
FusionFlow: Accelerating Data Preprocessing for Machine
Learning with CPU-GPU Cooperation

Taeyoon Kim
UNIST

tykim8191@unist.ac.kr

ChanHo Park
UNIST

pch8286@unist.ac.kr

Mansur Mukimbekov
UNIST

mansur@unist.ac.kr

Heelim Hong
UNIST

heelim@unist.ac.kr

Minseok Kim
UNIST

minseok1335@unist.ac.kr

Ze Jin
ByteDance

ze.jin@bytedance.com

Changdae Kim
ETRI

cdkim@etri.re.kr

Ji-Yong Shin
Northeastern University
j.shin@northeastern.edu

Myeongjae Jeon
UNIST

mjjeon@unist.ac.kr

ABSTRACT
Data augmentation enhances the accuracy of DL models by diversi-
fying training samples through a sequence of data transformations.
While recent advancements in data augmentation have demonstrated
remarkable efficacy, they often rely on computationally expensive
and dynamic algorithms. Unfortunately, current system optimiza-
tions, primarily designed to leverage CPUs, cannot effectively sup-
port these methods due to costs and limited resource availability.

To address these issues, we introduce FusionFlow, a system that
cooperatively utilizes both CPUs and GPUs to accelerate the data
preprocessing stage of DL training that runs the data augmentation
algorithm. FusionFlow orchestrates data preprocessing tasks across
CPUs and GPUs while minimizing interference with GPU-based
model training. In doing so, it effectively mitigates the risk of GPU
memory overflow by managing memory allocations of the tasks
within the GPU-wide free space. Furthermore, FusionFlow provides
a dynamic scheduling strategy for tasks with varying computational
demands and reallocates compute resources on the fly to enhance
training throughput for both single and multi-GPU DL jobs. Our
evaluations show that FusionFlow outperforms existing CPU-based
methods by 16–285% in single-machine scenarios and, to achieve
similar training speeds, requires 50–60% fewer CPUs compared to
utilizing scalable compute resources from external servers.

PVLDB Reference Format:
Taeyoon Kim, ChanHo Park, Mansur Mukimbekov, Heelim Hong, Minseok
Kim, Ze Jin, Changdae Kim, Ji-Yong Shin, and Myeongjae Jeon.
FusionFlow: Accelerating Data Preprocessing for Machine Learning with
CPU-GPU Cooperation. PVLDB, 17(4): 863 - 876, 2023.
doi:10.14778/3636218.3636238

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/omnia-unist/FusionFlow.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636238

1 INTRODUCTION
Deep learning (DL) training is a time-consuming process primarily
due to compute-intensive mathematical operations that arise dur-
ing training. To expedite these computations, DL systems utilize
accelerators such as GPUs. In large-scale training, it is common to
parallelize each training iteration across multiple GPUs to further
improve training performance and efficiency [25, 43, 59, 75].

However, as HW technologies continue to evolve, the bottleneck
in DL systems is gradually shifting from the GPU to the CPU. Over
the last decade, GPUs have undergone substantial improvements,
with FLOPs per dollar doubling every two years [23]. In contrast,
improvements in CPUs have been relatively stagnant. This disparity
in speed enhancement results in a low CPU-to-GPU compute ratio
in many cases [39, 44], posing a challenge in effectively balancing
the DL workload over CPUs and GPUs within a server.

The data preprocessing (prep) step in DL training, which typi-
cally runs on the CPU, exacerbates this bottleneck by placing ex-
tra computational burdens on the CPU [6, 10, 30, 45, 47]. This
step precedes model training on each mini-batch of the training
dataset and applies a multi-stage data transformation pipeline called
data augmentation to enhance data diversity and improve model
accuracy. Modern data augmentation algorithms [12, 13, 31, 34–
36, 41, 46, 51, 53, 69, 71, 74, 76] dynamically choose a larger set
of transformation operators, further enhancing model accuracy at a
higher computational cost. Because the enhancement comes without
improving the training algorithm or using a larger dataset, these
data augmentation techniques are widely adopted by mainstream DL
frameworks such as PyTorch [64] and TensorFlow [63].

To hide the delays from the CPU bottleneck, the data prep step
for the next mini-batch runs concurrently with the current model
training [5, 42, 70], but the mini-batch is often not ready on time
for training. Thus, recent studies have explored various methods to
expedite the data prep step by utilizing remote CPUs beyond the local
server’s capacity [7, 18, 66, 72, 73]. This horizontal scaling of data
prep has been primarily achieved through disaggregated services [7,
18, 72], where DL systems allocate ample CPU resources for the data
prep to match the speed of model training on the GPU. To further
enhance scaling efficiency, a recent DL system called FastFlow [66]
automates decisions concerning the optimal amount of mini-batch

863

https://doi.org/10.14778/3636218.3636238
https://github.com/omnia-unist/FusionFlow
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636238
https://www.acm.org/publications/policies/artifact-review-and-badging-current

data to process on remote CPUs. To make such decisions, FastFlow
profiles a set of predefined candidate computations for offloading,
taking into account various remote compute and network capacities.

On the flip side, relying on remote CPUs to scale the data prep
step is not a panacea and has two limitations. First, its applicability
is restricted as it necessitates scalable compute resources, such as
CPU clusters [7, 18], which are not readily available to most ML
practitioners. Second, CPUs are typically optimized for sequential
processing tasks, whereas data prep for DL tasks – for example, on
image data – can benefit substantially from extensive data-parallel
processing. Consequently, approaches solely based on remote CPUs
can incur high costs. If an insufficient number of remote CPUs is
allocated, the data prep step will still remain as a bottleneck and
prolong model training times [66].

In this paper, we introduce FusionFlow, a new DL system that
speeds up the data prep step without dependence on remote compute
resources. The key strategy employed by FusionFlow is harnessing
idle GPU cycles, which enables the dynamic offloading of a por-
tion of CPU computations (specifically related to data prep in the
imminent iteration) onto local GPUs. Importantly, FusionFlow’s de-
sign principles complement horizontal CPU scaling. Thus, if remote
CPUs are at hand, FusionFlow can seamlessly integrate them into
its CPU pool and adjust the distribution of computations among all
accessible CPUs and GPUs, further speeding up the data prep.

To take the opportunity for GPU offloading, we retrofit one
of the libraries that offer HW-assisted operations for data prep
tasks [45, 47]. However, existing libraries are primarily tailored
for a single static pipeline that is repeatedly used to transform all
training samples. They are not well-suited for dynamic algorithms
that frequently change the data transformation pipeline (e.g., per
sample) on the fly. This dynamic nature incurs a substantial over-
head which encompasses task generation, GPU memory allocation,
and task scheduling on the GPU each time the data transformation
undergoes a change. Furthermore, these libraries manage a local
pool of GPU memory to optimize memory allocations, but this pool
can grow to several GBs [14, 40], limiting available space for model
training and increasing the risk of GPU memory overflow.

To overcome these challenges, we improve our system by incor-
porating two design principles: ahead-of-time task allocation and
cross-boundary memory sharing. When a DL job is spawned, Fu-
sionFlow pre-builds GPU tasks for all possible data augmentation
pipelines. During runtime, it executes one of the pre-built tasks that
reflects a random augmentation pipeline by simply updating the
input data of the chosen task, thereby eliminating most of the run-
time overhead. In addition, FusionFlow unifies local memory pools
between the data prep and model training phases. This integration
allows any unused GPU memory to be reclaimed for future memory
allocations, effectively reducing the GPU’s memory footprint.

For each mini-batch, FusionFlow exploits intra-batch parallelism
[42, 70] to distribute the data prep workload between CPU and GPU.
Since GPUs are specifically optimized for processing large data
blocks in parallel, FusionFlow assigns relatively larger samples from
a mini-batch to the GPU while keeping both CPUs and GPUs busy.
To generalize this idea, we propose task affinity-aware scheduler.
This scheduler initially divides each mini-batch into many small tiny-
batches, with each tiny-batch containing a small subset of samples
(even one sample). These tiny-batches are then sorted based on the

aggregate size of samples in each tiny-batch and fed into the CPU
and GPU in ascending and descending orders, respectively. To load
balance across the CPU and GPU while accommodating dynamic
changes in the CPU side’s compute capacity (e.g., variations in #
local/remote CPUs), our task scheduler continuously monitors the
number of remaining tiny-batches and the processing rates of all
available compute resources and adaptively adjusts task placements.

We opt for data-level partitioning over operator-level partitioning
for several compelling reasons. Operator-level partitioning splits
data prep operators (e.g., image decoding) between CPU and GPU
while, for instance, reserving the GPU for those resource-intensive
operators that can yield substantial speedup improvements. How-
ever, this partitioning scheme tends to be coarse-grained due to the
limited number of operators involved in data prep. In certain DL
frameworks like TensorFlow, the data augmentation phase is even
treated as a single, monolithic operator [66], further constraining
the options for operator partitioning plans. Consequently, it is diffi-
cult to effectively distribute the computational load across the CPU
and GPU through operators. Additionally, since data prep operators
are usually executed sequentially for a mini-batch, it is crucial for
mini-batch samples to seamlessly flow into these operators to fully
harness all available compute resources. This introduces additional
system complexity, which, if overlooked, could adversely impact
training performance.

We implement FusionFlow atop PyTorch and demonstrate the
benefits by comparing it with a concrete set of baselines, including
NVIDIA DALI [45], a popular GPU-based method, and traditional
CPU-based methods, including FastFlow [66], which represents
the state-of-the-art horizontal CPU scaling. Our evaluations show
that FusionFlow is 46.7–91.7% faster than DALI and 16.1–285%
faster than the local CPU-based methods and requires 50–60% fewer
CPUs compared to FastFlow to achieve comparable performance.
Moreover, FusionFlow can support 50% larger batch sizes compared
to DALI due to cross-boundary memory sharing and exploit in-
memory caching [30] to deliver even higher throughput.

2 BACKGROUND
DL training overview. Deep learning (DL) training involves pro-
cessing a dataset multiple times termed epochs. Each epoch consists
of many training iterations that repeat data preprocessing (prep)
and model training. In the data prep step, a mini-batch of data is
randomly fetched, decoded (e.g., JPEG to RGB format), and then
augmented to generate a batch of new samples. These augmented
samples are used in the model training step, where computations are
performed on the data as it passes through DL layers in order and
then in reverse order to calculate gradients for model updates. DL
training continues these steps until the model converges.

There are various methodologies for performing parallel DL train-
ing using multiple GPUs. For example, data parallelism allows
each GPU to train the model using a disjoint subset of the training
data. As the training proceeds with local mini-batches on different
GPUs in parallel, the gradients obtained during the model training
step are periodically aggregated to synchronize model updates. The
communication graph that specifies workers to perform the gradient
aggregation includes either all GPUs (e.g., All-Reduce [58]) or a
small subset [32, 37, 38]. Also, data-parallel training has a staleness

864

bound that determines the maximum iteration gap allowed among
workers [9, 15, 16, 22]. Although specific setups do not restrict our
work, we mainly consider data parallelism based on All-Reduce and
no staleness since it is the most commonly used form.

Dynamic data augmentations. While conventional data augmenta-
tion pipelines in the data prep step are statically configured, modern
ones create the pipeline dynamically at runtime [12, 13, 31, 34–
36, 41, 46, 51, 53, 69, 71, 74, 76]. For example, the first data aug-
mentation algorithm used in popular CNN models like ResNet [20]
and VGGNet [60] consists of three transformation operators (crop,
scale, and horizontal flip) [28, 60] applied to “all input samples”.
On the contrary, RandAugment [13] – the most well-known dynamic
algorithm – randomly selects two or more out of 14 operators “per
sample” and concatenates them with crop and horizontal flip [26, 30].
Deep AutoAugment [74] goes even further by augmenting each sam-
ple using five to seven random operators. As a result of using longer
pipelines formed by the dynamic selection of richer transformation
operators, these augmentation methods enhance the training accu-
racy for many popular models, including ResNet, EfficientNet, and
ViT, to name a few [13, 30, 62, 66].

3 CHALLENGES
In this section, we shed light on various challenges associated with
the efficient execution of data prep tasks. For brevity, we will use
the term “task” to refer to both input samples and the code required
to perform data prep unless specified otherwise.

3.1 Data Prep on CPU
The enhanced accuracy of dynamic data augmentations comes with a
high computational cost that often becomes a major source of perfor-
mance degradation. To demonstrate this, we characterize how well
commonly used DL systems fulfill fast training. We train ResNet-50
(RN-50) and ViT-Base (ViT) on two servers equipped with NVIDIA
RTX 3090 Ti and A100 GPUs using PyTorch 1.8 [48] and apply
two recent augmentation methods, RandAugment and AutoAug-
ment [12], on OpenImage dataset [29]. For comparison, we include
default augmentation algorithms (DefAugment) used in the PyTorch.

To evaluate computation costs and potential parallelism speedups
without interference, training is conducted on a single CPU and
GPU that does not need model synchronization. Furthermore, to
minimize the impact of I/O-related delays, our data prep proactively
prefetches subsequent mini-batches for augmentation in advance.
Our workload characterization reveals two challenges:

C-1. High computational cost. DL frameworks typically leverage
multiple CPU cores to parallelize data prep across samples, aiming
to have the next augmented mini-batch steadily ready for model
training as soon as the current iteration is completed [42, 70]. When
this condition is met, GPUs remain constantly occupied with model
training, avoiding CPU bottlenecks that arise from data prep.

Figure 1(a) shows the average time required for data prep (𝑡𝐷) and
model training (𝑡𝑀) to process a single sample using the mini-batch
size that fits in the GPU memory of the RTX 3090 Ti server. 𝑡𝐷
takes 17.3×, 14.7×, and 11.2× longer than 𝑡𝑀 for RandAugment,
AutoAugment, and DefAugment in ResNet-50, respectively. Thus,
assuming that performing data prep across CPUs for different sam-
ples is “embarrassingly parallel”, RandAugment, AutoAugment, and

CP
U

Ra
nd
Au
g

CP
U

Au
to
Au
g

CP
U

D
ef
Au
g

GP
U

RN
-5
0 GP
U

Vi
T

(a) 3090 Ti

0
5
10
15
20
25

E
la
ps
ed

ti
m
e
(m

s)

21.5
18.2

13.9

1.24
4.28

CP
U

Ra
nd
Au
g

CP
U

Au
to
Au
g

CP
U

D
ef
Au
g

GP
U

RN
-5
0 GP
U

Vi
T

(b) A100

0
5
10
15
20
25

14.3
11.6

7.5

0.51 1.91

Fetch Decode Augment Batch Train

Figure 1: Per-sample processing time on CPU and GPU for
different augmentation algorithms, models, and machines.

DefAugment require “at least” ⌈17.3⌉, ⌈14.7⌉, and ⌈11.2⌉ CPUs, re-
spectively, to match the model training speed without encountering
a CPU bottleneck. However, this server’s CPU-to-GPU ratio stands
at only 5.3:1, which is slightly higher than the ratio observed in pop-
ular NVIDIA’s AI-optimized servers like DGX-1 [4] and DGX-2 [2].
Subsequently, all these scenarios in ResNet-50 face CPU bottlenecks,
with RandAugment exacerbating the problem further. Note that due
to the higher 𝑡𝑀 , ViT is expected to experience less severe CPU
bottlenecks than ResNet-50.

Then, does using a newer server with more CPU cores resolve
this problem? We similarly measure the average 𝑡𝐷 and 𝑡𝑀 on the
A100 server, which provides up to 16 CPU cores per GPU. As Fig-
ure 1(b) shows, both 𝑡𝐷 and 𝑡𝑀 exhibit considerable reductions
compared to their counterparts in Figure 1(a). For DefAugment, 𝑡𝐷
takes 14.5× longer than 𝑡𝑀 for ResNet-50. This suggests that the
server’s CPU-to-GPU ratio of 16:1 appears to be sufficient to keep
the GPU fully engaged for model training. However, we continue to
experience CPU bottlenecks for the newer augmentation methods:
RandAugment and AutoAugment still demand a minimum of ⌈27.8⌉
and ⌈22.6⌉ CPUs, respectively.

We find that insufficient CPU cores per GPU are also commonly
observed among public cloud users. Public cloud vendors provide a
wide variety of instances with relatively low CPU-to-GPU ratios [39],
as shown in Figure 2.

C-2. Stragglers from variation in augmentation time. Under
single-GPU training, the GPU time spent to consume a single mini-
batch is fairly similar among different iterations as the gradient
computation is highly periodic [19, 33]. However, in multi-GPU
data-parallel training, the computed gradients may be aggregated
across GPUs before moving to the next mini-batch. For fast data-
parallel training, it is thus necessary to have no stragglers during the
gradient aggregation.

We find that the data prep significantly contributes to producing
such stragglers because different transformation operators cause
the mini-batch processing time to vary widely. Based on our anal-
ysis, for the image size of 128 KB, the SolarizeAdd operator
in RandAugment takes 52× longer than CutoutAbs, the cheap-
est operator. That is, the mini-batch that applies SolarizeAdd
to its samples more frequently will take a relatively longer time to
complete. We also observe that a larger input sample prolongs its
augmentation remarkably. Consequently, the data prep time highly
varies over iterations, as shown in Figure 3, requiring slow data preps
to be accelerated instantly to finish the current iteration faster.

865

0 5 10 15 20 25
CPU to GPU ratio

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F AWS

GCP

Azure

Figure 2: CDF of CPU-to-GPU ratio for
GPU instances in Amazon AWS, Google
GCP, and Microsoft Azure.

0 100 200 300 400 500 600
Mini-batch order

5

6

7

8

9

D
at

a
pr

ep
ti

m
e

(s
ec

)

Figure 3: Data prep time varying over mini-
batches when applying RandAugment.

DefAug RandAug
0

2

4

6

8

10

M
em

or
y

us
ag

e
(G

B
)

4.08

7.85Static

Dynamic

Figure 4: Breakdown of DALI memory
footprint for a mini-batch size of 240
with DefAugment and RandAugment.

3.2 Data Prep on GPU
HW-accelerated libraries [45, 47] provide an option to leverage
GPUs for speeding up data preps. Nevertheless, there are several
challenges that currently impede their adoption for dynamic GPU
offloading:

G-1. Needs for frequent generation of augmentation pipelines.
HW-accelerated libraries for conventional data augmentation algo-
rithms are compelling as we only need a single static data transfor-
mation pipeline to apply over the whole training process. On the
contrary, they are usually not well suited for recent algorithms as
the pipeline must frequently change to augment training samples
more dynamically. A naïve solution to meeting this requirement is
to generate the task for the data transformation pipeline on the fly.
Specifically, whenever we have data to augment with a new pipeline,
the system constructs a new GPU task containing the pipeline. Then,
it allocates GPU memory and schedules the task to the GPU. The
runtime cost associated with this procedure can be substantial and
affect the entire data prep step. For example, on our 3090 Ti server,
preparing a new GPU task with four samples for RandAugment
takes up around 30% of the total time required to complete the task.

G-2. Interference in limited GPU memory. Offloading data prep
to the GPU provides higher throughput but consumes GPU mem-
ory. Many prior studies already point out substantial GPU memory
usage (up to several GB) caused by the GPU-accelerated library
DALI [14, 40, 42]. Since GPU memory is scarce, this usage could
leave insufficient memory available for model training. As a result,
users may need to train the model either with gradient accumula-
tion, which can cause significant slowdown due to multiple forward-
backward computations performed for each iteration, or with smaller
mini-batches, which can affect training efficiency.

To understand what constitutes memory usage when data prep is
carried out by the GPU, we run DefAugment and RandAugment on
DALI for a mini-batch with 240 samples and break down their mem-
ory footprints. Figure 4 shows the results. DALI inevitably requires
a certain amount of memory (+400 MB) as a workspace for pipeline
computations. This static memory usage represents a small portion
(0.8–1.6%) of the total capacity of modern GPUs (24–48 GB). Impor-
tantly, this static memory usage comfortably fits within the memory
space typically left available during DL training [11]. In contrast,
DALI also incurs non-static, dynamic memory consumption, which
takes up more than 3.6 GB and 7.3 GB of memory for DefAugment
and RandAugment, respectively. This dynamic memory primarily

serves as a repository for the intermediate data produced during the
execution of sample transformation pipelines. Notably, RandAug-
ment incurs higher dynamic memory usage than DefAugment owing
to the invocation of numerous distinct transformation operators, each
with diverse memory demands.

4 PROPOSED SOLUTIONS
We propose exploiting idle GPU cycles to offload a portion of the
CPU-side data prep computations onto local GPUs, while constantly
utilizing available CPUs to maximize performance gains. In this
section, we present solutions to the challenges discussed in the pre-
vious section and conduct a theoretical analysis of the data diversity
achieved by our proposed approach.

4.1 New System Components for GPU Prep
Addressing challenges G-1 and G-2 posed in § 3.2 is a prerequisite
for optimizing system runtime for the data prep workload. To that
end, we present two extensions to DL frameworks as follows:

Solution 1 Ahead-of-time task allocation G-1
Solution 2 Cross-boundary memory sharing G-2

4.1.1 Ahead-of-time task allocation. We propose an efficient
method for executing GPU tasks through ahead-of-time task allo-
cation. This method involves creating a combination of GPU tasks
for all possible data augmentation pipelines in advance and reusing
them in future iterations. Instead of constructing a task on the fly, we
select one of the pre-built GPU tasks that corresponds to a random
augmentation pipeline and submit it along with the input samples
directly to the GPU, reducing the overhead of constructing tasks at
runtime. Our method is based on the observation that when a GPU
task is selected multiple times, it will run the same augmentation
operators and often allocate the same memory variables. Thus, we
can allocate memory from GPU once and reuse it for every selec-
tion of the task without having to reallocate memory. To recycle a
task, we simply need to overwrite the input samples for the data
augmentation in the task.

The number of pre-built GPU tasks depends on algorithm-specific
factors like the size of the random operator set, the number of opera-
tors to be randomly selected in the pipeline, and whether certain in-
effective combinations are prohibited. While the potential number of
augmentation combinations could theoretically grow exponentially,
they do not necessarily result in exponentially larger memory usage.
This is because each GPU task allocates memory on-demand from a

866

(c) Global

: Model Training : Data Prep : : :

(a) Local CPU

Time

CPU1

CPU2

GPU

CPU1

CPU2

GPU

(b) Local CPU + GPU

Time

CPU1

CPU2

GPU

Time

Remote

Figure 5: Towards efficient intra-batch parallelization. Training iterations get faster while moving steps from (a) to (c).

memory pool as it is scheduled and proceeds with data augmentation
for input samples fetched from storage or CPU memory. Once the
augmentation is completed, this memory is promptly returned to the
pool. Thus, even with a vast number of possible augmentations, as
long as they are not all executed simultaneously, they represent a set
of configurations that comfortably fit within the GPU memory. For
instance, RandAugment generates up to 196 tasks but requires no
more than 7.85 GB of GPU memory, as shown in Figure 4.

4.1.2 Cross-boundary memory sharing. Both model train-
ing frameworks (like PyTorch) and data prep libraries (like DALI)
maintain their local pool of GPU memory. If free memory exists in
one local pool, it can be released and utilized by the other pool for
remote memory allocations. To facilitate this cross-boundary mem-
ory sharing, we have designed a system that reclaims free memory
from model training for use by data prep and vice versa. A detailed
illustration of this memory sharing mechanism is presented in § 5.3.

Similar to data prep in Figure 4, model training often consumes
most of its in-use memory to store “intermediate outputs” from
model layers, such as feature maps in CNN/RNN models [33, 68].
This memory usage pattern indicates that when model training is
finished and inactive, all of its dynamic memory is freed, thus pro-
viding ample space for data prep to use more memory. Overall, this
approach allows efficient sharing of GPU memory between model
training and data prep steps, as long as their memory allocation and
deallocation phases are carefully coordinated.

4.2 CPU-GPU Cooperation for Data Prep
When offloading data prep tasks to GPU, spatial GPU sharing runs
data prep and model training on the GPU simultaneously without
temporal coordination. This strategy frequently leads to inefficient
memory utilization since both steps may expand their working sets
concurrently. It can cause the peak memory usage from data prep
and model training to add up and incur memory overflow, which is
known to have a detrimental impact on DL training performance [33].
To avoid memory overflow in spatial GPU sharing, it is thus essen-
tial not to exhaust the GPU’s memory capacity while assuming no
memory sharing between data prep and model training at all. On the
computation front, data prep libraries support various features like
prefetching and pipelining to deliver higher processing rates at the
expense of GPU cycles. This can similarly lead to unexpected con-
tention for GPU processing units, i.e., Streaming Multiprocessors.

As a result, spatial GPU sharing is beneficial only when model
training underutilizes both memory and processing units. If either
memory or compute resources is heavily utilized by model training,
a more pragmatic approach would be to employ temporal GPU
sharing, as shown in Figure 5. In practice, as most DL training
is notably memory and/or compute-intensive, spatial GPU sharing
seems less frequently applicable.

FusionFlow has the capability to switch between temporal and
spatial GPU sharing modes by profiling resource usage conditions
and performance metrics derived from test runs (§ 5.2.1). Since the
spatial sharing mode simply applies all proposed techniques without
GPU time-multiplexing, our focus here is on explaining the design
of the temporal sharing scheme within FusionFlow.

4.2.1 How to split a single data prep. GPU time-multiplexing
dedicates the entire GPU to either data prep or model training at any
given moment, allowing both steps to alternate and make full use of
available memory and compute resources. To maximize its effective-
ness, the techniques introduced in § 4.1 are essential. For data prep
of a single mini-batch, which is to be processed in parallel by both
CPU and GPU resources, we use intra-batch parallelism (Intra-P).
Our implementation of Intra-P partitions a single mini-batch into
many smaller tiny-batches. Each tiny-batch represents a small data
prep task that contains a small, disjoint subset of samples (even just
one sample) to decode and augment from the original mini-batch.

While the concept behind our Intra-P is straightforward, achieving
workload-balanced scheduling for data prep tasks across the “slower”
CPU and “faster” GPU is particularly difficult due to workload vari-
abilities, as illustrated in Figure 3, as well as variabilities in available
compute resources, such as limited CPUs due to sudden system
contentions. For this reason, we have chosen to adopt data-level par-
titioning rather than operator-level partitioning that splits data prep
operations and offloads computationally expensive ones. With the
data partitioning scheme, we can perform fast reactive scheduling
of data prep tasks. This approach enables precise load-balancing
decisions that can quickly react to changing workload and resource
conditions. Furthermore, the small task granularity of tiny-batches
empowers us to make fine-grained adjustments to our scheduling
decisions. In contrast, operator-level partitioning is coarse-grained
and often limited to offloading either the decode phase or both the
decode and augment phases in popular DL platforms [66].

4.2.2 How to exploit CPU/GPU jointly. In the temporal GPU
sharing mode, we take advantage of Intra-P in two stages. To illus-
trate, we use the scenario described in Figure 5 that runs training
on two local GPUs, each assigned with two CPU cores. For brevity,
we only show one set of GPU and CPUs in the figure. Each Intra-P
stage addresses C-1 and C-2 posed in § 3.1 as follows:

Stage 1 Intra-P using local GPU & local CPU cores C-1
Stage 2 Intra-P using local GPU & all CPU cores C-2

Local CPU → Local CPU+GPU. Intra-P consumes local mini-
batches one after the other based on their static order (i.e., mini-batch
𝑖 then 𝑖 + 1). Using only the local CPU is insufficient if it leaves
the GPU unused for a long time after the previous iteration 𝑖 − 1
is completed, as shown in Figure 5(a). We exploit these ample idle
resources to consume tiny-batches of iteration 𝑖 while not affecting

867

the preceding model training of iteration 𝑖 − 1, as shown in Fig-
ure 5(b). There are two crucial advantages of harnessing idle GPU
cycles in this manner. First, as GPU offers higher FLOPS than CPU,
tiny-batches are consumed faster, remarkably reducing the mini-
batch completion time. Second, CPUs and GPUs are utilized more
effectively, enhancing system efficiency.

Local CPU+GPU → Global. The former stage is local-centric
and neglects global coordination in multi-GPU data-parallel training.
Specifically, if two GPUs start model training for iteration 𝑖 at the
same time, no coordination would be needed as they are likely
to enter gradient aggregation roughly simultaneously. Otherwise,
whichever starts earlier should unnecessarily wait until the other
GPU gets ready for gradient aggregation. Therefore, to synchronize
the gradient aggregation across GPUs to the utmost extent every
iteration, we schedule tiny-batches to available remote CPUs when
local GPU/CPUs have quite a few of tiny-batches remaining to
process, as shown in Figure 5(c). Note that we do not exercise the
remote GPU as it is in use for model training.

In the spatial GPU sharing mode, FusionFlow offloads tiny-
batches to the local GPU even when it is currently being used by
model training. This is the key distinction to the temporal GPU
sharing mode in FusionFlow.

4.3 Data Diversification
In this subsection, we conduct a statistical analysis to examine the di-
versity distribution resulting from two different approaches. The first
one, referred to as the standard approach, serves as a baseline where
a random augmentation is applied to each sample in each epoch
independently. The second one, referred to as tiny-batch approach,
is specifically designed for our new system where a random aug-
mentation is applied to each tiny-batch in each epoch independently.
The composition of samples within each tiny-batch is randomly de-
termined and independent across all epochs. The diversity resulting
from augmentation is measured by the number of unique augmented
samples obtained from all samples across all epochs. Due to space
constraints, we provide a condensed overview of the formulas here,
with detailed proofs available in [27].

4.3.1 Expectation of sample diversity. Following the same
assumptions from [30], we assume 𝐾 epochs, 𝑁 samples, augmen-
tation set 𝐴, batch size 𝑛. We define 𝑋𝑖𝑡 as the indicator of whether
augmentation 𝐴𝑡 is applied to the 𝑖-th sample.

𝑋𝑖𝑡 =

1, If augmentation 𝐴𝑡 is applied to the 𝑖-th sample

at least once in all epochs,

0, Otherwise.

Similarly, we define 𝑋𝑖 as the number of unique augmented samples
from the 𝑖-th sample in all epochs and 𝑋 as the number of unique
augmented samples from all samples in all epochs.

In the standard approach, the expectation of 𝑋𝑖 is as follows:

𝐸 (𝑋𝑖) =
∑︁
𝑡

𝐸 (𝑋𝑖𝑡) =
∑︁
𝑡

(1 − 𝑃 (𝑋𝑖𝑡 = 0)) = |𝐴 |
(
1 −

(
|𝐴 | − 1
|𝐴 |

)𝐾)

K

0
20

40
60

80
100

120
140

n
0

20

40

60

80

100

Var

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

(a) RandAugment

K

0
50

100
150

200

n
0

20
40

60
80

100

Var

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

(b) AutoAugment

Figure 6: Ratio of the standard deviation.

where |𝐴| is the cardinality of the augmentation set. Then, the expec-
tation of diversity, 𝐸 (𝑋) is the sum of expectations of all 𝑋𝑖 .

𝐸 (𝑋) =
∑︁
𝑖

𝐸 (𝑋𝑖) = 𝑁 |𝐴 |
(
1 −

(
|𝐴 | − 1
|𝐴 |

)𝐾)
The tiny-batch approach also selects an augmentation for each

sample independently for every epoch. Therefore, the batching of
samples does not affect the expectation values 𝐸 (𝑋𝑖𝑡), and by ex-
tension, 𝐸 (𝑋𝑖) and 𝐸 (𝑋). Consequently, the expectation of diversity
with the tiny-batch approach, measured as the number of unique
augmented samples, is equivalent to that achieved with the standard
approach.

4.3.2 Variance of sample diversity. The variance of sam-
ple diversity, 𝑉𝑎𝑟 (𝑋), can be expanded using 𝑉𝑎𝑟 (𝑋) = 𝐸 (𝑋 2) −
(𝐸 (𝑋))2 as follows:

𝐸 (𝑋 2) = 𝐸 (
∑︁
𝑖

𝑋𝑖)2 = 𝐸 (
∑︁
𝑖

𝑋 2
𝑖 +

∑︁
𝑖≠𝑗

𝑋𝑖𝑋 𝑗) =
∑︁
𝑖

𝐸 (𝑋 2
𝑖)+

∑︁
𝑖≠𝑗

𝐸 (𝑋𝑖𝑋 𝑗)

(𝐸 (𝑋))2 = (
∑︁
𝑖

𝐸 (𝑋𝑖))2 =
∑︁
𝑖

(𝐸 (𝑋𝑖))2 +
∑︁
𝑖≠𝑗

𝐸 (𝑋𝑖)𝐸 (𝑋 𝑗)

𝑉𝑎𝑟 (𝑋) =
∑︁
𝑖

(𝐸 (𝑋 2
𝑖) − (𝐸 (𝑋𝑖))2) +

∑︁
𝑖≠𝑗

(𝐸 (𝑋𝑖𝑋 𝑗) − 𝐸 (𝑋𝑖)𝐸 (𝑋 𝑗))

Since both the standard and tiny-batch approaches apply a ran-
dom augmentation to each sample independently for each epoch,
the expectation of 𝑋𝑖 and 𝑋 2

𝑖
remains identical in both methods.

Therefore, the difference in the variance between the two approaches
is determined by the last term. In the standard approach, there is
no dependency on the samples. Thus, 𝐸 (𝑋𝑖𝑋 𝑗) = 𝐸 (𝑋𝑖)𝐸 (𝑋 𝑗) holds
true, and the last term of the variance is zero. However, in the tiny-
batch approach, samples that belong to the same tiny-batch in an
epoch receive the same augmentation. Consequently, depending on
the probability that the 𝑖-th and 𝑗-th samples belong to the same
tiny-batch, 𝐸 (𝑋𝑖𝑋 𝑗) can be slightly larger than 𝐸 (𝑋𝑖)𝐸 (𝑋 𝑗).

In order to visualize the variance of diversity in our approach vs
per-sample augmentation, Figure 6 presents the ratio of the standard
deviation of diversity in the tiny-batch approach over the standard
deviation of diversity in the standard per-sample augmentation, given
different parameters for RandAugment (𝐾 = 2 ∼ 140, 𝑁 = 1743042,
|𝐴| = 16, 𝑛 = 1 ∼ 100) and AutoAugment (𝐾 = 2 ∼ 200, 𝑁 =

1743042, |𝐴| = 25, 𝑛 = 1 ∼ 100), respectively, where standard
deviation is the square root of variance.

Based on the plots, the variance of diversity in our approach is
almost the same as that of per-sample augmentation in typical DL
training tasks where tiny-batch size 𝑛 « sample size 𝑁 . As a result,

868

Task Queue
Sample

Processor

Sample
Collator

Finish Queue

Completed/Wait ing Tasks

Global Manager (GM)
Action
Sender

Borrow/Yield(Count)

Mini-batch

GPU
Training

❶

❹

❸

❺

❷
GPU/CPU Worker

Local Manager (LM)
Action Handler

Train
Scheduler

Task
Tracker

Stealing
Policy

Tiny-batches

Mini-batch
Aggregator

Mini-batch Ingestor

Remote
LM

Figure 7: System architecture of FusionFlow.

our approach maintains the same level of diversity as per-sample aug-
mentation, thus guaranteeing the same level of convergence in model
training. This analysis confirms that our approach does not inadver-
tently increase the number of epochs for model convergence and can
benefit from faster training time compared to standard approaches.

5 FUSIONFLOW DESIGN
As a system built on PyTorch, FusionFlow supports both single- and
multi-GPU DL training and runs transparently to users.

5.1 System Architecture
FusionFlow has three key system components, as shown in Figure 7:
local manager (LM), global manager (GM), and worker.

Local manager. As a GPU-local runtime, LM handles data prep on
behalf of the DL training on each GPU, as shown in Figure 7. Specif-
ically, for each incoming mini-batch (1), LM transforms it into a
set of tasks representing tiny-batches called TB tasks and performs
task scheduling to workers (2), and aggregates the processed tasks
as an augmented mini-batch to initiate model training (3).

FusionFlow offers two types of workers to consume TB tasks:
CPU workers and GPU workers. The LM has an action handler that
coordinates with the GM to scale up or down the number of CPU
workers. Furthermore, the LM activates GPU workers only when the
local GPU has sufficient idle resources to accommodate offloaded
TB tasks, faithfully facilitating both spatial and temporal GPU shar-
ing modes between data prep and model training. When a new DL
training job is issued, the LM determines which mode to enter by
initiating a profiling phase and collecting basic job information, as
will be discussed in § 5.2.

Global manager. As a system-wide runtime, GM tracks the status
of LMs and coordinates their progress. The primary mission of
the GM is mitigating the straggler’s effect in multi-GPU training
through a dynamic resource relocation. At every iteration, the GM
first starts by assigning each LM an equal number of CPU workers
for fairness. Then, when certain LMs make slower progress during
the data prep, the GM grants them more CPU workers to process
their pending tasks faster. This worker scaling is done reactively as
soon as stragglers manifest to avoid the risk of misprediction.

To make scaling decisions quickly, the task tracker in GM collects
the number of unprocessed TB tasks from all LMs every short
interval (4) and informs each LM of the appropriate action to
take (5). For the worker scaling actions, Borrow vs Yield, the

GM also tells the associated LMs how many workers to borrow or
yield. Upon receiving Borrow, the LM increases the number of
CPU workers by the amount specified in Count. At the same time,
to avoid CPU contention, the GM asks other LMs to yield a total
of Count workers. When all TB tasks for the current data prep are
consumed, the borrowed workers are returned to their original LMs.

Worker. Each CPU worker is assigned to a separate CPU core to
execute its assigned task without interference. This CPU worker can
also be mapped to a CPU core in a remote machine. Data prep is
compute-intensive, so sharing a single core among multiple CPU
workers would not provide any performance advantages. In contrast,
a GPU worker executes its assigned task by offloading it to the local
GPU hardware. It schedules kernel computations for a randomly
selected data augmentation on the GPU with minimal CPU overhead
due to ahead-of-time task allocation. For this reason, GPU workers
do not have dedicated compute resources and instead share a small
number of CPU cores with other runtime managers in FusionFlow.

It is worth noting that FusionFlow simplifies resource manage-
ment by treating CPUs distributed across different machines or
NUMA domains uniformly. In particular, when integrating Fusion-
Flow with horizontal CPU scaling, we assume that the machines
possess ample I/O and network bandwidth capacities, with data prep
on the CPU being the most time-consuming task. Therefore, in re-
sponse to dynamic changes in resources, it suffices to notify the GM
of the updated compute capacity.

5.2 Efficient Task Scheduling and Execution
Now, we explain how FusionFlow decides between spatial and tem-
poral sharing modes and proceeds with task scheduling. In order
to make an appropriate choice for the sharing mode, we introduce
an online profiling phase where FusionFlow performs a test run to
evaluate a new DL job for a few training iterations.

5.2.1 Profiling phase. When a new DL training job is initiated,
FusionFlow enters the profiling phase. During this phase, Fusion-
Flow first evaluates the memory condition by independently running
data prep and model training and measuring their GPU memory
consumption. It assumes no memory oversubscription will occur if
the sum of peak memory usage fits within the GPU memory capacity.
If this condition is not met, FusionFlow promptly transitions to the
execution phase that employs temporal GPU sharing. Next, Fusion-
Flow assesses the compute condition. Determining which specific
mode will lead to less slowdown is not straightforward when relying
solely on performance metrics from isolated runs. However, since
DL training is fairly regular across iterations, FusionFlow can empir-
ically compare the throughput of both modes over a few iterations.
FusionFlow transitions to the execution phase using the mode that
demonstrates higher speed.

5.2.2 Execution phase. During the execution phase, Fusion-
Flow schedules TB tasks onto the CPU and GPU. Each TB task
contains essential information about data prep at a tiny-batch level,
including input samples and transformation code such as decoder
and augmentation pipeline. Initially, a TB task is in Waiting state
before being scheduled, then transitions to Active state when
assigned to either a CPU or GPU worker, and finally moves to
Completed state once the task execution is finished.

869

Task affinity-aware scheduling. Based on C-2 in § 3.1, a TB
task with larger samples is more time-consuming and thus runs
more effectively on GPU because it excels in processing large data
blocks in parallel. To preferably assign larger tasks to the GPU,
our task affinity-aware scheduler called TAAS sorts TB tasks for a
mini-batch based on the aggregate size of samples in each task and
feeds them into the CPU and the GPU in ascending and descending
orders, respectively. But, when a few tasks remain, it is possible that
assigning all these tasks to the GPU is faster due to CPUs being
usually much slower than GPUs. TAAS in each LM automatically
searches for this threshold value that reflects the number of last-
minute tasks to execute only on the GPU through an iterative process.
Specifically, TAAS starts from zero, so all tasks for a mini-batch
are up for grabs by any compute resource. At the end of every mini-
batch, it adjusts the threshold based on examining which resource
is busier between CPU and GPU at the last moment. If it is CPU,
TAAS increments the threshold to give GPU more last-minute loads
in the next mini-batch or vice versa. TAAS stops searching when the
threshold oscillates.

We currently operate FusionFlow for offline learning that does
not expect data distribution to change drastically over time. So,
essentially, the threshold is decided once and used throughout the
training process. However, in situations where hardware resources
undergo dynamic changes, FusionFlow resumes the iterative search
process to fine-tune the threshold value as needed.

Reactive CPU worker scaling. FusionFlow triggers worker scaling
when an LM finishes all of its TB tasks for the current iteration and
can relinquish its CPU workers for other LMs still in progress. This
reactive approach is fast and can minimize the risk of misprediction,
even given the dynamic nature of augmentation algorithms and
resource conditions.

However, this worker scaling should effectively distribute avail-
able CPU workers among different LMs. At the moment of releasing
CPU workers, the other slower LMs may have different compute
resource demands, as reflected in the progress of their tiny-batch
processing. In FusionFlow, we distribute available workers to the
LMs based on the number of tasks in Waiting state, as this rep-
resents the amount of pending work in each LM. We also take into
account the progress of Active tasks, which may have significantly
different amounts of work done in terms of the number of tiny-batch
samples processed. If a slow LM has an Active task with sub-
stantial progress (i.e., a majority of samples processed), its worker
will soon be available to fetch a Waiting task. In this case, the
LM decreases the number of Waiting tasks by one to account
for the worker’s immanent availability, reducing the likelihood of
unnecessary worker stealing. In FusionFlow, each LM adjusts its re-
source demand by assessing whether the processing of the Active
tiny-batch exceeds 50%. This pivot point was chosen to be neither
too aggressive nor too conservative.

5.3 Memory Overflow Handling
Most DL frameworks and data prep libraries have built-in memory
allocators. For example, PyTorch uses the caching memory alloca-
tor [50] that serves large (≥ 1 MB) and small (< 1 MB) allocations
from different bins, while DALI uses a simple allocator that serves
requests from free blocks stored in a single bin. TensorFlow has the

BFC allocator [61] that organizes free blocks into multiple bins with
sizes that increase by a power of two. While implementation details
may differ, these frameworks all share a commonality: they orga-
nize memory space into blocks and manage them locally. Therefore,
to enable memory sharing, we grant the remote memory allocator
access to local memory at the block level.

APIs. Low-level GPU memory management primitives such as
cudaMalloc and cudaFree can be used to enable memory shar-
ing between frameworks operating their memory allocators in differ-
ent OS processes. Unfortunately, this approach incurs a detrimental
impact on DL throughput when used in performance-sensitive loops
like training iterations [33]. To enable efficient, fine-grained GPU
memory sharing without sacrificing performance, we have developed
two generic memory-granting APIs: YieldBlk and BorrowBlk.
These APIs transfer and receive the access privilege of each mem-
ory block using cudaIpcGetMemHandle, which allows memory
handles to be shared across processes with low overhead. Any pro-
cess can invoke YieldBlk with the address of a local memory
block to grant access, and any process needing a free block from a
remote process can invoke BorrowBlk by specifying the desired
block size in the API.

Strategy. In FusionFlow, memory is granted unidirectionally be-
cause model training typically consumes more memory than data
prep. For example, the memory demand for data prep is usually at
most 10 GB, even with ahead-of-time task allocation. So, at the end
of the model training phase, FusionFlow can export free memory
blocks from model training’s DL framework via YieldBlk for use
in data prep’s GPU library during the GPU offloading phase. The
large free blocks are exported first, followed by small free blocks,
until the desired amount (e.g., 10 GB) has been reached. Data prep
and model training can communicate through IPC on shared mem-
ory, which includes a record of all memory blocks exposed by the
DL framework. Note that this cross-boundary memory sharing is
used as a last resort only for temporal GPU sharing in FusionFlow.

6 EVALUATION
In this section, we assess the efficacy of FusionFlow, both when used
as a standalone solution and in combination with other complemen-
tary strategies. We also validate its applicability, compatibility, and
key design features.

6.1 Implementation and Methodology
FusionFlow is built atop PyTorch 1.8.0 and DALI 1.17 with ∼3500
new LoC for GM, LM, and other system components in PyTorch
and DALI. FusionFlow extends PyTorch’s data loading utility
(torch.utils.data) [5] and allows users to import its func-
tionalities by configuring a few parameters such as augmentation
algorithm and tiny-batch size. FusionFlow also has custom data
structures (e.g., progress list and action list) implemented using a
POSIX IPC-based shared memory library (posix.ipc) [3] for
communication protocols between the system’s runtime managers.

Competing methods. We first compare FusionFlow with four meth-
ods that operate independently of external resources or memory
caching. (1) CPU-InterP represents the default PyTorch method that
utilizes inter-batch parallelism on CPUs. (2) CPU-IntraP employs

870

RandAug AutoAug Deep AutoAug
Figure 8: Throughput in training ResNet-18, ResNet-50, and ViT. The first three, middle three, and last three graphs show the results
under RandAugment, AutoAugment, and Deep AutoAugment, respectively. Each bar shows CPU and GPU utilization on the top.

intra-batch parallelism on CPUs. (3) DALI-Naïve is a GPU-based
method that creates and executes GPU tasks on demand, without
GPU time-multiplexing. (4) DALI-AoT improves DALI-Naïve with
ahead-of-time task allocation.

In addition, we compare FusionFlow with the following approaches
to show how FusionFlow creates synergy with other complementary
solutions. (5) FastFlow [66] is a state-of-the-art method that focuses
on horizontal CPU scaling. (6) Revamper [30] is a caching system
that stores partially augmented samples in memory and reuses them
in successive iterations.

FastFlow was originally implemented in TensorFlow but has been
ported to PyTorch for a fair comparison. Unless otherwise specified,
we use a default tiny-batch size of four samples.

Benchmarks. We select three training benchmarks for image clas-
sification, ResNet-18 [20], ResNet-50 [20], and ViT-Base [17], on
three modern data augmentation algorithms, RandAugment [13],
AutoAugment [12], and Deep AutoAugment (DeepAA) [74]. All
models use the stochastic gradient descent optimizer and automatic
mixed precision [1] for training. For training throughput experi-
ments, we use the OpenImage-Extended [29] dataset or OpenImage
for short. For model accuracy experiments, we additionally use the
ImageNet-1k [57] dataset which is popular for convergence analysis.

Hardware platform. The default evaluation setup (3090-6G-32C)
consists of six NVIDIA RTX 3090 Ti GPUs, each with 24 GB GPU
memory, dual Intel(R) Xeon(R) Gold 6226R 32 CPU cores running
at 2.9 GHz, and 384 GB host memory. We allow four CPU workers
per GPU and reserve the remaining CPU cores for runtime managers
and GPU workers. This setup is used for both single-GPU and data-
parallel training on a single node, ensuring a uniform CPU worker
to GPU ratio. For scenarios that can accommodate more intra-server

CPUs, we use a standard A100 server (A100-8G-128C) equipped
with eight NVIDIA A100 GPUs and 128 CPU cores. To facilitate
horizontal CPU scaling, we augment our resources by incorporating
an additional 8-CPU server connected via a 1Gbps network.

6.2 Performance Comparison
6.2.1 As a standalone solution. Single-GPU training. Fig-
ure 8(a) shows the throughput of the four competing methods (1)–(4)
and FusionFlow when conducting single-GPU training on various
DL models and data augmentation algorithms. To ensure a fair com-
parison, the input mini-batch sizes for each model were chosen to
fit within the GPU memory using DALI-Naïve. The results demon-
strate that FusionFlow consistently outperforms both CPU-based
and GPU-based methods in all cases. Specifically, we see the largest
performance gain for ResNet-18, achieving 105–281% and 78.5–
91.7% higher throughput compared to CPU-InterP and DALI-AoT,
respectively. This is mainly due to ResNet-18 performing lightweight
training that leaves ample idle GPU cycles relative to other mod-
els. However, for the most computationally demanding benchmark,
ViT-Base, FusionFlow’s performance gain over CPU-InterP (best
baseline) is reduced to 29.7%, 16.1%, and 102% for RandAugment,
AutoAugment, and DeepAA, respectively, which is expected.

We do not see significant performance merits with DALI-Naïve
and DALI-AoT as they only attempt to utilize GPUs, resulting in
adverse effects on performance when the GPU is heavily utilized
and leaves little room for accommodating data prep tasks, as seen
in ViT-Base. While there is potential to improve the performance of
these methods by utilizing both GPUs and CPUs, the lack of GPU
multiplexing may limit the batch sizes that can be supported, making
FusionFlow a more attractive choice (Figure 9).

871

240 320 400 480 560 640 720
(a) RandAug

0

100

200

300

400

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

240 320 400 480 560 640 720
(b) AutoAug

100

200

300

400

Batch size

DALI-AoT FusionFlow

Figure 9: ResNet-18 throughput over different mini-batch sizes.

0 2 4 6 8

of remote CPUs

0

100

200

300

400

500

600

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

168

281
249

319
265

327 304
345 315

360

FastFlow

FusionFlow

Figure 10: Throughput comparison between FastFlow [66] and
FusionFlow using ResNet-50.

Multi-GPU training. In Figure 8(b), we present a comparison of
system throughput in a six-GPU setting. In comparison to CPU-
InterP and DALI-AoT, similar to what we observe in the single-GPU
case, FusionFlow achieves higher throughput across all models for
the three data augmentation algorithms. In particular, FusionFlow
achieves an average throughput increase of 112.9% for ResNet-18,
73.4% for ResNet-50, and 28.3% for ViT-Base when compared to
CPU-InterP. Similar to Figure 8(a), FusionFlow favors ResNet-18
over ResNet-50 and ViT-Base because ample GPU cycles are avail-
able by running a model with low computational demand. Likewise,
both DALI-Naïve and DALI-AoT do not excel in performance.

Varying mini-batch sizes. FusionFlow’s ability to share memory
allows for larger mini-batch sizes during model training, which in
turn can improve training efficiency. We demonstrate this by compar-
ing FusionFlow’s performance to a competing GPU-based method,
DALI-AoT, over a range of mini-batch sizes using ResNet-18 and
two augmentation algorithms, RandAugment and AutoAugment. As
shown in Figure 9, FusionFlow performs better and retains its per-
formance at mini-batch sizes up to 720 samples, while DALI-AoT
could not handle mini-batch sizes larger than 480 samples.

6.2.2 As a complementary solution. FusionFlow not only
offers improved training performance as a replacement for FastFlow
or Revamper but also presents an opportunity for synergy when used
along with these approaches. We will now explore these aspects.

With horizontal CPU scaling. In Figure 10, we compare the
throughput of ResNet-50 between FastFlow and FusionFlow un-
der varying remote CPU availabilities. This evaluation reveals two
observations. First, FastFlow demands 4 to 6 remote CPUs per GPU
to achieve a throughput of 281 samples per second, whereas Fusion-
Flow delivers this level of throughput without the necessity of any
remote CPUs. Given that our 3090-6G-32C server assigns 4 CPUs
to each GPU, this represents approximately >50% in CPU resource
savings compared to FastFlow. Second, FusionFlow consistently en-
hances throughput across a wide spectrum of available remote CPUs,
showing remarkable synergy when both approaches are combined.

0 16 25 50 100

Cache ratio

0

200

400

600

800

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

148
241

164
250

187
279 249

325

702
772

CPU-InterP-RV

FusionFlow-RV

Figure 11: Throughput of Revamper [30] (in-memory cache)
with and without FusionFlow using ResNet-50.

200 400 600 800
Iteration ID

400

500

600

700

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

Figure 12: ResNet-18 throughput while dynamically changing
local and remote CPU count.

Notably, FusionFlow outperforms FastFlow at a large margin when
the same number of remote CPUs is available.

With in-memory caching. In Figure 11, we compare the throughput
of ResNet-50 between CPU-InterP on Revamper (CPU-InterP-RV)
and FusionFlow on Revamper (FusionFlow-RV) for a wide range
of memory sizes used for caching. As Revamper stores tensorized
samples after decoding, it requires a large amount of memory for
full caching, approximately 2.58 TB for OpenImage. Our 3090-
6G-32C machine has 384 GB of host memory, allowing it to store
roughly 16% of the entire dataset. In this scenario, FusionFlow-RV
outperforms CPU-InterP-RV by 52.4%. To evaluate larger cache
sizes, we also emulate the sample access pattern of a specified cache
size while reusing a dummy partially augmented sample for cache
hits. As Figure 11 shows, FusionFlow-RV consistently improves
throughput compared to CPU-InterP-RV across all memory sizes,
even at the maximum capacity of 2.58 TB.

6.3 Diverse Usage Scenarios
We evaluate FusionFlow’s performance across diverse usage sce-
narios using RandAugment on a single GPU for 3090-6G-32C,
unless otherwise specified.

Dynamic CPU resources. The CPU compute capacity may un-
dergo dynamic changes for both local and remote CPUs. In such
cases, FusionFlow should promptly adjust its CPU pool and schedule
CPU workers to maintain good system efficiency during ongoing
training on the GPU. In Figure 12, we illustrate how FusionFlow re-
sponds to variations in CPU availability over time using ResNet-18.
Specifically, we increase the number of available CPUs from 4 to
8 using “local” CPUs during iterations 200 to 400 and then to 12
using “remote” CPUs during iterations 400 to 600, and subsequently,
we restore it to 8 and then to 4. As shown in the figure, FusionFlow
can adapt to these CPU capacity changes in a non-blocking manner.
This stands in contrast to existing approaches in PyTorch and Tensor-
Flow, where PyTorch requires all CPU workers to be predefined, and
TensorFlow relies on specifying AUTOTUNE, a parameter limited
by hardware specifications like the maximum CPU count [66]. It is
also worth noting that thanks to FusionFlow’s ability to dynamically

872

RandAug AutoAug Deep AutoAug

Figure 13: Throughput in training ResNet-18, ResNet-50, and ViT using different augmentation algorithms on the A100 machine.

ResNet-18
0

100

200

300

400

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

162 164

389

ResNet-50
0

100

200

300

400

163 160

311

ViT-Base
0

100

200

300

400

156 161
206

CPU-InterP(Eager) CPU-InterP(Compiled) FusionFlow

Figure 14: FusionFlow performance on newer PyTorch 2.0.

scale CPUs beyond the local server, FusionFlow can be seamlessly
extended to collaborate with autoscaling schemes like Cachew [18].

Single-sample tiny-batch. Using large tiny-batches can degrade
system efficiency as fewer TB tasks that are created may not suffi-
ciently take advantage of parallelism. So, it is crucial for FusionFlow
to be optimized for small tiny-batch sizes. To that end, we evaluate
FusionFlow’s performance using the extreme case of single-sample
tiny-batches. Results show that FusionFlow still maintains good
performance, with its throughput slightly lower than Figure 8(a) by
2.5% for ResNet-18, 4% for ResNet-50, and 3.4% for ViT-Base.
While users may prefer this single-sample size as it does not affect
data diversity, we later show that the current tiny-batch size of four
samples also does not impact model accuracy.

Newer PyTorch. We test FusionFlow on PyTorch 2.0 [65], which
underwent major performance improvements, to see if FusionFlow
gives the same benefits with the newer PyTorch version. Figure 14
presents the results. In this experiment, we compare FusionFlow
with CPU-InterP while running the PyTorch in eager mode. This
mode was found to achieve performance comparable to the com-
piled mode on 3090-6G-32C [65]. We observe that PyTorch 2.0
delivers higher throughput than the old version used in Figure 8(a).
Importantly, even with the upgraded PyTorch, FusionFlow continues
to provide substantial performance improvements across various
training benchmarks.

A100 server. In Figure 13, we present the main performance re-
sults obtained using our A100-8G-128C machine. This machine
provides a maximum of 16 CPU cores per GPU. So, we designate
15 workers per GPU, reserving a single core to accommodate the
minimal CPU resources required by PyTorch’s basic system runtime.
Overall, FusionFlow consistently outperforms or is on par with other
methods. In particular, although the A100 GPU imposes increased
mini-batch sizes, which place higher pressure on the CPU, we find

ResNet-18
ResNet-50

ViT-Base
0

2

4

6

8

10

P
er

f.
ga

in
(%

)

1%

7%

4%

(a)

None AoT AoT
+TAAS

All
0

100

200

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

148 156

213
241(b)

Figure 15: (a) Performance gain with worker scaling. (b)
Throughput with each optimization technique in ResNet-50.

that 15 workers are adequate for certain combinations of DL models
and augmentation algorithms, e.g., ViT-Base with RandAugment.
In these cases, FusionFlow operates without GPU offloading, thus
matching the performance of CPU-based methods.

6.4 Design Validation
In all our experiments, we allocate the same CPU resources across all
competing methods. Since each method places varying demands on
system resources, we provide both CPU and GPU utilization for each
bar in Figure 8 and Figure 13. It is crucial to note that, by alleviating
CPU bottlenecks, FusionFlow improves overall GPU utilization.
We now proceed with the design validation of FusionFlow. Unless
otherwise stated, we apply RandAugment on 3090-6G-32C.

Worker scaling. Figure 15(a) illustrates the impact of worker scal-
ing on throughput by comparing results with worker scaling turned
on and off for the data-parallel training setup. In this experiment,
GPU-offloading is disabled to impose enough stress on the CPU
workers. The results show that worker scaling in FusionFlow im-
proves throughput by up to 7% in ResNet-50.

GPU task optimizations. Next, we validate the effectiveness of our
optimizations on GPU task execution by comparing the throughput
of four different GPU-offloading implementations based on our
proposed techniques using ResNet-50. (1) None only harvests idle
local GPU cycles without key optimizations. (2) AoT adds ahead-
of-time task allocation on top of None. (3) AoT+TAAS adds task
affinity-aware scheduling without the threshold for last-minute GPU
tasks on top of AoT. (4) All includes full features of FusionFlow.
The results in Figure 15(b) show that throughput increases as we
add optimizations one by one. Therefore, we confirm that our main
features greatly contribute to FusionFlow’s performance.

Data partitioning. We compare FusionFlow with a strategy called
Decode-Off to evaluate the performance of data-level partitioning vs

873

ResNet-18
0

100

200

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

47

84

199

ResNet-50
0

100

200

45
64

176

ViT-Base
0

100

200

45 55

137

CPU-InterP Decode-Off FusionFlow

Figure 16: Throughput comparison between FusionFlow and
Decode-Off that offloads the data decoding operator to the GPU.

operator-level partitioning. In Decode-Off, the data decoding phase,
which is typically the most computationally expensive operation, is
offloaded to the GPU, while all subsequent operations are executed
on the CPU. For a fair comparison, we limit the number of CPU
workers to one. We show the results in Figure 16 including a CPU-
only scheme CPU-InterP for three different models.

Decode-Off runs faster than CPU-InterP due to GPU accelera-
tion during the decoding phase. However, both schemes execute
operations sequentially at the mini-batch level, meaning that later
operations in data prep must wait for earlier ones to complete before
starting their execution. That said, they do not utilize the GPU and
CPU at the same time. On the contrary, FusionFlow is not affected
by the sequential dependency of operations, continuously engaging
both the GPU and CPU through more explicit tiny-batch-level paral-
lelism. Consequently, FusionFlow achieves speedups of up to 4.23×
and 2.36× compared to CPU-InterP and Decode-Off, respectively.

Convergence. Our approach that applies a random augmentation
to each tiny-batch independently maintains the same level of data
diversity while having minimum impact on the variance (§ 4.3). To
validate this aspect further, we empirically compare the change in the
top-1 accuracy over training epochs between FusionFlow and CPU-
InterP (that augments each sample with a distinct pipeline) using
ImageNet-1k. FusionFlow does not adversely affect the model’s
accuracy as Figure 17 shows, with only 0.1% degradation in the final
accuracy. We also witnessed similar trends for OpenImage.

7 RELATED WORK
We have already compared FusionFlow with other approaches that
rely on in-memory caching [30, 40], disaggregation [18, 73], and
only GPUs [45], and we do not repeat them here.

CPU-GPU cooperation in DL training. Various DL systems at-
tempt to offload the GPU’s main workload, model training, to the
CPU to take the benefit the other way around. The most well-known
work in such CPU offloading is ZeRO-Offload [54]. ZeRO-Offload
focuses on training models with over 13 billion parameters on a sin-
gle GPU. ZeRO-Offload offloads both data (gradients and optimizer
states) and compute (optimizer computation) that lead to high GPU
memory savings with low communication and CPU computation
costs. Before ZeRO-Offload, the primary concern of many other
approaches was offloading only data to limit the working set in the
GPU [24, 49, 55]. All these prior approaches mainly support training
huge models [54] or medium-size models with very large mini-batch
sizes [24, 49]. In contrast, FusionFlow supports typical model train-
ing cases incorporating state-of-the-art data prep algorithms, which
have revealed several new performance issues.

0 20 40 80 10060
Epoch

25

50

75

To
p-

1
ac

cu
ra

cy

(%
)

FusionFlow
CPU-InterP

Figure 17: Top-1 accuracy over training epochs. Both methods
train ResNet-50 on ImageNet-1k.

Augmentation algorithms. Data augmentation algorithms gen-
erating dynamic augmentation pipelines through random operator
selections have been proposed mainly for computer vision tasks.
RandAugment randomly selects a predefined number of operators
and concatenates them with crop and horizontal flip to create a
pipeline per sample [13, 26, 30]. Similarly, TrivialAugment [41]
generates a pipeline through a random operator selection for each
sample. However, unlike RandAugment, it selects a single operator
and does not fix the magnitude value, which determines the opera-
tor’s strength. Using magnitude gives a higher functional variability
in the pipeline execution while demanding the same computational
cost. AutoAugment [12] pre-builds an optimal set of pipelines to
be randomly selected for each sample. It obtains such a set from
running a search algorithm beforehand. The most recent algorithm,
Deep AutoAugment [74], takes a fully automated approach with no
hand-picked operators, where the best accuracy is achieved when
the algorithm includes more than five operators. FusionFlow makes
all these algorithms run faster.

Adversarial data augmentation [8, 52, 67] is a variant of data
augmentation that enhances model robustness against corrupted or
hostile data in computer vision [56]. It is implemented based on
either GPU or CPU. The GPU-based approach generates synthetic
images using a generative model during model training, effectively
running two models (i.e., generative model and training model)
at the same time. To optimize GPU resource utilization for this
method, frameworks like Zico [33], which enable multiple models
to share the same GPU, are highly suitable. On the other hand,
the CPU-based approach (e.g., AugMix [21]) involves modifying
training parameters or in-use data augmentations. It can thus benefit
considerably from techniques like FusionFlow.

8 CONCLUSION
We propose FusionFlow that speeds up the dynamic data augmen-
tation algorithms on CPUs and GPUs. The key idea is exploiting
intra-batch parallelism, which splits an input mini-batch into mul-
tiple tiny-batches and augments the mini-batch in parallel on those
compute resources. FusionFlow applies several optimizations to
make GPU-offloading of tiny-batch tasks highly effective and per-
forms CPU worker scaling to make CPU resource usage in data-
parallel training more balanced. Experimental results confirm the
effectiveness of FusionFlow.

ACKNOWLEDGMENTS
This work was supported by the ETRI grant [23ZS1300] and the
IITP grant (No.2020-0-01336, Artificial Intelligence graduate school
support (UNIST)) funded by the Korean government (MSIT).

874

REFERENCES
[1] Accessed in December 2023. AUTOMATIC MIXED PRECISION PACKAGE -

TORCH.CUDA.AMP. https://pytorch.org/docs/stable/amp.html.
[2] Accessed in December 2023. NVIDIA DGX-2 Datasheet. https:

//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-
datasheet-us-nvidia-955420-r2-web-new.pdf.

[3] Accessed in December 2023. POSIX IPC for Python - Semaphores, Shared
Memory and Message Queues. http://semanchuk.com/philip/posix_ipc/.

[4] Accessed in December 2023. The NVIDIA DGX-1 Deep Learning Sys-
tem. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-
1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf.

[5] Accessed in December 2023. TORCH.UTILS.DATA. https://pytorch.org/docs/
stable/data.html.

[6] Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang.
Stochastic Optimization with Laggard Data Pipelines. In NeurIPS, 2020.

[7] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, and Chan-
dramohan A Thekkath. A case for disaggregation of ml data processing. arXiv
preprint arXiv:2210.14826, 2022.

[8] Yatong Bai, Brendon G. Anderson, Aerin Kim, and Somayeh Sojoudi. Improving
the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing, 2023.

[9] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system.
In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 571–582, 2014.

[10] Dami Choi, Alexandre Passos, Christopher J Shallue, and George E Dahl. Faster
neural network training with data echoing. arXiv preprint arXiv:1907.05550,
2019.

[11] Sangjin Choi, Taeksoo Kim, Jinwoo Jeong, Rachata Ausavarungnirun, Myeongjae
Jeon, Youngjin Kwon, and Jeongseob Ahn. Memory Harvesting in Multi-GPU
Systems with Hierarchical Unified Virtual Memory. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 625–638, 2022.

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
Autoaugment: Learning augmentation strategies from data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
113–123, 2019.

[13] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. RandAugment:
Practical Automated Data Augmentation with a Reduced Search Space. Advances
in Neural Information Processing Systems, 33:18613–18624, 2020.

[14] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa
Ricci. solo-learn: A Library of Self-supervised Methods for Visual Representation
Learning. Journal of Machine Learning Research, 23(56):1–6, 2022.

[15] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and Eric Xing.
High-performance distributed ML at scale through parameter server consistency
models. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI
15), volume 29, 2015.

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale
distributed deep networks. Advances in neural information processing systems
(NIPS 12), 25, 2012.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[18] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A
Thekkath, and Ana Klimovic. Cachew: Machine learning input data processing
as a service. In 2022 USENIX Annual Technical Conference (USENIX ATC 22),
pages 689–706, 2022.

[19] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A {GPU} cluster
manager for distributed deep learning. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 485–500, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[21] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and
Balaji Lakshminarayanan. Augmix: A simple data processing method to improve
robustness and uncertainty. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[22] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective dis-
tributed ml via a stale synchronous parallel parameter server. Advances in neural
information processing systems (NIPS 13), 26, 2013.

[23] Marius Hobbhahn and Tamay Besiroglu. Accessed in December 2023.
Trends in GPU price-performance. https://epochai.org/blog/trends-in-gpu-price-
performance.

[24] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learn-
ing beyond the gpu memory limit via smart swapping. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1341–1355, 2020.

[25] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. Analysis of Large-Scale Multi-Tenant GPU Clusters
for DNN Training Workloads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 947–960, 2019.

[26] Ildoo Kim. Accessed in December 2023. ildoonet/pytorch-randaugment. https:
//github.com/ildoonet/pytorch-randaugment.

[27] Taeyoon Kim, Chanho Park, Heelim Hong, Minseok Kim, Ze Jin, Changdae
Kim, Ji-yong Shin, and Myeongjae Jeon. Accessed in December 2023. Data
Diversification Analysis on Data Preprocessing. https://doi.org/10.5281/zenodo.
8378456.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097–1105, 2012.

[29] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
Tom Duerig, and Vittorio Ferrari. The Open Images Dataset V4: Unified image
classification, object detection, and visual relationship detection at scale. IJCV,
2020.

[30] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae
Shin, and Byung-Gon Chun. Refurbish Your Training Data: Reusing Partially
Augmented Samples for Faster Deep Neural Network Training. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 537–550, 2021.

[31] Yonggang Li, Guosheng Hu, Timothy Hospedales, Neil Robertson, Yongxin
Yang, et al. DADA: Differentiable Automatic Data Augmentation. In European
Conference on Computer Vision, 2020.

[32] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized
parallel stochastic gradient descent. In International Conference on Machine
Learning (ICML 18), pages 3043–3052, 2018.

[33] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae
Jeon. Zico: Efficient GPU Memory Sharing for Concurrent DNN Training. In
2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 161–175,
2021.

[34] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast
AutoAugment. Advances in Neural Information Processing Systems, 32, 2019.

[35] Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari, Mina Rafi Nazari,
Jaspreet Singh Sambee, and Mario A Nascimento. Uniformaugment: A search-
free probabilistic data augmentation approach. arXiv preprint arXiv:2003.14348,
2020.

[36] Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct Differ-
entiable Augmentation Search. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12219–12228, 2021.

[37] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. Prague: High-performance
heterogeneity-aware asynchronous decentralized training. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 20), pages 401–416, 2020.

[38] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao
Ma, and Bin Cui. Heterogeneity-Aware Distributed Machine Learning Training
via Partial Reduce. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD 21), pages 2262–2270, 2021.

[39] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chi-
dambaram. Looking Beyond 𝐺𝑃𝑈𝑠 for 𝐷𝑁𝑁 Scheduling on 𝑀𝑢𝑙𝑡𝑖 − 𝑇𝑒𝑛𝑎𝑛𝑡

Clusters. In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 579–596, 2022.

[40] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
Analyzing and mitigating data stalls in DNN training. In Proceedings of the VLDB
Endowment, pages 771–784, 2021.

[41] Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-
art data augmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 774–782, 2021.

[42] Derek G Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. tf.data: a machine
learning data processing framework. Proceedings of the VLDB Endowment,
14(12):2945–2958, 2021.

[43] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. PipeDream:
generalized pipeline parallelism for DNN training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[44] Accessed in December 2023. FAST AI DATA PREPROCESSING WITH
NVIDIA DALI. https://developer.download.nvidia.com/video/gputechconf/gtc/
2019/presentation/s9925-fast-ai-data-pre-processing-with-nvidia-dali.pdf.

[45] Accessed in December 2023. NVIDIA Data Loading Library. https://developer.
nvidia.com/dali.

[46] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D
Cubuk, and Quoc V Le. Specaugment: A simple data augmentation method for
automatic speech recognition. arXiv preprint arXiv:1904.08779, 2019.

875

https://pytorch.org/docs/stable/amp.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
http://semanchuk.com/philip/posix_ipc/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.pdf
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://epochai.org/blog/trends-in-gpu-price-performance
https://epochai.org/blog/trends-in-gpu-price-performance
https://github.com/ildoonet/pytorch-randaugment
https://github.com/ildoonet/pytorch-randaugment
https://doi.org/10.5281/zenodo.8378456
https://doi.org/10.5281/zenodo.8378456
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9925-fast-ai-data-pre-processing-with-nvidia-dali.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9925-fast-ai-data-pre-processing-with-nvidia-dali.pdf
https://developer.nvidia.com/dali
https://developer.nvidia.com/dali

[47] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim. TrainBox: An Extreme-
Scale Neural Network Training Server Architecture by Systematically Balancing
Operations. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 825–838. IEEE, 2020.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[49] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan
Yang, and Xuehai Qian. Capuchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
891–905, 2020.

[50] Accessed in December 2023. PyTorch Memory Management. https://pytorch.org/
docs/stable/notes/cuda.html#memory-management.

[51] Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che. Cosda-ml: Multi-lingual
code-switching data augmentation for zero-shot cross-lingual nlp. arXiv preprint
arXiv:2006.06402, 2020.

[52] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Florian Stimberg, Olivia
Wiles, and Timothy Mann. Fixing Data Augmentation to Improve Adversarial
Robustness, 2021.

[53] Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt
Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised
Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2674–2683, 2021.

[54] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 551–564, 2021.

[55] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–13, 2016.

[56] Accessed in December 2023. RobustBench. https://robustbench.github.io/.
[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211–252, 2015.

[58] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[59] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053,
2019.

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[61] Accessed in December 2023. TensorFlow Studying Part II for GPU. https://www.
slideshare.net/teyenliu/tensorflow-studying-part-ii-for-gpu.

[62] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob
Uszkoreit, and Lucas Beyer. How to train your ViT? Data, Augmentation, and
Regularization in Vision Transformers. arXiv preprint arXiv:2106.10270, 2021.

[63] Accessed in December 2023. Module: tfm.vision.augment. https://www.
tensorflow.org/api_docs/python/tfm/vision/augment.

[64] Accessed in December 2023. Torchvision: Transforming and Augmenting Images.
https://pytorch.org/vision/stable/transforms.html.

[65] Accessed in December 2023. PyTorch 2.0. https://pytorch.org/get-started/pytorch-
2.0/.

[66] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim,
and Woo-Yeon Lee. FastFlow: Accelerating Deep Learning Model Training with
Smart Offloading of Input Data Pipeline. Proceedings of the VLDB Endowment,
16(5):1086–1099, 2023.

[67] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio
Murino, and Silvio Savarese. Generalizing to unseen domains via adversar-
ial data augmentation. Advances in neural information processing systems, 31,
2018.

[68] Guanhua Wang, Kehan Wang, Kenan Jiang, XIANGJUN LI, and Ion Stoica.
Wavelet: Efficient DNN Training with Tick-Tock Scheduling. In 2021 Proceedings
of Machine Learning and Systems (MLSys 21), pages 696–710, 2021.

[69] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting
performance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

[70] Chih-Chieh Yang and Guojing Cong. Accelerating data loading in deep neural net-
work training. In 2019 IEEE 26th International Conference on High Performance
Computing, Data, and Analytics (HiPC), pages 235–245. IEEE, 2019.

[71] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial AutoAug-
ment. In International Conference on Learning Representations, 2019.

[72] Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren, Wencong Xiao, Man
Yuan, Langshi Chen, Kaibo Liu, Yang Zhang, et al. GoldMiner: Elastic Scaling
of Training Data Pre-Processing Pipelines for Deep Learning. Proceedings of the
ACM on Management of Data, 1(2):1–25, 2023.

[73] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. Understanding Data Storage and Ingestion for
Large-Scale Deep Recommendation Model Training: Industrial Product. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture
(ISCA 22), pages 1042–1057, 2022.

[74] Yu Zheng, Zhi Zhang, Shen Yan, and Mi Zhang. Deep AutoAugment. In
International Conference on Learning Representations, 2022.

[75] Zheng, Lianmin and Li, Zhuohan and Zhang, Hao and Zhuang, Yonghao and
Chen, Zhifeng and Huang, Yanping and Wang, Yida and Xu, Yuanzhong and
Zhuo, Danyang and Xing, Eric P and others. Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 559–578,
2022.

[76] Fengwei Zhou, Jiawei Li, Chuanlong Xie, Fei Chen, Lanqing Hong, Rui Sun, and
Zhenguo Li. Metaaugment: Sample-aware data augmentation policy learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages
11097–11105, 2021.

876

https://pytorch.org/docs/stable/notes/cuda.html#memory-management
https://pytorch.org/docs/stable/notes/cuda.html#memory-management
https://robustbench.github.io/
https://www.slideshare.net/teyenliu/tensorflow-studying-part-ii-for-gpu
https://www.slideshare.net/teyenliu/tensorflow-studying-part-ii-for-gpu
https://www.tensorflow.org/api_docs/python/tfm/vision/augment
https://www.tensorflow.org/api_docs/python/tfm/vision/augment
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/get-started/pytorch-2.0/
https://pytorch.org/get-started/pytorch-2.0/

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	3.1 Data Prep on CPU
	3.2 Data Prep on GPU

	4 Proposed Solutions
	4.1 New System Components for GPU Prep
	4.2 CPU-GPU Cooperation for Data Prep
	4.3 Data Diversification

	5 FusionFlow Design
	5.1 System Architecture
	5.2 Efficient Task Scheduling and Execution
	5.3 Memory Overflow Handling

	6 Evaluation
	6.1 blackImplementation and Methodology
	6.2 blackPerformance Comparison
	6.3 Diverse Usage Scenarios
	6.4 Design Validation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

