
CoroGraph: Bridging Cache Efficiency and Work Efficiency for
Graph Algorithm Execution

Xiangyu Zhi

Xiao Yan*

Department of Computer Science and

Engineering, Southern University of

Science and Technology

zhixy2021@mail.sustech.edu.cn

yanx@sustech.edu.cn

Bo Tang

Ziyao Yin

Department of Computer Science and

Engineering, Southern University of

Science and Technology

tangb3@sustech.edu.cn

yinzy2020@mail.sustech.edu.cn

Yanchao Zhu

Minqi Zhou

Gauss Department, Huawei Company

zhuyanchao2@huawei.com

zhouminqi@huawei.com

ABSTRACT
Many systems are designed to run graph algorithms efficiently in

memory but they achieve only cache efficiency or work efficiency.

We tackle this fundamental trade-off in existing systems by design-

ing CoroGraph, a system that attains both cache efficiency andwork

efficiency for in-memory graph processing. CoroGraph adopts a

novel hybrid execution model, which generates update messages

at vertex granularity to prioritize promising vertices for work effi-

ciency, and commits updates at partition granularity to share data

access for cache efficiency. To overlap the random memory access

of graph algorithms with computation, CoroGraph extensively uses

coroutine, i.e., a lightweight function in C++ that can yield and

resume with low overhead, to prefetch the required data. A suite

of designs are incorporated to reap the full benefits of coroutine,

which include prefetch pipeline, cache-friendly graph format, and

stop-free synchronization. We compare CoroGraph with five state-

of-the-art graph algorithm systems via extensive experiments. The

results show that CoroGraph yields shorter algorithm execution

time than all baselines in 18 out of 20 cases, and its speedup over the

best-performing baseline can be over 2x. Detailed profiling suggests

that CoroGraph achieves both cache efficiency and work efficiency

with a low memory stall and a small number of processed edges.

PVLDB Reference Format:
Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, Minqi Zhou.

CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph

Algorithm Execution. PVLDB, 17(4): 891 - 903, 2023.

doi:10.14778/3636218.3636240

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DBGroup-SUSTech/corograph.

1 INTRODUCTION
Graphs are ubiquitous in many domains such as social media [13,

15], e-commerce [7], finance [1, 14], and biology [22]. Algorithms

are executed on these graphs to support various applications, e.g.,

*Xiao Yan is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.

doi:10.14778/3636218.3636240

scatter

gather

B C D

E FA

Priority

Graph

Frontiers ...

A

Partition 1 Partition 2

BA A DE E

(a) Vertex-centric Model (b) Partition-centric Model

A B C D E F A B C D E F

B E B C

A D B E BA D E

Frontier

State

Next Frontiers

update

B C D

E FA

E F

Frontiers D B EB E B C E F

High priority Low priority

Figure 1: The partition-centric and vertex-centric execution
models in existing systems (best viewed in color).

community identification [2, 45], recommendation [26], fraud de-

tection [4], and drug discovery [20]. Examples of popular graph al-

gorithms include PageRank (PR), single source shortest path (SSSP),

weakly connected component (WCC), and k-core [43]. Many frame-

works are designed to execute graph algorithms efficiently, e.g.,

Ligra [46], Galois [40], Gemini [50], GraphIt [49], and GPOP [31].

In this paper, we consider in-memory graph algorithm frameworks

that work on a single machine with multiple cores and focus on

reducing algorithm execution time.

1.1 Motivation and Problem
Graph algorithms generally adopt the following pattern: each vertex

𝑣 in the graph is associated with a vertex state 𝑠 [𝑣]; there are some

active vertices called frontiers; algorithm updates the neighbors
1

of each frontier, and these neighbors may become new frontiers.

Existing graph algorithm frameworks optimize either the work
efficiency or cache efficiency of graph algorithm execution.

Work efficiency is measured by the number of vertex state update

operations conducted during graph algorithm execution [33, 40].

1
To be precise, wemean the vertex states of the neighbors for a frontier. For conciseness,

we use vertex to denote vertex state when the context is clear.

891

https://doi.org/10.14778/3636218.3636240
https://github.com/DBGroup-SUSTech/corograph
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636240
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Since each update is conducted along an edge (i.e., from frontier to

target vertex), work efficiency is also quantified by the number of

processed edges [33]. Existing systems (e.g., Galois) achieve work

efficiency with a vertex-centric execution model. The observation is

that frontiers make different contributions to algorithm progress,

and thus work-efficient graph algorithms (e.g., SSSP, k-core, and

WCC) determine a priority value for each frontier to prioritize

promising frontiers that accelerate algorithm progress. As shown

in Figure 1(a), the vertex-centric model uses a queue to manage the

frontiers, and the highest-priority frontier (e.g., 𝐴) is obtained from

the queue each time. The neighbors of the dequeued frontier (e.g., 𝐵

and 𝐸) are updated, and if a neighbor meets the condition specified

by the algorithm after update, it is inserted into the frontier queue,

and its lower-priority instances will be pruned.

Cache efficiency is quantified by the ratio of the CPU stall time

caused by cache misses over the algorithm execution time (called

memory bound [10]) [46, 47]. Since the neighbors of a frontier are

usually not consecutive in memory, the neighbor update operation

of graph algorithms essentially conducts random memory access.

Random access causes both read amplification and cache miss2,
which result in high memory bound. Existing systems (e.g., GPOP)

improve cache efficiency with a partition-centric execution model.

In particular, the vertex states are organized into partitions that fit in

L2 or L3 cache, and processing is conducted at partition granularity.

As shown in Figure 1(b), the partition-centric model involves a

scatter phase and a gather phase. In the scatter phase, the frontiers

of each partition is copied to the partitions where its neighboring

vertices reside. For instance, the neighbors of frontier 𝐴 span two

partitions, so 𝐴 is copied to both partitions. In the gather phase,

each partition collects the states from the scatter phase, updates

the vertices within the partition, and gets the frontier for the next

iteration. By ensuring that the working partition resides in cache,

the partition-centric model avoids memory stall and achieves high

cache efficiency.

Table 1 shows the trade-off between cache efficiency and work

efficiency in existing graph frameworks. In particular, GPOP has low

memory stall but poor work efficiency. This is because its partition-

centric model batches computation by partition to share data access

and cannot follow the priority order to process individual frontiers.

Galois conducts less work but has highmemory stall. This is because

its vertex-centric model processes each frontier individually and

cannot share data access among the frontiers as in the partition-

centric model. This fundamental trade-off leads us to the following

question–is it possible to architect a graph algorithm framework that
achieves both cache and work efficiency?

1.2 Our Solution: CoroGraph
Our initial design is to reduce memory stall for the vertex-centric

model with a coroutine-based prefetch pipeline. In particular, soft-

ware prefetch allows programs to specify the data to load [9], and

coroutines are lightweight functions that can yield and resume with

low overhead [19]. In our pipeline, processing tasks are conducted

2
Read amplification means that a float or integer vertex state is fetched via 64-byte

cache line load while cache miss happens because the automatic hardware prefetch of

CPU only loads consecutive data.

Table 1: Execution statistics of representative graph frame-
works and our CoroGraph. The algorithm is SSSP, and the
graph is Livejournal. GPOP targets cache efficiency while
Galois targets work efficiency. For both memory bound and
processed edges (i.e., # of edges), smaller is better.

System SSSP

Memory bound # of edges (M) Time (ms)

Ligra 65.3% 569 1270

Gemini 55.2% 573 954

GraphIt 60.5% 145 782

GPOP 32.9% 604 594

Galois 70.2% 89 513

CoroGraph 28.3% 68 262

by coroutines, which issue prefetch instructions, switch to the com-

putation tasks of other coroutines, and resume for computation

after the required data are fetched to cache. This design overlaps

memory access and computation but the performance is unsatis-

factory for two reasons. First, memory stall dominates execution

time for vertex-centric model (over 70% for Galois in Table 1), and

thus the gain is limited even if memory access and computation are

perfectly overlapped (e.g., max speedup for Galois is 100/70 ≈ 1.43).

Second, the threads have data conflicts when processing different

frontiers in parallel because the frontiers share common neighbors,

and these data conflicts invalidate prefetched data.

To tackle the problems above, CoroGraph adopts a novel hybrid
execution model that combines the benefits of partition-centric and

vertex-centric execution. In particular, like vertex-centric execution,

the frontiers are managed by a priority queue and processed in the

order of their contributions to algorithm progress, resulting in

good work efficiency. Meanwhile, like partition-centric execution,

updates to vertex states are committed at partition granularity.

To accommodate the two mismatching patterns, the frontiers are

processed in a scatter phase that generates update messages while

the actual updates are conduct in a gather phase. A single thread is

assigned to process all updates to a partition, which results in good

cache efficiency by sharing data access among update operations.

The thread-to-partition update pattern also benefits prefetch by

eliminating the data conflicts that invalidate prefetched data.

Beside the hybrid execution model, we tailor a suite of optimiza-

tions in CoroGraph. First, we use the aforementioned coroutine-

based prefetch pipeline to overlapmemory access with computation.

Second, we propose a lightweight but effective strategy to switch

between prefetch and direct data access because prefetch becomes

slower than direct access as a thread gradually warms the cache by

processing a partition. Third, since the threads are blocked when

waiting to access shared data structures, we adopt a flexible syn-

chronization strategy, which allows the threads to proceed with

other tasks instead of blocking. Besides, we also adjust the graph

storage format to reduce cache miss and consider the NUMA ar-

chitecture of modern processors when scheduling the tasks and

configuring the prefetch pipeline.

We experiment with 4 popular graph algorithms (i.e., SSSP, k-

core, PR, andWCC) and compare our CoroGraph with 5 sate-of-the-

art graph algorithm frameworks (i.e., Ligra, Gemini, GPOP, Galois,

892

1 FuncA(){
2 init();
3 prefetch(&data1);
4 suspend();
5 compute(data1);
6 }

1 FuncB(){
2 init();
3 prefetch(&data2);
4 suspend();
5 compute(data2);
6 }

resume()

Figure 2: An illustration of coroutine execution.

and GraphIt). The results show that CoroGraph yields shorter algo-

rithm execution time than all baselines in 18 out of 20 cases (i.e., an

algorithm plus a graph), and its speedup is usually over 2x. On av-

erage, CoroGraph speeds up the best-performing baseline by 2.16x,

2.13x, and 1.77x for SSSP, k-core, and WCC, respectively. Although

GPOP comes with specialized optimizations for the PR algorithm,

CoroGraph matches its performance for PR. Micro benchmarks

show that CoroGraph achieves both cache efficiency and work effi-

ciency, which is indicated by a low memory stall and small number

of processed edges in Table 1. We also conduct ablation studies for

the designs of CoroGraph, and the results suggest that they are

effective in reducing algorithm execution time.

To summarize, we make the following contributions:

• We inspect existing graph frameworks and observe the funda-

mental conflict between cache efficiency and work efficiency that

stems from their execution models.

• We propose a hybrid execution model that combines the bene-

fits of the partition-centric models and vertex-centric execution

model in existing graph frameworks.

• We design a suite of efficiency optimizations, e.g., coroutine-

based prefetch pipeline, cache-friendly graph format, flexible

synchronization, and NUMA-aware task scheduling.

• We architect and open source the CoroGraph framework, which

achieves both cache efficiency and work efficiency.

2 BACKGROUND
In this part, we provide background knowledge for our work, which

includes the execution models of existing graph algorithm frame-

works, software prefetch, and coroutine.

Software Prefetch.Modern processors such as Intel Xeon support

hardware prefetch mechanism such as next-line and stride prefetch-

ers, which load data adjacent to the currently accessed memory lo-

cation [3]. Software prefetch instructions such as _mm_prefetch and
__builtin_prefetch (addr) are more flexible as they allow programs

to specify the data to load and has been used to reduce memory

stall [41]. However, using software prefetch requires sophisticated

implementations such as operation group [9], asynchronous execu-

tion [23] and handcrafted state machines [25].

Coroutine. Coroutines are generalizations of functions with two

special characteristics. Firstly, coroutines can suspend and resume

at specific points during their invocation and return processes. Sec-

ondly, each coroutine retains local variables until it is destroyed.

As shown in Figure 2, a coroutine (FuncA) can save local vari-

ables during execution, suspend, then switch to another coroutine

(FuncB), and upon resuming from FuncB, FuncA executes from the

suspended point. The C++20 standard introduces stackless corou-

tine [21], which has low context switch overhead and makes it

easy to conduct software prefetch. The new stackless coroutines do

not own stacks and run on the call stack of the underlying thread.

Coroutine states include local variables that live across suspension

points, and are stored in dynamically allocated memory known

as coroutine frames. These features make coroutines lightweight.

Coroutine switch latency is below 50 ns, which is shorter than

last-level cache miss (≥100 ns) and thread switch (several hundred

nanoseconds to microseconds).

Many systems use coroutine-based prefetch to hide cachemiss [19,

23, 41], and we will discuss them in Section 3. From these systems,

we summarize two major design considerations when using corou-

tines. The first is decomposing the task into coroutines. A task

can be decomposed into coroutines in many ways, e.g., some for

IO and some for computation. To achieve high efficiency, the de-

composition should ensure that the coroutines overlap well with

each other and have simple dependencies. The second is scheduling

the coroutines. Coroutine switch still has overhead and scheduling

is conducted frequently to manage coroutine switches. As such,

the scheduling mechanism should conduct switch judiciously and

have a low overhead. For our problem, capitalizing coroutine-based

prefetch in a general graph algorithm framework poses unique

technical challenges (e.g., data conflicts, synchronization overhead,

and high memory stall), and a straightforward solution does not

work as discussed in Section 1.2.

3 RELATEDWORK

Graph algorithm frameworks. Due to the importance of graph

algorithms, many systems are designed to execute them efficiently.

As a seminal work, Ligra proposes general APIs with VertexMap
and EdgeMap functions to express graph algorithms [46]. It adopts

the vertex-centric execution model and can switch between push

mode (i.e., frontiers push updates to their neighbors) and pull mode

(i.e., vertices pull updates from neighboring frontiers) according to

the number of active frontiers. Julienne extends Ligra by using a

multi-level priority bucket to manage the frontiers [12] and han-

dles the frontiers in priority order for work efficiency. Both Ligra

and Julienne conduct synchronous processing, i.e., handling all

current frontiers before generating new frontiers. Galois designs

a concurrent multi-level priority queue to manage the frontiers

and introduces graph topology-aware work stealing to balance the

workloads of the threads [40]. GraphIt [49] automatically generates

implementations for graph algorithms that integrates various op-

timizations, e.g., direction optimization, cache-aware partitioning

and data layout. PCPM [32] introduces a specialized optimization

for the PageRank algorithm, which avoids writing the edges in the

scatter messages using the fact that PageRank conducts updates

along all edges. GPOP [30] builds upon PCPM and extends the

write optimization to other graph algorithms. In particular, GPOP

employs a density-aware mechanism, which scatters the entire

partition when there are enough updates in the partition. Gem-

ini [50] supports both single machine and distributed execution.

It partitions the graph over different sockets for locality, conducts

893

Scatter

PerThread

Top Level
Queue

Block Buffer

Message

Message

BlockList

FrontierQueue

Frontier

Gather Message

Message

Frontier

Frontier

Frontier

Async/Sync switch

pop

front

push

push

step ①

step ②

step ③

step ④

Figure 3: Schematic diagram of our hybrid execution model.

updates with atomic operations, and uses work-stealing over par-

titions to improve load balance. As discussed in Section 1, these

systems optimize either work efficiency or cache efficiency while

our CoroGraph achieves both.

ForkGraph divides the graph topology into cache-sized partitions

and shares cache-resident graph topology among multiple graph

algorithm instances (e.g., SSSP with different target vertices) to

reduce cachemiss [33]. ThunderRW executes multiple randomwalk

instances and hides memory stall by switching among different

random walks [47]. It divides a random walk into stages and uses a

state machine to manage prefetch and computation.

There are also graph algorithm systems that consider either

distributed execution with multiple machines, e.g., Pregel [34],

TAO [6], Trinity [44], PowerGraph [16], or out-of-core execution for

disk-resident data, e.g., GridGraph [51], Blaze [24], GraphChi [29],

and X-stream [42]. As communication through PCIE or network

has high overhead, their primary optimization goals are usually

cross-machine or disk-memory communications [16, 17], which

are different from the cache miss and work efficiency optimiza-

tions in CoroGraph. For example, GraphX [17] uses a vertex-cut

to partition the data graph over machines to achieve computation

locality and employs a Gather-Apply-Scatter execution pattern to

reduce cross-machine data transmission when sending the update

messages.

Systems using prefetch and coroutine. As the gap between CPU

computation speed and memory access latency continues to widen,

software prefetch is widely used to avoid cache miss and improve

performance [19, 23, 35, 38, 41]. For instance, prefetch is exploited

to accelerate hash joins [39] and index structures [23]. Theses works

usually usemany prefetch groups to form a pipeline to overlapmem-

ory access and computation. AMAC [25] dynamically balances the

workloads of the prefetch groups with an asynchronous execution

pattern that allows to pause queries and save their states. CORO [41]

uses coroutines to implement prefetch pipelines for index joins and

adopts succinct implementation due to the properties of coroutine.

CoroBase [19] implements an automic coroutine-based prefetch

pipeline without changing the API codes of transactions. We use

coroutine-based prefetch to accelerate graph algorithm execution,

which poses unique challenges that differ from the aforementioned

systems, e.g., high memory stall for vertex-centric execution, data

conflicts among the threads, and synchronization overhead for

shared data structures.

Algorithm 1 Workflow of the hybrid execution model

Input: The graph G = (V, E), the frontier set F
Output: The result Res(V)
1: procedure Hybrid-Scatter-Gather
2: Res(V), FrontierQueue← Initialize(G, F)
3: parallel_for_each thread do
4: while TopQueue← FrontierQueue.front() do ⊲ step 1

5: Scatter(TopQueue) ⊲ step 2

6: while Block← BlockList.pop() do ⊲ step 3

7: Gather(Block) ⊲ step 4

8: function Scatter(TopQueue)
9: while frontiers← TopQueue.pop() do
10: for v ∈ frontiers do
11: for u ∈ v.ngh do // traverse neighbors of v
12: BlockList.push(u,Res[v])
13: function Gather(Block)
14: while msg← Block.buffer.pop() do
15: for (u,Res[v]) ∈ msg do
16: if Update(Res[u],Res[v]) do // if u is new frontier
17: FrontierQueue.push(u,Res[u])

4 THE COROGRAPH FRAMEWORK
In this part, we introduce the workflow of CoroGraph, which fol-

lows the hybrid execution model. Like many existing graph algo-

rithm frameworks, CoroGraph assumes that graph data resides in

the main memory of a machine with multi-core CPUs. CoroGraph

uses a graph format similar to compressed sparse row (CSR), which

allows to identify the out-neighbors of a vertex efficiently.

4.1 Hybrid Execution Model
The hybrid execution model lies in between the vertex-centric

model and partition-centric execution model of existing graph

frameworks. At a high level, like the partition-centric model, the

hybrid model involves a scatter phase that generates messages from

the frontiers to their neighbors, and a gather phase that merges the

messages and update vertex states at partition granularity. Like the

vertex-centric model, the hybrid model manages the frontiers using

a priority queue and conducts scatter for the frontiers following

their priority order.

Figure 3 illustrates the architecture of the hybrid execution

model, Algorithm 1 describes its procedure, and Figure 4 shows

the scatter phase and gather phase with more details. CoroGraph

executes 1-4 steps iteratively. In particular, the neighbor vertices

are organized into blocks by a range partition over their IDs, and

CoroGraph ensures that a block fits in L2 cache such that it can

be loaded into cache when conducting updates. CoroGraph uses a

frontier queue and a block list to schedule scatter tasks and gather

tasks, respectively. The frontier queue contains the frontiers and

sorts them by priority. We use the multiple-level queue [40], which

organizes frontiers with the same priority as a level and maintains

a pointer points to the highest level queue (step 1 of Algorithm 1).

The block list is a linked list that consists of pointers to the block

buffers, and each block buffer contains the messages sent from the

frontiers to a block. The threads retrieve tasks from the frontier

894

P1 Queue

A D

Message

B C D F

P2 Queue P3 Queue

B1 buffer B2 buffer B3 buffer

group by task priority

Message

s(E),E Frontiers Frontiers

D
E F

s(A),D,F

group by block range

Gather

ScatterFrontiers

Frontier
Queue

Block
List

...

...

Figure 4: The scatter phase and gather phase of our hybrid
execution model.

queue and block buffers at chunk granularity for execution, and

each chunk contains 2,048 vertices by default.

As shown in Algorithm 1, CoroGraph iterates over scatter phase

(step 1 and 2) and gather phase (step 3 and 4) until the frontier

queue becomes empty, which signals algorithm termination. In the

scatter phase, a thread pops the highest level of the frontier queue

(i.e., TopQueue in Line 4) and conducts scatter for these frontiers

a chunk each time (i.e., Lines 9-12). As shown in the bottom of

Figure 4, each block has a global message buffer to receive the

update messages scattered from all the threads, which is called

block buffer. For each frontier 𝑣 , scatter messages are written to the

block buffers containing 𝑣 ’s neighbors correspondingly. In order

to avoid the synchronization costs caused by frequent block buffer

writes, each thread has a local message buffer for each block, which

is of chunk size. A thread spills its scatter messages to a local buffer

and copies the local buffer to the block buffer when the local buffer

is full. After a thread copies its local messages to an empty block

buffer, the pointer to the buffer is appended to the tail of the block

list such that the buffer can be retrieved in the gather phase.

A thread continues to scatter until exhausting the frontiers it

obtains from the frontier queue (i.e., TopQueue), and then proceeds

to the gather phase. In the gather phase, the thread retrieves a

pointer from the block list, which corresponds to the global message

buffer of a block. A chunk of messages are consumed each time to

conduct compute and update the vertex states in the block. A block

is processed by a single thread until its message buffer becomes

empty, and the thread also determines the new frontiers in the

block and pushes these frontiers to the frontier queue. We use

two pointers to indicate the head and tail of a message buffer and

allows other threads to append messages at the tail while a thread

consumes messages at the head. We do not observe straggler issues,

where a block hasmuchmore gather work than the other blocks and

stalls the gather stage. Note that in our hybrid execution model, the

threads may be in different phases, i.e., some threads are conducting

scatter while the other threads are conducting gather.

Discussions. The hybrid execution model attains the work effi-

ciency of vertex-centric execution by processing the frontier in

the order of their priority. Hybrid execution also enjoys the cache

SSSP k-core PR WCC0

20

40

60

80

M
em

or
y

bo
un

d

Galois +Hybrid +Storage +Prefetch

70.2 67.2
60.2

65.3

55.4 52.8
58.5 60.6

47.1 48.9

40.2
45.5

28.3
31.6

26.7
30.4

Figure 5: Memory bound profiling for different graph algo-
rithms on the Livejournal graph with our optimizations.

efficiency of partition-centric execution by conducting gather at

partition granularity. This is because each block fits in L2 cache and

is updated by a single thread, and thus vertex states fetched to the

cache can be reused when the thread processes the same vertices

again. Block-based update also mitigates read amplification because

vertex states piggybacked in a cache line load may also be used

by subsequent update operations. Moreover, using a single thread

to update each block eliminates data conflicts, enabling efficient

lock-free update and avoiding invalidating prefetched data for the

coroutine-based prefetch pipeline in Section 5.1.

4.2 APIs and Modes
CoroGraph extends the API of Ligra, which is popular due to its

conciseness and expressiveness. In particular, Ligra allows users

to define two core functions, i.e., VertexMap for initializing and

filtering the frontiers, and EdgeMap for updating the neighbors

of a frontier. CoroGraph requires users to define the scatter func-

tion and gather function in EdgeMap. CoroGraph also requires a

priority function to calculate the priority of a frontier. For most

graph algorithms, logic of the functions required by CoroGraph is

straightforward and can be found in the literature. Programming

CoroGraph is as easy as Ligra, for instance, SSSP takes 79 lines of

code (LoC) in Ligra and 41 LoC in CoroGraph. We also provide

built-in implementations of popular graph algorithms such SSSP,

PageRank, and k-core in our open-source code.

CoroGraph supports two modes to cater for the characteristics

of different graph algorithms, i.e., synchronous and asynchronous.
In particular, synchronous graph algorithms (e.g., Bellman Ford,

PageRank, and WCC) require to process all frontiers before updat-

ing the vertex states while asynchronous algorithms (e.g., Δ-step,
k-core) do not have this requirement. In asynchronous mode, Coro-

Graph executes the scatter phase and gather phase asynchronously

and allows the threads to be in different phases as discussed in Sec-

tion 4.1. In synchronous mode, CoroGraph first assigns the threads

to conduct the scatter phase and only enters the gather phase af-

ter all threads finish scatter. Instead of copying the local message

buffers of each thread to the global buffers of each block, the gather

phase of synchronous mode directly accesses the local buffers to

conduct update in order to reduce one message copy.

5 EFFICIENCY OPTIMIZATIONS
Figure 5 profiles the memory bound of our hybrid execution model

and compares with Galois, which adopts the vertex-centric execu-

tion model. The results show that memory stall is reduced by the

895

C C

C C

C

C

coro-A

coro-B

prefetch
...

...

C Compute Memory Access

prefetch

Coroutine Switch

Figure 6: Coroutine-based prefetch pipeline.

hybrid model but still takes up over 50% of the execution time. More-

over, we also observe that the thread synchronization cost increases

with the number of threads and limits scalability. In this part, we

elaborate the optimizations to resolve these efficiency problems, in-

cluding coroutine-based prefetch pipeline and cache-friendly graph

format to reduce memory stall, and flexible synchronization to

reduce thread synchronization cost.

5.1 Coroutine-based Prefetch Pipeline
There are two main sources of cache misses that cause memory

stall in our hybrid execution model. In the scatter phase, cache

miss occurs when reading the edges of a frontier 𝑣 to determine the

blocks to scatter 𝑣 ’s messages. This is because a pointer chasing

is required to read the edges of a vertex when the graph is stored

using the CSR format. In the gather phase, cache miss occurs when

reading the vertex states to conduct update because the neighbors

of a vertex may not be in the cache. To hide these cache misses,

we design a coroutine-based prefetch pipeline to issue software

prefetch instructions for required data.

Figure 6 shows the prefetch pipeline for the gather phase, and

the design is similar for the scatter phase. In particular, each thread

runs two coroutines, and a coroutine handles a group of vertex

states and separates the memory access and computation tasks.

The group size is set as 64 by default. In the pipeline, coroutine A

first issues software prefetch instructions for the required vertices

and yields without waiting; then the thread switches to coroutine

B, which also issues prefetch instructions and yields; after that, the

thread executes the computation task of coroutine A, for which

data has been loaded to cache. By running the two coroutines con-

tinuously to process different vertices, the pipeline overlaps the

prefetch instructions of one coroutine with the computation tasks

of another coroutine. More coroutines are used for prefetch in other

systems [39, 47]. However, we observe that using 2 coroutines al-

ready provides good overlap for our case, and usingmore coroutines

degrades performance due to coroutine switch overhead, which is

shown by experiments in Section 7.3.

Cache-aware memory access. Prefetch hides cache miss but in-

curs the overhead of coroutine switch. When a thread conducts

gather for a block, it gradually warms the cache by loading the ver-

tices. As such, we observe that after conducting some gather tasks,

the coroutine-based prefetch pipeline runs longer than directly

reading data (although it stalls upon cache misses). This is because

the portion of cache miss in the memory accesses reduces as the

cache warms, and the overhead of coroutine switch outweighs the

memory stall caused by cache miss. Therefore, we need to switch

from coroutine-based prefetch to direct data access based on cache

0 ...d+2

n3n1 n2 ... nd+2n4 ...

20 1 ... d+13 ...

...A B CSR Format

A

n1 n2 n3 nd+2

Scatter

n4 ...

Block 1 Block 2

...

Message

s(A),n1,n2 ... s(A),n3,n4,...,nd+2

0 ...5

n1 n2 pid ...

20 1 3 ...

...A B

Compressed Format

... s(A),n1,n2 ... s(A),pid,d,ofs

d ofs

4

length = d+1 length = 4

n3 ... nd+2n4

... ofs ...ofs+d-1...ofs+1

High Degree Array

Graph

Message

Scatter

Figure 7: Storing the degree and offset for high degree vertex
𝐴 in block 2 in the cache-friendly graph format.

status. However, recording the vertices that are in the cache for

each block is expensive.

To tackle this problem, we record the number of processed ver-

tices for each block (denoted as 𝑛𝑝) as a surrogate. This is light-

weight because it only requires to count the vertices involved in the

gather tasks. When 𝑛𝑝 exceeds a threshold 𝑛𝑡 , we switch to direct

data access. We observe that setting 𝑛𝑡 as 1-2 times of the number

of vertices in a block (denoted as 𝑛𝑏) yields good performance and

use 𝑛𝑡 = 𝑛𝑏 by default. This strategy can be analyzed as a classical

balls into bins problem [37] by modeling the vertices as bins and

accesses as balls. Assume the accessed vertices are distributed uni-

formly and independently among the vertices in a block, then the

expected portion of vertices that are not in cache is 𝑒−𝑛𝑝/𝑛𝑏 after

processing 𝑛𝑝 vertices. When 𝑛𝑝 > 𝑛𝑏 , a small 𝑒−𝑛𝑝/𝑛𝑏 suggests

that most vertices are already in the cache.

5.2 Cache-friendly Graph Format
We also tailor the graph storage format to reduce cache miss. In

particular, we modify the CSR format to store some edges for each

vertex in the offset array. Each element of the offset array is sized to

a cache line instead of a single integer and thus allows to pack some

edges (plus possible weights) with the offset. With the original CSR

format, fetching the neighbors of a vertex always requires to first

read the offset array and then the edge array, which incurs one

cache miss. With our inline edge storage, the edges of low-degree

vertices are fetched via a single cache line read to the offset array.

In the scatter phase, each frontier writes its out-neighbors and

updates to the block message buffers, and the gather phase reads

these messages to conduct update. Such write and read have high

memory traffic when a frontier has many neighbors in a block. To

reduce the memory traffic, we adopt the compressed graph storage

format in Figure 7 (note that in-line edge storage is not shown

there). In particular, if a vertex has more than 𝑛𝑐 (set as 2 by default)

out-neighbors in a block, we record an offset that indicates the start
position of these edges in an high degree array and a count for
these edges. In the scatter phase, instead of writing these edges, we

896

2 4 8 16 32
Threads

0

4

8

12

16

Sp
ee

du
p

ov
er

 1
 th

re
ad Origin +Sync

2.03
3.16

5.7

9.25 9.44

2.21
3.6

7.38

12.7

15.1

Figure 8: Thread scalability for SSSP algorithm on Friendster
graph with and without flexible synchronization.

write the offset and edge count to the message buffer; the gather

phase reads the actual edges using the offset and edge count. To

differentiate the offset and count values from the normal edges in

the gather phase, we use the most significant bit (MSB) of edge

ID, which is set as 0 for normal edges. Accessing the compressed

edges incurs one cache miss, and we hide it with coroutine-based

prefetch. Note that converting the graph from the CSR format to our

storage format requires only a linear scan. Moreover, the conversion

overhead can be amortized by many runs of graph algorithms.

5.3 Flexible Synchronization
Our hybrid execution model has several shared data structures that

can only be accessed by a single thread at a time. For instance,

the threads need to acquire lock to pop frontiers from and push

frontiers to the frontier queue. When a thread cannot acquire its

required lock, it can either wait or yield the CPU core to another

thread. The yield approach incurs thread context switch and evicts

the data loaded by a thread, which harms cache efficiency. Using the

wait approach, the thread block time increases with the number of

threads and results in inferior thread scalability as shown in Figure 8.

To tackle this problem, we adopt a flexible synchronization strategy,

which allows the threads to proceed with other tasks when they

cannot acquire locks for shared data structures.

We create a coroutine to handle the synchronization tasks (called

sync coroutine) as shown in Figure 9. In particular, the sync corou-

tine is responsible for pushing the scatter messages to block buffers

in the scatter phase and adding the new frontiers to the frontier

queue in the gather phase. If the sync coroutine cannot acquire

locks, it suspends and switches to the prefetch coroutines in Sec-

tion 5.1. If the sync coroutine is pending, each time the prefetch

coroutines suspend, it retries to acquire the locks. In Algorithm 1,

we conduct synchronization after the thread completes a chunk of

tasks (e.g., with 2048 vertices). To account for the synchronization

delay caused by retry, we run the sync coroutine with finer granu-

larity, i.e., every time the prefetch coroutines finish a group of tasks

(e.g., with 64 or 128 vertices). If there are unsynchronized data after

the thread completes a chunk of tasks, the sync coroutine loops

until it successfully synchronizes these data. This ensures that there

is no outdated synchronization and preserves work efficiency. As

shown in Figure 8, flexible synchronization can improve scalability

by more than 50% when using 32 threads. In Section 7.2, we show

CoroGraph matches the scalability of existing graph frameworks.

Thread TThread 2Thread 1

Prefetch
Coroutine

Synchronize
Coroutine

TryLock
Fail

Success

Prefetch
Coroutine

Synchronize
Coroutine

TryLock
Fail

Success

Prefetch
Coroutine

Synchronize
Coroutine

TryLock
Fail

Success

Concurrent
Data Structure

...

Figure 9: Flexible synchronization with coroutine

5.4 NUMA-aware Scheduling and Prefetch
Modern processors usually have multiple sockets, and the latency

and bandwidth of intra-socket memory access are usually much

better than inter-socket memory access. For instance, on our exper-

iment platform, inter-socket memory access latency is about 2x of

intra-socket latency. We adapt for the NUMA architecture with two

designs, i.e., locality-aware scheduling and delay-aware prefetch.

We pin each block and thread to a NUMA node. The global

message buffer of a block is allocated on the same NUMA node as

the block, and we use a separate block list to manage the gather

tasks for the blocks on each NUMA node. When allocating the

gather tasks, we try to co-locate the thread and its assigned block

on the same NUMA node. In our prefetch pipeline, the group size

(i.e., number of vertices handled by a coroutine) controls the number

of in-flight prefetch instructions and the size of the computation

task. If the group size is too small, data may not have arrived at the

cache yet when computation finishes; if the group size is too large,

prefetched data may be evicted due to possible cache contention.

Thus, we use different group sizes (i.e., 64 and 128 by default) for

intra-socket and inter-socket prefetch to account for the difference

in memory access latency.

6 IMPLEMENTATION
CoroGraph is implemented in C++ using about 4000 lines of code.

We use the Galois parallel library [40] for thread parallelization and

C++20 standard coroutine library [21] for coroutine-based prefetch

and synchronization. To avoid the costs of frequent coroutine cre-

ations, we assign each thread to initialize the coroutines when

an algorithm starts and invoke the coroutines as function calls to

shared variables.

The data structures of CoroGraph are adapted from existing ones.

In particular, the frontier queue is based on a concurrent priority

queue called obim in Galois. With obim, each thread has a local

map of the global priority queue’s local queues for fast access. We

modify the interface of obim such that the pop and push operations

are conducted in chunks instead of individual frontiers in order

to reduce the synchronization overheads. The block list is also

implemented as a concurrent queue. The message buffer of each

block is implemented as a concurrent linked list with chunks as the

897

Table 2: Statistics of the graphs used in the experiments.

Graph Abbrv. Vertices Edge Avg. Deg

Livejournal [5] LJ 5 M 69 M 13.8

Orkut [27] OR 3 M 234 M 76.2

RMAT-24 [8] RM 16 M 520 M 32.5

Twitter [28] TW 41 M 1469 M 35.8

Friendster [27] FT 125 M 3612 M 28.9

elements, and each element stores a pointer to the next element.

The block list only records pointers to the head and tail of each

blockmessage buffer. To access the block buffers locally, each thread

also keeps a local copy of all pointers to the block buffers.

The block list has a subtle concurrency issue that may cause data

conflicts among the threads. In particular, when a thread pops the

last element from its responsible block buffer for gather, another

thread may push a chunk of scatter messages into the same buffer.

As the buffer is empty at the moment, the thread pushing the chunk

will add this buffer to the block list, and another thread may obtain

this buffer for gather task. This validates our requirement that the

gather tasks of a block can only be conducted by one thread at a

time. To tackle this problem, we use one bit to indicate the state of

each block buffer. The bit is set to 1 if its block buffer is in the block

list or there is a thread conducting gather task for the block. Only

after a thread consumes all messages in a block buffer, it sets the

bit to 0 such that the block can be inserted into the block list again

for the other threads to conduct gather tasks.

For each vertex, we store its neighbors and edge weights to-

gether. To reduce graph size, we utilize the fact that the number of

neighbors for a vertex in a block cannot exceed the block size (e.g.,

2
18
). As such, we pack the most significant bit (MSB), vertex degree,

and block ID in a 4-byte integer with the format MSB|deg|bid. The

MSB is used to indicate whether the vertex records actual edges or

offest in our cache-friendly graph format in Section 5.

7 EXPERIMENTAL EVALUATION
We experiment to answer the following questions.

• How does the algorithm execution time of CoroGraph compare with
state-of-the-art graph algorithm frameworks?

• Does CoroGraph achieve its design goals and attain both cache
efficiency and work efficiency?

• How effective are the designs of CoroGraph in reducing algorithm
execution time?

In this part, we introduce the experiment settings in Section 7.1,

compare CoroGraph with state-of-the-art baselines in Section 7.2,

and evaluate our designs in Section 7.3.

7.1 Experiment Settings

Datasets.We utilize 5 graphs in the experiments, and their statistics

are reported in Table 2. In particular, Livejournal, Orkut, Twitter, and
Friendster model social networks and are widely used to evaluate

graph algorithm frameworks [31, 40, 46]. RMAT-24 is a synthetic

graph created using the famous RMAT generator [8]. Following [12,

49], we randomly generate edge weights in the range of [0, 100)

Table 3: Configurations of the two experiment machines.

Item Parameter Server A Server B

Core

L1 cache 32 KB 32 KB

L2 cache 1 MB 1 MB

Frequency 3.6 GHz 2.1 GHz

Socket

L3 cache 16 MB 36 MB

Core count 4 26

Memory Size 512 GB 640 GB

CPU Model Gold 5122 Gold 6230R

for the graphs. We intentionally choose these graphs for diversity,

i.e., their edges range from tens of millions to billions and their

average degrees vary. For conciseness, we refer to the graphs using

abbreviations.

Baselines and algorithms.We compare our CoroGraph with 5

graph algorithm frameworks, i.e., Ligra [46], Gemini [50], GPOP [30],

Galois [40], and GraphIt [49], which represent the state-of-the-art.

In particular, Ligra is a classical graph framework and adopts the

vertex-centric execution model. Galois optimizes vertex-centric ex-

ecution with efficient management of the frontiers and good load

balance of the threads. Both GPOP and Gemini adopt the partition-

centric execution model to improve cache efficiency but GPOP also

incorporates specialized optimizations for the PR algorithm to re-

duce memory traffic. GraphIt automatically generates C++ code for

graph algorithms with optimizations such as push/pull selection

and cache-aware partitioning. We do not compare with other graph

systems such as GraphMat [48] and Grezelle [18] because they are

outperformed by our baselines [30, 49].

We experiment with 4 popular graph algorithms, i.e., SSSP, k-core,
PageRank (PR), and weakly connected component (WCC). When an

algorithm has multiple variants, and we choose the variant that

yields the shortest execution time for each system. In particular, for

SSSP, we use the Bellman–Ford algorithm [11] for Ligra, Gemini,

and GPOP, and the work-efficient Δ-step algorithm [36] for GraphIt,

Galois, and CoroGraph.We ensure that all systems process the same

target vertices for SSSP such that they conduct the same tasks. For

PR, Ligra, GPOP, and Galois use the vanilla PR algorithm [11] while

Gemini, GraphIt, and CoroGraph use the work-efficient PR-delta

algorithm [46]. For both k-core and WCC, all systems adopt the

same algorithm variant. Our evaluation methodology follows [30]

and is fairer than using the same algorithm variant for all systems

because the systems suit different algorithm variants due to their

execution model and specific optimizations. Note that Δ-step and

k-core are asynchronous algorithms while the other algorithms are

synchronous, and synchronous algorithms require all scatter tasks

to finish before gather for each round.

Platform and metric We use 2 different machines for the experi-

ments, and their configurations are listed in Table 3. The memory

type is DDR4. Both servers run on Linux 4.15.0, and we disable

hyper-threading in all experiments. All code is compiled using g++

7.5.0 with the -O3 flag. We conduct the experiments on server A

unless stated otherwise. By default, we use 8 threads for the ex-

periments on server A and server B. We use algorithm execution

898

LJ OR RM TW FT
SSSP

0
1
2
3
4

No
rm

al
ize

d
ex

ec
. t

im
e

3.64
4.09

3.57 3.68
2.98 2.9

3.59

2.28

4.18

1.96 2.06
2.51

1.98 2.15
2.76

2.35
3.16

1.82
2.47

1 1 1 1 1

7

Ligra Gemini GraphIt Galois GPOP CoroGraph

4.85
6.85

5.38 5.19
6.59

4.91

LJ OR RM TW FT
k-core

0

1

2

3

No
rm

al
ize

d
ex

ec
. t

im
e

1.78 1.97

3.2

2.46 2.42

N/A N/A N/A N/A N/A

1.83
2.04

2.46
2.14

2.34

N/A N/A N/A N/A N/AN/A N/A N/A N/A N/A

1 1 1 1 1

LJ OR RM TW FT
PR

0
1
2
3
4

No
rm

al
ize

d
ex

ec
. t

im
e

2.1 1.98 1.78
2.11

2.94
2.47

1.73

2.71 2.46 2.66
3.1

2.34 2.18
1.76

3.53

1.25 1.08 0.95 0.84
1.171 1 1 1 1

13 7.33 8.56 5.27 8.41
12.7

LJ OR RM TW FT
WCC

0
1
2
3
4

No
rm

al
ize

d
ex

ec
. t

im
e

3.66
3.122.97

1.76

3.79
4.21

2.48
1.91

2.79 2.58 2.36
1.87 1.6

2.34

3.24
2.82

2.22

1.26
1.76 1.67 1.9

1 1 1 1 1

10 6.84 9.67 10.3
5.87

Figure 10: Algorithm execution time of CoroGraph and the baseline systems, normalized by the execution time of CoroGraph.

time as the main performance metric and report the median in 5

runs for an algorithm on one graph. As micro metrics, we measure

the memory stall using VTune to indicate cache efficiency and the

number of processed edges to indicate work efficiency. To avoid

the influence of the micro measurements on execution time, we

measure execution time and the micro metrics in separate runs. We

report three effective numbers for the experiment results.

7.2 Main Results
Figure 10 reports the algorithm execution time of the systems. For

each case, i.e., algorithm plus graph, we normalize the execution

time of the baseline systems by dividing the execution time of

CoroGraph. This is because for an algorithm, the execution time

can vary by scale for the graphs due to the difference in their sizes,

which will make Figure 10 difficult to read if we use the actual

execution time. Gemini, GPOP, and Galois do not support the k-

core algorithm, and thus their results are missing. We make the

following observations.

CoroGraph provides strong performance and outperforms all

baselines in 18 out of the 20 cases. In particular, compared with

the best-performing baseline, the speedup of CoroGraph is up to

2.51x (i.e., for SSSP on the RM graph) and over 1.67x in 15 out of

the 20 cases. Considering different algorithms, the average speedup

of CoroGraph over the best-performing baseline are 2.16x, 2.13x,

and 1.77x for SSSP, k-core, and WCC, respectively. For PR, GPOP

is the strongest baseline because it incorporates specialized opti-

mizations for PR to reduce memory traffic. However, CoroGraph

matches its performance for PR with 3 speedups and 2 slowdowns

in the 5 graphs, and the slowdown is moderate (i.e., peaks at 16%

for the TW graph). Overall, CoroGraph achieves larger speedup

over the baselines for SSSP and k-core than PR and WCC. This

899

Table 4: Execution statistics of the systems on the Orkut Graph. The number of processed edges (i.e., #Edges) are in millions,
and the execution time (i.e., Time) is in millisecond. The best value is marked in bold for each column.

System SSSP k-core PR WCC
MemB #Edges Time MemB #Edges Time MemB #Edge Time MemB #Edge Time

Ligra 65.21% 1676 4539 60.32% 234 3160 69.52% 1346 5822 68.45% 474 1050

Gemini 48.67% 1697 3254 N/A N/A N/A 55.25% 2343 1208 59.24% 471 592

GraphIt 55.21% 378 1792 52.89% 234 2760 57.29% 1346 1173 62.93% 473 642

Galois 67.52% 353 1331 N/A N/A N/A 62.39% 2343 1565 66.35% 468 539

GPOP 35.44% 969 2138 N/A N/A N/A 22.39% 2343 738 33.22% 1363 423

CoroGraph 28.25% 336 663 29.02% 234 1606 27.38% 1346 680 30.35% 465 336

SSSP k-core PR WCC
Orkut

0
1
2
3
4

No
rm

al
ize

d
ex

ec
. t

im
e

1.88

4.34

N/A

2.24

3.86
3.16

1.95 2.18
2.91

2.02

N/A

2.45 2.142.53

N/A

1.09
1.69

1 1 1 1

7

Ligra Gemini GraphIt Galois GPOP CoroGraph

4.9
7.39 5.86

SSSP k-core PR WCC
Friendster

0
1
2
3
4

No
rm

al
ize

d
ex

ec
. t

im
e

2.07

N/A

2.39

3.61

2.22 1.97

3.29

1.95

N/A

2.49
3.06

2.13

N/A

1.21
1.62

1 1 1 1

9 7.19 6.38 8.545.58 4.89

Figure 11: Algorithm execution time on another server, normalized by the execution time of CoroGraph.

is because SSSP and k-core are asynchronous algorithms, which

conduct scatter and gather simultaneously and have more conflicts

when accessing the shared data structures. The flexible synchro-

nization of CoroGraph avoids thread block in these conflicts. We

observe no obvious pattern for the speedup of CoroGraph across

different graphs, which suggests that the performance advantages

of CoroGraph do not depend on data characteristics.

There is no single winner among the baseline systems. For in-

stance, considering SSSP, Galois generally performs well but is 1.1x

slower than GPOP for the TW graph. Ligra performs the worst in

most cases but is the best-performing baseline for k-core on the

LJ graph. Thus, the consistently good performance of CoroGraph

may eliminate the burden of choosing the most efficient system for

different graphs and algorithms. Moreover, beside the execution

model, the particular optimizations of a system are also important

for performance. For instance, both Galois and Ligra adopt the

vertex-centric execution model but Galois usually performs much

better than Ligra. This is because Galois incorporates optimizations

for frontier management and thread workload balancing. As we

will show in subsequent experiments, the strong performance of

CoroGraph is also attributed to both the right execution model and

the effective optimizations.

Table 4 reports the execution statistics of the systems for the

Orkut graph, and the observations are similar on the other graphs.

These statistics help understand the query time results in Figure 10.

In particular, CoroGraph achieves both cache efficiency and work

efficiency with a low memory stall and a small number of processed

edges, which explains its short algorithm execution time. For the PR

algorithm, GPOP has even lower memory stall than CoroGraph due

to its algorithm specific optimizations, which explains its strong

performance for PR in Figure 10. Table 4 also echos our observa-

tion in Section 1, i.e., existing systems only achieve either cache

efficiency or work efficiency. For instance, GPOP has low memory

stall but processes more edges than the other systems while Ga-

lois processes a small number of edges when using work-efficient

algorithm variants (i.e., for SSSP and WCC) but suffers from high

memory stall.

Results on another machine. In Figure 11, we report the algo-

rithm execution time of the systems on server B to validate the

generality of CoroGraph across platforms.We use Orkut and Friend-

ster as representatives of the small and large graphs respectively

and note that the observations are similar on the other graphs. Fig-

ure 11 shows that the results on server B resemble the results on

900

Table 5: Algorithm execution time (in seconds) when using different number of threads on server B, the graph is Friendster.

Threads

SSSP k-core PR WCC
Galois GPOP Coro Ligra GraphIt Coro Galois GPOP Coro Galois GPOP Coro

1 75.13 85.09 71.56 278.2 265.7 214.3 95.85 83.12 75.92 42.38 46.72 41.02
2 37.00 60.56 32.37 177.1 159.6 96.70 61.92 41.20 35.93 28.92 35.75 22.32
4 23.80 25.33 19.89 91.53 87.19 51.67 30.28 20.78 18.15 20.87 15.08 11.35
8 13.18 14.84 9.69 46.70 43.28 25.29 21.86 10.45 8.93 12.01 9.48 5.83
16 8.12 11.86 5.62 25.19 23.12 13.56 17.56 8.61 7.52 6.99 6.58 3.52
32 7.96 9.49 4.75 17.24 15.91 8.31 13.29 7.66 6.43 3.86 6.23 2.72

SSSP k-core PR WCC
Orkut

0

1

2

3

No
rm

al
ize

d
ex

ec
. t

im
e

Galois +Hybrid +NUMA-schd +Storage +Prefetch +NUMA-pref +Sync

2.06

N/A

1.44
1.79

2.03

2.79

1.49

2.4

1.82

2.66

1.41

2.19

1.56
2.01

1.37
1.73

1.23
1.49

1.06 1.081.17
1.39

1 11 1 1 1

SSSP k-core PR WCC
Friendster

0

1

2

3

No
rm

al
ize

d
ex

ec
. t

im
e

2.15

N/A

2.13

2.822.72

2.09 2.17

3.11
2.61

1.97 1.81

2.8

1.91
1.48 1.55

2.04

1.36 1.21 1.14 1.121.24 1.15 1 11 1 1 1

Figure 12: Ablation study of our designs, where we incrementally adds our key designs to CoroGraph.

server A (i.e., Figure 10), i.e., CoroGraph provides strong perfor-

mance and its speedups over the baselines are large (usually over

2x) except for the PR algorithm.

Multi-thread scalability. Table 5 reports the algorithm execu-

tion time of the systems when using different number of threads

on server B. For each algorithm, we only include the two best-

performing baselines because the other baselines perform much

worse. The results show that CoroGraph consistently outperforms

the baselines when using different number of threads. Moreover,

all systems achieve a speedup around 10x when increasing from

1 thread to 32 threads but CoroGraph sometimes exhibits better

thread scalability. For instance, when increasing from 1 thread to

32 threads for SSSP, the speedup of Ligra, GraphIt, and CoroGraph

are 9.43x, 8.97x, and 15.06x, respectively. All systems scale almost

linearly before using 4 or 8 threads but much worse afterwards.

This is because the computation in graph algorithms is lightweight,

and thus the memory bandwidth is saturated with a small number

of threads [31].

7.3 Ablation Study and Parameter Settings

Ablation study. Figure 12 conducts ablation study for our key

designs to understand their contributions to performance. In par-

ticular, Hybrid means our hybrid execution model, Storage refers

to the cache-friendly graph format, Prefetch stands for the prefetch

pipeline, and Sync is the flexible synchronization. We also include

Galois as a baseline, which adopts a vertex-centric execution model

and serves as the starting point of our optimizations. We make the

following observations.

First, simply using the hybrid execution model offers limited gain

and may even degrade performance compared with Galois. This is

because although the hybrid execution model reduces memory stall

as shown in Section 5, it incurs the overhead of generating the scat-

ter messages. In contrast, the vertex-centric model directly applies

updates without generating the scatter messages. However, we note

that the hybrid execution model is crucial for CoroGraph because

it eliminates thread data conflicts and serves as the foundation of

other optimizations (e.g., prefetch and synchronization).

Second, our three key optimizations, i.e., cache-friendly graph

format, prefetch pipeline, and flexible synchronization, are all effec-

tive in reducing algorithm execution time. The gain of the prefetch

pipeline is the most significant and can be more than 2x (e.g., for

SSSP and WCC on the Friendster graph). Cache-friendly graph for-

mat is effective in all cases and usually reduces execution time by

one third. Flexible synchronization improves the asynchronous al-

gorithms (i.e., SSSP and k-core) but has no effect on the synchronous

algorithms (i.e., PR and WCC) because the synchronous algorithms

901

Table 6: Influence of parameters on the Friendster graph.

(a) Vertex state block size |𝐵 | .

|𝐵 | 2
15

2
16

2
17

2
18

2
19

SSSP 8.76 6.39 5.14 4.75 6.58

WCC 6.34 4.59 3.17 2.71 5.39

(b) Degree threshold for write optimization.

𝑛𝑐 0 2 4 6 8 10

SSSP 5.30 4.75 4.97 5.42 5.89 6.42

WCC 2.88 2.71 2.89 3.02 3.33 3.86

(c) Chunk size for task execution.

Size 128 256 512 1024 2048 4096

SSSP 5.36 4.91 4.75 5.15 5.64 6.04

WCC 3.25 2.94 2.85 2.79 2.71 2.71

(d) Number of coroutines in the prefetch pipeline.

Number 1 2 3 4 5

SSSP 5.02 4.75 5.23 5.97 6.45

WCC 2.80 2.71 2.79 2.94 3.56

only conduct synchronization when all threads finish scatter and

have fewer data structures conflicts.

Third, our NUMA-aware optimizations also improve perfor-

mance. In particular, ‘NUMA-schd’ and ‘NUMA-pref’ refer to NUMA-

aware scheduling and NUMA-aware prefetch, respectively. The re-

sults show that NUMA-aware scheduling and prefetch consistently

reduce algorithm execution time across the datasets and algorithms.

The speedup of NUMA-aware scheduling is larger for the Friendster

graph (i.e., 1.2x-1.4x) than the Orkut graph (i.e., 1.1x-1.2x) because

Friendster is larger and requires more cross-NUMA data access to

move the vertex states during algorithm execution. The speedup of

NUMA-aware prefetch ranges from 1.05x to 1.1x.

Parameters. Table 6 reports the execution time of CoroGraph for

the Friendster graph when using different parameters. We use SSSP

and WCC as representatives for asynchronous and synchronous

algorithms, respectively, and note that the observations are similar

on the other graphs.

Table 6(a) shows that both algorithms run the fastest when the

block size of vertex state (i.e., |𝐵 |) is 218. This is because each vertex

state takes 4 bytes and 2
18

allows a vertex block to fit in the 1MB

per-core L2 cache of server B. Execution time increases when block

size deviates from the optimal value. This is because larger block

does not fit in L2 cache and thus the loaded data may be swapped

out while smaller block reduces the opportunity for cache sharing.

Table 6 also shows that cache eviction has higher penalty than

reduced sharing opportunity.

Recall that we use 𝑛𝑐 as the threshold to determine the high-

degree vertices for our write optimization in the scatter phase, and

the high-degree vertices write an offset and edge count instead of

the actual edges. Table 6(b) shows that both algorithms achieve the

shortest execution time with 𝑛𝑐 = 2. This is because when 𝑛𝑐 is

too small, writing the offset and edge count is more expensive than

directly writing the edges; while when 𝑛𝑐 is too large, writing many

edges becomes more expensive than the offset and edge count. The

execution time does not degrade much unless 𝑛𝑐 is far from optimal

because the costs of the two options (i.e., writing edges and writing

offset) transit smoothly.

We use a chunk as the granularity for executing the scatter tasks

and gather tasks, and chunk size is the number of vertices in a

chunk. Table 6(c) shows that both SSSP and WCC run the fastest

with an intermediate chunk size and become slower when the chunk

size deviates from the optimal. This is because chunk size balances

synchronization overhead and work efficiency. For instance, a small

chunk size means fine-grained coordination, which benefits work

efficiency but increases synchronization overhead. SSSP requires a

smaller optimal chunk size than WCC because work efficiency is

more important for it.

Table 6(d) reports the algorithm execution time when using dif-

ferent number of coroutines. As we have discussed in Section 5,

CoroGraph does not benefit from using a larger number of corou-

tines as in other works, and 2 coroutines suffice because memory

access and computation are already overlapped. Execution time

jumps when increasing from 4 coroutines to 5 because with a large

number of prefetch operations, the data loaded latter may evict the

data loaded earlier. Using one coroutine also allows to hide some

memory access costs because we conduct a group of tasks (with

each task consists of prefetch and compute) in a coroutine, and the

prefetch operation of a task may finish when we issue all prefetch

operations and come back to conduct computation for the task.

Overall, Table 6 shows that the parameters in CoroGraph are

easy to configure because (i) the parameters adopt a single optimal

value and (ii) the optimal value generalizes for different algorithms.

8 CONCLUSION
We observe the trade-off between cache efficiency and work effi-

ciency in existing graph algorithm systems, and find that existing

systems cannot achieve both due to the fundamental limits in their

executionmodels. We architect the CoroGraph system to bridge this

trade-off and attain both cache efficiency and work efficiency. Coro-

Graph adopts a novel hybrid execution model, which combines

the benefits of the execution models in existing systems. Coro-

Graph also extensively uses coroutine-based prefetch to overlap

the random memory access of graph algorithms with computation.

Experiment results show that CoroGraph yields shorter algorithm

execution time than existing systems and provides strong perfor-

mance across different algorithms and datasets.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments

and suggestions. This work has been partially supported by Guang-

dong Basic andApplied Basic Research Foundation (Grant No.2021A

1515110067), Shenzhen Fundamental Research Program (Grant No.

20220815112848002), the Guangdong Provincial Key Laboratory

(Grant No. 2020B121201001) and a research gift from Huawei Gauss

department. Dr. Bo Tang is also affiliated with the Research Insti-

tute of Trustworthy Autonomous Systems, Southern University of

Science and Technology, Shenzhen, China.

902

REFERENCES
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery 29, 3

(2015), 626–688.

[2] J Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani.

2005. Large scale networks fingerprinting and visualization using the k-core

decomposition. Advances in neural information processing systems 18 (2005).
[3] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.

2020. Classifying memory access patterns for prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 513–526.

[4] Alex Beutel, Leman Akoglu, and Christos Faloutsos. 2015. Fraud detection

through graph-based user behavior modeling. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1696–1697.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression

techniques. In Proceedings of the 13th international conference on World Wide Web.
595–602.

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.

TAO:Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 49–60.

[7] Yukuo Cen, Jing Zhang, Gaofei Wang, Yujie Qian, Chuizheng Meng, Zonghong

Dai, Hongxia Yang, and Jie Tang. 2019. Trust relationship prediction in alibaba

E-commerce platform. IEEE Transactions on Knowledge and Data Engineering 32,

5 (2019), 1024–1035.

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[9] Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry. 2007.

Improving hash join performance through prefetching. ACM Transactions on
Database Systems (TODS) 32, 3 (2007), 17–es.

[10] Intel Coorporation. 2016. Intel 64 and IA-32 architectures optimization reference
manual.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

2022. Introduction to algorithms. MIT press.

[12] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures. 293–304.

[13] David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge university press.

[14] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,

Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A system for

recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 2018 world wide web conference. 1775–1784.

[15] Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind

Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks

in realistic urban social networks. Nature 429, 6988 (2004), 180–184.
[16] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel computation on natural graphs.

In 10th USENIX symposium on operating systems design and implementation (OSDI
12). 17–30.

[17] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. 2014. GraphX: Graph processing in a distributed

dataflow framework. In 11th USENIX symposium on operating systems design and
implementation (OSDI 14). 599–613.

[18] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making pull-based

graph processing performant. ACM SIGPLAN Notices 53, 1 (2018), 246–260.
[19] Yongjun He, Jiacheng Lu, and Tianzheng Wang. 2021. Coroutine-Oriented Main-

Memory Database Engine. Proceedings of the VLDB Endowment 14, 3 (2021),

431–444.

[20] Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F Siegel. 2002. Dis-

covering regulatory and signalling circuits in molecular interaction networks.

Bioinformatics 18, suppl_1 (2002), S233–S240.
[21] ISO/IEC. 2017. Technical Specifcation — C++ Extensions for Coroutines. https:

//www.iso.org/standard/73008.html

[22] Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltan N Oltvai, and A-L Barabási.

2000. The large-scale organization of metabolic networks. Nature 407, 6804
(2000), 651–654.

[23] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,

and Gor Nishanov. 2018. Exploiting coroutines to attack the" killer nanoseconds".

Proceedings of the VLDB Endowment 11, 11 (2018), 1702–1714.
[24] Juno Kim and Steven Swanson. 2022. Blaze: fast graph processing on fast SSDs.

In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[25] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous memory

access chaining. Proceedings of the VLDB Endowment 9, 4 (2015), 252–263.

[26] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[27] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of

the 22nd international conference on world wide web. 1343–1350.
[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[29] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:Large-Scale

Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). 31–46.

[30] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2019. GPOP:

A cache and memory-efficient framework for graph processing over partitions.

In Proceedings of the 24th Symposium on Principles and Practice of Parallel Pro-
gramming. 393–394.

[31] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2020. Gpop:

A scalable cache-and memory-efficient framework for graph processing over

parts. ACM Transactions on Parallel Computing (TOPC) 7, 1 (2020), 1–24.
[32] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Accelerating

PageRank using Partition-Centric Processing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 427–440.

[33] Shengliang Lu, Shixuan Sun, Johns Paul, Yuchen Li, and Bingsheng He. 2021.

Cache-efficient fork-processing patterns on large graphs. In Proceedings of the
2021 International Conference on Management of Data. 1208–1221.

[34] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[35] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed opera-

tor fusion for in-memory databases: Making compilation, vectorization, and

prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017), 1–13.

[36] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114–152.

[37] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge

university press.

[38] Jan Mühlig and Jens Teubner. 2021. MxTasks: How to Make Efficient Synchro-

nization and Prefetching Easy. In Proceedings of the 2021 International Conference
on Management of Data. 1331–1344.

[39] Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev. 2023.

DRAMHiT: A Hash Table Architected for the Speed of DRAM. In Proceedings of
the Eighteenth European Conference on Computer Systems. 817–834.

[40] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In Proceedings of the twenty-fourth ACM sym-
posium on operating systems principles. 456–471.

[41] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.

2017. Interleaving with coroutines: a practical approach for robust index joins.

Proceedings of the VLDB Endowment 11, CONF (2017), 230–242.
[42] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-

centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[43] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[44] Bin Shao, HaixunWang, and Yatao Li. 2013. Trinity: A distributed graph engine on

amemory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 505–516.

[45] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. Corescope: Graph

mining using k-core analysis—patterns, anomalies and algorithms. In 2016 IEEE
16th international conference on data mining (ICDM). IEEE, 469–478.

[46] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[47] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.

ThunderRW: an in-memory graph random walk engine. (2021).

[48] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary,

Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep

Dubey. 2015. Graphmat: High performance graph analytics made productive.

Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.
[49] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Pro-
ceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[50] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 301–316.

[51] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:Large-Scale

Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.

In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 375–386.

903

https://www.iso.org/standard/73008.html
https://www.iso.org/standard/73008.html

	Abstract
	1 Introduction
	1.1 Motivation and Problem
	1.2 Our Solution: CoroGraph

	2 Background
	3 Related Work
	4 The CoroGraph Framework
	4.1 Hybrid Execution Model
	4.2 APIs and Modes

	5 Efficiency Optimizations
	5.1 Coroutine-based Prefetch Pipeline
	5.2 Cache-friendly Graph Format
	5.3 Flexible Synchronization
	5.4 NUMA-aware Scheduling and Prefetch

	6 Implementation
	7 Experimental Evaluation
	7.1 Experiment Settings
	7.2 Main Results
	7.3 Ablation Study and Parameter Settings

	8 Conclusion
	References

