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ABSTRACT
Composable Database System Research has yielded components
such as Apache Arrow for Storage, Meta’s Velox for processing
and Apache Calcite for query planning. What is lacking, however,
is a design for a general, efficient and easy-to-use architecture
to connect them. We propose such an architecture. Our proposal
is based on the ideas of partial query evaluation and a carefully
designed, unified exchange format for query plans and data. We
implement the architecture in a system called BOSS1 that combines
the Apache Arrow, the GPU-accelerated compute kernel ArrayFire
and the CPU-oriented Velox kernel into a fully-featured relational
Data Management System (DMS). We demonstrate that the ar-
chitecture is general enough to incorporate practically any DMS
component, easy-to-use and virtually overhead-free. Based on the
architecture, BOSS achieves significant performance improvement
over the CPU-only Velox kernel and even outperforms the highly-
optimized GPU-only DMS HeavyDB for some queries.
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1 INTRODUCTION
The use cases of Data Management Systems (DMSs) have evolved
from simply storing and retrieving data to managing all aspects of
the data lifecycle as well as hardware resources. To this end, DMSs
have to account for many kinds of heterogeneity. First, there is
increasing workload heterogeneity: classic scenarios like Online
Transactional and Analytical Processing are joined by new applica-
tions such as data cleaning, data integration, model training or infer-
ence. In addition, applications require various heterogeneous data
models such as relations, graphs, documents, key-value-pairs and
even trained models. Last but not least, systems must manage het-
erogeneous hardware devices such as CPUs, GPUs, Smart-Storage
Devices, Trusted Enclaves, FPGAs, TPUs and other Application-
Specific Integrated Circuits (ASICs).

To address the challenge of heterogeneity, systems currently
have two options. The first option is to extend the DMS kernel to
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support heterogeneous devices, workloads and data models. While
this approach usually yields good performance, it requires substan-
tial engineering effort. This effort leads to a fractured ecosystem
with many systems supporting one or two "aspects of heterogene-
ity" (GPUs [7, 10, 31], data cleaning [9], JSON-fields [14], ...) but, to
the best of our knowledge, none supporting more. Alternatively,
systems can wrap special-purpose libraries in UDFs to support het-
erogeneity. While this is substantially less effort, it comes at the
cost of inferior performance [24, 41].

We propose a third option that combines the best of both: a novel
DMS design based on the idea of partial evaluation. Under this
paradigm, a query is no longer processed by a single kernel but
goes through a sequence of stages, each of which progresses toward
the final result. Between stages, the query is passed in a simple,
unified format containing all information required to produce the
result (data and code). New functionality (such as a kernel or library
supporting a specific hardware device) can be integrated as a stage
in the evaluation process. As the entire query (including inputs) is
passed between kernels, each kernel can opportunistically evaluate
as many (or few) operators as deemed beneficial. As long as the last
kernel in the pipeline supports the full evaluation of the query, this
paradigm guarantees that the query is fully evaluated while giving
each kernel complete freedom to implement special data model
semantics, support new workloads, exploit hardware-specific fea-
tures or apply sophisticated optimizations. This insight is reflected
in a recent trend towards composable DMSs [39].

There are, however, several challenges when realizing such a
design. First, the kernels (and underlying libraries) follow funda-
mentally different designs, leading to an "impedance" mismatch
when combining them: some kernels are "pull-driven" while oth-
ers are "push-driven"; some provide dynamically-typed declarative
APIs while others are imperative and statically typed; some are
stateful while others maintain no internal state; virtually all of
these kernels maintain metadata that is exploited during query
evaluation. Efficiently combining these kernels is non-trivial and re-
quires significant amounts of boilerplate/glue code that is not only
expensive and tedious to write and maintain but also error-prone.

We propose addressing these challenges through a number of
technical contributions:
•We introduce the idea of partial database query evaluation as a
paradigm for database system composition
•We introduce a unified physical in-memory data representation
that is generic enough to support the exchange of data and code
between DMS kernels yet simple to use and free from runtime
overhead. Where state-of-the-art systems need to combine different
interchange formats for data, metadata and code, the proposed
unified format solves all these problems using a powerful, elegant
and highly efficient representation.
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SELECT COUNT(*)

FROM LINEITEM

WHERE PRICE > 17;

SELECT COUNT(*)

FROM (VALUES

   (10),(29),(18),(4),(2))

  AS LINEITEM(PRICE)

WHERE PRICE > 17;

Storage
Engine

GPU
Engine

SELECT COUNT(*)

FROM (VALUES

(29),(18))

AS LINEITEM(PRICE);

CPU
Engine

(VALUES (2));

Figure 1: A Pipeline using Partial Query Evaluation

• We introduce a DMS-specific compile-time programming frame-
work (type system, problem-specific language and memory man-
agement model) which extends well-known programming language
techniques to solve the problem of integrating database kernels with
minimal boilerplate code and virtually no performance overhead.
•Wedemonstrate the practical feasibility of these techniques by pre-
senting the first data management system that composes multiple
(unmodified) DMS kernels/libraries into a full-featured data analyt-
ics system: the Apache Arrow storage library [1], the CPU-oriented
Velox database kernel [38], and the GPU-accelerated tensor com-
pute kernel ArrayFire [32]. The system effectively demonstrates
that DMS-components like Arrow, Velox and ArrayFire can be
composed to complement their feature sets without performance
penalty (compared to a monolithic architecture).

We describe the general concept of partial query evaluation in
Section 2 and establish objectives and design principles in Section 3.
Next, we introduce the representation of data atoms (i.e., the type
system), complex expressions that are used to represent both com-
plex data structures (such as columns, relations and hashtables)
as well as operators (such as join, aggregation and select) and the
memory management model in Section 4. We discuss the program-
ming framework in Section 5 and its use to construct a system in
Section 6. We study the system’s performance in Section 7, discuss
related work in Section 8 and conclude in Section 9.

2 PARTIAL QUERY EVALUATION
The goal of our work is to develop a DMS-architecture that allows
the composition of separately designed components with minimal
engineering effort. We propose for that a simple architecture: query
processing is fragmented into stages, each implemented (or inte-
grated from off-the-shelf systems) as “Engines” with more straight-
forward, smaller kernels rather than a monolithic one. For example,
the implementation we will present in Section 6 integrates three
engines: the storage engine is solely responsible for resolving the
table and column names and loading the data; the GPU engine
accelerates selected relational operators; the CPU engine integrates
a CPU-based DMS supporting all the relational operators.

To develop this DMS while minimizing the complexity of inte-
grating engines and orchestration logic, we propose the concept
of partial query evaluation: the queries are passed through a linear
pipeline of engines. Each engine accepts an input query and returns
a result query. The returned query is equivalent to the input query
(i.e., a correct interpretation of the input query) but “closer” to the

final result1. After the last stage, no code shall be left for evaluation
in the output query.

The example in Figure 1 illustrates these steps: the input query
(on the top left) is passed to the storage engine; FROM LINEITEM is
replaced by the content of that table (on the top right). Next, the
GPU engine evaluates the WHERE PRICE > 17 predicate and filters
the data but leaves the SELECT COUNT(*) unmodified (resulting in
the query on the bottom right). Finally, the CPU engine evaluates
the aggregation and produces the output (on the bottom left).

Naturally, SQL is an ill-suited representation for this approach.
Manipulating such a format incurs implementation and execution
overhead as well as scalability issues when exchanging data be-
tween engines. Instead, we design a data & code representation as
well as a programming framework that suits the requirements.

3 DESIGN PRINCIPLES
Partial Query Evaluation requires designing the DMS-architecture
such that engines are implemented and integrated with negligible
runtime overhead and minimal boilerplate code. This overarching
objective can be achieved by following four guiding principles that
we outline in the following.

Remain Unopinionated. To ensure that different kernels with differ-
ent designs can be integrated easily, a composable DMS must not
impose design decisions on kernels. In software engineering, this
principle is commonly referred to as “unopinionated” design. In
the context of DMSs, the principle applies to aspects as diverse as
logical data model, data representation, memory model, execution
model or concurrency control. A framework must, for example,
support the integration of Volcano-style query processors [19],
Bulk-processors [4], X100-style [56] processors and just-in-time
compiled execution engines [35].

Minimize Boilerplate. Without an appropriate development frame-
work, integrating external database kernels requires substantial boil-
erplate code. Such code is a productivity hazard for developers and a
major source of bugs and performance overhead. Integrating a GPU-
coprocessing library, for example, requires code to convert data
objects, manage data transfers, schedule kernel execution, control
concurrent execution and transfer results back. The amount of boil-
erplate code can easily exceed that of actual data processing code.
The codebase of the Ocelot extension to support GPU-accelerated
data processing in MonetDB [23], for example, contains roughly
5,000 lines of OpenCL kernel code for kernel operations and more
than 23,000 lines of boilerplate C-code to coordinate execution.

Zero Copies, Minimal Transformations. Creating copies of data is
a costly operation for high-performance DMSs. A well-designed
monolithic system, therefore, does not create copies of data unless
absolutely required. To be performance-competitive, a composed
DMS must not unnecessarily copy data either.

Interestingly, many kernels have the same internal data rep-
resentation, making zero-copy data transfer possible: MonetDB,
Velox, ArrayFire and Arrow, e.g., share almost the same data repre-
sentation (the only difference being minor optimizations in string
representations). Upon close inspection, this is not surprising, as
1note that it is, in principle, acceptable for an engine to return its input query
unmodified
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all of these are designed to maximize CPU efficiency, and mod-
ern CPUs are optimized for a specific data representation: that of
the ANSI C language. Most kernels store datasets in C-arrays aug-
mented with additional metadata (such as histograms or sortedness
flags). However, all kernels we studied support the extraction of the
C-arrays and the construction of the kernel-specific representation
from C-arrays without copying data. If exploited effectively, this
enables zero-copy data transfers of data between kernels.

Language over Library. This principle is, to a large extent, a con-
sequence of the first and the second but deserves special mention
due to its effect on the design. A composition framework that is
lightweight and unopinionated must resort to the least common
denominator of the kernels it aims to support. That least common
denominator is the host programming language (usually C or C++,
though Rust and Swift are viable alternatives). This largely pre-
cludes the use of libraries to coordinate execution, generate code
or transform data. By avoiding libraries, the framework allows a
state-of-the-art compiler to perform optimizations such as function
inlining, loop unrolling or vectorization even across kernel bound-
aries. Note, however, that this only applies to the framework and
does not prevent kernels from using libraries internally.

In the remainder of this paper, we describe a framework that fol-
lows these guidelines and, through careful design and sophisticated
metaprogramming, achieves high-performance processing in a sur-
prisingly small codebase (fewer than 5K lines of modern C++ code).

4 CROSS-KERNEL COMMUNICATION
The first challenge to address when connecting multiple kernels
without incurring prohibitive copy-overhead is the definition of
an appropriate exchange format for data (base tables, indices, his-
tograms, etc.) as well as code (i.e., query plans, selection predicates,
UDFs, etc.). While projects like Apache Arrow [1] define an effi-
cient bulk-oriented data exchange format, this format is ill-suited
to represent query plans. On the other hand, projects like Substrait
[50] define a format for query plans but do not address the data
exchange problem. Combining both to orchestrate the operation
of multiple database kernels requires substantial boilerplate code
and often comes at significant runtime overhead to convert the ex-
change format to the internal representation. Efficiently connecting
multiple kernels requires a unified, lightweight, in-memory repre-
sentation of data and code that can be interpreted with minimal
boilerplate. Such a representation must address several non-trivial
challenges. First, it must support the bulk-oriented data format
that is shared by virtually all high-performance in-memory DMSs:
(statically typed) C-arrays. Next, it must support the (dynamically-
typed) arguments that come in from frontends like SQL, Python
or R. It must also support placeholders (we refer to them as “sym-
bols”) representing table or column references in an execution plan.
The representation must, further, be extensible to allow kernels
to represent internal datatypes (such as tensors or GPU memory
objects) without the need for physical data transformation. Finally,
it must provide a concise API that avoids runtime overhead by
being amenable to compile-time optimizations like inlining and
common subexpression elimination.

1 template<typename... ExtensionTypes>
2 typedef variant<bool, int64, double, string,
3 ExtensionTypes...> CWDTypedAtom;

Figure 2: A (slightly simplified) implementation of CWDT
using C++ Templates.

While designing such a representation may seem daunting, fo-
cusing on data-processing systems provides several opportunities
to constrain the problem and, thereby, make it tractable. First, the
type system of such systems is “closed” at runtime, i.e., no new types
can be defined once the system has been compiled. Next, the type
system can be divided into a “core”, i.e., types that every kernel must
support and internal “extensions”, i.e., types that cannot be passed
between kernels. Lastly, data is usually “typed” in bulk, i.e., the type
of the first value in a column (or partition) is the same as all other
values in that column. Type-interpretation can, therefore, be per-
formed once per-column rather per-value (this concept is referred
to as “evidence-typing” in programming language research [26]).

Motivated by this analysis, we propose a unified representation
for data and code that addresses the challenges by exploiting these
opportunities. It combines several techniques, inspired by estab-
lished programming language techniques but adapted to the needs
of DMSs. We discuss them bottom-up in the rest of this section.

4.1 Extensible Closed-World Dynamic Typing
A unified exchange format’s most fundamental challenge is the

efficient and easy-to-use representation of dynamically-typed val-
ues (we use the term Atoms). Typically, this is efficiently imple-
mented using “tagged union”, such as C++ variants, but requires
the set of types to be statically defined across the kernels. How-
ever, a kernel integration might require the declaration of further
dynamic types, e.g., one supporting TensorFlow might require a
tf::TensorBuffer type. As illustrated in Figure 2, our approach ex-
tends standard C++ variant by instantiating it with a set of “core”
types (bool, int64, etc.) while allowing the compile-time extension
with further types. A core-only type system, e.g., can be declared by
instantiating the template without extension types (CWDTypedAtom<>)
while the type system that also supports TensorFlow would be de-
clared as CWDTypedAtom<tf::TensorBuffer>. This approach supports
the combination of multiple different type-systems in the same
executable. While data can only be exchanged between kernels in
the standard type system, kernels can use a custom type system
internally with transformation-overhead-free communication be-
tween kernels2. As the type system is fully defined at compile time
(a.k.a., closed at runtime), the compiler can generate type-specific
operators statically (we will illustrate this in Section 5).

4.2 Memory-Managed Spans for Data Exchange
High-performance data processing kernels store and process data

in collections rather than individual atoms. While many kernels
store and maintain metadata (histograms, min/max values, etc.), the
core data structure of virtually all of them is plain C-arrays. While

2the ordering of the core-types preceding the extension types ensures that core types
have identical tags in any derived type system
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1 template<typename ElementType>
2 struct Span {
3 ElementType* data;
4 size_t size;
5 void* payload;
6 void (*destructor)(); // function pointer
7 };

Figure 3: Spans capture bulk-allocated data

this lack of diversity might seem surprising initially, it is a logical
consequence of the hardware support for that format. A universal
data exchange format should, therefore, be based on C-arrays.

However, plain C-arrays have no support for memory manage-
ment, requiring kernels to implement their own mechanism, often
based on reference counting or mark-and-sweep garbage collec-
tion. As every kernel has its own memory management scheme,
unifying them without substantial overhead is non-trivial. How-
ever, focusing on (analytical) data processing systems suggests an
approach: as allocated memory objects tend to be large (megabytes
to gigabytes), small, constant allocation/deallocation overheads are
negligible. We propose a simple memory management mechanism
based on function pointers and opaque payloads.

Figure 3 illustrates the implementation of the idea in the form of
a BOSS Span: inspired by C++20 spans, BOSS Spans are type-generic,
thin wrappers around C-arrays their memory deallocation managed
in the form of a function pointer and an untyped payload. Upon de-
struction, the function is called and can, e.g., delete an underlying C-
array, unmap a memory-mapped file or not do anything if the span
does not own itsmemory (the default). Note that the payload and the
data can point to the same address but do not have to. If, e.g., a span
is created from an input that stems from an external library and has
a header preceding the data in the same allocated piece of memory,
datawould point to the first data item while payloadwould point to
the address of the beginning of the allocated object, i.e., the header.

Thus implemented, spans are unopinionated with respect to own-
ership. Most importantly, they have no notion of “shared owner-
ship”.While the function pointer can be used to decrease a reference
count, there is no built-in mechanism for that purpose. Reference
counting can, however, be implemented outside the span type (in
fact, some of the kernel wrappers we present in Section 6 do just
that). However, we found that true shared ownership of memory ob-
jects is surprisingly rare in DMS kernels: persistent tables are owned
by the storage manager, while intermediate results merely have
their ownership transferred from one function to another. To illus-
trate this, consider the example of the process and zeroWhere func-
tions in Figure 4 that implement a simplified select query (one that
zeroes out values that do not qualify): while the process function
creates (and thereby owns) the input span initially (in lines 10 & 11),
it transfers ownership to zeroWhere in line 12 through a move. After
executing the operation (lines 2 to 4), zeroWhere returns ownership
in line 5 (through another move). Process (re-)accepts ownership
through assignment to input in line 12. While this process might
sound error-prone, it can be enforced by the C++ compiler: we
propose to implement Spans as move-only/not-copyable types. If a
move of a Span is omitted, the compilation will fail. If a value is used

1 auto zeroWhere(auto&& input, auto predicate){
2 for(auto& inputValue : input) {
3 if(predicate(inputValue))
4 inputValue = 0;
5 return move(input);
6 }
7

8 void process() {
9 auto inputVector = vector{1, 17, 9, 2};
10 auto input = Span{data = inputVector.data(),
11 size = inputVector.size()};
12 input = zeroWhere(move(input),
13 [](auto v) { return v < 8; });
14 print(input);
15 }

Figure 4: Move-only spans simplify the memory model

after a move (e.g., if the result of zeroWhere were not assigned to
input), the compiler warns (or fails) with a “use after move” error.

4.3 Semi-statically Typed Expressions
While Spans allow representing contiguous in-memory data, this
abstraction does not allow to represent complex data structures
(e.g., columns, tables, trees, hashtables), query plans/programs or
any dynamic behaviour (e.g., on-demand data loading from file). We
propose to implement all these abstractions in a single, unified repre-
sentation, on top of closed-world-typed atoms and spans, with “sym-
bolic expressions (s-expressions)”. Classic s-expressions, as intro-
duced with LISP [34], are nested (linked) lists of dynamically typed
atoms (including symbols). In LISP, s-expressions are represented
in the iconic notation using parenthesis: (list 7 2 3 6) repre-
sents a data structure while (lambda (x) (+ x 9)) represents a
function, i.e., code. In general, the high interpretation overhead
makes s-expressions manifestly unsuited as a data model for a high-
performance DMS. Instead, we propose several novel extensions:
most importantly, we propose to statically type some expression
arguments at compile-time while allowing some in (closed-world)
dynamically typed form. Further, we propose to use the span con-
cept we introduced earlier to store consecutive, identically-typed
arguments of expressions. While Figure 5 illustrates the implemen-
tation in C++, let us discuss the extensions in more detail.

Dynamically Typed Arguments. In their simplest form, we propose
expressions that are an (almost) faithful reimplementation of classic
s-expressions: they differ from classic s-expressions only in that the
first element (a.k.a. the head) must be a Symbol (see line 5 in Fig-
ure 5). While this has no practical impact on expressivity (one could
map expressions with a non-symbolic head to one where the head
is a symbol with an empty name), we found it a practical restric-
tion that enables several optimizations we discuss later. The API is
simple: an expression representing a column of Extensible Closed-
World Dynamic Typing-typed (CWDT-typed) values would, e.g., be
created as Expression("Column", 5, 9.2, "seventeen", false).

Statically Typed Arguments. While CWDT-typed expressions are
very flexible, they come at substantial overhead: on the one hand,
a system needs to represent the runtime type using a type tag
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1 typedef CWDTypedAtom<Expression> DynamicArgument;
2 typedef variant<Span<int>,
3 Span<float>, /*...*/> SpanArgument;
4 template <typename... StaticArguments> class Expression {
5 Symbol head;
6 vector<DynamicArgument> dynamicArguments;
7 tuple<StaticArguments...> staticArguments;
8 vector<SpanArgument> spans;
9 public: // API
10 // slow but generic argument access as DynamicArgument
11 DynamicArgument getArgument(int);
12 // fast and specialized access using specific type
13 template<int i> auto getArgument();
14 SpanArgument getSpanArgument(int);
15 };

Figure 5: Semi-statically typed expressions

(usually an integer); On the other hand, operating on dynamically
typed values requires dynamic dispatching of values to operators
(a.k.a., visitation), which translates into a (virtual) function call.
Most importantly, however, most data processing kernels operate on
static types. Translating between dynamic and static types requires
significant amounts of boilerplate code.

To address these problems, we propose to support static typing
of expression arguments (see line 4 in Figure 5). Declaring an ex-
pression as Expression<int, float, string, bool>("Column", 5,

9.2, "seventeen", false), e.g., creates an expression with statically
typed arguments. Statically typed expressions save memory, CPU
cycles and boilerplate code. They are also the basis for the Semi-
Static Dispatching technique we introduce in the next section. First,
however, let us discuss the last and arguably, most consequential
category of arguments: Spans.

Span Arguments. As discussed earlier, Spans are statically typed
collections of atoms. In addition to statically and dynamically typed
arguments, we propose to implement expressions that can take
arbitrarily many Spans of potentially different types as arguments
(see line 8 in Figure 5). The elements of the Spans are “logically”
exposed arguments of the expression through the same API as is
used to access other arguments (line 11 in Figure 5). Physically,
however, the Spans remain plain C-arrays that can be accessed
directly using a “physical” API (line 14).

Argument APIs. To conclude the description of our proposed expres-
sion arguments, let us describe the APIs used to access them. There
are two APIs with distinct use cases: the “slow and unified” API
(line 11 in Figure 5) is designed for non-performance-critical cases
like rule-based query optimization or printing results to the console
while the “fast and specific” API is designed for performance-critical
cases like the tight loop of a processing operator (line 13 & 14 show
the API to access static arguments and spans).

The “Slow Path”: Dynamically-Typed Wrappers. The slow path
provides access to all arguments of expressions through a “least-
common-denominator” API: CWDT-typed arguments. As static
arguments and span elements can be converted to CWDT argu-
ments but not the other way around, CWDT types are the least
common denominator (line 11 in Figure 5).

1 // decompose() API
2 class Expression {
3 tuple<Symbol, Statics, Dynamics, Spans> decompose() &&;
4 };
5

6 // Decomposition and recomposition example
7 Expression removeDynamicArguments(Expression&& input) {
8 auto [head, statics, dynamics, spans]
9 = move(input).decompose();
10 return Expression(head, statics, {}, spans);
11 }

Figure 6: Destructive Decomposition API and Example

The “Fast Path”: The fast API provides (read-only) access to each
of the specific argument categories using designated functions: the
static arguments are accessed using a templated function that takes
the argument position as a compile-time constant, the dynamic
arguments by their runtime position and the spans as a collection of
(read-only) references to spans. While all elements of a single span
have the same static type (they wrap C-arrays, after all), different
spans in the collection can have different element types (useful to
support weakly typed SQL engines like SQLite). In addition to being
faster by providing access to an entire span object at once (which
avoids converting every single element to a dynamic argument),
the fast path is also type-safe for statically typed arguments.

The proposed abstractions provide convenient read-only access
to data and code in line with state-of-the-art dataflow systems.
However, due to the simplicity of the memory model (i.e., the lack
of reference counting), even trivial operators like projections in
a column-store would have to perform expensive copies when
performing only structural changes to the expressions (i.e., when
the data itself is not changed). To address this challenge, we propose
a novel design pattern for dataflow systems that requires neither
copies nor reference counting: Destructive Decomposition.

4.4 Destructive Decomposition
Like Spans, we propose implementing Expressions as non-copyable
(move-only in C++-nomenclature) types. In fact, theymust be move-
only types because one of their components (the Span arguments)
is move-only. However, while they cannot be copied, they can
be decomposed into components which can be reassembled to
implement operations like projections. Figure 6, line 3, illustrates the
API: a decompose() function that returns the expression components
(head, statics, dynamic arguments and spans) as a tuple. The &&-
suffix to the function indicates that the function can only be applied
to an rvalue-reference, i.e., an object that is about to be destroyed. It
is the very semantics that is required for destructive decomposition.

Lines 7 to 11 in Figure 6 illustrate how destructive decomposition
can be used to structurally modify an expression (in this example,
to remove the dynamic arguments): according to the established
ownership model, the function owns the expression object; it can
safely destroy the object and extract its arguments. To do so, the
function must mark input for destruction (by calling move) and call
decompose(). Just like for Spans, the use of move is required and en-
forced by the compiler. Using the input expression after it has been
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moved results in a warning or compilation error (depending on com-
piler flags). The elements of the returned tuple are assigned directly
to variables using the auto []-syntax. They are then reassembled
into a new Expression object. Using destructive decomposition this
way avoids expensive copies and (opinionated) reference counting.

5 KERNEL-WRAPPER CODE SYNTHESIS
Based on the data abstractions defined in the last section, let us now
define compile-time programming abstractions that allow kernel
integrators to generate (practically) zero-overhead kernel-wrapper
code with minimal boilerplate. In particular, we propose compile-
time abstractions that practically eliminate the need for physical
data transformation by providing a compile-time translation be-
tween a kernel’s in-memory data representation and the expected
Expression API. To ease their interaction with the host system
language, these abstractions are purposely leveraging existing pro-
gramming language techniques, extended to solve the problem
of composing off-the-shelf systems into a full DMS system with
minimal boilerplate and integration complexity.

5.1 Semi-static dispatching
Since DMSs have to support arbitrary workloads, operators need to
be generic to support a variety of types. To provide type generality,
most high-performance systems (such as MonetDB and DuckDB)
rely on compile-time code generation to expand templates into type-
specific operators. To minimize runtime overhead, the dispatching
of dynamically-typed columns or tables to statically-typed opera-
tors is performed per-column or per-microbatch. Without adequate
language support, however, this requires significant boilerplate
code for type dispatching and template expansion. The MonetDB
team, e.g., used to use Mx, a purpose-built template expansion
system, for that purpose [4] (now, they use C-macros).

Data-intensive programming languages like Julia solve the prob-
lem of mapping dynamic types to operators by implementing a
technique called dynamic dispatching [27]. Dynamic dispatching
allows the overloading of functions with static types, which are
matched against the runtime types of function calls. In Julia, this is
supported by just-in-time code generation to maintain competitive
performance. Systems languages like C++, Rust and Swift do not
support dynamic dispatching3. However, with the restricted CWD-
Typing defined in Section 4 allowing the set of types to be statically
defined within each kernel, we found that a limited form of dynamic
dispatching is sufficient to address the needs of composable DMS
development. We call this technique Semi-static Dispatching.

To illustrate the advantage of semi-static dispatching, let us intro-
duce the example of implementing a sum operator in the DMS. Be-
cause the operator handles generic types as arguments, but the code
operates on statically-typed data for performance, the implementa-
tion in a typical DMS requires: (a) type-checking for the arguments
passed to the operator; (b) conversion to the static type system; (c)
a memory management model for direct access to the data without
a copy; and (d) conversion back to the dynamic type representa-
tion. The DMS also requires (e) an operator registry that allows

3Note that dynamic dispatching is often confused with virtual function calls, leading
to false claims of dynamic dispatch support in systems languages

1 operators["Sum"_] = []<NumericType ArgumentsType>
2 (ComplexExpression<ArgumentsType>&& input) {
3 auto result = input.getArgument<0>();
4 for(auto& span : input.getSpans())
5 for(auto& element : Span<ArgumentsType>(span))
6 result += element;
7 if(isnan(result)) return "Table"_("Sum"_("NULL"_));
8 return "Table"_("Sum"_(result));
9 };

Figure 7: Combining all the techniques to implement a DMS-
operator with minimum boilerplate

dynamically typed operators. Each of these problems requires a
large amount of boilerplate code in the operator implementation.

The code in Figure 7 shows how little boilerplate is required
with the semi-static dispatching approach: The operator is defined
as a generic lambda and inserted into the operator registry (e) in
line 1: the []-syntax declares a lambda while the angle brackets
declare a type parameter ArgumentsType that is expanded to the
different types of arguments the operator accepts (float, int, ...). The
NumericType qualifier restricts the set of possible template argu-
ments using C++20 concepts. The implementation of the lambda is
relatively straightforward: it takes a single ComplexExpression as
input in line 2 using move paradigm (c) and initializes the result
from the first argument of the input expression in line 3 which is
statically typed, avoiding type-checking (a). It, then, iterates over all
input spans (line 4) and casts them (b) to the same type as the first ar-
gument in line 5. This cast is safe as the framework ensures that the
spans have the same type as the first argument at runtime. After that,
the operator merely needs to iterate over the span elements (also
in line 5), sum them up in line 6 and return the result (d) in line 7.

As demonstrated in this example, all of the problems we enumer-
ated are solved by encapsulating all the techniques we presented
previously into one compile-time API. This, supported by the host
language, allows significantly reducing boilerplate and code com-
plexity without compromising the high-performance requirements
for a DMS kernel. As a qualitative comparison, the Greater operator
implemented in ArrayFire takes less than 23 lines of code, whereas
implementing the equivalent functionalities but without semi-static
dispatch takes more than 80 lines of code4.

The execution framework takes advantage of the type parame-
ter ArgumentsType (line 1) being known and statically expanded
at compile-time. Thus, at runtime, the expression’s dynamic ar-
guments are efficiently typed-checked against static types in the
dispatch code. If one of the argument types does not match, no
evaluation is performed, and the expression is returned as-is (i.e.,
will be evaluated by subsequent stages). If the arguments match,
they are replaced with static arguments (moved with zero copies)
and the function is called for evaluation.

5.2 An Embedded Expression DSL
As covered in Section 4, we propose a simple yet effective data
model. Creating expressions in that model, however, is quite

4We provide the two versions in the Evaluation folder of the code repository at
https://github.com/lsds/MultiKernelBOSS/tree/main/Evaluation.
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1 ;; input query:
2 (Select Lineitem (Where Mode != "Truck"))
3 ;; after Storage engine substitutes symbols and Strings:
4 (Select (Table (Key 1 2 3 4 5) (Mode 0 0 1 2 0))
5 (Where Mode != 0))
6 ;; after ArrayFire partially-evaluates the query:
7 (Gather (Table (Key 1 2 3 4 5) (Mode 0 0 1 2 0)) 2 3)
8 ;; after Velox evaluates the query:
9 (Table (Key 3 4) (Mode 1 2))
10 ;; after Storage engine re-write the Strings back:
11 (Table (Key 3 4) (Mode "Mail" "Air"))

Figure 8: Query evaluation in a staged pipeline

boilerplate-heavy. To reduce the boilerplate, we extended the C++
host language with a domain-specific language by overloading
the underscore (_) operator. That overload provides two functions:
when applied to a string literal, it encodes a symbol; when applied
and invoked, it constructs an expression. This allows the concise
construction of expressions directly in the host language. To il-
lustrate this, consider lines 7 and 8 in Figure 7: the result of the
computation must be returned as a value in a column named Sum
that is wrapped in a Table expression (line 8). However, the compu-
tation may also produce an invalid (specifically, a NaN) value. This
is represented in SQL as a NULL. To handle this case, the operator
returns a NULL-symbol in the column if isnan(result) returns true.

6 PARTIALLY-EVALUATING ENGINES
To demonstrate the feasibility of multi-kernel DMSs and assess
the utility of the abstractions we introduced in Sections 4 and 5,
we implemented them in a system named BOSS, short for Bulk-
Oriented Symbol-Store [6]. BOSS supports CPU/GPU co-processing
of relational queries by pipelining a storage & loading kernel, a GPU-
accelerated relational kernel and a CPU-based relational kernel that
supports a subset of what is required for relational data analytics.
Let us start by introducing the processing pipeline at a high level
before presenting the different kernels.

6.1 Engine Pipelining
BOSS combines three engines: the Apache Arrow persistence en-
gine [1], the CPU-oriented relational processing engine Velox [38],
and the ArrayFire parallel computing kernel [32] to add GPU co-
processing support. The example in Figure 8 illustrates the role of
each engine in the execution pipeline. The initial query (line 2) is,
first, evaluated by the Storage engine (lines 4 & 5) to substitute sym-
bols referring to tables and columnswith expressions containing the
data of those columns. Next, the ArrayFire engine opportunistically
evaluates the parts of the plan that benefit from GPU acceleration
(line 7). Finally, the Velox engine evaluates all unevaluated oper-
ators and returns an evaluated result (line 9). There is no need
for explicit operator assignment to kernels to decide which opera-
tors are evaluated by the ArrayFire or the Velox engine: the only
orchestration logic is the order of the engines in the pipeline.

Let us, now, discuss the technical details of each of these engines
and how they achieve zero-overhead interaction.

Shallow-Transformation

Arrow-to-SpanPartition 1    Partition 2

Relation-Level Partitioning

Key

1

2

3

Price

10

29

18

Column 1       Column 2

Column-Level Partitioning

Key Price

4

5

Key

4

2

Price

1

2

3

4

5

10

29

18

4

2Shallow-Transformation

Span-to-Velox

Figure 9: Conversion between relation-level (Arrow & Velox)
and column-level (BOSS Span & ArrayFire) partitioning

6.2 Storage & Loading
The storage engine implemented in BOSS has two functions: loading
relational data from files into memory and substituting the table
identifier symbols with the stored relational expressions.

Loading Relational Data. We implement the storage engine on top
of Apache Arrow [1], which provides in-memory columnar storage
in the form of Arrow Arrays. Arrow Arrays are wrappers around C-
arrays. They can, therefore, be converted to BOSS Spans with zero-
copy by passing the C-array pointer to the Span’s constructor. Be-
cause the Arrow Array owns the C-array, to ensure that the C-array
is released only when the Span is deallocated, the Arrow Array’s
shared pointer is passed as the payload for the Span’s destructor.

To partition column data into smaller arrays that fit in the CPU’s
last-level cache, both Apache Arrow and BOSS support partition-
ing but with a different layout. As shown on the left of Figure 9,
Apache Arrow uses a relation-level partitioning layout, i.e., relations
are sets of partitions which are sets of column arrays. We adopted
in BOSS the column-level partitioning layout, i.e., columns are com-
posed of multiple partitions, shown on the right of Figure 9. This
layout, supported by the Expression API by storing multiple Spans
in the expressions (see Section 4.3) is simpler for manipulating data
per column compared with Apache Arrow’s layout and has less
structural redundancy (e.g., column metadata is stored only once).

Data in one layout is converted into the other representation
with minimal overhead using shallow-transformation, i.e., the target
data structure is created, but the data is transferred without copies.

Symbol Substitution. As illustrated in Figure 8 lines 1 to 5, table iden-
tifier symbols are substituted by the storage engine with stored rela-
tional expressions, such as replacing the Lineitem symbol in line 2
with (Table (Key 1 2 3 4 5) (Mode 0 0 1 2 0)) in line 4. To
efficiently perform this substitution, table identifier symbols are
stored in a dictionary of table identifiers to relational expressions.
During query execution, the storage engine traverses query plan
expressions and replaces table identifier symbols with stored rela-
tional expressions. As the storage engine owns persistent relational
expressions (i.e., the Table expressions), they are shallow-copied
into the plan: the storage engine instantiates new spans referencing
the input C-arrays without passing a destructor function or payload.
This effectively makes the spans non-owning. As the storage en-
gine outlives the execution of the query, handing out non-owning
references to spans is safe.

Compressed String Dictionaries. When a database contains string
columns with low cardinality (i.e., few unique strings), storing
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duplicates of the strings in memory would be wasteful. In addition,
executing equality predicates on a string is inefficient when only an
integer comparison suffices. DMSs, therefore, typically implement a
compressed string dictionary, i.e., strings are stored with an integer
column whose values are indexed into a list of unique strings. The
following illustrates how the partial query evaluation paradigm
allows the implementation of this feature in the storage engine
without changes in the other engines.

During loading, low-cardinality string columns and dictionary-
compressed. During the query evaluation, the Storage engine evalu-
ates string predicates on the dictionary and re-writes the query plan
into one that operates directly on the (integer) keys (lines 4 & 5 in
Figure 8). This allows “downstream” engines to efficiently process
compressed strings without having to implement the functionality.
To turn keys back to strings in the result, the storage engine wraps
the query in a StringLookup operator (turning line 9 into 11).

6.3 Relational Processing on CPU
We implement a general-purpose CPU execution engine for the
Multi-kernel DMS to handle relational processing based on Meta’s
Velox kernel [38]. Integrating Velox into BOSS, requires transferring
data from BOSS to Velox and back and translating BOSS query plans
to Velox. For that purpose, we implemented a thin wrapper around
the Velox kernel we call the Velox Engine.

Data Transfer. Velox is a vectorized execution engine that processes
data in batches of tuples in decomposed format. The fundamental
materialization unit for decomposed data in Velox is a FlatVector,
which represents a column or column-partition in a single mem-
ory block. Consequently, data As can be converted between Velox’
FlatVector and BOSS Spans without copy. Composed from mul-
tiple FlatVectors, RowVectors are used to represent a group of
columns that are being passed between operators.

A Velox FlatVector can assume ownership of a memory object,
evaluate operations on it and return ownership without requiring
copying. BOSS’ Velox Engine adopts this Ownedmode, by providing
spanToVelox and veloxtoSpan functions to transform Span to a
FlatVector and vice-versa.

Illustrated in Figure 9, Velox-to-Span implements a shallow trans-
formation between BOSS Span and Velox’ RowVectors. A vector
of RowVector represents multiple Spans generated based on the
relation-level partitioning layout. For example, the first batch of col-
umn Key and column Price is transformed to RowVector 1, while
the second batch is transformed to RowVector 2.

Expression Translation. The Velox Engine uses Velox’ PlanBuilder
API to create a query plan tree. It builds a query plan tree bot-
tom up, starting with the source node (ValueNode), followed by
computation nodes such as FilterNode, ProjectionNode and
AggregationNode. ValueNodes are created from RowVectors (cre-
ated as explained above). The inputs of the remaining functions
are obtained by traversing the BOSS expression. We implemented a
recursive bossExprToVelox function to iterate over BOSS expres-
sions and perform the transformation.

To illustrate the process, let us use FilterNode as an example:
Figure 10 shows a code snippet illustrating the process of trans-
forming "Where"_("Greater"_(Price, "17"_)) to inputs of Velox’

1 void bossExprToVelox(Expression&& e, QueryBuilder& b) {
2 e.visit(
3 [&](ComplexExpression&& e) {
4 auto [head, statics, dynamics, spans] =
5 move(e).decompose();
6 for (auto& argument: dynamics)
7 bossExprToVelox(move(argument), b);
8 if (head == "Greater") {
9 auto& args = b.getFilterArguments();
10 b.addFilter(format("{} > {}", args[0], args[1]));
11 }
12 },
13 [&](auto valueOrSymbol) {
14 b.addFilterArgument(getAtomicExpr(valueOrSymbol));
15 });
16 }

Figure 10: Translating BOSS expression to Velox using its
PlanBuilder.

filter function. The dispatching of dynamically typed BOSS ex-
pressions to statically Velox-typed functions is encoded using the
e.visit function in line 2. In the first level of recursion, the Where-
expression is decomposed into its head (the Where-symbol) (line 4),
and its sole argument ("Greater"_(Price, "17"_)). The Greater-
expression is recursed-upon (line 7). In the second recursive step,
the expression is still visited as a ComplexExpression, its head is
Greater, and the two arguments will be traversed as atomic expres-
sions in the next two recursive steps. In the third level of recursion
Price is visited as a symbol (line 13) while 17 is visited as a constant
value (also line 13). The atomic values are saved as filter arguments.
After returning to the second level of recursion, the FilterNode
plan is created (lines 9 to 12) from the saved arguments.

Opportunities. When integrating Velox kernel into BOSS, we found
that the Velox engine does not yet exploit all optimization opportu-
nities. The join operator provided by Velox, e.g., does not exploit
available indices, such as primary/foreign keys. Furthermore, the
current version of Velox does not support GPU acceleration. A
secondary engine can improve performance by exploiting these op-
portunities without modifying the Velox kernel itself. Let us in the
following illustrate how BOSS offloads compute-intensive operators
onto a GPU by using the ArrayFire Tensor compute kernel.

6.4 Acceleration on GPU
Due to limited capacity of GPUmemory, transfer cost andmassively
parallel architecture, not all operators can be GPU accelerated [20].
Consequently, we implemented a GPU-accelerated engine that de-
termines which parts of a query to execute on the GPU. Taking
advantage of partial query evaluation, the queries are traversed dur-
ing execution to opportunistically evaluate some operators, leaving
the rest of the query unevaluated (for a CPU-kernel to evaluate).

To demonstrate the use of off-the-shelf kernels, we build on the
ArrayFire Tensor Processing Kernel [32] to implement the GPU-
accelerated engine. ArrayFire provides a unified API to manipulate
tensors, called af::arrays, with backends for CUDA, OpenCL and
classic CPUs. Our engine implements relational operations on top.
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Relational Operators Implementation. We limit our efforts to cases
that can efficiently be implemented using only ArrayFire functions.

Projection. In its simple form, this operator is a no-op, i.e., only re-
naming columns using destructive decomposition. However, some
projections evaluate arithmetic expressions. These are straightfor-
ward to implement using ArrayFire’s arithmetic operations.

Selection. This operator is implemented using ArrayFire by evalu-
ating the predicate(s) to a bit array using ArrayFire’s boolean opera-
tions on af::arrays and transforming the bit array into a position list
(i.e., an array of indices) using ArrayFire’s af::where operator. The
kernel opportunistically evaluates as many predicates as possible
given theGPUmemory constraints. As illustrated in Figure 8 (line 7),
the ArrayFire Engine leaves some selections unevaluated to mini-
mize cross-device data transfer. Those that are evaluated are trans-
formed to a Gather operator, taking an (unmodified) relation and
the position list as arguments to be evaluated by the Velox Engine.

Join. The typical implementation of a join on the GPU is a par-
titioned hash join [31, 47] which is non-trivial to implement with
ArrayFire. However, ArrayFire supports the case of indexed pri-
mary/foreign key joins, which are, arguably, themost common joins.
The join is implemented using ArrayFire’s af::lookup function to
resolve the probe side of the joined relation. If the input data is par-
titioned into multiple spans as discussed in 6.2, they are combined
into a single contiguous array in the GPUmemory. This operation is
performed at no extra cost when the data is transferred to the GPU.

Lazy GPU Transfer & Evaluation. Unlike BOSS Spans, af::arrays
are no mere wrappers for data. Instead, most ArrayFire functions
return unevaluated “proxies” that contain a DAG of operators to be
executed lazily when data is accessed (on the CPU). However, when
af::arrays are initialized with data, data is eagerly transferred to the
GPU. This creates a hybrid execution graph (illustrated in Figure
11), in which some edges are evaluated eagerly and some lazily.

This hybrid evaluation plan can become a performance liability
when the required dataset cannot be determined before executing
the plan. If, e.g., the GPU memory is insufficient, a transfer can fail,
making other transfers unnecessary. In Figure 11, e.g., the transfer
of the discount column is required if, and only if, the price column
is transferred as well. To avoid unnecessary data transfers in BOSS,
we transform the eager evaluation into a lazy one through a well-
known design pattern: we encapsulate the eager computation in a
functional closure and only evaluate it if necessary. The execution
graph (lazy as well as eager edges) can, thereby, be composed using
virtual function calls. For that purpose, we exploit the extensible
type system introduced in Section 4.1. We extend it with an addi-
tional atomic type: a closure that holds and returns an ArrayFire
array (implemented as function<af::array()>). When traversing

the BOSS plan expression, subexpressions that are amenable to
GPU acceleration are evaluated to such closures (which are passed
between operators as BOSS atoms). When returning the result to
the next kernel in the pipeline (i.e., Velox), the ArrayFire Engine
turns the closure into a core-BOSS atom by evaluating it.

7 EVALUATION
To assess the benefits of GPU-accelerating relational operators with
our approach, we evaluate the performance of BOSS [6] with and
without GPU acceleration and compare it with CPU-based DMSs
and a GPU-based DMS. Then, we verify more precisely the effects of
partially-evaluating queries for datasets not fitting into GPU mem-
ory and the benefits of the zero-copy data transfer design in BOSS.

7.1 Experimental setup
Systems. We integrated Velox v0.0.1a0 (git rev. fb33fbfec5895) [38]
for the implementation of the CPU-based kernel and ArrayFire
v3.8.3 [32], compiled with CUDA v12.0, for the GPU-accelerated
kernel. To evaluate the performance of co-processing in BOSS in
comparison with CPU-based DMS, we compare BOSS with Mon-
etDB Jun2023_SP2_release [56] and DuckDB v0.8.1 [40]. To evaluate
the performance with a GPU-based DMS, we compare BOSS with
HeavyDB v6.4.0 [22]. While HeavyDB is a GPU-only system and
we, therefore, do not expect to outperform it in terms of runtime,
there exists, to the best of our knowledge no system that is designed
for general-purpose co-processing.

Because Velox does not implement the primary/foreign keys opti-
mization for the joins that we implemented in the GPU-accelerated
kernel, to assess the benefits of this optimization independently
from the GPU acceleration, we also compare Velox and BOSS with
an alternative version of BOSS fully implemented on the CPU (using
ArrayFire’s CPU backend)

Hardware. All experiments are performed on a server with two Intel
Xeon Silver 4114 2.20 GHz CPUs, each with 10 physical cores, a 14
MB LLC cache and 196 GB of memory. The GPU is a GeForce GTX
Titan Xp with 12 GB of memory with NVIDIA driver v525.105.17.
We use Ubuntu 18.04 with Linux kernel 4.15.0-209 and compile all
code with Clang version 14 using the compiler flags -03 -mavx2.

Workload. In all the experiments, we use the TPC-H bench-
mark [13]. We store numerical values with double-precision
floating-point type for BOSS (due to better performance for GPU-
acceleration). We vary the scale factor (SF) from 1 to 100 (i.e., 1 to
100 GB). Following established practice [28], we evaluate the five
queries that capture the benchmark’s choke points [5]. None of
these queries performs integer arithmetic besides the aggregations,
which ensures fair comparison since the ArrayFire engine does not
check for arithmetic overflow yet (and does not evaluate aggrega-
tions). Due to the lack of support for non-dictionary compressed
string columns in the storage engine yet, Q9 is modified to filter
the PART table on P_RETAILPRICE rather than P_NAME and Q18 to
group by C_CUSTKEY rather than C_NAME. However, the cardinalities
are preserved. Q1, Q3 and Q6 are the original TPC-H queries.

Query Plans. To ensure a fair comparison of BOSS’s hand-written
query plans with other DMSs, we apply fixed heuristics that we
plan to integrate into an automated query optimizer in the future.
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Figure 12: Runtime for TPC-H on five representative queries with scale factor 10 (i.e., 10GB)

for all the queries to decide the join order: we iteratively pick the
two smallest among all the pairs of relations that can be joined
next and always use the smaller of the two on the build side. To
ensure that the query plan maximizes the operations that the GPU-
accelerated kernel evaluates, we apply two more rules when using
this kernel. First, we choose, as the next joined relations, the ones
having indexed PK/FK keys over smaller relations. Second, we push
the selections on joined tables down the query plan and order the
predicates based on their independent selectivity (estimated by
sampling the tables). For example, for Q9, ORDERS and LINEITEM
are joined first because they have indexed PK/FK even though they
are not the smallest relations, and the selection on P_RETAILPRICE
is applied only after joining the PART table, so the indexed FK/PK
on PARTSUPP and PART can be exploited.

Query Concurrency. For the interpretability of our experiments, we
run the queries in isolation. If the queries were run concurrently,
co-processing could be overlapped, benefiting the throughput but
not the latency. For transparency, we report CPU and GPU runtimes
broken down in separate bars for SF 10. To assess latency, one must
add CPU andGPU runtimes; to assess throughput, onemust take the
maximum of the two. Because we consider throughput more impor-
tant for analytics DMSs, we present BOSS runtime as the maximum
between CPU and GPU when the breakdown is not indicated.

7.2 Performance with TPC-H Benchmark
To start the evaluation, we study the typical case for GPU accelera-
tion: a medium-sized dataset by executing the TPC-H queries with
SF 10. The results are shown in Figure 12. Overall, the figure shows
a significant performance benefit from co-processing but with vari-
ations depending on the query characteristics. We will now analyze
the results for each query in order of increasing query complexity.

Heavy scan with multi-predicate selection (Q6). Velox is outper-
formed by MonetDB and DuckDB by a factor of 3x and 2x, respec-
tively. This result is explained by the implementation of the filter
operator provided by Velox, which only applies to a single predicate
column, while Q6 has multiple predicates. Velox uses dictionary
vectors to avoid the materialization of intermediate position lists for
successive filter operators, but the nesting of index indirections af-
fects the performance. BOSS significantly improves Velox’ runtime
(by a factor of 14x), benefiting from GPU-accelerating the selection
leaving Velox to compute grouping and aggregation. Combining
the efficiency of the CPU-based operators and the GPU-accelerated
operators allows BOSS to outperform the two CPU-based baselines

by a factor of 3x (MonetDB) and 5x (DuckDB). The GPU-only base-
line HeavyDB is even outperformed by BOSS by a factor of 25x.
HeavyDB performance is also affected by the runtime overhead of
the system, which we will study later in this section.

Large computation and aggregation (Q1). For this query, which is
dominated by arithmetic computation, MonetDB, DuckDB and
Velox perform similarly. BOSS improves Velox runtime by executing
the arithmetic operations on the GPU by a factor of 1.3x. Only a
minor improvement is gained because the high cardinality of the
filter impedes the benefits of running the calculations on the GPU:
more than 99% of the column values participating in the arithmetic
operations are transferred back to the CPU. HeavyDB aggregates
on the GPU and transfers only a small fraction of data back to the
CPU, slightly outperforming the CPU/GPU BOSS.

Joins on filtered columns (Q3). With this query, dominated by join
calculation, Velox is outperformed by MonetDB and DuckDB by a
factor of respectively 6x and 7x due to Velox not taking advantage
of the indexed primary/foreign key present for the join relations
of this query. The Velox team considers taking advantage of an
index structure outside their project’s scope. However, BOSS, which
implements indexed primary/foreign key joins, outperforms Velox
by a factor of 3x. HeavyDB performs similarly to Velox, and is thus
outperformed by BOSS by a similar factor.

Large unfiltered joins (Q9). Q9 shows similarities with Q3. The
execution is dominated by join calculation but at higher cardinality.
In that case, Velox takes better advantage of multi-threading and
outperforms DuckDB by a factor of 1.8x. MonetDB still outperforms
Velox by a factor of 6x. Similar to Q3, GPU-accelerating the join
operations allows BOSS to outperform Velox by a factor of 2x.
However, MonetDB outperforms BOSS by a factor of 3x due to the
inferior performance of the sorting and the aggregation evaluated
by Velox on the CPU. HeavyDB outperforms BOSS by a factor of
1.5x due to the more efficient GPU-accelerated implementation of
sorting and grouping but is still not as efficient as MonetDB’s.

High-cardinality grouping and aggregation (Q18). Q18 also executes
large unfiltered join like Q9, but aggregation dominates the query
runtime due to the high cardinality of the grouping. MonetDB
and DuckDB outperform Velox due to better performance of the
grouping operator (which accounts for 70% of the total execution
time in Velox). By benefiting from GPU acceleration only for one
of the two joins, BOSS outperforms all the baselines by the factors
2x (MonetDB), 3x (Velox), 4x (HeavyDB) and 6x (DuckDB).
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Figure 13: Runtime for TPC-H on five representative queries with SFs 1, 10 and 100
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These results show that minimal integration efforts to GPU-
accelerate relational operators allow BOSS to significantly improve
the performance of the Velox CPU-only implementation and out-
perform, for some queries, other highly efficient CPU-based DMSs.

7.3 Scalability
To assess the scalability of our co-processing approach, we run the
same TPC-H queries at SFs from 1 to 100.

At SF 1, (Figure 13), all CPU-based DMS and BOSS, perform
(relatively to their scale) similar to SF 10. It shows that the run-
time overhead of these systems is not significant, even on such a
small dataset. However, HeavyDB has such overhead for evaluating
Q6: the results for SF 1 and 10 are identical, which explains why
heavyDB is outperformed by BOSS on this query.

At SF 100, data required for the GPU processing does not entirely
fit into the GPU memory for any of the five queries. The missing
bars for HeavyDB in Figure 13 are due to HeavyDB failing to pro-
cess Q3, Q9 and Q18 because the implementation does not provide
a fallback method when the GPU memory is insufficient. Unlike
HeavyDB, BOSS’ GPU-accelerated kernel can partially evaluate the
query and leave it to the CPU kernel to evaluate the remaining
operations, as explained in Section 6.4. The results show that, while
fewer operations are GPU-accelerated, the implementation always
benefits from GPU acceleration: BOSS outperforms the Velox im-
plementation for all queries but to a lesser extent than with smaller
datasets for the queries that operate with high cardinality (Q1, Q3
and Q6). For Q9 and Q18, BOSS outperforms Velox by factors of 8x
and 32x, taking advantage of indexes and GPU-accelerated joins.
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Figure 15: TPC-H Query runtime (SF 10) with and without
data copy between engines

7.4 Effect of scarce GPU memory
To assess the effects of the partial evaluation strategy designed
for the GPU-accelerated kernel, we measure how much the data
not fitting into the GPU memory affects the runtime execution.
For this experiment, we evaluate TPC-H Q6 with SF 100 and vary
the maximum size of data allowed to be transferred to the GPU
from 0GB (i.e., no GPU acceleration) to 11GB (i.e., maximum GPU
transfer allowing to GPU-accelerate two of the three selections). As
expected, the results in Figure 14 show a significant performance
improvement at 2.3GB when the memory is sufficient to evaluate
the first (low-cardinality) selection and a smaller gain at 6.9GB
(when the kernel can evaluate the second, higher-cardinality, selec-
tion). The partial evaluation allows to maximize GPU acceleration’s
benefits for any available GPU memory resources.

7.5 Ablation Study
To assess the benefits of the design choices for our framework,
we measure the runtime overhead with two modified versions of
BOSS: (1) With data copy between the kernels to assess the benefit
of zero-copy data transfer; (2) With the dynamic dispatch of the
data elements one by one to assess the benefits of fast-path in the
expression API. For both, we evaluate TPC-H queries at SF 10.

For the first experiment, the results in Figure 15 show a high
cost for data movement: between four and 250 times the execu-
tion runtime depending on the query. The transfer cost from the
GPU-accelerated kernel to the CPU kernel is generally lower (but
still significant) than the transfer from the storage kernel since the
relations passed by the storage kernel are not yet filtered before
evaluating the relational operators. However, Q1, Q3 and Q9 have
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a high GPU-to-CPU transfer cost due to the high cardinality before
the aggregation on the CPU. This result confirms the significant
performance benefit from avoiding data transfer between the ker-
nels, which is made possible by the proposed data exchange format
used to integrate DMSs into a single data processing pipeline.

For the second experiment, the results in Figure 16 show an even
higher cost when the fast-path is disabled: the query execution
increases by a factor of 100x to 6000x depending on the query.
This demonstrates that the fast-path approach avoids the execution
overhead of dynamic dispatching.

7.6 BOSS Framework Overhead
To assess the execution overhead for traversing and modifying ex-
pressions (for the query execution and the shallow-transformation
of the data layouts), we measure the execution time of the BOSS
framework. For this experiment, we run the TPC-H queries with
SFs 1 to 100 and profile the execution with Intel VTune v2020 [25]
to isolate the execution time of the functions calls from the BOSS
framework. The results in Figure 17 confirm that BOSS framework’s
overhead is negligible compared to the total execution time.

8 RELATEDWORK
Composable DMSs. While DMS researchers have studied extensible
designs for a long time [11, 19], the focus on the composition of
separately designed components is a relatively recent trend. Meta’s
Velox [38] demonstrates the utility of a single execution engine for
multiple systems. It achieves high-performance data processing by
integrating features from different DMS into a unified execution
engine. Delta Lake [29] provides a unified storage format to bring
ACID transactions to big data workloads on cloud object stores.
GoogleSQL [18] serves as a standard for various Google products,
facilitating sharing of parser, optimizer, and operators. All of these
focus on improving the reusability of the components. We, however,
focus on a framework to compose kernels.

GPU Acceleration for DMS. GPU acceleration has been widely used
in data analytics. Numerous contributions have been made to utilize
GPU resources to speed up classic algorithms, such as sorting [33, 44,
46, 49] and nearest neighbor search [16, 17, 52]. DBMS acceleration

using GPU has also received attention. Two main options exist:
(1) offloading operators, (2) building a standalone GPU DMS.

While Offloading Operators, the CPU coordinates the execution
process, and the GPU serves as co-processor. Join algorithms on
GPUs have been extensively [37, 42, 43, 48, 51], while Yuan et al. [55]
study non-join operators. Although some researchers studied of-
floading entire subplans [7, 55], frequently transferring data across
devices results in poor performance. However, to the best of our
knowledge, our proposal is the first to study runtime-opportunistic
offloading of operators in the context of a full DMS.

GPU DMSs avoid the PCI-bottleneck but require the GPU to
process all operators. Commercial systems such as HeavyDB [22]
and BlazingDB [2] adopt GPUs as their primary execution engine.
Ocelot [23] is a hardware-oblivious extension for databases that
include a set of GPU acceleration operators. To improve the effi-
ciency, some systems implement fine-grained pipeline optimiza-
tions [12, 15, 30, 53] while others [36] pipelines entire operators
through OpenCL 2.0 pipes [21]. For CPU/GPU co-processing sys-
tems, data placement and transfer are the primary challenges
[3, 8, 45]. Yuan et al. [55] propose to use Universal Virtual Address-
ing to extend the GPU memory, while CoGaDB [7] and Yogatama et
al. [54] cache data on the GPU. All these techniques are applicable
but orthogonal to our work.

9 CONCLUSION
Composable DMS design promises a new generation of DMSs that
are more extensible, easier to develop, cheaper, safer and more
efficient while taking advantage of the latest techniques and tech-
nologies. However, current DMS architectures obstruct this goal by
requiring substantial boilerplate code and expensive copies between
components. To address this problem, we propose a fundamentally
new architecture developed around the idea of partial query evalu-
ation and a unified exchange format for data and executable query
plans. We demonstrate the feasibility and utility of our approach
by implementing BOSS [6], a system that integrates the Apache Ar-
row storage library, the GPU-accelerated ArrayFire compute kernel
and the CPU-oriented Velox kernel. We demonstrated that BOSS is
virtually overhead-free and achieves significant performance im-
provement over the CPU-only Velox kernel and even outperforms
the highly-optimized GPU-only DMS HeavyDB for some queries.

We argue that Partial Query Evaluation is the right framework
for designing and implementing composable DMSs and will enable
the integration of many data-oriented techniques and technologies.
This includes the integration of new hardware, such as smart stor-
age devices or application-specific circuits, as well as cloud services,
such as serverless computation and smart cloud object stores. It will
also accelerate the integration of new data management techniques,
such as learned indices and new data models. Finally, this new par-
adigm holds the potential to simplify existing DMS architectures:
kernels could, e.g., apply a mix of processing and optimization,
effectively implement an adaptive query optimizer. We will explore
such opportunities in future work.
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