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ABSTRACT

Query plan is widely used as input inmachine learning for databases

(ML4DB) research, with query plan representation as a critical step.

However, existing studies typically focus on one task, and pro-

pose a novel design to represent query plans along with a ML4DB

framework, without comparing with other representation methods

designed for a different task. This raises a critical question: How do

we select a query plan representation method in a ML4DB system?

To address this question, we perform a comparative study on

ten representation methods on three distinct ML4DB tasks: cost

estimation, index selection and query optimization. Our extensive

experiments not only verify the interchangeability of representa-

tion methods across different tasks, but also identify consistently

high-performing models. Further, we dissect the query plan rep-

resentation into two core components: feature encoding and tree

model, and evaluate the impact of design choices for each in differ-

ent scenarios. Our results show that the findings for tasks optimiz-

ing absolute errors are different from findings for tasks optimizing

relative errors. Some findings challenge widely-held assumptions,

i.e., one finding shows that tree models do not significantly impact

cost estimation results, but only play a significant role to optimize

relative performance. Practical guidelines and future directions are

provided based on the findings of the study.
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1 INTRODUCTION

In machine learning for databases (ML4DB) research, query plans

are widely utilized as inputs for various tasks such as cost estima-

tion [17, 28, 36], index selection [11], join order selection [27, 44],

query optimization [25, 26], view selection [45] and more [33, 46].

A fundamental aspect of these endeavors involves representing

query plans in a format suitable for machine learning models [46].
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A physical query plan is a detailed description of the sequence

of steps to process a query and retrieve the results. It is represented

in the form of a directed tree, in which each node describes a unit

operation, and each edge describes the dependencies between two

nodes. Specifically, each node is responsible for processing a part

of the query passing the results to its parent node.
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Figure 1: Left: An example workflow of a query-plan based

ML4DB system. Top Right: An example query plan. Bottom

Right: An example query plan node.

Figure 1 illustrates an example workflow of a typical ML4DB

system which takes query plans as input. First, a feature encoder

module takes the query plans generated from a database system

as input, extracts the important information from each node in a

query plan, and featurizes the information into a unified format,

such as fixed-sized vectors. Next, the trees of vectors will be passed

to a tree model, i.e., long short-term memory (LSTM) [45], tree

convolutional neural networks (TreeCNN) [25], tree-structured

LSTM (TreeLSTM) [44], or Transformer [46], to aggregate the node

features. The tree model will output vector representations for

the input query plans, and finally, they will be passed to a task-

specific machine learning model, such as a regressor or classifier,

which provides insights to the database system and user. Despite

targeting on different tasks, these ML4DB systems taking query

plans as input rely on the representations of query plans to learn

the correlations between query plan properties and the targeted

outputs [46]. They may employ different task models, but they all

need the feature encoder component and tree model component to

learn the representation of physical query plans.

Most of the existing studies on ML4DB using query plans focus

on one task, such as cost estimation, and typically propose a new

approach to represent query plans along with task models to serve
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its task. However, they do not empirically compare with the query

plan representation methods which are designed for a different

task. One natural question arises: ‘Given the diversity of tasks and

datasets in ML4DBwork, how can we effectively evaluate and select

query plan representation methods?’ More specifically, there are

four open problems: Unknown Interchangeability: Query plan

representation methods are often designed for a specific task, which

may or may not perform well in other tasks. Task and Dataset

Dependency: The performance of a representation method can

vary on the specifications of tasks and datasets, making finding

an effective method difficult. Lack of Comparative Analysis:

There is lacking a comprehensive comparative study of the differ-

ent representation methods across tasks and datasets. Optimal

Design: Query plan representation methods use different feature

encoding and tree models. It is unclear that what is the determining

component of the performance of a method.

To address the problems, we design three research questions and

answer each of them with comprehensive experiments.

RQ1How interchangeable are representation methods across

various ML4DB tasks, and for each task, what representation

method is the most effective? To answer the question, we col-

late and implement ten query plan representation methods. We

experiment them on three different ML4DB tasks, namely cost

estimation [36], index selection [11] and query optimization [25].

RQ2 What is the best tree model design? As the existing meth-

ods use different feature encodings and tree models, the best choice

of tree model designs is unknown. To answer the question, we stan-

dardize the feature encoding, and perform controlled experiment

on tree models in existing works.

RQ3 What is the best feature encoding? We disentangle feature

encoding from tree models in representation methods. Given the

vast options of encoding elements (please refer to Section 2.2 for

details), we prune the exploration space and primarily focus on car-

dinality features, as they are the most varied part among represen-

tation methods. Next, we study both their individual performances,

and the impact of their combinations in different scenarios.

In summary, our work makes the following contributions and

key findings:

• We identify a fundamental step of query plan representation in

three ML4DB tasks that utilize query plans as input.

– We confirm the interchangeability of query plan represen-

tation methods for different tasks.

– We find some methods excel for the tasks that they are not

designed for

• We break down query plan representation methods into two

components: feature encoding and tree model. Through compre-

hensive controlled experiments, we conclude that the optimal

design choice is intrinsically tied to the task’s optimization target,

to minimize absolute error or to identify correct relative ranking.

– Feature Encoding.We identify the difference in feature en-

coding lies in cardinality-related features. For tasks aiming

to reduce absolute error, a straight-forward strategy is to

include as many candidate features as possible. Conversely,

when the focus is the relative rankings, it is more benefi-

cial to select a subset of features, and adding other features

usually damage the robustness of the learned model.

– Tree Model. To tasks optimizing absolute error, surpris-

ingly, the choice of tree model is insignificant. However, on

tasks to minimize relative errors, TreeCNN is preferred for

in-distribution workloads, and LSTM performs the best for

out-of-distribution workloads.

2 QUERY PLAN REPRESENTATION IN ML4DB

This section first gives a problem definition. Next, we break down

a query plan representation into two stages: feature encoding and

tree model, and summarize the existing techniques used in each

stage. Finally, we describe each representation method.

2.1 Problem Definition

In this study, we focus on query plan representation in a single data-

base application and dataset. We leave learning a general purpose

model and transfer learning opportunities to future work. Consider

a ML4DB system, query plan representation is the procedure which

takes an arbitrary query plan as input, and output a vector rep-

resentation for the query plan as the input to a machine learning

model of the ML4DB system. The vector has to encode the impor-

tant features, so that the machine learning model can leverage it to

generate insights for the database system or the database user.

2.2 Feature Encoding

A query plan consists of information of heterogeneous types and

correlated properties that affect its execution performance such as

latency and throughput [36]. Hence, a necessary step in all query

plan representation methods is to select and encode important

features. A common practice is to select a subset of features for every

node and concatenate the representation vector of each component

as the node representation [46]. We summarize all the features that

are used in query plan representation techniques below.

Operator. Operator specifies the physical operation performed

by each node, such as Hash Join or Sequential Scan. Because of

its importance, it is encoded in all representation methods. As a

categorical variable, it is encoded either using one-hot encoding or

a learned embedding vector.

Table. Table usually appears in scan nodes, specifying the input

of an operation, and is a commonly included feature.

Column. Column is usually present in nodes that involve join

or predicate. The size and underlying data distribution of a column

helps to determine input and output sizes.

Join. Join specifies the two columns that the join operationworks

on. Some methods use the column representations to infer their

interactions. Other methods assign a learned embedding vector to

each possible join.

Predicate.Apredicate is described by a (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑣𝑎𝑙𝑢𝑒)
triplet. Predicates are commonly represented by concatenating the

encoding for the three components, i.e., |𝑐𝑜𝑙𝑢𝑚𝑛, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑣𝑎𝑙𝑢𝑒 | [36,
46]. Other variants exist. For example, AVGDL uses LSTM to con-

nect the triplet components [45].

Estimates. Cardinality and cost estimates are produced (and

used) by cost-based database optimizers [5]. These estimators are

usually built from database statistics with independence assump-

tions and magic numbers. Although not always accurate, machine
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learning models can learn to make use of them [25]. We evaluate

the impact of its inaccuracies in Section 6.1.

Histogram and Sample. Some methods incorporate other data-

base statistics besides the estimates. For example, they encode raw

database statistics like materialized samples for each table or his-

tograms for each column [36, 46]. A bitmap is used to represent the

satisfiability of each sample point or a histogram bin.

We note that a representation method uses only a subset of the

above features, as some features may be considered redundant. For

example, methods that encode predicates typically do not encode

estimates, as these methods can ideally learn the distribution of

data and infer the estimates [46].

2.3 Tree Model
Query plan representation methods have to transform the tree

structures of query plans into a single fixed-size vector for ma-

chine learning models, such as a multi-layer perceptron (MLP). We

summarize the techniques used in existing work below:

LSTM. LSTM is a recurrent neural network (RNN) with shortcut

connections [16]. As there is no natural order to traverse a query

plan with the tree structure, depth first search (DFS) is employed

to first flatten a query plan [45]. The hidden state vector from the

last node is treated as the query plan representation.

TreeRNN. TreeRNN models maintain the tree structure when

aggregating node information. Some work use TreeLSTM, which

generalizes the traditional LSTM cell by accepting inputs from

multiple channels [38]. Other work proposes novel RNN-units to

aggregate features with a tree structure [28].

TreeCNN. TreeCNN is a variant of the traditional convolu-

tional neural networks (CNN), designed to handle tree-structured

data [30]. It consists of convolutional layers with triangular shapes

(parent-child-child) to slide over all the sub-trees. Dynamic pooling

is used to aggregate all features to a single vector [26].

Transformer. Transformer utilize a stack of attention layers to

aggregate information from a sequence [40]. QueryFormer general-

izes to the tree structure of a query plan by modifying the positional

encoding and attention formulation [46].

Feature Vector.We name the methods that do not use learnable

parameters ‘Feature Vector’. They directly encode the important

features into a pre-defined size vector. To incorporate tree structures

with varied shape and size, zero-padding is usually applied [11, 27].

2.4 Representation Methods

In this section, we will describe each representation method in

ML4DB literature, focusing on feature encoding and the tree model.

AVGDL [45]. Yuan et al. proposed a view selection framework

based on reinforcement learning called Automatic View Generation

with Deep Learning (AVGDL in short). AVGDL extracts features

from each node, including operator, tables, columns, and predicates.

Numerical features are normalized, and non-numerical features

are encoded as embedding vectors. AVGDL then employs an LSTM

model to transform the features of a node into a fixed-length vector

as the node encoding. Last, the query plan tree is flattened into a

sequence using DFS, and a second LSTM is used to aggregate the

node encodings into a vector representation.

Implementation: We reproduce the representation method based

on the paper.We simplified String predicate encoding with a learned

embedding. We employ similar treatment on all methods, as string

predicate representation itself is a challenging research question [35]

and may confound the findings of this study.

AIMEETSAI [11]. AIMEETSAI proposes an index selection

framework, with a key insight of employing a classifier to pre-

dict the relative performance of query plans from different index

configurations. It defines a set of feature channels related to each

operator, and then incorporates structural information by defining

additional channels with weighted_sum suffix, where the weights

are the heights of the nodes in a query plan. To represent a query

plan, it collects values for all feature channels from each node, and

sums the values of all nodes by channels (assign zero to absent

entries). This essentially encodes any query plan into a fixed-size

vector. Note that this method does not have learnable parameters.

Implementation: We reproduce AIMEETSAI with five feature

channels: est_node_cost, est_rows, est_bytes, est_rows_weighted_sum

and est_node_cost_weighted_sum.

ReJOIN [27]. ReJOIN proposes a proof-of-concept reinforce-

ment learning framework for join order selection. It represents

a (full or partial) query plan by concatenating three components:

tree structure, join and predicate. Tree structure is represented as a

row vector, where each entry is the height of each table in a plan.

Join and predicate are represented using multi-hot encoding, where

each entry indicates the existence of predicate or join.

Implementation:We reproduce ReJOIN based on its paper.

Neural Optimizer (NEO) [26]. NEO proposes a reinforcement

learning-based optimizer that builds a query plan end-to-end. It en-

codes a query plan in two parts: query encoding and plan encoding.

Query encoding is plan-agnostic, which only includes join and pred-

icate. Join is represented using a adjacency matrix and predicate

encoding has three variants: one-hot, histogram, and R-Vector. The

join and predicate encodings are concatenated and passed through

linear layers to form the final query encoding. Next, plan encoding

concatenates the operator and table encoding for each node, which

is then appended with query encoding to form an augmented tree.

The tree of vectors is passed to a TreeCNN network to produce the

final query plan representation.

Implementation: We reproduce the representation method by

adapting the open source code of BAO [2]. We use the histogram

variant for predicate encoding. We do not use the R-Vector variant

because it requires separate training using the tuples in a database,

which can be unfair to other methods.

Bandit Optimizer (BAO) [25]. BAO is a successor of NEO,

which introduces a reinforcement learning framework to improve

an existing optimizer. BAO only includes the operator type, esti-

mated cardinality, and estimated cost for each node in its query

plan representation, and uses the same TreeCNN model as NEO.

Implementation:We use the open source implementation [2].

Prestroid [17]. Prestroid proposes a cost estimation model for

large query plans. It concatenates the encoding of operator, table

and predicate for each node. Operator and table are encoded as one-

hot vectors, and predicate is encoded using a word2vec model [29].

Next, Prestroid employs a custom TreeCNN model with a sub-tree

sampling algorithm to aggregate information and output a final

representation.
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Table 1: Summary of Existing Representation Methods in ML4DB works.

Method Original Task Tree Model
Encoding Information

Operator Table Predicate Database Statistics

AVGDL [45] View Selection LSTM Yes Yes Yes -

AIMeetsAI [11] Index Selection Feature Vector Yes - - Estimates

ReJOIN [27] Join Order Selection Feature Vector Yes Yes Column -

BAO [25] Optimizer TreeCNN Yes - - Estimates

NEO [26] Optimizer TreeCNN Yes Yes Column Estimates

Prestroid [17] Cost Estimation TreeCNN Yes Yes Yes -

E2E-Cost [36] Cost/Card Estimation TreeLSTM Yes Yes Yes Sample

RTOS [44] Join Order Selection TreeLSTM Yes Yes Yes -

Plan-Cost [28] Cost Estimation TreeRNN Yes - - Estimates

QueryFormer [46] General Purpose Transformer Yes Yes Yes Sample & Histogram

Implementation:We reproduce the method based on the paper.

We exclude the word2vec module. Similar to NEO, this simplifica-

tion is to avoid separate training for fairness.

Plan-Cost [28]. Plan-Cost proposes a cost estimation model for

query plans using a novel TreeRNN model. It defines two base type

units called neural units. A leaf neural unit takes the operator type,

estimated cost, and estimated number of rows as input, and outputs

a vector representing data and estimated latency. An intermediate

neural unit has an additional input channel from its child nodes.

Plan-cost recursively applies the corresponding neural unit from the

leaf nodes to the root node to obtain the final vector representation.

Implementation:We implement Plan-Cost based on a third-party

reproduction [3]. Additionally, we implement a sampling module

that groups query plan templates to support batch training.

E2E-Cost [36]. Sun and Li propose a cost estimation framework

which estimates the cost and cardinality of query plans simulta-

neously. It encodes each node’s operator, table, column and index

in one-hot encoding. It represents predicates with concatenation

in |𝑐𝑜𝑙𝑢𝑚𝑛, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑣𝑎𝑙𝑢𝑒 | format, and enriches it with a sample

bitmap. It employs a string predicate embedding scheme with data

mining techniques [13] and a word2vec model [29]. E2E-Cost uses a

custom TreeLSTM model to aggregates information from all nodes.

Implementation:We used the original open-source codes [1], and

exclude the string encoding as it requires separate training.

RTOS [44]. RTOS proposes a join order selection framework

using reinforcement learning. RTOS first associates all columns

with a learned embedding. RTOS then augments the column rep-

resentation by multiplying it with a vector encoding predicate

conditions. Next, a table is encoded by concatenating and pooling

all its columns. Last, RTOS employs a custom TreeLSTM model to

aggregate information from nodes.

Implementation:We reproduce the method based on its paper. We

implement the TreeLSTM using the Deep Graph Library (dgl) [41].

QueryFormer [46]. QueryFormer proposes a general purpose

query plan representation model for various database tasks. It first

extracts features including tables, predicates, operators and encodes

them in learned embeddings, and enriches with database statistics

including samples and histograms. QueryFormer then aggregates

the individual node encoding using a custom tree-structured Trans-

former model.

Implementation: We use the open-source implementation [4].

3 COST ESTIMATION

Cost estimation is a fundamental task essential to many database

applications, such as query optimization [7, 12], index and view

selection [6], scheduling [22], and more [10]. The objective is to pre-

dict the execution cost of a physical query plan, which is reflected

in its execution latency. We note that cost estimation includes many

other aspects, such as CPU, I/O, memory utilization, etc. We can

adapt the framework by changing them as the ground truth labels,

and the results can potentially be different. We scope this experi-

ment to latency prediction to align with common practice in recent

work [17, 28, 36]. To evaluate the performance of representation

methods, we use the setting from E2E-Cost [36]. E2E-Cost encodes

a query plan to a single vector using a novel encoding scheme and

a TreeLSTM model. The representation vector is then passed to a

MLP network as the estimation model. We replace the query plan

representation component while keeping other parts the same. In

this manner, we can compare the effectiveness of the representation

methods from the cost estimation accuracy.

3.1 Experimental Setup

Datasets.We use four datasets from both industrial standard bench-

marks and real-life databases to evaluate cost estimation. We sum-

marize the datasets properties of the workloads in Table 2.

IMDB [24] is a movie database often used in work for join order

selection, cardinality estimation [20], cost estimation [36], etc. It

is challenging due to its high skewness and correlation between

columns [20]. We use the same query workloads and splitting as

they are used in E2E-Cost, i.e., 100,000 training queries are gen-

erated and deduplicated from templates with zero to two joins.

We use two test workloads: ‘Synthetic’ consists of 5,000 queries

generated from the same program with a different seed to test for

in-distribution (ID) performance. ‘Job-Light’ consists of 70 hand-

crafted queries with meaningful semantics. It is more complex, with

up to four joins and close-range predicates. Hence, it can test for

out-of-distribution (OOD) performance.

TPC-H [34] and TCP-DS [31] are commonly used benchmarks to

evaluate the performance of cost estimators [28] and index recom-

menders [23]. We generate and execute 50 queries for each query

template in TPC-H, and 5 queries for each query template in TPC-

DS. 20% of the queries are held out as test set. TPC-H and TPC-DS

benchmarks contain much larger query plans as compared to IMDB.
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Table 2: Dataset properties.

Dataset Max # Avg # Skewness Correlation

TPC-H 26 16.8 Uniform Uncorrelated

TPC-DS 143 44.4 Uniform Uncorrelated

Synthetic 10 4.9 Moderate Moderate

JOB-Light 14 8.44 Moderate Moderate

STATS 16 9.49 High High

Job-Extend 73 21.2 Moderate Moderate

STATS [14] is a real-world dataset originally used in cardinality

estimation. It is challenging because it comes with more relations,

columns, higher skewness and correlation between columns, and

more complex topology, i.e., it contains a mix of star joins and chain

joins [14]. Following the original work, we use 70,142 generated

queries for training, and 146 hand-crafted queries as the test set,

which test for OOD performance.

EvaluationMetrics.We use Q-Error to evaluate the accuracy of es-

timated latency, following E2E-Cost. It measures the multiplicative

error as:
max(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑐𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙_𝑐𝑜𝑠𝑡 )
min(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑐𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙_𝑐𝑜𝑠𝑡 ) .

Implementation. We connect the vector output of query plan

representations to an MLP model to predict the cost, following

E2E-Cost [36]. The MLP models for each representation method

have the same structure and layers, but their hidden sizes are tuned

individually as hyper-parameters. All learnable parameters in the

representation methods and the MLP model are trained end-to-end.

Finally, we include the estimations of Postgres as baseline. Since the

cost estimates from Postgres has no unit, we use linear regression

to map the estimates from Postgres to the actual latency.

Model Training. In model training, we employ ADAM [19] opti-

mizer coupled with a step learning rate scheduler for all methods.

Hyper-parameters are individually tuned for each method using a

random search approach. Specifically, we jointly permute the learn-

ing rate, the hidden size of the MLP, and other method-specific

hyper-parameters. Training is halted based on an early stopping

criterion: we cease training if the validation loss fails to decrease by

at least 0.1% or upon reaching 200 epochs, whichever comes first.

3.2 Overall Cost Estimation Performance

We evaluate the cost estimation performances to answer (1) how

interchangeable are representation methods to database tasks, (2)

what is the best performing methods to the task. We present the

cost estimation results in Table 3.

Performance Summary. We rank the representation methods based

on their scores for each dataset below. Specifically, each ‘>’ symbol

indicates a significant difference in performance, with the methods

on the left outperforming those on the right.

• TPC-H: {Other Methods} > {Plan-Cost, E2E-Cost}.

• TPC-DS: {Other Methods} > {AIMEETSAI} > {Plan-Cost, E2E-

Cost}.

• Synthetic: {QueryFormer, BAO, AIMEETSAI, E2E-Cost, AVGDL,

RTOS} > {Plan-Cost} > {NEO, Prestroid, ReJOIN}.

• Job-Light: {QueryFormer, E2E-Cost, Plan-Cost, BAO, AIMEETSAI}

> {ReJOIN, NEO, Prestroid, AVGDL, RTOS}.

• STATS: {QueryFormer, BAO} > {Other Methods} > {ReJOIN, Plan-

Cost}.

Observation: Most representation methods can handle

large query plans.Most methods have near perfect performances

for TPC-H and TPC-DS as shown in Table 3.This attributes to the

uniform distribution in the database columns, hence letting the pre-

diction layer to accurately capture the correlation between input

features to output costs. There are a few exceptions. E2E-Cost and

Plan-Cost have manually implemented or designed recurrent model

design, making them struggle for a large number of nodes [32].

AIMeetsAI has high tail error in TPC-DS. This is because TPC-DS

has a few extremely large query plans, which may mess up the

‘height’ term in its formulation. This essentially demonstrates an

intrinsic limitation to rule-based representation methods.

Observation: Performances among representation meth-

ods differ on real-life datasets, especially on OOD workloads.

On Synthetic (ID) workload, representation methods demonstrate

larger differences in scores compared to on TPC- benchmarks.

Around half of the representation methods (QueryFormer, BAO,

AIMEETSAI, E2E-Cost, AVGDL, and RTOS) perform similarly well,

i.e., their median Q-Error deviate by about 7%. However, other meth-

ods like NEO and Prestroid have 88% higher median Q-Error and

max Q-Error up to 4 digits. The larger discrepancy suggests that

representation methods have different capacity in their designs to

model the complex data distribution. Furthermore, the differences

in scores for the Job-Light and STATS (OOD) workloads are much

larger. For example, among the best performing models (Query-

Former and BAO), the differences in median Q-Error exceed 50%,

and between the highest and the lowest scores are up to 570%.

3.3 Analysis of Tree Models

Our experiments illustrate that representation methods, each made

up of a different feature encoding strategy and tree model, have

different performances. This makes it challenging to attribute per-

formances to design choices. To this end, we standardize the feature

encoding in all these methods, so that we can rigorously assess and

compare the performance of different tree models. There are five

tree models: TreeCNN, TreeLSTM, LSTM, Transformer and Feature

Vector, as summarized in Section 2.3. For Feature Vector, we use

AIMeetsAI’s formulation instead of ReJOIN due to its higher perfor-

mance. We use the feature encoding from BAO as the standardized

encoding because of its high performance. We perform the same

suite of experiments and present the results in the second block of

Table 3.

Observation: The performance differences among tree

models are generally marginal! In ID and most OOD work-

loads, all tree models show practically identical performances. This

unexpected finding suggests that the choice of tree model may not

be as consequential as previously assumed! There are two minor

exceptions: (1) Feature Vector shows large tail errors on TPC-DS,

JOB-Light, and STATS, similar to the original AIMEETSAI’s per-

formance. (2) RNN-based methods (TreeLSTM and LSTM) slightly

underperform in the tail regions for OOD workloads. This could be

attributed to the difficulty in training for RNN models [32].

3.4 Analysis on Feature Encoding

We investigate the impact of feature encoding methods. There are

two challenges. First, there is a large candidate pool of possible
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Table 3: Cost Estimation Accuracy (Q-Error) on five test workloads. The first black is the original methods that we evaluate,

followed by PostgreSQL as baseline. The subsequent blocks are the tree models (Section 3.3) and feature encodings (Section 3.4).

The highest scores in each block are marked bold. The overall best scores across blocks are underlined.

Dataset TPC-H TPC-DS Synthetic JOB-Light STATS

50th 90th 99th Max 50th 90th 99th Max 50th 90th 99th Max 50th 90th 99th Max 50th 90th 99th Max

AVGDL 1.010 1.067 1.222 1.297 1.045 1.925 4.563 5.754 1.284 4.065 22.62 242.8 3.962 47.22 412.5 427.2 3.702 22.11 533.7 824.9

AIMEETSAI 1.044 1.142 1.268 1.392 1.167 3.127 616.6 1329 1.204 3.250 14.22 124.2 2.033 51.92 1085 1561 2.106 22.60 17930 1.2e5

ReJOIN 1.052 1.964 11.37 14.93 1.044 1.756 4.301 5.326 2.851 36.83 490.9 1639 3.276 38.49 1016 2746 8.941 726.7 43540 96690

BAO 1.008 1.095 1.285 1.331 1.085 1.650 3.621 3.956 1.142 3.169 13.42 89.14 2.242 18.20 268.0 316.0 2.028 32.81 336.5 457.2

NEO 1.027 1.122 1.845 2.240 1.034 1.437 4.388 5.669 2.106 21.76 476.7 1009 3.924 37.76 483.7 716.0 2.622 50.22 2657 34630

Prestroid 1.011 1.457 1.792 8.196 1.212 2.344 6.267 9.333 2.012 20.68 382.8 999.2 4.324 47.7 343.2 584.4 2.695 30.01 1213 17600

Plan-Cost 2.711 13.56 72.91 79.52 2.016 6.597 113.9 295.3 1.633 4.492 18.04 93.82 2.070 45.38 182.8 189.5 8.035 283.9 11570 30380

RTOS 1.071 1.414 1.750 1.961 1.064 1.934 5.154 6.615 1.321 3.497 13.78 235.7 4.013 105.1 1689 1853 3.793 48.57 2304 32650

E2E-COST 3.253 6.023 10.92 13.46 2.100 3.827 18.79 50.18 1.257 2.748 14.12 296.2 1.771 29.68 417.0 433.0 3.831 44.37 685.1 1270

QueryFormer 1.028 1.052 1.137 1.259 1.053 1.296 5.058 7.499 1.065 1.718 13.05 20.53 1.408 20.28 176.6 380.0 1.322 8.354 60.41 132.1

POSTGRES 2.064 8.547 85.85 1131 2.972 13.88 27010 116900 3.775 16.48 202.8 1362 2.742 20.90 213.6 455.9 6.431 518.6 5205 8565

TreeLSTM 1.028 1.053 1.134 1.256 1.031 1.608 4.110 4.477 1.236 3.444 14.70 110.7 1.913 32.10 225.1 319.7 1.803 36.48 950.3 12030

Transformer 1.029 1.177 1.371 1.394 1.127 1.847 4.047 5.345 1.241 3.461 14.56 143.7 1.621 22.36 201.3 247.5 2.363 20.61 704.6 3858

LSTM 1.024 1.065 1.198 1.332 1.024 1.282 5.085 6.562 1.168 3.110 12.80 134.7 2.108 78.49 704.6 758.6 2.022 41.77 1606 70800

TreeCNN 1.008 1.095 1.285 1.331 1.085 1.650 3.621 3.956 1.142 3.169 13.42 89.14 2.242 18.20 268.0 316.0 2.028 32.81 336.5 457.2

Feature Vector 1.027 1.084 1.315 1.448 1.081 1.763 33.87 72.27 1.185 3.218 13.61 81.51 2.012 34.21 138.0 284.3 2.129 24.31 1085 12510

Empty 1.007 1.084 1.404 1.464 1.027 1.773 3.996 4.195 2.013 20.52 380.5 1042 4.197 31.65 420.6 687.2 2.598 25.38 789.6 33070

Pred 1.007 1.046 1.430 1.493 1.026 1.429 4.629 6.025 1.141 2.674 11.5 764.3 2.985 62.54 154.7 258.9 1.584 8.734 278.8 3172

Hist 1.007 1.051 1.387 1.447 1.030 1.709 4.677 6.315 1.760 12.61 220.2 3386 4.622 28.47 466.6 676.7 2.367 45.44 3488 55780

Sample 1.010 1.041 1.450 1.512 1.041 1.731 4.386 5.051 1.160 6.670 118.7 2004 4.490 67.19 468.9 779.5 3.236 202.6 11480 65770

Est 1.015 1.046 1.372 1.419 1.033 1.680 3.307 4.188 1.169 3.393 13.70 87.90 2.577 29.16 249.5 675.5 2.016 16.29 707.5 18070

Pred_Est 1.007 1.034 1.144 1.285 1.022 1.357 2.751 4.194 1.084 2.050 10.37 782.2 2.383 24.06 304.3 514.6 1.579 11.57 76.90 541.9

Pred_Hist 1.008 1.050 1.399 1.459 1.031 1.797 3.986 4.181 1.155 2.836 16.68 470.5 4.033 50.84 715.8 1564 1.605 14.29 465.0 16550

Pred_Sample 1.019 1.065 1.505 1.569 1.032 1.787 4.001 4.204 1.105 2.937 15.15 767.4 3.489 27.09 260.1 466.7 1.739 14.32 560.0 3117

Pred_Est_Hist 1.009 1.036 1.147 1.250 1.017 1.272 2.858 4.196 1.086 2.062 10.28 739.0 2.772 32.05 1192 1324 1.615 10.26 226.8 3409

Pred_Hist_Sample 1.013 1.053 1.382 1.441 1.030 1.781 4.217 4.311 1.097 2.962 18.78 470.3 4.464 45.00 308.8 636.2 1.833 9.486 1080 1824

Pred_Est_Sample 1.010 1.035 1.180 1.316 1.025 1.386 4.118 4.196 1.064 2.195 11.02 632.5 2.321 23.92 788.6 796.4 1.383 10.46 28.00 37.32

ALL 1.016 1.047 1.139 1.246 1.021 1.250 4.547 5.774 1.060 2.180 12.16 737.1 2.314 22.20 290.1 590.9 1.461 6.605 239.4 332.7

features. Since each representation method typically encodes a

different subset of features, the number of possible combinations

for features is exponential. Second, existing works use various

encoding formulations, such as concatenation, LSTM, or rule-based

designs like in AIMEETSAI or RTOS. This adds more options to the

possibility of feature encodings.

To make the study feasible, we make two simplifications. First,

to select features to study from the candidate pools, we observe

three commonalities in almost all existing encoding methods: (1) All

methods include Operator in the encoding. (2) Almost all methods

include Table, because it provides the information of the input to a

node. (3) All methods include some encoding parts that are related to

cardinality. This is because they determine the output size of a node.

Based on this observation, we primarily focus on the part where

most representation methods are different on: Cardinality_Features.

Second, we unify the encoding using concatenation, as it is the most

commonly used (five out of ten) approach, and can easily accommo-

date any feature in the experiment. In other words, we formulate the

encoding in the form of |𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟,𝑇𝑎𝑏𝑙𝑒,𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 |.
The candidate pool for Cardinality_Features includes two cate-

gories: predicate and database statistics. Predicate (denote as Pred)

encodes the filter conditions. Database statistics include Sample,

histogram (denoted as Hist) and estimates (denoted as Est). Please

refer to Section 2.2 for details. We use Tree-CNN as the tree model

due to its consistent performance in previous studies.

Our study is twofold. First, we compare the single feature per-

formance to identify the most effective feature. For comparison, we

include a simple baseline without any Cardinality_Feature, denoted

as Empty (it still has Operator and Table in the encoding). Next, we

examine the combinations of the above features, because a feature

encoding scheme is not restricted to using only one feature. We

present the results on the bottom two blocks of Table 3 respectively.

Performance Summary. For the TPC- benchmarks, all Cardinal-

ity_Features and their combinations have similarly good perfor-

mances, which align with previous observations.

In Synthetic (ID) workload, Pred and Est significantly outperform

other Cardinality_Features, achieving less than a 20% median error

from the perfect score. Among them, Est has the best performance,

evident from its lowest tail error. For the combination of features,

despite the individual differences, all combinations show similar

performance and are usually better than single element feature.

In JOB-Light and STATS (OOD) workloads, Pred is the most ef-

fective feature, closely followed by Est. This is evident from both

median and max Q-Errors. For feature combinations, those incor-

porating both Pred and Est perform better than others.

Observation: Pred and Est are the most impactful features,

and their combination can yield superior results. Existing

works have never included both of them together! Pred and Est

features prove to be highly effective on datasets with skewness and

correlation, and for OOD queries. As discussed in Section 2, Pred

and Est are typically treated as mutually exclusive in representation

method design. Different from assumption, our experiments show

that their combination can lead to better performance. This is be-

cause machine learning models can leverage these complementary

features for different query plans. In fact, adding so-called ‘bad’

features, i.e., Hist and Sample, which underperform as a single fea-

ture, can enhance performance in most cases as well. For example,

Pred_Est_Sample consistently outperform Pred_Est. This finding

828



suggests that in practice, a good first attempt when applying query

plan representation in cost estimation tasks can be encoding all

potentially useful features.

3.5 Key Findings

The main findings are as follows:

• QueryFormer and BAO consistently demonstrate superior per-

formance across all scenarios.

• Tree models have relatively minor impact to performance.

• Feature encoding is crucial to performance. Pred and Est are

the most effective features, and including as many features as

possible can be a default choice.

4 INDEX SELECTION

In this section, we evaluate the effectiveness of query plan repre-

sentation methods on the task of index selection, following the

setting of AIMEETSAI [11]. Index selection task refers to the pro-

cess of picking a index configuration with the least total cost for

a query or a workload on a given database [9]. To select the most

beneficial index configuration, a index tuner utilizes an optimizer

with the “what-if” API [8] to obtain query plans for hypothetical

index configurations. In this way, the task of selecting better index

configurations is transferred into selecting better query plans.

Conceptually, the cost estimators as evaluated in Section 3 can

be directly applied to solve the task. AIMEETSAI demonstrated

that cost estimation task is inherently difficult, and the inaccura-

cies in cost estimators lead to large prediction errors. On the other

hand, a classification-based model that is trained on pairs of plans

directly minimizes comparison errors, leading to improved accu-

racy [11]. Specifically, AIMEETSAI uses a representation technique

(as discussed in Section 2) , and constructs a ‘plan pair’ by tak-

ing the differences of two query plan representations. The ‘plan

pair’ representation is fed to a classifier with three labels: IMPROVE,

REGRESS, or NO_DIFF. Using the classifier, an index tuner can select

an optimal index configuration for a given query.

In line with AIMEETSAI’s approach, we replace the query plan

representation module and choose MLP as the classifier. The origi-

nal paper discussed various classifier models such as random forest,

logistic regression and etc. We selected MLP because most query

plan representation methods require training parameters, and using

MLP allows the framework to be trained in an end-to-end manner.

4.1 Experimental Setup

Evaluation Metrics. We use the average F1 score instead of ac-

curacy to evaluate the classification performances. It defined as:

𝐹1 = 2× (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙). F1 score is advan-
tageous over imbalanced datasets. For example, only a few index

configurations may lead to improvements for some queries, where

most configurations have insignificant effect. In this case, F1 score

takes into account of all three class labels, not favoring a model

that only predicts accurately for a specific class, such as NO_DIFF.

Dataset.We use TPC-H, TPC-DS (the original datasets used in

AIMEETSAI), and STATS for index selection. For each query, we

generate potential index configurations using the toolkit from [23],

and execute the queries with each index configuration to collect the

actual execution time. We generate on average 6.4 distinct index

configurations (and hence, query plans) for each query in TPC-H,

71.9 for TPC-DS and 10.4 for STATS. We split the datasets using 3

strategies following AIMEETSAI with increasing difficulty:

(1) Pair: The train and test pairs are randomly split.

(2) Plan: The plan pairs in test set contain at least one unseen

query plan. This simulates the real-life index tuner setting.

(3) Query: The model is tested on unseen queries.

Model Training. We use similar training and hyper-parameter

tuning strategy as used in cost estimation task.

4.2 Overall Index Selection Performance

Performance Summary. The average F1 scores of all methods on

the index selection task are presented in Table 4. We rank the

representation methods based on their scores, with methods on the

left performing better than the right:

• TPCH:

Pair: {Other Methods} > {ReJOIN}.

Plan: {Other Methods} > {AIMEETSAI}.

Query: {QueryFormer} > {RTOS, BAO, NEO} > {ReJOIN, AIMEET-

SAI} > {Plan-Cost, Prestroid, AVGDL}.

• TPC-DS:

Pair & Plan: {QueryFormer,AVGDL, NEO, BAO, RTOS} > {Pre-

stroid, AIMEETSAI} > {ReJOIN, E2E-Cost, Plan-Cost}.

Query: {QueryFormer, BAO} > {NEO, AVGDL, AIMEETSAI, Pre-

stroid, ReJOIN, RTOS } > {E2E-Cost, Plan-Cost}.

• STATS:

Pair: {AVGDL, QueryFormer, E2E-Cost, BAO} > {RTOS, NEO,

Prestroid} > {AIMEETSAI, Plan-Cost, ReJOIN}.

Plan: Same as Pair except E2E-Cost drops to tier 2.

Query: Plan-Cost promotes to tier 1, and AVGDL, RTOS, E2E-

Cost drop to tier 3.

Observation: The relative performance rankings on Pair

and Plan splittings are mostly consistent, but deviates on

Query splitting. This suggests different levels of robustness

among methods.We observe that the performance rankings for

Plan splitting tend to mirror Pair splitting (with a few exceptions).

It can be seen that most methods score a few points lower when

moving on to Plan splitting due to the increased difficulty. This

suggests that interchangeability of these metrics to evaluate rep-

resentation method performance. However, this does not hold in

Query splitting. For example, AVGDL, E2E-Cost and Prestroid show

significant performance decline from Plan to Query splitting, partic-

ularly evident on TPC-H. Their scores drop to the level of a random

guess. This observation shows overfitting among these methods,

suggesting they are learning patterns overly specific to training

data that fail to generalize to unseen queries.

A different type of inconsistency arises due to ‘underfitting’.

This phenomenon is observed in the performances of Plan-Cost on

STATS and ReJOIN on TPC-H. These methods underperform on

Pair splitting. This implies that they do not capture the task-related

features effectively. To explain, ReJOIN as a simplistic design does

not encode information regarding index, thus relying on join order

to distinguish query plans. Plan-Cost, an early RNN-based method,

does not incorporate LSTM components like other RNN-based ap-

proaches, limiting its effectiveness. Interestingly, the underfitting
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Table 4: Index Selection Performance.

Method TPC-H TPC-DS STATS
Pair Plan Query Pair Plan Query Pair Plan Query

AVGDL 0.992 0.866 0.255 0.940 0.888 0.629 0.928 0.865 0.536
AIMEETSAI 0.989 0.734 0.549 0.854 0.801 0.613 0.787 0.673 0.549
ReJOIN 0.777 0.861 0.561 0.824 0.787 0.593 0.672 0.623 0.505
BAO 0.991 0.932 0.68 0.920 0.843 0.705 0.900 0.808 0.566
NEO 0.964 0.929 0.636 0.927 0.865 0.664 0.870 0.795 0.536

Prestroid 0.970 0.911 0.374 0.902 0.838 0.596 0.868 0.775 0.572
E2E-Cost 0.984 0.888 0.238 0.824 0.753 0.528 0.907 0.755 0.520
PLAN-Cost 0.954 0.863 0.412 0.767 0.736 0.527 0.737 0.712 0.613

RTOS 0.991 0.961 0.684 0.918 0.877 0.588 0.886 0.846 0.531
QueryFormer 0.993 0.920 0.770 0.950 0.907 0.710 0.919 0.857 0.609

in these methods may serve as a form of implicit regularization,

which enhances their performance on more challenging splittings.

4.3 Analysis on Feature Encoding

We isolate the tree model designs and examine feature encoding

performances. We fix the tree model using LSTM and compare the

encoding elements. Similar to cost estimation, we formulate the

node encoding in |𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟,𝑇𝑎𝑏𝑙𝑒,𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | format

and focus on comparing cardinality_Features.We compare the single

element encoding performance, and present the results in Figure 2.

Next, we present the combination of encodings in Figure 3. Due to

space constraint, we only present the encoding combinations on

STATS, as the general trend on other datasets is similar.

Observation: Est is the most effective feature in generaliza-

tion. Different from cost estimation, adding more features in

the combination does not help. In easy splittings, such as Pair

and Plan, the rankings of performance among encoding elements

are mostly consistent. This is shown in Figure 2, where the patterns

of the Pair and Plan groups are similar. This observation is seen in

the original methods as well. However, on Query splitting which

is the most challenging scenario, Est is clearly the most effective

feature, as shown in Figure 2. In TPC-H, it is the only encoding that

has a reasonable F1 score for the ternary classification task, whereas

other encodings fall to the level of random guess due to overfitting.

This is because Est is directly derived from the optimizer, where

other features require the model to learn the relationship between

them to the execution cost. These relationships learned on a set

of queries may not be transferable to completely different query

templates.

Moreover, different from the cost estimation experiments where

encoding as many features as possible is beneficial, the opposite is

observed in Figure 3. In Query splitting, all combinations cannot

outperform Est alone. Intuitively, those under-performing features

may be helpful to roughly gauge the execution cost. However, they

are not useful in comparing query plans from the same query,

because the absolute time does not matter.

Observation: Pred is effective in easy splittings, especially

in real-life dataset. Pred has the highest score in Pair and Plan

splitting in STATS, and is close to highest score in TPC- benchmarks,

as shown in Figure 2. This is because Pred can effectively capture

the relationship between query regions and output cardinality [20].

In combination of features as shown in Figure 3, we observe that

those with Pred generally perform better in Pair and Plan splittings.

(a) TPCH. (b) TPCDS. (c) STATS.

Figure 2: Single Element Encoding Performance.

(a) Pair. (b) Plan.

(c) Query. (d) Tree Models on STATS.

Figure 3: Comparison of Encoding Combinations (in a, b, c)

and Tree Models (in d) Performances on STATS.

4.4 Analysis on Tree Models

We compare the performance of different Tree Models. We fix the

feature encoding using Pred_Est, because this combination shows

universally good performance across different splittings.We present

the tree model performance for STATS dataset in Figure 3d.

Observation: LSTM is the most discriminative tree model,

especially in hard cases. Although LSTM has the lowest score

in splitting by Pair (where most tree models have similar score), it

outperforms other tree models in Plan and Query splittings. This

suggests its effectiveness in generalization. TreeLSTM, on the other

hand is the least effective model in both Plan and Query splittings.
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4.5 Key Findings

Index selection task requires the representation methods to dis-

tinguish better query plans for the same query. The findings are

indeed very different from cost estimation.

• QueryFormer and BAO perform the best among all representa-

tion methods.

• Est is the most important feature. Unlike in cost estimation, more

information in the encoding does not benefit performance.

• LSTM is the most effective model to differentiate query plans,

especially on OOD scenarios.

5 QUERY OPTIMIZATION

In this section, we evaluate the performance of query plan repre-

sentation methods on the task of query optimization. We use the

framework of BAO, which is proposed to enhance an existing query

optimizer by offering per-query hints through reinforcement learn-

ing [25]. Specifically, it frames the optimization task as a bandit

optimization problem, and proposes to use a Thompson Sampling

method to solve the problem. A key component in the framework is

comparing the execution cost of a set of query plans derived from

a pre-defined set of hints. We evaluate the representation methods

by substituting them in the value network. To avoid any confusion,

we henceforth refer to the task as ‘optimization’, and the original

query plan representation used as ‘BAO’.

Although the value network in optimization seemingly resem-

bles cost estimation, the performances of representation methods

can vary significantly, because the task has three distinct require-

ments: (1) Data: collecting training data (or exploration) is at the

cost of executing queries with suboptimal query plans, which im-

pacts the overall execution time. Sufficient training data as used in

Section 3 is a luxury to afford. (2)Metric: similar to index selection,

the correct relative rankings of query plans are more important

than the absolute errors. To illustrate, we present a case study in

Section 6.3. (3) Efficiency: both training and inference need to be

efficient as they constitute to the overall runtime.

5.1 Experimental Setup and Results

Dataset. For this experiment, we utilize the same IMDB database

as in the cost estimation scenario, but generate a new workload,

referred to as JOB-extend, in accordance with the specifications

laid out by the original work [25]. It comprises 1697 distinct queries

derived from the same templates as JOB. Please refer to Table 2 for

the dataset properties. The queries are arranged based on a time-

series split strategy: the system always evaluate the next unseen

query, and new templates are introduced periodically.

Evaluation Metrics.We evaluate the optimization performance

by the total time taken executing a workload, which comprises both

the model training and inference (referred to as model time) and

the query execution time. The query execution time depends on

the quality of query plans selected, indicates model accuracy, and

the model time indicates the efficiency of representation methods.

Implementation. Following the original paper, we connect the

representation methods to a MLP model to estimate the rewards of

query plans. The experiment has three system hyper-parameters:

retrain frequency f, training size N, and experience size P. f denotes

to the interval at which we retrain the advisor model after a certain

number of queries have been executed. A higher f andN can ideally

improve the model’s accuracy, but leads in larger training overhead.

P refers to the number of most recent k query executions in the

sample pool, where older executions are discarded. This is because

the system cannot retain past executions indefinitely. We set f=100,

N=100, P=800. For fairness, these system hyper-parameters are held

constant across all representation methods.

We introduce two baselines for comparison: query execution

time of Postgres and query execution time when the best possible

query plan is selected for every query (refer as Best Possible).

Results. We present the query optimization performance in Fig-

ure 5c. The goal is to complete the queryworkload as fast as possible:

ideally approximating the ‘Best Possible’ curve on the far left. Addi-

tionally, Figure 4e presents the composition of time taken on model

training, inference (model time), as well as query execution time.

Performance Summary. The overall performance ranking of rep-

resentation methods is as follows: {AVGDL, RTOS, QueryFormer,

Prestroid, BAO} > {NEO, ReJOIN, AIMEETSAI} > {Plan-Cost, E2E-

Cost}. As shown in Figure 5c, half of the representation methods

can outperform Postgres, with AVGDL demonstrating the most sig-

nificant improvement by almost reducing the workload execution

time by 44%. Next, RTOS, QueryFormer, Prestroid and BAO can

reduces the workload time by 27%, 23%, 19% and 4.5% respectively.

Other methods have negative impact to the workload execution.

In particular, Plan-Cost and E2E-Cost performs the worst, which

increase the total time by 40% and 380% respectively.

In terms of model efficiency, E2E-Cost and Plan-Cost have high

training overhead as seen in Figure 4e, rendering them unsuit-

able for the task. They can be potentially optimized through re-

implementation with new modern tools, such as the Deep Graph

Library (dgl) [41] as we used in the implementation of RTOS. Query-

Former has high inference overhead. Through investigation, the

inference time comes from computing the relative distances be-

tween nodes during pre-processing. Other methods have relatively

insignificant overheads compared to query execution time.

Observation: Good performing methods in the optimiza-

tion task can improve the system early with limited training

data. As an RL-based framework, a ‘warm-up’ phase of exploration

is required to gather diverse training data, and obtain knowledge

of query plans from other hints as queries are executed. Hence,

during this phase, a system is not expected to provide better pre-

dictions. Indeed, as seen in Figure 5c, none of the methods surpass

Postgres for the first 700 queries. However, certain representation

methods, such as AVGDL, starts generating better query plans than

Postgres after processing merely 800 queries, as seen in Figure 5c.

This rapid adaptability makes AVGDL superior compared to other

representation methods. In contrast, methods such as AIMEETSAI

demonstrate effective predictions for the final 300 queries, as shown

from the steep gradient (indicating less time taken executing the

queries) in Figure 5c. However, the late-stage efficacy cannot offset

the time invested in the earlier queries.

Observation: Balancing accuracy and efficiency is impor-

tant in optimization task. As shown in Figure 4e, QueryFormer

has the lowest query execution time, demonstrating its high accu-

racy in the task. However, it falls behind RTOS and AVGDL due to

its high inference time. Conversely, AIMEETSAI, BAO and ReJOIN
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(a) Original Methods. (b) Encoding Elements. (c) Encoding Combinations. (d) Tree Models.

(e) Original Methods. (f) Encoding Elements. (g) Encoding Combinations. (h) Tree Models.

Figure 4: Performance of Representation Methods on Optimization Task. Top row is query execution progress over time. Bottom

row is the overall compositions of the time taken.

are the most efficient methods in both training and inference time.

However, as their inability to select the optimal query plans, they

are beaten by more accurate alternatives.

5.2 Analysis on Feature Encoding

We examine the efficacy of node encodings with the fixed tree

model. Similar to previous sections, we format the encoding as

|𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟,𝑇𝑎𝑏𝑙𝑒,𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 |, and compare the perfor-

mance of Cardinality_features. We standardize the tree model as

LSTM, because AVGDL with LSTM demonstrated the best over-

all performance in the experiments. Results for single Cardinal-

ity_features comparison are presented in Figure 4b and 4f, and their

combinations are presented in Figure 4c and 4g.

Performance Summary. Est and Hist are the best as single fea-

ture encoding, and their combined encoding yield the best overall

score, reducing the total time by 67% as compared to Postgres.

Sample performs the poorest, increasing the total time by 25%. In

feature combinations, a general pattern is the inclusion of Est or

Hist enhances performance, while Sample hampers it.

In terms of efficiency, Pred and Est perform similarly well, by

having less than 5 minutes in model overhead. Hist has 2x training

time and 2.5x inference time compared to Est and Pred. However, it

selects better query plans as reflected in the query time. Sample is

the least efficient, with 9x training time and 3x inference time. The

trend in efficiency largely holds for combinations of elements as

well: the overheads are about the sum of the ingredients.

Observation: Different encoding elements (except Sam-

ple) lead to similar exploitation effectiveness, but differ in

exploration efficiency. Interestingly, the query optimization per-

formances for the final 500 queries are similar among Pred, Est,

Hist and their combinations, as seen from the similar shape of their

curves at the last part in Figure 4b and 4c. However, their differences

in exploration are more prominent. Est, for instance, begins to out-

perform Postgres after about 1,000 queries, and performs similarly

to Postgres before that point (as seen in Figure 4b). Pred and Hist

start to outperform Postgres after running about 400 queries.This is

because Est is directly derived from Postgres, so it is reasonable for

a model built on the Est feature to mirror Postgres’ in early stages.

In contrary, a model needs to learn the correlation between Pred

or Hist and query latency from scratch, which lead to inevitable

early-stage mistakes. As a result, the combination of Est and Hist

showcases the inherent benefits of both: it avoids serious mistakes

in the early stage and makes better predictions earlier, making it

the best choice for this task.

5.3 Analysis On Tree Models

We fix the encoding using the most performing combinations from

the last experiment (Est_Hist), and compare the tree models in

Figure 4d and 4h. It can be seen that all tree models can outperform

Postgres by a largemargin (at least 37% time reduction). The ranking

for these tree models are as follows:

• Performance: {LSTM} > {TreeCNN} > {TreeLSTM, Transformer}.
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(a) Cost Estimation. (b) Index Selection. (c) Optimization.

Figure 5: Performance under CE noises.

• Efficiency: {TreeCNN} > {TreeLSTM} > {LSTM} > {Transformer}.

Observation: There is a trade-off between accuracy and

overhead time in treemodel selection.Despite that LSTMhas 3x

overhead than TreeCNN, it selects superior query plans, resulting in

a substantial reduction in time. On the other hand, the Transformer

selects better query plans than both TreeLSTM and TreeCNN, it

ranks the last due to its high inference time.

6 OTHER EXPERIMENTS

6.1 Feature Noise Analysis

Cardinality estimates (CE) are shown to be an effective feature

in previous experiments. However, since cardinality estimation is

inherently challenging, the estimates are noisy and erroneous [42].

In fact, the median Q-Error is about 1.4, and themax Q-Error is more

than four digits in the datasets. To this end, we study the impact of

the feature noises in CE to downstream tasks performance.

We manually set the CE of all plan nodes to study their impacts.

We consider three scenarios: under-estimation, unbiased estimation,

and over-estimation, and scale each with different variances.We use

LSTMmodel and feature encodingwith |𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟,𝑇𝑎𝑏𝑙𝑒, 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 |,
the same format as previous experiments for feature encoding anal-

ysis. We present the results in Figure 5.

We observe that the two types of biases do not significantly af-

fect task performance in all three tasks. However, the magnitude of

variance directly impacts the accuracy across three tasks. We con-

juncture that machine learning models, unlike traditional methods,

can automatically learn to adjust to the biases. The uncertainties

from the random errors are more detrimental to the performances.

6.2 Training Size Analysis

To demonstrate that all models are sufficiently trained and examine

the potential issues of under/over-fitting, we experiment all repre-

sentation methods with different training sizes in cost estimation

and index selection. We exempted query optimization from this

analysis due to its inherent challenge with limited training data in

its task setting.

We present the cost estimation and index selection errors with

respect to training size in STATS dataset as an example in Figure 6.

We truncate the cost error plot because E2E-Cost is unstable. We

observe that most methods converge at about 20000 queries for cost

(a) Cost Estimation. (b) Index Selection.

Figure 6: Accuracy with different training size. (a) and (b) are

for cost estimation, (c) and (d) are for index selection.

QUERY
SELECT
MIN(an.name) AS cool_actor,
MIN(t.title) AS series_named
FROM
aka_name AS an, 
cast_info AS ci, 
company_name AS cn,
keyword AS k, 
movie_companies AS mc, 
movie_keyword AS mk,
name AS n, 
title AS t 
WHERE
cn.country_code ='[us]’ AND 
k.keyword ='character' AND 
t.episode_nr < 100 AND 
an.person_id = n.id AND 
n.id = ci.person_id AND 
ci.movie_id = t.id AND 
t.id = mk.movie_id AND 
mk.keyword_id = k.id AND 
t.id = mc.movie_id AND 
mc.company_id = cn.id AND 
an.person_id = ci.person_id AND 
ci.movie_id = mc.movie_id AND 
ci.movie_id = mk.movie_id AND 
mc.movie_id = mk.movie_id;

Merge Join
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Merge Join

Merge Join

Merge JoinSeq Scan
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Seq Scan
(mc)

Seq Scan
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Seq Scan
(k)

Merge Join

Merge Join

Index Only Scan
(n)

Index Scan
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Merge Join

Index Scan
(t)

Merge JoinIndex Scan
(cn)

Index Scan
(ci)

Index Scan
(mk)

Merge Join

Index Scan
(mc)

Seq Scan
(k)

Merge Join

Merge Join

Latency: 14.1s
Model 1 Predict: 23.9s
Model 2 Predict: 2.78s

Latency: 20.9s
Model 1 Predict: 18.6s
Model 2 Predict: 4.07s

Candidate 
Plan 1

Candidate 
Plan 2

Figure 7: Case study of two query plans generated fromdiffer-

ent hint set. Model 1 (BAO) has higher accuracy than Model

2 (QueryFormer), but predicts the relative order wrongly.

estimation, and 3000 queries for index selection. Beyond this point,

further training improvements were minimal. This shows that the

most methods can be sufficiently trained with large amount of data.

6.3 Connections between Tasks

Cost estimation can be seen as a building block in downstream

tasks like index selection and query optimization. Intuitively, a

query plan representation method with higher accuracy in cost es-

timation is expected to have better downstream tasks performance.

However, we show that this does not hold in previous experiments.

To illustrate what happens, we provide an actual example extracted

from the optimization experiment in Figure 7. For the given query,

although the predictions from Model 1 have smaller Q-Errors (or

other regression metrics like MSE or MAE) for both candidate query

plans compared to Model 2, Model 1 chooses a sub-optimal query

plan because it predicts the relative ranking wrongly. This shows

that the accuracy across the entire domain in some downstream

tasks is less important than in the decision margins. Because of

this, a better cost estimator does not mean better downstream task

performance.
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Table 5: Experiment Summary for all representationmethods

and their components. ID indicates in-distributionworkloads

and OOD indicates out-of-distribution workloads.

Method/

Component

Cost

(ID)

Cost

(OOD)

Index

(ID)

Index

(OOD)
Optimizer

AVGDL ++ - ++ - ++

AIMEETSAI ++ - + - -

ReJOIN - - - + - -

BAO ++ ++ ++ + +

NEO - + + + -

Prestroid - + + - +

E2E-Cost ++ + - - - -

RTOS ++ - + + +

Plan-Cost + - - - -

QueryFormer ++ ++ ++ + +

Pred ++ + - + +

Est ++ + ++ ++ ++

Hist - - + + ++

Sample + - + - -

TreeCNN ++ + ++ + +

TreeLSTM ++ + + - -

LSTM ++ + + ++ ++

Transformer ++ + + + -

7 RELATEDWORK

ML4DB research gains popularity in the last decade. Zhou et. al [47]

and Zou et. al [48] survey comprehensively on approaches to en-

hance database systems with ML techniques. A growing body of

evaluation work has emerged to analyze the behavior compare

the effectiveness to specific database tasks. For instance, there are

several works on cardinality estimation [14, 18, 37, 39, 42], focus-

ing on method designs, error analysis, prediction interval analysis,

practicality in deployment, and impacts on query optimizers, re-

spectively. However, there is no evaluation work focusing on query

plan representation, which is a building block of many ML4DB

applications.

8 CONCLUSIONS AND FUTUREWORK

8.1 Summary and Key Takeaways

We score the performances of query plan representation methods,

encoding features, and the tree models in different scenarios, and

collate them in Table 5 for a more direct comparison. We summarize

the key findings to answer the research questions as follows.

First, regarding interchangeability, this experimental study

confirms that query plan representation methods can be applied to

other tasks for which they are not originally designed, and some

methods are able to achieve state of the art (SOTA) performance for

the tasks that they are not designed for. In general, the performance

of a method depends on task and dataset specifications.

To summarize the overall ranking of representation methods,

BAO and QueryFormer have excellent performances across differ-

ent task scenarios. We note that QueryFormer has high accuracy

at the cost of efficiency. The second tier methods are AVGDL and

RTOS, which perform well for in-distribution (ID) cases, but are less

robust for out-of-distribution (OOD) cases. The rest of the methods

are less competitive in comparison. We also find that the perfor-

mance for cost estimation is not indicative of the performance on

other tasks. The reason is that cost estimation focuses on abso-

lute errors while other tasks are more focused on relative rankings

among representation methods.

Second, regarding the optimal design of tree model, surpris-

ingly, it is insignificant to cost estimation task. Different tree model

designs matter in tasks like index selection and query optimization,

where the relative rankings among query plans are more impor-

tant. TreeCNN performs the best for ID cases, whereas LSTM is the

most robust for OOD cases. Transformer has low efficiency (due to

inference overhead), and TreeLSTM is the least effective.

Third, the optimal set of feature encoding depends on the task

requirement. In cost estimation where the optimization target is

the absolute error, concatenating as much candidate features as

possible lead to higher or at least equal accuracy. However, for tasks

where the relative ranking is more important, only using a selective

subset of features (particularly Est and Hist) is more effective to

predict better query plans for a query; adding other features usually

damage the robustness of the learned model for such tasks.

Our findings on tree models and feature encoding will provide

useful guidance for the future development of machine learning-

based methods for database tasks. Among others, when we design

models and features for tasks optimizing absolute error (such as

cost estimation), and tasks optimizing relative ranking (such as

index section), we would need different strategies.

8.2 Future Directions

This study evaluates the representation methods on a single dataset

and task at a time. To improve their generalizability, we identify

three research directions:

(1) Generalizing datasets. Current representation methods often

latch onto dataset-specific patterns and require retraining when

working across datasets. New approaches can be designed to

account for transferable features, incorporate diverse training

data, develop sampling techniques, and balance the trade-offs

between individual dataset performance and broad adaptability.

(2) Transferring across tasks. Meta-learning techniques can be

explored to extract task-agnostic knowledge, so that repre-

sentation models learned remain relevant and effective across

different database tasks [15, 33, 43].

(3) Understanding tail performance. A common challenge with

representation methods is they have high tail errors, which are

difficult to understand and debug for practicioners. Exploring

the field of interpretable machine could provide potential solu-

tions [21]. The integration of these methods with query plan

representations is an interesting future direction.
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