
METER: A Dynamic Concept Adaptation Framework
for Online Anomaly Detection

Jiaqi Zhu†
Beijing Institute of Technology

jiaqi_zhu@bit.edu.cn

Shaofeng Cai∗
National University of Singapore

shaofeng@comp.nus.edu.sg

Fang Deng
Beijing Institute of Technology

dengfang@bit.edu.cn

Beng Chin Ooi
National University of Singapore

ooibc@comp.nus.edu.sg

Wenqiao Zhang†
Zhejiang University

wenqiaozhang@zju.edu.cn

ABSTRACT
Real-time analytics and decision-making require online anomaly
detection (OAD) to handle drifts in data streams efficiently and ef-
fectively. Unfortunately, existing approaches are often constrained
by their limited detection capacity and slow adaptation to evolving
data streams, inhibiting their efficacy and efficiency in handling
concept drift, which is a major challenge in evolving data streams. In
this paper, we introduce METER, a novel dynamic concept adapta-
tion framework that introduces a new paradigm for OAD. METER
addresses concept drift by first training a base detection model
on historical data to capture recurring central concepts, and then
learning to dynamically adapt to new concepts in data streams upon
detecting concept drift. Particularly, METER employs a novel dy-
namic concept adaptation technique that leverages a hypernetwork
to dynamically generate the parameter shift of the base detection
model, providing a more effective and efficient solution than con-
ventional retraining or fine-tuning approaches. Further, METER
incorporates a lightweight drift detection controller, underpinned
by evidential deep learning, to support robust and interpretable
concept drift detection. We conduct an extensive experimental eval-
uation, and the results show that METER significantly outperforms
existing OAD approaches in various application scenarios.

PVLDB Reference Format:
Jiaqi Zhu, Shaofeng Cai, Fang Deng, Beng Chin Ooi, Wenqiao Zhang.
METER: A Dynamic Concept Adaptation Framework for Online Anomaly
Detection. PVLDB, 17(4): 794-807, 2023.
doi:10.14778/3636218.3636233

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zjiaqi725/METER.

1 INTRODUCTION
Anomaly detection (AD), the process of identifying data samples
that significantly deviate from the majority, plays a critical role

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636233
†Jiaqi Zhu and Wenqiao Zhang’s work was done at NUS.
∗Shaofeng Cai is the corresponding author.

in various systems by facilitating a deeper understanding of data,
uncovering hidden anomalies, and enabling the implementation of
appropriate measures to address associated concerns [10, 16, 46, 71,
79, 89]. While many methods have been developed for detecting
anomalies in static data [38, 44, 53, 87, 94], the challenge of iden-
tifying anomalies in evolving data streaming applications has not
been adequately addressed.

In real-world scenarios, data is often subject to constant updates
and changes, primarily due to the dynamic nature of data sources
(e.g., stock markets, traffic flow, social media), underlying infras-
tructures (e.g., IoT devices, cloud-based equipment, edge servers),
or the influence of many other factors [17, 35, 50, 58, 59, 64]. Such
dynamic nature of data requires real-time processing and analytics
to effectively manage and respond to these changes. In particu-
lar, online processing and analysis of anomalies in evolving data
streams have become increasingly essential for maintaining data
quality and security across various domains. Notably, online anom-
aly detection (OAD) on evolving data streams enables real-time and
better-informed decision-making, thereby ensuring data integrity
and security while supporting the daily operations across business
sectors [42, 43, 60, 70].

Evolving data streams are characterized by high-dimensional and
heterogeneous data arriving continuously. Such ever-changing data
streams make models trained on historical data outdated quickly.
This phenomenon, commonly referred to as concept drift, as illus-
trated in Figure 1 (a), presents great challenges for the conventional
AD approaches [20, 24, 38, 44], which train their detection models
once on static data and assume the models keep functioning after
deployment. This is not practical as they are built on the unrealistic
assumption that all normal patterns are known prior to the model
deployment. For instance, in the transactionmonitoring, normal pat-
terns evolve due to factors like seasonal variations, market trends,
and new strategies. Traditional static AD approaches, trained on
historical data stored in a database system, excel within specific
time periods. However, once concept drift occurs, these static de-
tection models could no longer effectively detect new abnormal
behaviors. Therefore, AD approaches that can respond timely to
drifts in data distributions become imperative.

Recently, several preliminary attempts have been made to sup-
port OAD in evolving data streams [7, 8, 11, 26, 37, 49, 53, 81, 86–88].
One popular approach for handling streaming data is based on in-
cremental learning [7, 8, 11, 26, 86, 88]. These methods typically
construct an initial model, which is then incrementally updated as
new data arrives. However, as shown in Figure 1 (b), incremental

794

https://doi.org/10.14778/3636218.3636233
https://github.com/zjiaqi725/METER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636233
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Concept Drift
Evolving Data Stream

Model 1 Model 2 Model 3 Model 4In
cr

em
en

ta
l 

M
od

el
s

Ensemble Model  Ensemble Model  Ensemble Model  Ensemble Model  

En
se

m
bl

e
M

od
el

s

Static Model Dynamic Model

M
ET

ER

Static Model Dynamic Model

OAD Modelsb
Adaptation Delay 

Limited 
Models 

Timely Drift 
Measurement 

a

d

InterpretabilityEffectiveness Efficiency

Healthcare

METER

Cybersecurity Industry

METERc

Method Comparison

AUC: 0.816
Time: 47 s

AUC: 0.601
Time: 54 s

AUC: 0.753
Time: 68 s

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Database

Figure 1: (a) The illustration of the evolving data stream with concept drifts in online anomaly detection (OAD). (b) The three
main types of OAD approaches. (c) The functionalities of METER supporting various applications. (d) The comparison of our
METER to state-of-the-art OAD approaches on the real-world dataset INSECTS [74], where Memstream [8] and ARCUS [87] are
representative incremental and ensemble approaches: AUC: 0.816 (METER) > 0.753 (Memstream) > 0.601 (ARCUS), Inference
Time: 47 s (METER) < 54 s(Memstream) < 68 s (ARCUS).

approaches often require a considerable amount of time to adapt
to new concepts [87] and do not provide performance guarantees
for handling arbitrary concept drifts. Moreover, incremental learn-
ing methods typically suffer from inefficiency issues, as they need
to update models to accommodate the changing concepts, either
by retraining, fine-tuning models, or updating certain model sta-
tuses [8, 86, 88]. Another line of research in OAD focuses on the
ensemble-based approaches [37, 53, 87], which involve training
a combination of models to account for respective changing con-
cepts. However, as shown in Figure 1 (b), the detection capacity of
these model ensembles is constrained by the number of pre-trained
models, and the model ensemble needs to adapt to drifted con-
cepts frequently as new data arrives. Additionally, ensemble-based
approaches require substantially more computation resources to
maintain multiple models, further exacerbating the inefficiency
issue. These limitations hinder existing approaches from meeting
the requirements of supporting OAD in evolving data streams ef-
fectively and efficiently.

In particular, the deployment of an OAD framework in real-world
applications necessitates not only detection effectiveness, but also
efficiency and interpretability [7, 87, 88]. In terms of efficiency, the
detection framework must provide accurate and timely decisions,
and meanwhile, maintain a time complexity that does not increase
linearly with the growing volume of data. As for interpretability, the
ability of the detection framework to provide reliable uncertainty
estimates for the detection results is necessary for users in critical
applications such as healthcare and finance, which improves human
understanding and engenders user trust in the framework [13, 18,
93]. Therefore, an ideal OAD framework should address all three
crucial criteria, delivering effective, efficient and more interpretable
detection in evolving data streams.

In this paper, we introduce a novel dynaMic concEpt adapTation
framEwoRk (METER) for online anomaly detection in evolving data

streams. Different from the conventional incremental learning and
ensemble-based approaches, METER presents a newOAD paradigm
that effectively, efficiently, and more interpretably addresses the
concept drift challenge inherent in evolving data streams. METER
is built upon the key observation that static historical data typically
encompass the majority of anomaly patterns and thus comprises
the recurring central concepts, whereas new arriving data streams,
although may deviate from the main patterns occasionally, usually
only drift slightly away from central concepts. Taking into account
this observation in the framework design, METER first trains a base
detection model to capture central concepts, and then, learns to
adapt to new concepts once detecting concept drift without further
training, fine-tuning, or updating model statuses as required in
conventional approaches [8, 37, 53, 86, 88].

To improve efficiency and effectiveness, we further introduce a
novel lightweight controller to detect whether concept drift occurs
in the current data stream on a per-input basis, and design a novel
dynamic concept adaptation technique that dynamically generates
the corresponding parameter shift of the base detection model for
the current input via a hypernetwork [28]. After training, METER
can dynamically generate the parameter shift for the current data
stream to handle the concept drifts on the fly and enhance the
predictive performance of the base detection model. To support
interpretability, this controller is derived from the evidential deep
learning (EDL) theory [56, 72], which enables efficient and high-
quality uncertainty modeling for the detection of concept drift,
thereby supporting interpretable anomaly detection. Meanwhile,
dynamic concept adaptation via the hypernetwork is more effective
in handling concept drift, as the detection model can adapt to new
concepts in an input-aware and timely manner, and is more efficient,
since this novel approach requires no frequent model retraining or
fine-tuning for the concept adaptation as in approaches based on
incremental or ensemble techniques [8, 37, 53, 86, 88].

795



Our METER comprises the following main components: (i) Static
Concept-aware Detector (SCD), an unsupervised deep autoencoder
(AE) [40] to minimize the reconstruction error via compressed rep-
resentations. SCD is pretrained on historical data to model the cen-
tral concepts. (ii) Intelligent Evolution Controller (IEC), a concept
detection controller that dynamically models concept uncertainty
via evidential deep learning [72]. IEC detects concept drift for the
current data stream. (iii) Dynamic Shift-aware Detector (DSD), a
hypernetwork that dynamically updates SCD in an input-aware
manner with the parameter shift upon the detection by concept
drift by the IEC. DSD streamlines dynamic concept adaptation, as
the concept drift can now be handled efficiently and more effec-
tively by learning only the parameter shift, in a way reminiscent of
residual learning [31, 84]. (iv) Offline Updating Strategy (OUS), a
strategy introduced to enhance SCD with new central concepts. To
improve efficiency, OUS only updates METER with new concepts
when the recent data streams contain markedly different concepts
from the existing central concepts. To achieve this, OUS employs a
sliding window to aggregate the statistics of concept uncertainty
to determine whether an update is needed. With these modules,
METER delivers a more effective, efficient and interpretable OAD
framework. We summarize our main contributions as follows:

• We propose a novel unsupervised OAD framework METER for
evolving data streams, which offers a new OAD paradigm that
effectively, efficiently, and interpretably addresses the concept
drift challenge inherent in evolving data streams.

• We incorporate into our METER a lightweight Intelligent Evo-
lution Controller (IEC) for detecting concept drift in evolving
data streams on a per-input basis, which enables efficient and
high-quality uncertainty modeling for the detection of concept
drift, thereby supporting interpretable anomaly detection.

• We develop a Dynamic Shift-aware Detector (DSD) that dynami-
cally updates the base detection model with the parameter shift
via a hypernetwork in an input-aware manner. DSD streamlines
dynamic concept adaptation and handles concept drift efficiently
and more effectively.

• Through extensive experiments, we demonstrate that ourMETER
framework efficiently detects various types of anomalies with
high accuracy and interpretability, and meanwhile, outperforms
existing incremental and ensemble learning methods for online
anomaly detection.

2 PRELIMINARIES
In this section, we outline the fundamental concepts and techniques
related to anomaly detection, concept drift, hypernetwork, and
evidential deep learning.
Anomaly Detection and Concept Drift. The objective of Anom-
aly detection is to identify data samples that deviate from the major-
ity or exhibit unusual patterns. In particular, the focus of this paper
is on online anomaly detection (OAD), which is to detect anomalies
in data streams in real-time, as formulated in Definition 2.1 below.
Further, our framework focuses on unsupervised anomaly detection
in data streams, where no labeling information is available.

In real-world scenarios, data is often dynamic and subject to
constant changes [48], a phenomenon known as concept drift, where
the statistical or distributional properties of the data within a certain

domain change over time, as formally defined in Definition 2.2.
This change in distribution can lead to a significant drift in the
patterns and relationships of the data, presenting challenges in
detecting anomalous events.

Definition 2.1 (Online anomaly detection). Considering an in-
coming data stream X = {𝑥1, . . . , 𝑥𝑡 , . . . }, where each entry 𝑥𝑡 =

(𝑥𝑡1, . . . , 𝑥𝑡𝑑 ) comprises 𝑑 attribute fields that can be either categor-
ical or numerical features, online anomaly detection aims to predict
whether a data sample 𝑥𝑡 in the incoming data stream is anomalous
or not at each time step 𝑡 .

Definition 2.2 (Concept drift). A concept drift occurs at time step
𝑡 if the underlying joint probability 𝑃 (𝑥,𝑦) of input data 𝑥 and the
corresponding label𝑦 changes at time 𝑡 , that is, 𝑃 (𝑥𝑡 , 𝑦𝑡 ) ≠ 𝑃 (𝑥,𝑦).

To address this challenge, the model needs to capture the dy-
namic behavior of the data stream and effectively adapt to drifted
concepts over time. Formally, OAD can be achieved by dynamically
computing an anomaly scoreM(𝑥𝑡 ;Θ𝑚) for each time step 𝑡 , using
a detection model M(·) parameterized by Θ𝑚 .
Hypernetwork. A hypernetwork is a neural network that gener-
ates the weights for another neural network, known as the primary
network. In our METER framework, we leverage a hypernetwork
to learn the parameter shift for the Static Concept-aware Detector
(SCD), enabling it to adapt to the evolving data stream with new
concepts in an instance-aware manner. The basic architecture of
SCD is a multi-layer perception (MLP) based autoencoder [40]. To
measure the parameter shift of the SCD with 𝑁𝑙 layers, the hyper-
network models each MLP layer as a matrix 𝐾 (𝑛) ∈ R𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 ,
where 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 are the number of input and output neurons
of the 𝑛-th layer of the MLP respectively. The generation process of
matrix 𝐾 (𝑛) can then be regarded as matrix factorization as below:

𝐾 (𝑛) = 𝜉 (𝑟 (𝑛) ;Θℎ),∀𝑛 = 1, · · · , 𝑁𝑙 (1)

where 𝑟 (𝑛) is a vector, 𝜉 (·) is a randomly initialized MLP, and Θℎ

is the parameters of 𝜉 (·). Such a generation process enables the
gradients to backpropagate to 𝑟 (𝑛) and 𝜉 (·) for effective end-to-
end training. In this way, the parameter shift of the SCD can be
adaptively measured by 𝑟 (𝑛) and 𝜉 (·) instead of 𝐾 (𝑛) directly.
Evidential Deep Learning. Evidential Deep Learning (EDL) [72]
is a probabilistic deep learning approach that interprets the cate-
gorical predictions of a neural network as a distribution over class
probabilities by placing a Dirichlet prior upon the class probabilities.
This allows the network to provide not only point estimates for
the detection but also uncertainty estimates for each prediction. In
METER, we utilize EDL to measure concept uncertainty, enabling
the Intelligent Evolution Controller (IEC) to dynamically evolve
the SCD to the Dynamic Shift-aware Detector (DSD) based on the
concept uncertainty of the input data.

Considering a general C-class classification task, given an in-
stance 𝑥 , a standard DNN with the softmax operator is usually
adopted after processing features of 𝑥 to convert the predicted logit
vector into the class probability vector 𝑝 . When using EDL for such
a DNN, a Dirichlet distribution is placed over the categorical like-
lihood 𝑝 to model the probability density of each possible 𝑝 . The

796



probability density function of 𝑝 for 𝑥 is obtained by:

𝑃 (𝑝 |𝑥 ;Θ𝑒 ) = 𝐷𝑖𝑟 (𝑝 |𝛼) =
⎧⎪⎪⎨⎪⎪⎩
Γ (∑︁𝐶

𝑐=1 𝛼𝑐 )∏︁𝐶
𝑐=1 Γ (𝛼𝑐 )

∏︁𝐶
𝑐=1 𝑝

𝛼𝑐−1
𝑐 , if 𝑝 ∈ Δ𝐶

0 , otherwise
(2)

where 𝛼 is the parameters of the Dirichlet distribution 𝐷𝑖𝑟 (𝑝 |𝛼)
for the sample 𝑥 , Γ(·) is the Gamma function, and Δ𝐶 is the 𝐶-
dimensional unit simplex: Δ𝐶={∑︁𝐶

𝑐=1 𝑝𝑐 = 1 and 0 ≤ 𝑝𝑐 ≤ 1}.
Particularly, 𝛼 can be modeled as 𝛼 = 𝑔(𝑓 (𝑥,Θ𝑓 )), where 𝑓 (·) is
another DNN model, and 𝑔(·) is the exponential function to keep
𝛼 positive. In this way, the prediction of the sample 𝑥 can be in-
terpreted as a distribution over the probability, i.e., the concept
uncertainty modeled using IEC, rather than the simple and unreli-
able predictive uncertainty [56, 72].

3 METHODOLOGY
This section first presents the overview of METER, which is de-
signed to adaptively detect the online anomaly data under concept
drift. We then elaborate on each module and introduce the opti-
mization scheme. We further discuss the effectiveness, efficiency
and interpretability of our METER.

3.1 Overview
The overview of METER is illustrated in Figure 2, which depicts the
entire proposed pipeline. The main intuition is that the evolving
data stream with different concepts should be identified and mea-
sured for dynamicmodel evolution. To achieve this goal, we propose
four modules, namely Static Concept-aware Detector (Sec. 3.2.1),
Intelligent Evolution Controller (Sec. 3.2.2), Dynamic Shift-aware
Detector (Sec. 3.2.3) and Offline Updating Strategy (Sec. 3.2.4). We
will elaborate on these modules in the following subsections.

3.2 Architecture
3.2.1 Static Concept-aware Detector. The Static Concept-aware
Detector (SCD) aims to detect the anomaly data from the static
data stream with the central concepts, i.e., measuring the overall
distribution of the historical data stream. In anomaly detection
tasks, the superior performance and unsupervised learning nature
of autoencoders make them widely applicable involving unlabeled
data [2, 6]. Thus, we employ an autoencoder as the static base model
that is trained on the historical data stream with central concepts
to detect the central types of anomalies.
Static Autoencoder.An autoencoder is a deep neural network that
learns to reconstruct its inputs. Concretely, given the input instance
𝑥 in the data stream X, a static autoencoder with parameters Θ𝑠 =

(Θ𝐸
𝑠 ,Θ

𝐷
𝑠 ) learns to reconstruct 𝑥 by:

𝑥 ⇒ E𝑠 (𝑥 ;Θ𝐸
𝑠 ) = 𝑧 ⇒ D𝑠 (𝑧;Θ𝐷

𝑠 ) = 𝑦, 𝑠.𝑡 . 𝑥 ≈ 𝑦 (3)

where the static autoencoder comprises two main components,
an encoder E𝑠 (·) and a decoder D𝑠 (·) with parameters Θ𝐸

𝑠 and
Θ𝐷
𝑠 , respectively. The encoder E𝑠 (·) compresses the representation

of the input 𝑥 into a latent representation vector 𝑧, and then the
decoder D𝑠 (·) reconstructs the original input into 𝑦 using 𝑧.

Essentially, an autoencoder attempts to learn the identity func-
tion of the original data distribution. Therefore, certain constraints
are placed on the neural network, forcing it to learn meaningful

concepts and relationships among features of 𝑥 . As such, the static
autoencoder gains the capability to reconstruct unseen inputs dur-
ing the reconstruction training from the same data distribution
X. For anomaly detection, in particular, if the input does not be-
long to the central concepts learned from X, then we expect the
reconstruction to have a larger error.

3.2.2 Intelligent Evolution Controller. While the small/large recon-
struction error of the static autoencoder indicates whether the input
data is normal/abnormal, this result becomes unreliable when the
data is out-of-distribution [30], especially in the presence of con-
cept drift. To determine whether the concept of a given input 𝑥
belongs to central concepts from historical data or new concepts
from evolving data streams, we introduce an Intelligent Evolution
Controller (IEC). IEC can adaptively and timely examine the neces-
sity of evolving the static detector by detecting the concept drift in
the current data stream.
Pseudo Labeling Strategy. IEC is a lightweight evidential classi-
fier with parameters Θ𝑐 trained with the high-confidence pseudo
labels from the static autoencoder. The rationale behind introduc-
ing pseudo labels in METER is to treat the input instance that the
static autoencoder cannot reconstruct well as negative with label 1,
while treating the well-reconstructed input as positive with label 0,
so that IEC can learn to detect whether the current input belongs
to the central concepts already captured in SCD or new concepts:

�̃� (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1(Positive), if 𝐿2 (𝑥,𝑦;Θ𝑠 ) > 𝜇𝑝 andU𝑐𝑡𝑟 (𝑥) ⩽ 𝜇𝑒
0(Negative), if 𝐿2 (𝑥,𝑦;Θ𝑠 ) ⩽ 𝜇𝑝 andU𝑐𝑡𝑟 (𝑥) ⩽ 𝜇𝑒
-(Unknown), U𝑐𝑡𝑟 (𝑥) > 𝜇𝑒

(4)

where 𝐿2 (𝑥,𝑦;Θ𝑠 ) is the reconstruction error [66] of the input in-
stance given the static autoencoder computed by taking the root
mean squared error between 𝑥 and the reconstructed output 𝑦; 𝜇𝑝
is a predefined pseudo labeling threshold determined by setting
a proportion of the sorted reconstruction error over all training
samples; �̃� (𝑥) denotes the pseudo label of 𝑥 ; U𝑐𝑡𝑟 (𝑥) is the con-
cept uncertainty that determines the necessity of model evolution,
which will be introduced in detail next; 𝜇𝑒 is a predefined threshold
to ensure that the static autoencoder is only trained with high-
confidence samples with a low concept uncertainty U𝑐𝑡𝑟 (𝑥), i.e., 𝑥
is not involved in training if theU𝑐𝑡𝑟 (𝑥) > 𝜇𝑒 (�̃� (𝑥)=Unknown).
Concept Uncertainty Estimation. We first give the definition of
the predicted probability of the evidential learning-based model.
Considering the instance 𝑥 , the predicted probability �̂� (𝑦 = 𝑐 |𝑥 ;Θ𝑐 )
of the class 𝑐 (0 or 1) following Eq. (2) by marginalizing over 𝑝 is:

�̂� (𝑦 = 𝑐 |𝑥 ;Θ𝑐 ) =
∫

𝑃 (𝑦 = 𝑐 |𝑝;Θ𝑐 )𝑃 (𝑝 |𝑥 ;Θ𝑐 )𝑑𝑝

=
𝛼𝑐∑︁𝐶

𝑘=1 𝛼𝑘
=

𝑔(𝑓𝑐 (𝑥))∑︁𝐶
𝑘=1 𝑔(𝑓𝑘 (𝑥))

= E[𝐷𝑖𝑟 (𝑝𝑐 |𝛼)] ,
(5)

where 𝑔(·) adopts the exponential function so that the softmax-
based prediction can be interpreted as the expectation of the Dirich-
let distribution.

For the evidential IEC trained using the supervision of pseudo
labels from central concepts, when the concepts of current samples
are obviously distinct from central concepts, i.e., the data is out-
of-distribution, the evidence collected for these samples will be
insufficient, as the controller now lacks the knowledge of such new

797



∆Θ𝑑𝑑
𝐸𝐸

𝓛𝓛𝑫𝑫𝑫𝑫𝑫𝑫

∆Θ𝑑𝑑
𝐷𝐷

Θ𝑠𝑠
𝐸𝐸Θ𝑠𝑠

𝐷𝐷

Negative

Positive

Unknown

EDL ClassifierPseudo Labeling 𝐷𝐷𝐷𝐷𝐷𝐷(𝑝𝑝|𝛼𝛼)

𝑯𝑯𝒊𝒊𝑯𝑯𝑯𝑯𝑳𝑳𝒄𝒄𝑳𝑳

𝒰𝒰𝑐𝑐𝑐𝑐𝑐𝑐(�⃗�𝑥) Model Evolution𝑧𝑧Static Encoder with Static Decoder with�⃗�𝑥 �⃗�𝑦

𝓛𝓛𝑫𝑫𝑺𝑺𝑫𝑫 𝓛𝓛𝑰𝑰𝑬𝑬𝑺𝑺

Θ𝑠𝑠
𝐸𝐸 Θ𝑠𝑠

𝐷𝐷

Accumulated Concept Uncertainty

Static Concept-aware Detector

Offline Updating Strategyd

a

Dynamic Shift-aware Detectorc

No

Yes

�⃗�𝑥 Parameter Shift Dynamic Encoder with𝑧𝑧𝑧𝑦𝑦𝑧 Θ𝑑𝑑
𝐸𝐸Dynamic Decoder with Θ𝑑𝑑

𝐷𝐷

Fr
am

ew
or

k
U

pd
at

in
g 𝜇𝜇𝑐𝑐

Intelligent Evolution Controllerb

Data Flow Static Model Dynamic ModelHypernetwork AddSliding WindowDatabase

Figure 2: Overview of the proposed METER. (a) Static Concept-aware Detector (SCD) is first trained on historical data to model
the central concepts. (b) Intelligent Evolution Controller (IEC) timely measures the concept uncertainty to determine the
necessity of dynamic model evolution. (c) Dynamic Shift-aware Detector (DSD) dynamically updates SCD with the instance-
aware parameter shift by considering the concept drift. (d) Offline Updating Strategy (OUS) introduces an effective framework
updating strategy according to the accumulated concept uncertainty in a given sliding window.

concepts [56, 72]. Built upon this, we introduce the uncertainty
resulting from the lack of evidence, called concept uncertainty, to
measure the extent to which the current concept drifts. Formally,
concept uncertaintyU𝑐𝑡𝑟 of the instance 𝑥 is defined as:

U𝑐𝑡𝑟 (𝑥 ;Θ𝑐 ) =
𝐶∑︂
𝑐=1

�̂� (𝑦 = 𝑐 |𝑥 ;Θ𝑐 ) (Φ(𝛼𝑐 + 1) −

Φ(
𝐶∑︂
𝑘=1

𝛼𝑘 + 1)) −
𝐶∑︂
𝑐=1

�̂� (𝑦 = 𝑐 |𝑥 ;Θ𝑐 )log�̂� (𝑦 = 𝑐 |𝑥) ,

(6)

where Φ(·) is the digamma function. Here, we use mutual informa-
tion to measure the spread of Dirichlet distribution on the simplex
following [72]. A higher U𝑐𝑡𝑟 (𝑥) indicates a larger concept uncer-
tainty, i.e., the Dirichlet distribution is widely dispersed across the
probability simplex.

When deriving a higher concept uncertainty U𝑐𝑡𝑟 (𝑥) > 𝜇𝑒 ,
the OAD prediction from the static autoencoder is interpreted as
unreliable. In this way, IEC measures instance-aware concept shift
and enables the dynamic shift-aware detector to further process
the current input instance.

3.2.3 Dynamic Shift-aware Detector. As discussed above, the SCD
module can effectively measure the central concepts derived from
the historical data stream. However, SCD may fail to support accu-
rate detection when the statistical or distributional properties of
the data stream shift in new data streams over time. In this sense,
modeling new concepts when concept drift occurs is critical, which
enhances the detector for accurate detection across time. To handle
evolving data streams, we introduce a Dynamic Shift-aware Detec-
tor (DSD) that effectively enhances the static autoencoder with the
new concepts in the current data stream.
Parameter Shift Measurement. To measure concept drift, we
leverage a hypernetwork to learn the parameters shift ΔΘ𝑑 for

SCD with the same set of parameters, namely the encoder parame-
ter shift ΔΘ𝐸

𝑑
and the decoder parameter shift ΔΘ𝐷

𝑑
. However, as

shown in Eq.(1), the original hypernetwork only utilizes a randomly
initialized 𝑟 (𝑛) to generate the model parameters, which lacks the
interaction between the parameter generation process and the cur-
rent input instance. To measure the instance-aware parameter shift,
we propose to model the parameter shift by replacing the 𝑟 (𝑛) with
representations of the current input instance. Specifically, given the
input 𝑥 , the hypernetwork first employs a layer-specific subnetwork
𝐸 (𝑛) (·) that captures 𝑥 related features as 𝑒 (𝑛) for the parameter
shift generation of the 𝑛-th layer parameters. To reuse features
and reduce model parameters, different layers share one encoder
network 𝐸share (·) while employing different linear layers to get the
layer-specific representation vector 𝑒 (𝑛) in the hypernetwork:

𝑒
(𝑛)

= 𝐸 (𝑛) (𝑥) = 𝐿 (𝑛)layer (𝐸share (𝑥)), n = 1, · · · ,Nd, (7)

where 𝑁𝑑 is the number of the encoder and decoder layers, and
𝐿
(𝑛)
layer (·) is the linear layer to transform the output of 𝐸share (·) to

the 𝑛-th layer features.
The parameter shift of the 𝑛-th layer of the SCD encoder/decoder

can be formatted as a matrix 𝐾 (𝑛) ∈ R𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 , where 𝑁𝑖𝑛 and
𝑁𝑜𝑢𝑡 are the number of input neurons and output neurons respec-
tively. Then, we transform the input-aware feature vector 𝑒 (𝑛) into
the parameter shift of the corresponding layer. Specifically, the
hypernetwork further employs the following two MLP layers to
generate the parameter shift of the 𝑛-th layer:

𝑊 (𝑛) = (𝑊1𝑒
(𝑛) + 𝑏1)𝑊2 + 𝑏2,

𝐾 (𝑛) =𝑊 (𝑛) + 𝑏
(𝑛)
,

(8)

where𝑊1 and𝑊2 are weights of the twoMLP layers of the hypernet-
work respectively, 𝑏1, 𝑏2 and 𝑏 are the biases. Altogether, parameter

798



shifts of the encoder and decoder for the static autoencoder can be
denoted as ΔΘ𝐸

𝑑
and ΔΘ𝐷

𝑑
.

Dynamic Autoencoder. After obtaining the parameter shift of
the static autoencoder, the parameters for the encoder and decoder
of the dynamic autoencoder are as follows:

Θ𝑑 =

{︄
Θ𝐸
𝑑
= Θ𝐸

𝑠 + ΔΘ𝐸
𝑑

Θ𝐷
𝑑

= Θ𝐷
𝑠 + ΔΘ𝐷

𝑑

(9)

where Θ𝐸
𝑑
and Θ𝐷

𝑑
are the parameters of the dynamic autoencoder,

which can adapt the weight of SCD by measuring the parameter
shift, thereby improving the OAD accuracy by dynamically model-
ing the new concepts in the evolving data stream.

Based on the learned parameters of the dynamic autoencoder,
the reconstructing procedure is similar to the static autoencoder:

𝑥 ⇒ E𝑑 (𝑥 ;Θ𝐸
𝑑
) = 𝑧 ′⃗ ⇒ D𝑑 (𝑧 ′⃗;Θ𝐷

𝑑
) = 𝑦 ′⃗, 𝑠 .𝑡 . 𝑥 ≈ 𝑦 ′⃗ (10)

where 𝑧 ′⃗ and 𝑦 ′⃗ are the latent vector and the reconstructed repre-
sentation using the dynamic autoencoder respectively.

3.2.4 Offline Updating Strategy. The entire framework automat-
ically updates its modules based on the accumulated concept un-
certainty within a sliding window over the evolving data stream.
Specifically, METER keeps monitoring if the concept uncertainty
accumulated within this window surpasses a predetermined thresh-
old, and frequent occurrence of such events indicates that the SCD
trained on the historical data streams is incapable of handling the
current data stream due to increased concept drift over time. This
suggests that the entire framework should be updated, namely the
SCD, IEC and DSD module, so as to better adapt to the current data
stream. The Offline Updating Strategy (OUS) is as follows:

UP =

{︄
1, if

∑︁𝑡+Δ𝐿
𝑖=𝑡 (1(U𝑐𝑡𝑟 (𝑥𝑖 )>𝜇𝑒 ) · U𝑐𝑡𝑟 (𝑥𝑖 )) > 𝜇𝑜 or Δ𝑡 > 𝑇𝑚𝑎𝑥

0, else
(11)

whereUP=1 indicates the framework should be updated, Δ𝐿 is the
interval of the sliding window, Δ𝑡 is the time since the last frame-
work update, and 𝜇𝑜 and 𝑇𝑚𝑎𝑥 are the threshold of the framework
update and maximum interval since the last update respectively.∑︁𝑡+Δ𝐿
𝑖=𝑡 (1(U𝑐𝑡𝑟 (𝑥𝑖 )>𝜇𝑒 ) · U𝑐𝑡𝑟 (𝑥𝑖 ) aggregates the concept uncer-

tainty greater than the threshold 𝜇𝑒 within the current sliding
window. We set the threshold 𝜇𝑒 to the largest value of the concept
uncertainty during training and update it using an exponential mov-
ing average (EMA) strategy [41] during updating. Specifically, we
fine-tune the model using data within the current sliding window.
Also, we adopt a parallel training strategy that performs online
OAD inference using the latest fine-tuned modules and meanwhile,
fine-tunes key modules offline, which decouples the training and
inference for efficiency and modularity, and allows for executing
OUS without affecting the online OAD inference service.

3.3 Optimization
METER is trained in two stages: (i) In the first stage, we train
the Static Concept-aware Detector (SCD) using the historical data
streamXℎ . We note that the initial training of SCD only uses a small
subset of the data stream. The reconstruction error can be computed
by taking the 𝐿2 (·) loss, i.e., the squared difference between the

Algorithm 1:METER Inference
Input: Evolving stream data X
Output: Anomaly scores of X
Initialization: Trained SCD, IEC and DSD parametrized by Θ𝑠 , Θ𝑐

and Θ𝑑

for 𝑥 in X do
Computing the concept uncertainty U𝑐𝑡𝑟 (𝑥 ) using Eq.(6)
if U𝑐𝑡𝑟 (𝑥 )>𝜇𝑒 then

Update SCD to DSD using Eq.(9)
return Anomaly score 𝐿2 (𝑥, 𝑦 ′⃗ )

else
return Anomaly score 𝐿2 (𝑥, �⃗�)

if
∑︁𝑡+Δ𝐿

𝑖=𝑡 (1(U𝑐𝑡𝑟 (𝑥𝑖 )>𝜇𝑒 ) · U𝑐𝑡𝑟 (𝑥𝑖 ) > 𝜇𝑜 or Δ𝑡 > 𝑇𝑚𝑎𝑥 then
Xℎ ⇒ X𝑠

Update METER
Break

input and the reconstructed output. Given 𝑥 in Xℎ , the L𝑆𝐶𝐷 is:

L𝑆𝐶𝐷 (Θ𝑠 ) = 𝐿2 (𝑥,𝑦) =
∑︁𝑛
𝑖=1 (𝑥𝑖 − 𝑦𝑖 )2

𝑛
(12)

where 𝑛 is the dimension of features of the input instance. (ii) In
the second stage, the historical instances are first labeled follow-
ing Eq.(4), then we follow [72] to train the Intelligent Evolution
Controller (IEC). Specifically, we treat 𝐷𝑖𝑟 (𝑝 |𝛼) as a prior on the
likelihood and obtain the negated logarithm of the marginal likeli-
hood L𝐼𝐸𝐶 by integrating out the class probabilities:

L𝐼𝐸𝐶 (Θ𝑐 ) =
𝐶∑︂
𝑐=1

(log(
𝐶∑︂
𝑐=1

𝛼𝑐 ) − log𝛼𝑐 ) (13)

The training process of the Dynamic Shift-aware Detector (DSD) is
similar to the SCD. Notably, the gradients backpropagated to the
hypernetwork together with the SCD. L𝐷𝑆𝐷 is defined as below:

L𝐷𝑆𝐷 (Θ𝑑 ) = 𝐿2 (𝑥,𝑦 ′⃗) =
∑︁𝑛
𝑖=1 (𝑥𝑖 − 𝑦 ′⃗𝑖 )2

𝑛
(14)

After the two-stage training, METER can perform inference for the
incoming data stream, which is summarized in Algorithm 1.

3.4 Analysis and Discussion
Effectiveness. METER addresses the concept drift challenge by
integrating two detectors and an IEC. The SCD detector leverages
historical data and prior knowledge for the detection, while the
DSD detector dynamically learns the parameter shift to enhance
SCD and adapts to new concepts effectively in an instance-aware
manner. Notably, IEC determines whether concept drift occurs, cir-
cumventing the risk of employing an ineffective detection model for
anomaly detection. With IEC, the adaptability and generalizability
of METER are substantially improved, leading to enhanced accu-
racy in anomaly detection. In addition, the offline update strategy
provides an efficient way to keep up with new concepts in evolving
data streams, thereby ensuring high-quality detection results.
Efficiency. Efficiency is an important consideration in OAD due
to the need for timely responses to evolving data streams. METER
introduces several strategies to achieve high detection efficiency.
METER employs the uncertainty estimate derived from evidential

799



Table 1: Overall performance comparison of unknown drifts in a discrete setting. A larger score has better performance.
Acronym notations of baselines can be found in Sec. 4.1.2. We mark best (bold and underline) and second best(bold) in each row.

Model Class Model Ion. Pima Satellite Mamm. BGL NSL KDD99 Average
AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR Rank

Traditional
LOF [12] 0.874 0.827 0.542 0.371 0.598 0.481 0.720 0.089 0.542 0.206 0.586 0.428 0.653 0.359 10.133
IF [47] 0.860 0.817 0.677 0.502 0.676 0.375 0.867 0.211 0.823 0.295 0.530 0.577 0.784 0.406 7.333
KNN 0.929 0.932 0.615 0.457 0.677 0.539 0.839 0.156 0.765 0.274 0.897 0.899 0.946 0.902 6.133

STORM [5] 0.640 0.526 0.529 0.373 0.680 0.452 0.615 0.418 0.203 0.043 0.513 0.138 0.913 0.822 10.933

Incremental
RRCF [26] 0.586 0.411 0.575 0.393 0.553 0.356 0.713 0.524 0.540 0.076 0.604 0.534 0.773 0.347 11.067
MStream [7] 0.681 0.486 0.524 0.440 0.647 0.457 0.798 0.076 0.531 0.105 0.759 0.716 0.958 0.912 9.333

MemStream [8] 0.821 0.672 0.703 0.551 0.722 0.682 0.902 0.225 0.694 0.144 0.988 0.967 0.979 0.857 5.200

Ensemble

HS-Trees [75] 0.687 0.574 0.667 0.344 0.512 0.348 0.797 0.623 0.599 0.174 0.806 0.735 0.901 0.728 9.267
iForestASD [21] 0.744 0.601 0.515 0.356 0.642 0.451 0.575 0.031 0.701 0.382 0.511 0.483 0.532 0.227 11.000
RS-Hash [69] 0.743 0.502 0.518 0.372 0.640 0.586 0.776 0.622 0.436 0.245 0.684 0.524 0.783 0.707 10.000
LODA [62] 0.514 0.373 0.501 0.347 0.500 0.316 0.500 0.023 0.523 0.074 0.504 0.535 0.507 0.197 14.000
Kitsune [53] 0.920 0.896 0.590 0.451 0.732 0.673 0.603 0.202 0.514 0.074 0.947 0.918 0.982 0.993 6.533
xStream [52] 0.773 0.591 0.656 0.583 0.659 0.533 0.847 0.630 0.623 0.356 0.540 0.327 0.954 0.881 7.067
PIDForest [25] 0.821 0.718 0.669 0.474 0.718 0.543 0.847 0.202 0.791 0.300 0.503 0.561 0.864 0.772 7.467
ARCUS [87] 0.919 0.894 0.607 0.420 0.797 0.560 0.812 0.261 0.768 0.185 0.262 0.365 0.972 0.807 7.533

Ours METER 0.950 0.956 0.733 0.654 0.796 0.777 0.913 0.491 0.895 0.369 0.982 0.963 0.973 0.853 3.0001

deep learning to detect concept drift, and thus avoids the need for
frequentmodel retraining. This considerably reduces computational
costs and enhances the responsiveness and overall efficiency of the
detectionmodel. In addition, METER dynamically switches between
the base detection model and a dynamic shift-aware detector (DSD)
supported by the hypernetwork for detecting anomalies. DSD dy-
namically generates parameter shifts to account for the current
concept, thereby handling concept drift on the fly and enhancing
the predictive performance of the base detection model without
further fine-tuning or training. The dynamic concept adaptation
technique enables METER to harness the strengths of both models,
which supports efficient AD in rapidly changing data streams.
Interpretability. METER supports interpretability for OAD in
terms of providing reliable uncertainty estimates for detection re-
sults, which is important and necessary for users in high-stakes ap-
plications [18, 90, 91]. We note that softmax probabilities produced
by detection models of existing OAD approaches are unreliable un-
certainty estimates [56, 72]. As such, providing a reliable measure of
prediction results is challenging, and is often neglected by existing
OAD approaches [8, 37, 87, 88]. Inspired by recent research utiliz-
ing subjective logic (SL) theory [36] to improve the interpretability
of decision-making processes, e.g., in domains such as multi-view
classification [23, 29] and molecular property prediction [73], we
derive high-quality uncertainty modeling via evidential deep learn-
ing, which utilizes SL theory to explicitly model the reliability
of predictions generated by METER. Specifically, SL formalizes
Dempster-Shafer Evidence Theory’s notion of belief assignments
over a frame of discernment as a Dirichlet distribution [72], form-
ing opinions for anomaly detection. In practice, METER monitors
whether concept drift occurs for the current input using concept
uncertainty modeled by IEC, which can be visualized on a per-input
basis for improving the user’s understanding of the detection.

4 EXPERIMENTS
In this section, we conduct experiments to systematically evaluate
the effectiveness, efficiency and interpretability of METER.

4.1 Experimental Setup
4.1.1 Datasets and Applications. We adopt 17 real-world bench-
mark datasets from various domains with different types of concept
drift, dimensions, number of data points, and anomaly rates. These

datasets arewidely benchmarked in related studies and are represen-
tative of evaluating the effectiveness of different OAD approaches
to detect anomalies and adapt to concept drift. Given the diverse
types of data encountered in data streams for OAD, we catego-
rize the datasets into two settings: discrete and continuous. In the
continuous setting, data streams exhibit temporal dependencies
between successive time steps, whereas in the discrete setting, such
dependencies may either be absent or remain unknown. By con-
ducting evaluations on both settings, we aim to comprehensively
evaluate the performance of different OAD approaches.

We first adopt four commonly used anomaly detection datasets
from the UCI repository and ODDS library [63], namely Ionosphere
(Ion.), Pima, Satellite, Mammography (Mamm.). Secondly, we uti-
lize the BGL [57] dataset, a large public dataset consisting of log
messages collected from a BlueGene/L supercomputer system at
Lawrence Livermore National Labs. To facilitate analysis, each log
message is processed into the structured data format. The third
category is popular multi-aspect datasets of intrusion detection,
namely KDDCUP99 [1] (KDD99) and NSL-KDD [77] (NSL). The
next category is time-series datasets procured from two bench-
marks: Numenta anomaly detection benchmark [3] (NAB) and
HexagonML [19] (UCR). We adopt datasets including NYC taxi-
cab (NYC), CPU utilization (CPU), Machine temperature (M.T.) and
Ambient temperature (A.T.) from NAB, commonly employed for
evaluating streaming anomaly detection algorithms. As for UCR,
we selectively adopt datasets obtained from natural sources, specif-
ically EPG and ECG. We also adopt real-world streaming datasets
INSECTS [74] for simulating concept drift, consisting of optical
sensor values collected while monitoring flying insects, with tem-
perature level as the controlled concept.

4.1.2 Baseline Methods. We compare METER with 15 baselines in
three categories: (1) Representative and widely used anomaly detec-
tion algorithms, namely Local Outlier Factor (LOF) [12], Isolation
Forest (IF) [47], and k-Nearest Neighbors (KNN). STORM [5] is also
an important stream data anomaly detection work that is often used
as a baseline [8, 68, 80]; (2) Incremental learning-based approaches,
namely RRCF [26], MStream [7], and MemStream [8]; (3) Ensemble-
based approaches, namely HS-Trees [75], iForestASD [21], RS-
Hash [69], LODA [62], Kitsune [53], xStream [52], PIDForest [25],
and ARCUS [87].

800



Table 2: Overall performance comparison of Unknown drifts in a continuous setting.

Model Class Model M.T. A.T. NYC. CPU. EPG ECG Average RankAUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

Traditional
LOF [12] 0.501 0.141 0.563 0.126 0.671 0.211 0.560 0.112 0.934 0.679 0.670 0.016 9.667
IF [47] 0.829 0.573 0.762 0.362 0.624 0.331 0.817 0.760 0.811 0.552 0.668 0.005 5.500
KNN 0.759 0.255 0.634 0.200 0.697 0.202 0.724 0.452 0.083 0.001 0.247 0.002 10.000

STORM [5] 0.604 0.127 0.518 0.105 0.460 0.097 0.667 0.605 0.578 0.436 0.662 0.523 11.667

Incremental
RRCF [26] 0.628 0.153 0.519 0.110 0.502 0.121 0.617 0.368 0.814 0.498 0.387 0.002 11.667
MStream [7] 0.860 0.505 0.619 0.156 0.639 0.168 0.794 0.443 0.824 0.621 0.721 0.284 6.417

MemStream [8] 0.825 0.573 0.722 0.334 0.731 0.311 0.831 0.227 0.930 0.656 0.780 0.007 4.500

Ensemble

HS-Trees [75] 0.617 0.359 0.522 0.310 0.558 0.269 0.678 0.585 0.531 0.334 0.621 0.439 9.083
iForestASD [21] 0.738 0.231 0.514 0.167 0.501 0.117 0.755 0.153 0.782 0.470 0.733 0.006 10.167
RS-Hash [69] 0.607 0.549 0.742 0.180 0.524 0.106 0.712 0.467 0.552 0.186 0.584 0.203 9.833
LODA [62] 0.503 0.100 0.499 0.101 0.499 0.101 0.500 0.083 0.595 0.182 0.721 0.077 13.500
Kitsune [53] 0.684 0.416 0.599 0.274 0.465 0.124 0.824 0.669 0.897 0.020 0.726 0.231 7.833
xStream [52] 0.696 0.596 0.567 0.319 0.586 0.121 0.730 0.195 0.687 0.158 0.705 0.365 8.250
PIDForest [25] 0.789 0.389 0.797 0.320 0.513 0.113 0.881 0.439 0.836 0.238 0.683 0.006 7.667
ARCUS [87] 0.376 0.511 0.518 0.389 0.470 0.317 0.678 0.128 0.885 0.724 0.682 0.340 8.417

Ours METER 0.842 0.652 0.782 0.399 0.688 0.386 0.908 0.715 0.968 0.625 0.778 0.495 1.833

Table 3: Overall performance comparison of known drifts in
a continuous setting.

Model Class Model INSECTS INSECTS INSECTS INSECTS Average Rank Time (s)-Abr -Inc -IncGrd -IncRec

Traditional
LOF [12] 0.578 0.556 0.589 0.526 11.250 180
IF [47] 0.679 0.632 0.697 0.593 6.500 67
KNN 0.666 0.597 0.673 0.553 8.000 105

STORM [5] 0.408 0.441 0.446 0.449 16.500 122

Incremental
RRCF [26] 0.600 0.579 0.624 0.593 9.250 121
MStream [7] 0.703 0.698 0.788 0.672 3.250 18

MemStream [8] 0.753 0.348 0.728 0.361 10.750 109

Ensemble

HS-Trees [75] 0.499 0.507 0.497 0.499 14.250 302
iForestASD [21] 0.599 0.589 0.616 0.575 9.500 7985
RS-Hash [69] 0.484 0.509 0.459 0.506 14.250 225
LODA [62] 0.498 0.503 0.496 0.499 14.750 831
Kitsune [53] 0.759 0.584 0.730 0.594 5.250 164
xStream [52] 0.514 0.516 0.533 0.504 12.750 408
PIDForest [25] 0.757 0.675 0.748 0.631 3.500 18047
ARCUS [87] 0.601 0.597 0.576 0.632 8.000 79

Ours METER 0.816 0.795 0.712 0.794 2.250 88

4.1.3 Evaluation Metrics. We adopt AUCROC and AUCPR as eval-
uation metrics. AUCROC is the area under ROC curve, which plots
the false-negative rate (FNR) as the x-axis and the true-positive
rate (TPR) as the y-axis at different thresholds. AUCPR is the area
under PR curve, which plots the precision against recall at different
thresholds. The metrics fall within the range [0, 1], and a higher
value indicates better detection performance.

4.1.4 Implementation Details. We implement LOF and IF using the
scikit-learn library [61], and KNN using the pyod library [92]. The
open-source PySAD library [85] is used to implement STORM [5],
RRCF [26], HS-Trees [75], iForestASD [21], RS-Hash [69], LODA [62],
and xStream [52] with default parameters. For other baseline meth-
ods such as MStream [7], MemStream [8], Kitsune [53], PIDFor-
est [25], ARCUS [87], we adopt the official implementations, using
the recommended parameter settings. For ARCUS, we use the base
model RAPP [38]. In cases where default parameter values are not
provided, we conduct a grid search to find the optimal parameters
that yield the best performance. Adam [39] is used as an optimizer in
all learning-based models with a learning rate searched in 0.1∼1𝑒-3.

For METER, the encoder and decoder are implemented as 2 to 10-
layer DNNs with a symmetric structure, where the autoencoder’s
latent space dimension is set to the number of principal components
to ensure a minimum of 70% explained variance following prior
research [38, 87]. IEC is a two-layer DNN with the ReLU activation
function. We use an Adam optimizer with a learning rate of 1𝑒-
2 with an exponential decay rate of 0.96. The number of epochs

Table 4: Performance of ablation experiments, where AUC is
the average AUCROC value on the four INSECTS datasets.

Variant SCD DSD IEC OUS AUC
METER-S ✓ × × × 0.604
METER-D × ✓ × × 0.681
METER-S+D ✓ ✓ × × 0.696
METER w/o IEC ✓ ✓ × ✓ 0.713
METER w/o OUS ✓ ✓ ✓ × 0.741
METER ✓ ✓ ✓ ✓ 0.779

is set to 1000. We utilize grid search for hyperparameter tuning.
Specifically, the threshold rate 𝜇𝑝 for the pseudo labels from SCD
is searched within the range of 0.05 to 0.5 with an interval of 0.05.
The threshold of the concept uncertainty 𝜇𝑒 is searched in {0.001,
0.005, 0.01, 0.1, 0.2, 0.4}. While the threshold of the offline updating
strategy 𝜇𝑜 is in the range of 0.1 to 1 of the window size, and the
window size Δ𝐿 is set to 64. The historical data ratio ℎ𝑟 is set to
0.2, meaning that 20% of the dataset is utilized as a historical data
stream X𝑠 for training purposes. We conduct a sensitivity analysis
on the three key threshold hyperparameters of our framework,
along with the window size Δ𝐿 and the historical data ratio ℎ𝑟 in
Section 4.6. We create a data generator to simulate the generation of
streaming data and report the average value of 5 independent runs
for all baselines. All the experiments are conducted in a server with
Xeon(R) Silver 4114 CPU @ 2.2GHz (10 cores), 256G memory, and
GeForce RTX 2080 Ti. All the models are implemented in PyTorch
1.10.0 with CUDA 10.2.

4.2 Effectiveness
We compare METER with other baselines on the 17 real-world
datasets with results reported in Table 1, 2 and 3. Our METER
achieves the best performance in most scenarios, across differ-
ent concept drift types and problem settings (discrete or continu-
ous). Notably, as shown in Table 1, METER outperforms the top-
performing baseline by 2.2% on Ionosphere and 4.3% on Pima in
terms of AUCROC. Meanwhile, METER obtains the highest AU-
CROC of 0.968 and the second-highest AUCROC of 0.778 (very close
to the best AUCROC of 0.780 achieved by MemStream on ECG) on
the more challenging dataset EPG and ECG, respectively. Likewise,
drawing insights from Table 2, METER performs exceptionally well

801



Figure 3: Analysis of concept drift adaptation on INSECTS dataset.

on time series, which is the top-ranked model on average. We adopt
the shingling approach following the convention [25] with a win-
dowwidth of 10. The preprocessed vectors are then input toMETER,
enabling the model to capture short-term temporal dependencies
within the time window. Further, the hypernetwork-based DSD is
designed to learn and capture long-term variations in time series
by dynamically generating the parameter shifts of SCD weights.
Together, they enable METER to handle the temporal dependencies
and achieve overall the best performance across different settings.

While some methods demonstrate remarkable performance on
certain datasets, they lack consistency. For instance, ARCUS achieves
the highest AUCPR on EPG, while it only obtains an AUCPR of
0.340, i.e., 34.99% worse than STORM with the highest AUCPR of
0.523. Table 3 illustrates that about half of the methods exhibit sub-
par performance on real-world datasets with known concept drift.
Notably, although methods like MemStream obtain competitive
performance on INSECT-Abr and INSECT-IncRec, they perform
worse on the other two datasets, whose performance is even worse
than METER using only the static concept-aware detector as shown
in Table 4. This demonstrates the complexity of OAD when dealing
with real-world datasets characterized by distinct concept drifts.
Different kinds of concept drifts require very different modeling
strategies, and thus resilient models that can adapt to a wide spec-
trum of concept drift scenarios are much needed. In this context,
consistently outperforms baseline models across various settings
and types of concept drift, achieving overall the highest rank across
datasets. Also, METER shows high computational efficiency. As
shown in Table 3, the average running time of METER on INSECTS
is only 88s, which is substantially lower than most of the baselines,
while still delivering superior performance.

4.3 Concept Drift
To validate the effectiveness of METER in real-time detection and
rapid response to concept drift, we monitor the evolution of con-
cept uncertainty of METER (depicted as a blue line) on real data
streams subject to concept drift, specifically on INSECTS. In this
experiment, the changes in temperature are used as indicators of
concept drift. In addition, we plot the timing of model updates (in-
dicated by the orange dotted line) and the corresponding changes
in AUCROC (indicated by the gray line) over time. This tracks the
performance of METER as it adapts to evolving data streams. For a
comprehensive understanding of the monitoring and adaptation

effects of concept drift, we adopt equidistant sampling across the
entire dataset, given that our method operates at the instance level.
By selecting 100 equidistant points for both uncertainty and AU-
CROC analysis, we ensure a representative snapshot of the data
stream’s evolution. As shown in Figure 3, despite some volatility
in uncertainty across the data stream, there is generally a sharp
increase in uncertainty when concept drift occurs, with virtually
no delay. We note that the initial drift results in a sharp spike in the
concept uncertainty at the beginning of concept drift, e.g., the time
step around 7000 in INSECTS-Inc, and more moderated concept un-
certainty during the subsequent concept drifts, even if an increasing
trend is observed, such as the concept shift occurring at time step
20000. This phenomenon is also consistent with the observation
in INSECTS-IncGrd and INSECTS-IncRec. Further, the timing of
model updates aligns with these sharp increases in uncertainty,
corroborating the rapid response of METER to the emergence of
anomalies. Crucially, METER consistently maintains high AUCROC
scores on real data streams, showing stability and reliability without
significant fluctuations in the presence of concept drift.

4.4 Ablation Study
Effectiveness of eachmodule: Extensive ablation studies are con-
ducted on four real-world datasets with different types of concept
drifts to evaluate the contribution of individual modules in ME-
TER. The composition of the variants and their average AUCROC
results on INSECTS are detailed in Table 4, with separate results
provided in Figure 4. The results show that each module contributes
considerably to improving the detection performance. Notably, the
experiments suggest that DSD plays a more important role than
SCD. Also, both IEC and OUS, introduced to detect and address con-
cept drift respectively, are critical to support effective OAD. Similar
results can be observed in Figure 4. Further, the increase in the
detection performance of METER becomes more prominent as the
data stream’s sample size grows (e.g., the gain curve on INSECTS-
IncRec with 67,455 samples is steeper than that on INSECTS-IncGrd
with 20,367 samples), demonstrating the scalability of METER to
large-scale data stream scenarios.
Instance-specific information: A dedicated ablation study is
conducted to assess the superiority of adopting the instance-aware
input for hypernetwork over the conventional approach of using

802



Table 5: Effects of instance-specific information, prior knowl-
edge and various SCD implementations on METER.

Variant INSECTS INSECTS INSECTS INSECTS Average-Abr -Inc -IncGrd -IncRec
METER-re 0.640 0.482 0.526 0.617 0.566
METER-pl 0.827 0.806 0.762 0.782 0.794
METER 0.814 0.795 0.713 0.795 0.779
METER-lstm 0.915 0.844 0.765 0.827 0.838
METER-conv 0.893 0.825 0.693 0.816 0.807
Res-METER-conv 0.910 0.832 0.742 0.821 0.826

Table 6: Validation of recurring patterns.

Variant 𝑝1−𝑡𝑒𝑠𝑡 𝑝2−𝑡𝑒𝑠𝑡 𝑝3−𝑡𝑒𝑠𝑡 𝑝4−𝑡𝑒𝑠𝑡 𝑝5−𝑡𝑒𝑠𝑡 Average
Group I 0.804 0.681 0.711 0.702 0.801 0.740 ± 0.052
Group II 0.804 0.710 0.734 0.754 0.837 0.768 ± 0.046

random embeddings. We denote the variant by METER-re. Remark-
ably, instance-specific information significantly improves the de-
tection performance of METER. In contrast to the original hyper-
network, which uses random embeddings and thus has a weak
correlation between parameter generation and the current input
instance, METER takes into account instance-specific inputs, lead-
ing to instance-aware modeling. This enables METER to effectively
capture the dynamic changes in streaming data, thereby making it
more efficient and effective for online anomaly detection.
Prior knowledge:We introduce a variant of METER to evaluate
its adaptability and generalization in situations with limited labeled
samples. Table 5 reports the experimental results, where METER-pl
denotes the pseudo-labeling strategy enhanced by incorporating 1%
of labeled anomalies into the training set. The results in Table 5 also
reveal that the evidential IEC successfully leverages prior knowl-
edge and considerably enhances the learning capacity of METER
by incorporating only a small number of labeled samples.
Flexibility: We conducted comprehensive testing of various SCD
designs to thoroughly explore the flexibility of METER, including
LSTM, 1D convolution, and 1D convolution with residual connec-
tions. For a fair comparison, all the variants share the same base
structure as METER’s DNNs implementation. Results in Table 5
show that all the three enhanced SCD modules can achieve notice-
ably better detection performance, with an increase in AUCROC of
7.57%, 3.59%, and 6.03% respectively, as compared to the original
SCD module based on a canonical DNNs. This not only confirms
the adaptability and flexibility of METER but also points out en-
hancement directions for further improving METER’s performance.
Reccurring Patterns:We partition INSECTS-Abr dataset into five
sequential and equal subsets, denoted as 𝑝1 to 𝑝5. Then, we further
split each subset into one training set and one test set, and derive
𝑝1−𝑡𝑟𝑎𝑖𝑛/𝑝1−𝑡𝑒𝑠𝑡 to 𝑝5−𝑡𝑟𝑎𝑖𝑛/𝑝5−𝑡𝑒𝑠𝑡 correspondingly. Using these
subsets, we conduct two groups of experiments. In Group I, we
train METER on 𝑝1−𝑡𝑟𝑎𝑖𝑛 and then fine-tune METER on 𝑝2−𝑡𝑟𝑎𝑖𝑛
to 𝑝5−𝑡𝑟𝑎𝑖𝑛 respectively, and report the detection performance of
METER. As for the experiments of Group II, we only train METER
on 𝑝1−𝑡𝑟𝑎𝑖𝑛 once, and then report the trained METER on all test
sets, namely 𝑝1−𝑡𝑒𝑠𝑡 to 𝑝5−𝑡𝑒𝑠𝑡 . Results summarized in Table 6 show
that (1) the fine-tuning strategy is not effective in OAD, which may
lead to worse performance than the model initially trained but

Table 7: Training and inference efficiency of METER.

Dataset Throughput Training Memory(MiB)Training Inference Time(s)
Ion. 9,044 181,225 0.008 6.18
NSL 142,856 85,435,573 0.020 16.28
M.T. 303,025 2,240,917 0.015 9.70
CPU 206,337 4,601,219 0.015 9.22

INSECTS-Abr 520,843 24,662,015 0.017 38.08

Table 8: The performance under different Δ𝐿.

Window Size Δ𝐿 32 48 64 96 128 256
AUCROC 0.875 0.862 0.856 0.832 0.805 0.798
Time(s) 253 248 188 173 133 98

without fine-tuning, e.g., the Group I model archives an AUCROC
of 0.702 on 𝑝4−𝑡𝑒𝑠𝑡 , which is much worse than 0.754 of the Group
II model without further fine-tuning. (2) The model of Group II
archives an AUCROC of 0.768, which is only slightly worse than
0.804 obtained on 𝑝1−𝑡𝑒𝑠𝑡 , and obtains an even higher AUCROC of
0.837 on 𝑝5−𝑡𝑒𝑠𝑡 . These two findings suggest that the majority of
anomaly patterns are indeed already encompassed on the status
historical data, namely 𝑝1−𝑡𝑟𝑎𝑖𝑛 , and the model of Group II only
trained on 𝑝1−𝑡𝑟𝑎𝑖𝑛 can detect most anomalies on the subsequent
unseen test sets, which achieve so by learning the recurring central
concepts encompassed in the static historical data.

4.5 Efficiency
We evaluate the training and inference efficiency of METER by mea-
suring throughput, denoted as the number of processed samples per
second, on diverse benchmark datasets. Results in Table 7 show that
METER is rather efficient in both training and inference on datasets
of various sizes and dimensions. This indicates that METER exhibits
high computational efficiency and thus supports rapid response
rates for real-time OAD applications. Another issue worth con-
cerning is the training time and the maximum memory usage (peak
memory). Considering METER’s adaptive offline update capability
to handle concept drift, achieving a shorter training time and a
smaller peak memory becomes especially desirable. Table 7 reports
the average training time for each epoch and the peak memory.
The results demonstrate that METER requires negligible training
time and takes low memory usage across these datasets. This is
mainly due to the lightweight design of the key modules of METER,
as discussed in detail in Section 3.4. To provide further insights
into this matter, we conduct tests to assess the efficiency impact of
the IEC and DSD modules. Specifically, we compare peak memory
usage and average training time per epoch on CPU of METER with
and without IEC and DSD. Results show that the introduction of the
IEC and DSD modules incurs a negligible increase in training time
(0.014s and 0.007s, respectively) and peak memory usage (5.17MB
and 2.61MB, respectively). Further, our ablation studies in Table 4
show that integrating these two modules into METER enhances
the performance by a large margin. These findings corroborate
the efficiency and effectiveness of the IEC and DSD in our frame-
work, which is well-suited for real-time applications and supports
high-performance OAD with efficiency.

803



0.5

0.6

0.7

0.8

AU
CR

OC

(a) INSECTS-Abr
0.5

0.6

0.7

0.8

(b) INSECTS-Inc

0.5

0.6

0.7

0.8

AU
CR

OC

(c) INSECTS-IncGrd
0.5

0.6

0.7

0.8

(d) INSECTS-IncRec

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

AU
CP

R

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

AU
CP

R

METER-S
METER-D

METER-S+D
METER w/o IEC

METER w/o OUS
METER

AUCROC (higher is better) AUCPR (higher is better)

Figure 4: Ablation analysis. The AURROC and AUCPR per-
formance of six METER variants on INSECTS datasets.

4.6 Sensitivity Study
First, we focus on the three critical threshold hyperparameters: 𝜇𝑝 ,
𝜇𝑒 , and 𝜇𝑜 . These hyperparameters control dynamic concept adapta-
tion and the frequency of model updates. Adopting low thresholds
for 𝜇𝑝 and 𝜇𝑒 may result in an excessive number of samples be-
ing allocated to the Dynamic Shift Detector (DSD), even when
the current concept remains unchanged. Conversely, excessively
high thresholds could hinder the detection of concept drift when it
arises. Experimental results, as depicted in Figure 5, suggest that
the optimal settings for 𝜇𝑝 lie between 0.1 and 0.2, and for 𝜇𝑒 be-
tween 0.005 and 0.01. In the absence of prior knowledge about a
dataset, we recommend these default parameters as initial values,
followed by a grid search to find better hyperparameters. As for 𝜇𝑜 ,
this hyperparameter denotes the number of samples that exceed
the update threshold within the sliding window. To evaluate the
effect of the offline updating strategy, we scrutinized the ratio of
𝜇𝑜 to the window size. Our results indicate that a smaller 𝜇𝑜 value
improves performance. However, a small 𝜇𝑜 can lead to frequent
offline updates, and thus reduce model efficiency. Therefore, a bal-
ance between performance and efficiency can be attained by setting
𝜇𝑜 between 0.1 and 0.4, as shown in Figure 5.

Next, we evaluate the historical data ratio ℎ𝑟 within the range
of 0.1 to 0.8. One key observation is that when ℎ𝑟 is too small, the
performance notably declines due to the inadequacy of historical
data. This inadequacy results in a failure to acquire adequately
informative central concepts. As the ratio increases, there is a no-
ticeable improvement in performance. However, a higher ratio does
not consistently guarantee better performance. For instance, in the
CPU and INSECTS-Abr datasets, increasing the ratio actually leads
to a decline in performance. This observation suggests that the
model might become more susceptible to overfitting the training
data, thus causing a reduction in performance during inference.
While the targeted OUS is more efficient and performs better than
training models directly on more data.

Furthermore, we evaluate the impact of the window size Δ𝐿 on
both effectiveness and efficiency. This parameter is central for OUS.
The results in Table 8 show that an excessively small Δ𝐿 results

0.05 0.10 0.20 0.30 0.40 0.50

0.80

0.85

0.90

0.95

(a) μp
0.001 0.005 0.01 0.1 0.2 0.4

0.75

0.80

0.85

0.90

0.95

(b) μe

0.1 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

(c) μo
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.8

0.9

(d) hr

AU
CR

OC
AU

CR
OC

Ionosphere
Mammography

Machine temperature
CPU utilization

INSECTS-Abr

Figure 5: Sensitivity test of parameters 𝜇𝑝 , 𝜇𝑒 , 𝜇𝑜 , and Δ𝐿.

in frequent model updates, which can somewhat ensure a certain
level of AUCROC performance but at the expense of efficiency. Con-
versely, an overly large Δ𝐿 reduces inference time but compromises
the model’s capacity to timely capture concept changes, resulting in
performance degradation. Fortunately, as discussed in Section 4.5,
the update time of METER is minimal, and it maintains commend-
able performance across a wide range of Δ𝐿. This allows users to
tailor Δ𝐿 to their specific requirements in practical applications.

4.7 Interpretability
To provide a clearer understanding of the uncertainty modeled by
IEC, we offer an interpretation from a semantic perspective. High
uncertainty in anomaly detection often arises when the model con-
fronts unfamiliar data concepts. Figure 6 serves as an illustrative
example of how METER generates interpretable results for differ-
ent time steps and concepts, and how it accurately identifies and
rapidly adapts to concept drift based on probability distribution
and concept uncertainty as observed on the real-world dataset
INSECTS. We identify three representative data points from two
different concepts and their concept drift point for illustration. For
the first data point, METER generates a probability distribution
characterized by small entropy and low uncertainty, enabling the
model to correctly classify it as a normal sample. For the second
data point, METER produces a probability distribution with high
concept uncertainty, indicating the presence of concept drift. In this
case, METER transitions into the dynamic mode via the IEC, and
the DSD learns the parameter drift of the base detection model and
accurately classifies it as a normal sample. By examining the output
of the third point, we can notice that the model effectively adapts
to the new concept, indicated by the prediction with low concept
uncertainty. These findings validate the capability of METER to
provide more interpretable and trustworthy detection for better
user understanding.

4.8 Integration on Flink
Stream processing engines play a pivotal role in deploying OAD
frameworks. To illustrate how METER can function as a compo-
nent of a larger-scale system, we integrate METER into Apache
Flink [14], a framework and distributed processing engine for state-
ful computations over unbounded and bounded data streams. Flink

804



Concept A

Concept B

Concept C

Concept D

Concept E t=16000, Concept B

t=16445, Concept Drift

t=20000, Concept C

AbnormalNormal

AbnormalNormal

AbnormalNormal

�𝑷𝑷 =[0.8782, 0.1218], 𝓤𝓤𝒄𝒄𝒄𝒄𝒄𝒄 = 0.0063,

�𝑷𝑷 =[0.4686, 0.5314], 𝓤𝓤𝒄𝒄𝒄𝒄𝒄𝒄 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎,

�𝑷𝑷 =[0.7939, 0.2061], 𝓤𝓤𝒄𝒄𝒄𝒄𝒄𝒄 = 0.0096,

✓
✘

✘

Evolution

Evolution

Evolution

Final Result: Normal

Final Result: Normal

Final Result: Normal

✓
✓
✓

Figure 6: Interpretability with respect to model evolution.

wraps METER inside a Flink operator, where Flink helps to es-
tablish the required environment, manage resources, read/write
the data with versatile connectors, and handle failures. Building
streaming workloads upon Flink empowers METER with real-time
data processing pipelines, large-scale exploratory data analysis, and
ETL processes. The experiments are conducted on the INSECT-Abr
dataset. The timely output results, as illustrated in Figure 7, validate
a seamless integration of METER with a stream processing engine,
confirming its efficacy in supporting real-time anomaly detection.

5 RELATEDWORK
Anomaly Detection. Anomaly detection (AD) has been exten-
sively studied in various fields such as computer networks [55, 76],
intrusion detection [22, 34], healthcare [65, 83], and finance [32].
Traditional approaches for AD include statistical methods [12], clus-
tering algorithms [5, 27], classification-based techniques [47], and
nearest neighbor-based methods [10, 78]. With the advent of deep
learning, autoencoder-based techniques have become popular for
AD [4]. Autoencoders learn to reconstruct input data by minimiz-
ing the reconstruction error, where a higher error is an indication
of an anomaly. [67] proposes a stacked autoencoder for detecting
anomalies in credit card transactions. The method achieved good
performance but suffered from high false positive rates. To address
this issue, [51] introduces a sparse autoencoder, which achieves bet-
ter performance in terms of false positive rates. There are also some
extensions for traditional autoencoders on AD. ADAE [82] pro-
poses an Adversarial Dual Autoencoder framework for AD, which
uses two autoencoders in a dual structure to improve the represen-
tation power of the model. [45] presents a smoothness-inducing
sequential variational auto-encoder (VAE) model for the robust
estimation and AD of multidimensional time series. However, the
above approaches have not considered processing data in a stream-
ing fashion and usually require large amounts of training data in
an offline setting, and thus cannot be applied to online AD.
Online Anomaly Detection. Online anomaly detection (OAD)
aims to promptly identify abnormal behavior or events in real-time
data streams. Notably, compared to AD, OAD faces the challenge
of concept drift. Previous works [9, 15, 33] rely on sliding windows
and primarily focus on detecting alterations in specific statistical
characteristics (e.g., mean values) of streaming data or its individ-
ual features to identify concept drift. However, these approaches
prove insufficient for OAD, since concept drift within OAD can
encompass more intricate changes in data distribution, including
shifts, correlations, and transformations of data patterns, extending
beyond the scope of basic statistical features like mean values.

0 5000 10000 15000 20000 25000 30000 35000 40000
Data Stream

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

Sc
or

e

1e6
AUCROC Anomaly Score

Figure 7: Timely output results of METER on Flink.

Different anomaly detection approaches span various paradigms,
such as isolation forest [47] (IF), k nearest neighbors (kNN), local
outlier factor [12] (LOF), and deep neural networks (DNNs). These
approaches have been extensively adapted for OAD tasks, leading
to the rise of two prevailing OAD approaches: incremental learning-
based [7, 8, 11, 26, 54] and ensemble-based approaches [21, 25, 52,
53, 62, 69, 75, 87]. However, these methods suffer from limitations
in their ability to adapt to evolving data streams, since they need
to update their detection models to accommodate the changing
concepts, typically by retraining, fine-tuning, or updating certain
model statuses. Moreover, the effectiveness of these techniques
is inherently bounded by their quantity, such as the number of
pre-trained models in ensemble-based methods, which necessitates
a trade-off between efficiency and performance. Our work aims
to address these challenges by proposing a novel framework that
dynamically adapts to concept drift without the need for additional
fine-tuning or retraining, which guarantees both effectiveness and
efficiency while providing interpretable decision-making.

6 CONCLUSIONS
In this paper, we present a novel framework METER for online
anomaly detection (OAD), which addresses the challenge of concept
drift in an effective, efficient, and interpretable manner. By lever-
aging a static concept-aware detector trained on historical data,
METER captures and handles recurring central concepts, while
dynamically adapting to new concepts in evolving data streams
using a lightweight drift detection controller and a hypernetwork-
based parameter shift technique. The evidential deep learning-based
drift detection controller enables efficient and interpretable concept
drift detection. Our experimental study demonstrates that METER
outperforms existing OAD approaches in various scenarios and
facilitates valuable interpretability.

7 ACKNOWLEDGMENTS
This work is supported by the National Research Foundation, Singa-
pore under its Emerging Areas Research Projects (EARP) Funding
Initiative. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore. The
work is also supported by the National Natural Science Foundation
of China National Science Fund for Distinguished Young Scholars
62025301, and the National Natural Science Foundation of China
under Grant 61933002.

805



REFERENCES
[1] 1999. KDD Cup Dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html. Accessed:2023-07.
[2] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical ap-

proach to asynchronous multivariate time series anomaly detection and localiza-
tion. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery
& data mining. 2485–2494.

[3] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsu-
pervised real-time anomaly detection for streaming data. Neurocomputing 262
(2017), 134–147.

[4] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly
detection using reconstruction probability. Special lecture on IE 2, 1 (2015), 1–18.

[5] Fabrizio Angiulli and Fabio Fassetti. 2007. Detecting distance-based outliers in
streams of data. In Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management. 811–820.

[6] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. Usad: Unsupervised anomaly detection onmultivariate time series.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 3395–3404.

[7] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and BryanHooi. 2021. Mstream:
Fast anomaly detection in multi-aspect streams. In Proceedings of the Web Con-
ference 2021. 3371–3382.

[8] Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, and Bryan Hooi.
2022. MemStream: Memory-Based Streaming Anomaly Detection. In Proceedings
of the ACM Web Conference 2022. 610–621.

[9] Albert Bifet and Ricard Gavalda. 2007. Learning from time-changing data with
adaptive windowing. In Proceedings of the 2007 SIAM international conference on
data mining. SIAM, 443–448.

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed
Meftah, and Emmanuel Remy. 2021. Unsupervised and scalable subsequence
anomaly detection in large data series. The VLDB Journal (2021), 1–23.

[11] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.
SAND: streaming subsequence anomaly detection. Proceedings of the VLDB
Endowment 14, 10 (2021), 1717–1729.

[12] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. 93–104.

[13] Shaofeng Cai, Kaiping Zheng, Gang Chen, HV Jagadish, Beng Chin Ooi, and
Meihui Zhang. 2021. Arm-Net: Adaptive relation modeling network for struc-
tured data. In Proceedings of the 2021 International Conference on Management of
Data. 207–220.

[14] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[15] Rodolfo C Cavalcante, Leandro L Minku, and Adriano LI Oliveira. 2016. Fedd:
Feature extraction for explicit concept drift detection in time series. In 2016
International Joint Conference on Neural Networks (IJCNN). IEEE, 740–747.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[17] Sudarshan S Chawathe and Hector Garcia-Molina. 1997. Meaningful change
detection in structured data. ACM SIGMOD Record 26, 2 (1997), 26–37.

[18] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang
Yang, and Michael R Lyu. 2022. Adaptive performance anomaly detection for on-
line service systems via pattern sketching. In Proceedings of the 44th International
Conference on Software Engineering. 61–72.

[19] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh,
Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping,
Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo
Batista, and Hexagon-ML. 2021. The UCR Time Series Classification
Archive. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_
TimeSeriesAnomalyDatasets2021.zip. Accessed:2023-07.

[20] Hanqiu Deng and Xingyu Li. 2022. Anomaly detection via reverse distillation
from one-class embedding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 9737–9746.

[21] Zhiguo Ding and Minrui Fei. 2013. An anomaly detection approach based
on isolation forest algorithm for streaming data using sliding window. IFAC
Proceedings Volumes 46, 20 (2013), 12–17.

[22] Filipe Falcão, Tommaso Zoppi, Caio Barbosa Viera Silva, Anderson Santos, Bal-
doino Fonseca, Andrea Ceccarelli, and Andrea Bondavalli. 2019. Quantitative
comparison of unsupervised anomaly detection algorithms for intrusion detec-
tion. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
318–327.

[23] Zheyao Gao, Yuanye Liu, FupingWu, NanNan Shi, Yuxin Shi, and Xiahai Zhuang.
2023. A Reliable and Interpretable Framework of Multi-view Learning for Liver
Fibrosis Staging. arXiv preprint arXiv:2306.12054 (2023).

[24] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour,
Svetha Venkatesh, and Anton van den Hengel. 2019. Memorizing normality
to detect anomaly: Memory-augmented deep autoencoder for unsupervised

anomaly detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 1705–1714.

[25] Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. 2019. Pidforest: anomaly
detection via partial identification. Advances in Neural Information Processing
Systems 32 (2019).

[26] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust
random cut forest based anomaly detection on streams. In International conference
on machine learning. PMLR, 2712–2721.

[27] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN
model-based approach in classification. In On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Con-
ferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7,
2003. Proceedings. Springer, 986–996.

[28] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint
arXiv:1609.09106 (2016).

[29] Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. 2022. Trusted
multi-view classification with dynamic evidential fusion. IEEE transactions on
pattern analysis and machine intelligence 45, 2 (2022), 2551–2566.

[30] Matan Haroush, Tzivel Frostig, Ruth Heller, and Daniel Soudry. 2021. Statistical
testing for efficient out of distribution detection in deep neural networks. arXiv
preprint arXiv:2102.12967 (2021).

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[32] Waleed Hilal, S Andrew Gadsden, and John Yawney. 2022. Financial Fraud:: A
Review of Anomaly Detection Techniques and Recent Advances. (2022).

[33] David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Russel Pears. 2014.
Detecting volatility shift in data streams. In 2014 IEEE International Conference
on Data Mining. IEEE, 863–868.

[34] Hao Huang and Shiva Prasad Kasiviswanathan. 2015. Streaming anomaly detec-
tion using randomized matrix sketching. Proceedings of the VLDB Endowment 9,
3 (2015), 192–203.

[35] Peng Jia, Shaofeng Cai, Beng Chin Ooi, Pinghui Wang, and Yiyuan Xiong. 2023.
Robust and Transferable Log-based Anomaly Detection. 1, 1 (2023), 64:1–64:26.

[36] Audun Jsang. 2018. Subjective Logic: A formalism for reasoning under uncertainty.
Springer Publishing Company, Incorporated.

[37] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S Jensen. 2019. Outlier
Detection for Time Series with Recurrent Autoencoder Ensembles.. In IJCAI.
2725–2732.

[38] Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon, Jeongwoo Choi,
Byungchan Kim, and Andre S Yoon. 2020. Rapp: Novelty detection with re-
construction along projection pathway. In International Conference on Learning
Representations.

[39] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR.

[40] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[41] Frank Klinker. 2011. Exponential moving average versus moving exponential
average. Mathematische Semesterberichte 58 (2011), 97–107.

[42] Marius Kloft and Pavel Laskov. 2010. Online anomaly detection under adversar-
ial impact. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLRWorkshop and Conference Proceedings, 405–412.

[43] Marius Kloft and Pavel Laskov. 2012. Security analysis of online centroid anomaly
detection. The Journal of Machine Learning Research 13, 1 (2012), 3681–3724.

[44] Chieh-Hsin Lai, Dongmian Zou, and Gilad Lerman. 2019. Robust subspace recov-
ery layer for unsupervised anomaly detection. arXiv preprint arXiv:1904.00152
(2019).

[45] Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin. 2020. Anomaly detec-
tion of time series with smoothness-inducing sequential variational auto-encoder.
IEEE transactions on neural networks and learning systems 32, 3 (2020), 1177–1191.

[46] Sainan Li, Qilei Yin, Guoliang Li, Qi Li, Zhuotao Liu, and Jinwei Zhu. 2022. Un-
supervised Contextual Anomaly Detection for Database Systems. In Proceedings
of the 2022 International Conference on Management of Data. 788–802.

[47] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[48] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.
Learning under concept drift: A review. IEEE transactions on knowledge and data
engineering 31, 12 (2018), 2346–2363.

[49] Yue Lu, Renjie Wu, Abdullah Mueen, Maria A Zuluaga, and Eamonn Keogh.
2022. Matrix profile XXIV: scaling time series anomaly detection to trillions of
datapoints and ultra-fast arriving data streams. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1173–1182.

[50] Zhaojing Luo, Shaofeng Cai, YatongWang, and Beng Chin Ooi. 2023. Regularized
Pairwise Relationship based Analytics for Structured Data. Proceedings of the
2023 ACM SIGMOD International Conference on Management of Data 1, 1 (2023),
82:1–82:27.

[51] Alireza Makhzani and Brendan J Frey. 2015. Winner-take-all autoencoders.
Advances in neural information processing systems 28 (2015).

806

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip


[52] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xstream: Outlier de-
tection in feature-evolving data streams. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1963–1972.

[53] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

[54] Gyoung S Na, Donghyun Kim, and Hwanjo Yu. 2018. Dilof: Effective and memory
efficient local outlier detection in data streams. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 1993–
2002.

[55] Mukrimah Nawir, Amiza Amir, Naimah Yaakob, and Ong Bi Lynn. 2019. Effec-
tive and efficient network anomaly detection system using machine learning
algorithm. Bulletin of Electrical Engineering and Informatics 8, 1 (2019), 46–51.

[56] Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. 2011. Dirichlet and related
distributions: Theory, methods and applications. (2011).

[57] Adam Oliner and Jon Stearley. 2007. What Supercomputers Say: A Study of Five
System Logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). 575–584. https://doi.org/10.1109/DSN.2007.103

[58] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang
Chen, Jinyang Gao, Zhaojing Luo, Anthony K. H. Tung, YuanWang, Zhongle Xie,
Meihui Zhang, and Kaiping Zheng. 2015. SINGA: A Distributed Deep Learning
Platform. In Proceedings of the 23rd Annual ACM Conference on Multimedia
Conference, MM. ACM, 685–688.

[59] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel.
2021. Deep learning for anomaly detection: A review. ACM computing surveys
(CSUR) 54, 2 (2021), 1–38.

[60] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay, Themis Palpanas, and
Michael J Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate
time-series anomaly detection. Proceedings of the VLDB Endowment 15, 8 (2022),
1697–1711.

[61] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[62] Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Machine
Learning 102 (2016), 275–304.

[63] Shebuti Rayana. 2016. ODDS Library. https://odds.cs.stonybrook.edu.
Accessed:2023-07.

[64] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon,
Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller.
2021. A unifying review of deep and shallow anomaly detection. Proc. IEEE 109,
5 (2021), 756–795.

[65] Edin Šabić, David Keeley, Bailey Henderson, and Sara Nannemann. 2021. Health-
care and anomaly detection: using machine learning to predict anomalies in
heart rate data. AI & SOCIETY 36, 1 (2021), 149–158.

[66] Mohammad Sabokrou, Mahmood Fathy, and Mojtaba Hoseini. 2016. Video
anomaly detection and localisation based on the sparsity and reconstruction
error of auto-encoder. Electronics Letters 52, 13 (2016), 1122–1124.

[67] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
workshop on machine learning for sensory data analysis. 4–11.

[68] Mahsa Salehi, Christopher Leckie, James C Bezdek, Tharshan Vaithianathan, and
Xuyun Zhang. 2016. Fast memory efficient local outlier detection in data streams.
IEEE Transactions on Knowledge and Data Engineering 28, 12 (2016), 3246–3260.

[69] Saket Sathe and Charu C Aggarwal. 2016. Subspace outlier detection in linear
time with randomized hashing. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 459–468.

[70] David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline Chou, and Qingmai Wang.
2014. Anomaly detection in online social networks. Social networks 39 (2014),
62–70.

[71] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly
detection in time series: a comprehensive evaluation. Proceedings of the VLDB
Endowment 15, 9 (2022), 1779–1797.

[72] Murat Sensoy, Lance Kaplan, and Melih Kandemir. 2018. Evidential deep learning
to quantify classification uncertainty. Advances in neural information processing
systems 31 (2018).

[73] Ava P Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N
Bhatia, and ConnorWColey. 2021. Evidential deep learning for guided molecular
property prediction and discovery. ACS central science 7, 8 (2021), 1356–1367.

[74] Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA
Batista. 2020. Challenges in benchmarking stream learning algorithms with
real-world data. Data Mining and Knowledge Discovery 34 (2020), 1805–1858.

[75] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. 2011. Fast anomaly detection
for streaming data. In Twenty-second international joint conference on artificial
intelligence. Citeseer.

[76] Alexander G Tartakovsky, Aleksey S Polunchenko, and Grigory Sokolov. 2012. Ef-
ficient computer network anomaly detection by changepoint detection methods.
IEEE Journal of Selected Topics in Signal Processing 7, 1 (2012), 4–11.

[77] Mahbod Tavallaee, EbrahimBagheri,Wei Lu, andAli AGhorbani. 2009. A detailed
analysis of the KDD CUP 99 data set. In 2009 IEEE symposium on computational
intelligence for security and defense applications. Ieee, 1–6.

[78] Jing Tian, Michael H Azarian, and Michael Pecht. 2014. Anomaly detection
using self-organizing maps-based k-nearest neighbor algorithm. In PHM society
European conference, Vol. 2.

[79] Theodoros Toliopoulos, Christos Bellas, Anastasios Gounaris, and Apostolos
Papadopoulos. 2020. PROUD: parallel outlier detection for streams. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 2717–
2720.

[80] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2016. Distance-based outlier detection
in data streams. Proceedings of the VLDB Endowment 9, 12 (2016), 1089–1100.

[81] Luan Tran, Min Y Mun, and Cyrus Shahabi. 2020. Real-time distance-based
outlier detection in data streams. Proceedings of the VLDB Endowment 14, 2
(2020), 141–153.

[82] Ha Son Vu, Daisuke Ueta, Kiyoshi Hashimoto, Kazuki Maeno, Sugiri Pranata, and
Sheng Mei Shen. 2019. Anomaly detection with adversarial dual autoencoders.
arXiv preprint arXiv:1902.06924 (2019).

[83] Ziyu Wang, Nanqing Luo, and Pan Zhou. 2020. GuardHealth: Blockchain em-
powered secure data management and Graph Convolutional Network enabled
anomaly detection in smart healthcare. J. Parallel and Distrib. Comput. 142 (2020),
1–12.

[84] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. 2019. Wider or deeper:
Revisiting the resnet model for visual recognition. Pattern Recognition 90 (2019),
119–133.

[85] Selim F Yilmaz and Suleyman S Kozat. 2020. Pysad: A streaming anomaly
detection framework in python. arXiv preprint arXiv:2009.02572 (2020).

[86] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2020. Ultrafast local outlier detection
from a data stream with stationary region skipping. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1181–1191.

[87] Susik Yoon, Youngjun Lee, Jae-Gil Lee, and Byung Suk Lee. 2022. Adaptive
Model Pooling for Online Deep Anomaly Detection from a Complex Evolving
Data Stream. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 2347–2357.

[88] Susik Yoon, Yooju Shin, Jae-Gil Lee, and Byung Suk Lee. 2021. Multiple dynamic
outlier-detection from a data stream by exploiting duality of data and queries. In
Proceedings of the 2021 International Conference on Management of Data. 2063–
2075.

[89] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay
Chandrasekhar. 2018. Adversarially learned anomaly detection. In 2018 IEEE
International conference on data mining (ICDM). IEEE, 727–736.

[90] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. Identifying bad
software changes via multimodal anomaly detection for online service systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 527–539.

[91] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, GangWang, Zhu Pan, Yong
Wu, Zhen Feng, XidaoWen,Wenchi Zhang, et al. 2021. An empirical investigation
of practical log anomaly detection for online service systems. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1404–1415.

[92] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. Pyod: A python toolbox for
scalable outlier detection. arXiv preprint arXiv:1901.01588 (2019).

[93] Kaiping Zheng, Shaofeng Cai, Horng Ruey Chua, Wei Wang, Kee Yuan Ngiam,
and Beng Chin Ooi. 2020. Tracer: A framework for facilitating accurate and
interpretable analytics for high stakes applications. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 1747–1763.

[94] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International conference on learning
representations.

807

https://doi.org/10.1109/DSN.2007.103
https://odds.cs.stonybrook.edu

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Overview
	3.2 Architecture
	3.3 Optimization
	3.4 Analysis and Discussion

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness
	4.3 Concept Drift
	4.4 Ablation Study
	4.5 blackEfficiency
	4.6 Sensitivity Study
	4.7 Interpretability
	4.8 blackIntegration on Flink

	5 Related Work
	6 Conclusions
	7 ACKNOWLEDGMENTS
	References

