www.webank.com/en/characteristic/tech/bigdata
https://en.wikipedia.org/wiki/David_DeWitt

	Abstract
	1 Introduction
	2 HTAP-Native Benchmark
	2.1 Data Generation
	2.2 Hybrid Workload
	2.3 Worker Manager

	3 HTAP Metrics
	3.1 Freshness Evaluation
	3.2 The Evaluation of Workload Isolation
	3.3 Unified Metric

	4 Experiments
	4.1 Experimental Setting
	4.2 Evaluated HTAP Databases
	4.3 Overall Throughput
	4.4 Overall Scoring
	4.5 Evaluation of Workload Isolation
	4.6 Evaluation of Freshness and Throughput
	4.7 Benefit Evaluation of Columnar Engine
	4.8 Peak Performance Evaluation
	4.9 HyBench Evaluation
	4.10 Summary of Main Findings

	5 Conclusion
	Acknowledgments
	References

