
Cryptographically Secure Private Record Linkage Using
Locality-Sensitive Hashing

Ruidi Wei

University of Waterloo

Waterloo, Ontario, Canada

r33wei@uwaterloo.ca

Florian Kerschbaum

University of Waterloo

Waterloo, Ontario, Canada

florian.kerschbaum@uwaterloo.ca

ABSTRACT
Private record linkage (PRL) is the problem of identifying pairs

of records that approximately match across datasets in a secure,

privacy-preserving manner. Two-party PRL specifically allows each

of the parties to obtain records from the other party, only given that

each record matches with one of their own. The privacy goal is that

no other information about the datasets should be released than the

matching records. A fundamental challenge is not to leak informa-

tion while at the same time not comparing all pairs of records. In

plaintext record linkage this is done using a blocking strategy, e.g.,
locality-sensitive hashing. One recent approach proposed by He

et al. (ACM CCS 2017) uses locality-sensitive hashing and then re-

leases a provably differential private representation of the hash bins.

However, differential privacy still leaks some, although provable

bounded information and does not protect against attacks, such as

property inference attacks. Another recent approach by Khurram

and Kerschbaum (IEEE ICDE 2020) uses locality-preserving hashing

and provides cryptographic security, i.e., it releases no information

except the output. However, locality-preserving hash functions are

much harder to construct than locality-sensitive hash functions and

hence accuracy of this approach is limited, particularly on larger

datasets. In this paper, we address the open problem of providing

cryptographic security of PRL while using locality-sensitive hash

functions. Using recent results in oblivious algorithms, we design a

new cryptographically secure PRL with locality-sensitive hash func-

tions. Our prototypical implementation can match 40000 records in

the British National Library/Toronto Public Library and the North

Carolina Voter Registry datasets with 99.3% and 99.9% accuracy,

respectively, in less than an hour which is more than an order of

magnitude faster than Khurram and Kerschbaum’s work at a higher

accuracy.

PVLDB Reference Format:
Ruidi Wei and Florian Kerschbaum. Cryptographically Secure Private

Record Linkage Using Locality-Sensitive Hashing. PVLDB, 17(2): 79 - 91,

2023.

doi:10.14778/3626292.3626293

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/rd-wei/Secure-PRL-with-LSH.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.

doi:10.14778/3626292.3626293

1 INTRODUCTION
Data relevant to socially beneficial analyses is often distributed

across several data sources. Hence, before the data can be used

it needs to be linked together. This problem is known as record
linkage (RL). It is applied even in privacy-sensitive domains, such

as financial or health data [26, 30, 33].

A challenge to RL linkage is data errors or schema differences

that may lead to different representations of the same entity. Hence,

RL needs to apply an approximate matching algorithm. Compared

to exact matching, this leads to another challenge, namely selecting

which pairs of records to compare. Naively comparing all pairs

is too inefficient even for modestly sized datasets. RL hence ap-

plies blocking strategies to only compare a subset of the pairs [23].

A commonly used blocking strategy is locality-sensitive hashing

(LSH) [39]. A LSH puts similar, but not necessarily identical records

in the same hash bin. Good LSHs exist even for “difficult” distance

functions such as the edit distance [4, 5].

However, this approach is difficult to implementwhen the records

need privacy protection. The problem of providing privacy of the

records (that are notmatching) while performing RL is called private

record linkage (PRL) or privacy-preserving record linkage. Ideally,

one wants to compare the records (probabilistically) encrypted,

i.e., using either fully homomorphic encryption or (interactive)

secure multi-party computation which provide strong, provable

security guarantees in an established formal model. A matching

algorithm that securely computes a distance between two records

(and compares it to a threshold) can be efficiently constructed using

multi-party computation [15, 22]. However, how to encrypt the out-

put of the blocking algorithm, i.e., the distribution of elements over

the bins of an LSH is not clear, since it is the number of elements

that leaks information and not their contents. Trivial constructions

are inefficient. An LSH may hash all elements into the same bin

and hence padding the bin lengths to maximum possible length is

even worse than naively comparing all pairs. He et al. [17] propose

to use differential private padding, i.e., adding a random number of

elements drawn from a shifted Laplacian distribution. This provides

differential privacy for the input datasets, but only in weakened

form, since the output of the PRL also leaks information that may

violate standard differential privacy. Furthermore, it is well accepted

that differential privacy does not protect against certain attacks,

such as property inference attacks [2, 13]. A property inference

could, e.g., try to determine the size or presence of a group in an eth-

nic, gender or religious minority in the datasets. While differential

privacy provides protection for an individual, group privacy prop-

erties – while provably preserved – can be significantly weakened,

particularly in large datasets.

79

https://doi.org/10.14778/3626292.3626293
https://github.com/rd-wei/Secure-PRL-with-LSH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3626292.3626293
https://www.acm.org/publications/policies/artifact-review-and-badging-current

It is hence advisable to strive for stronger privacy protection,

such as cryptographic security, which leaks no information to a

computationally bounded adversary. Khurram and Kerschbaum

[25] present the first cryptographic secure, efficient PRL scheme

with less than quadratic comparisons. However, they use locality-

preserving hash (LPH) [20] functions for blocking. LPH are much

harder to construct than LSH which questions their accuracy for

large datasets or datasets with complex distance metrics, even edit

distance. We provide a detailed comparison of the formal secu-

rity definitions of He et al.’s, Khurram and Kerschbaum’s, and our

approach in Appendix A.

This leaves an important problem open: Is it possible to construct

a cryptographically secure PRL scheme using locality-sensitive

hashing? We address this open problem in this paper and provide a

new construction. This construction is non-trivial which is why it

was believed for a long time that such a construction could not ex-

ist [17]. Our construction uses several recent advances in oblivious

algorithms. None of these advances by themselves could achieve

the desired outcome, but in their combination they do. First, we

use the frequency smoothing technique of Grubbs et al. [16] to

provide a uniformly smoothed hash table. This smoothing replaces

the padding by He et al. and hence the need for differential privacy.

This technique not only pads bins, but may split them and ensures

that the total padding at most doubles the number of elements.

The splitting of bins deviates from any previous blocking approach

in a PRL protocol and it also introduces a problem not present in

any previous construction, namely that multiple bins need to be

privately linked together. This can be solved by oblivious join algo-

rithms which exist for a long time, but for which the first practical

construction was presented by Krastnikov et al. [28]. However, the

algorithm cannot be used in a multi-party computation as described

by Krastnikov et al. We need to modify it to run in a logarithmic

number of rounds to ensure efficiency over a network instead of a

trusted execution environment. Hence, the main contribution of

this paper is a new PRL protocol that combines these two techniques

to achieve the first cryptographically secure PRL using LSH.

We have to recognize that even with cryptographic security, the

runtime of our protocol leaks the number of comparisons made. If

this number is not leaked, 𝑛2 comparisons are necessary and the

protocol is not efficient. The number of comparisons is, however,

dataset-dependent when using LSH. Fortunately, there are a number

of mitigating factors. First, we only provide an upper bound on the

number of comparisons due to some padding. Second, the number

of comparisons is correlated with the number of elements in the

output which is necessarily revealed. Third, the number of total

comparisons is strictly less information than the distribution of

elements over the LSH bins.

We implemented a prototype of the resulting algorithm and

evaluated its efficiency and accuracy. Compared to Khurram and

Kerschbaum [25], the state-of-the-art in cryptographically secure

PRL, we compare 40000 records in each dataset in less than an

hour which is an order of magnitude faster. Note that, Khurram

and Kerschbaum already improve over the approach by He et al. by

more than an order of magnitude while also providing stronger

security guarantees. Also, our accuracy of 99.3% and 99.9% on the

same datasets that Khurram and Kerschbaum used, is higher.

In summary, our paper makes the following contributions

(1) A newPRL protocol combining two oblivious algorithms [16,

28] in a novel way resulting in cryptographically secure

blocking with locality-sensitive hashing.

(2) A security, efficiency and accuracy analysis of our new PRL

protocol using a prototypical implementation.

The remainder of the paper is structured as follows. We formally

define our problem including security in the next section. In Sec-

tion 3 we review related work. We describe our protocol in detail in

Section 4 and a proof of its security, the evaluation of accuracy and

efficiency of its prototypical implementation in Section 5. Finally,

in Section 6 we summarize our conclusions. In Appendix A, we

provide a detailed comparison of the formal security definitions of

He et al.’s, Khurram and Kerschbaum’s, and our approach .

2 PROBLEM DEFINITION
We consider the problem of private record linkage (PRL). In PRL,

there are two parties, Alice and Bob, which each have a table of

records 𝑇𝐴 = {𝐴1, . . . , 𝐴𝑛𝐴 } and 𝑇𝐵 = {𝐵1, . . . , 𝐵𝑛𝐵
}, respectively.

We represent a record 𝐴𝑖 or 𝐵 𝑗 in the table as a variable-length

string, abstracting from its schema representation. The goal of PRL

is to identify which records 𝐴𝑖 and 𝐵 𝑗 represent the same entity,

e.g., a person, a book or a product, despite some small differences.

This is achieved by comparing 𝐴𝑖 and 𝐵 𝑗 using a distance function

Δ. There are plenty of examples of such distance functions in the

literature, e.g., the Levenshtein (or edit) distance [31]. The basic

algorithm of PRL is to compare pairs 𝐴𝑖 and 𝐵 𝑗 and output them

as matching records if Δ(𝐴𝑖 , 𝐵 𝑗) < 𝜏 from some threshold 𝜏 . The

challenge of efficient PRL is not to compare every pair 𝐴𝑖 , 𝐵 𝑗 in the

cross-product of the tables 𝑇𝐴 and 𝑇𝐵 .

A common way to achieve this is blocking by using locality-

sensitive hash (LSH) functions [39]. LSHs have the property that

similar elements are likely put into the same bin. However, we

want private record linkage, i.e., Bob should not learn anything

about Alice’s input that is not in the output and vice versa. This is

challenging, since the number of elements per bin reveals significant

information about a party’s input. He et al. [17] hence proposed

to pad the bins, such that their count is differentially private. In

this paper we are concerned to reduce this leakage even further,

since differential privacy only protects individual records and not

properties of the dataset. For example, despite differentially private

protection, this padding would still leak the approximate size or

presence of a group in an ethnic, gender or religious minority in the

datasets. We provide a detailed comparison of the formal security

definitions in Appendix A.

However, note that, completely preventing this leakage, when

using LSH is very inefficient. An LSH could put all records into

the same bin and hence the worst case complexity is 𝑂 (𝑛𝐴 · 𝑛𝐵).
This would be trivially achievable, but also completely impractical.

Hence, we allow the total number of comparisons 𝑐 ≤ 𝑛𝐴 ·𝑛𝐵 in the

protocol to be leaked. The complexity of an efficient record linkage

protocol is usually𝑂 (𝑐) and hence this number is inevitably leaked

from the running time of such a protocol.

We formalize security in the semi-honestmodel. The semi-honest

model is required by and sufficient for many practical applications

as it secures the data against inspection by the other party. It is

also more efficient than the malicious model and hence practically

80

deployed [21, 44]. In theory it is possible to convert any protocol

secure in the semi-honest model into one secure in the malicious

model using Goldreich’s compiler [14]. However, due to the cost,

this is rarely done.

Let 𝑂 be the set of matching record pairs, i.e., the output of the

protocol. Let View𝐴/𝐵 be the view of Alice and Bob, respectively,

i.e., the messages received and the random coins chosen during the

protocol execution. We say a protocol is secure in the semi-honest

model, if there exists two simulators Sim𝐴/𝐵 for the views View𝐴/𝐵 ,
respectively.

Sim𝐴 (𝑇𝐴, 𝑛𝐵,𝑂, 𝑐) = View𝐴 (𝑇𝐴,𝑇𝐵)
Sim𝐵 (𝑇𝐵, 𝑛𝐴,𝑂, 𝑐) = View𝐵 (𝑇𝐴,𝑇𝐵)

In summary, our problem is to design an (almost) leakage-free

PRL protocol that uses LSH.

3 RELATEDWORK
RL was identified as a useful tool in medical research by Dunn in

1946 [11]. Due to the sensitive nature of medical records, privacy

is a long-standing research problem in RL [40]. Karakasidis and

Verykios [23] have identified two algorithms that need to be secured

and composed to build a private record linkage system: blocking

and matching.

Blocking is commonly based on LSH, since it allows the use of

the entire information of a record and is domain-independent [39].

Steorts et al. [39] provide a comparison of some LSHs.

Private blocking techniques can be categorized by the privacy

property they ensure. There are cryptographically secure, differen-

tially private, and ad-hoc blocking techniques. The first two aim for

a rigorous, commonly used definition of privacy. A cryptographi-

cally secure blocking technique requires a simulation-based proof

as in Section 5.1. Khurram and Kerschbaum have provided the first

such proof for a blocking technique based on locality-preserving

hash functions [25]. However, locality-preserving hash functions

are much harder to construct than locality-sensitive hash functions.

Al-Lawati et al. [1] also aim for cryptographic security. However,

they do not provide a simulation-based proof which seems hard

to construct given that they leak a permutation of the LSH bins.

Furthermore, they require a third party and their techniques do not

efficiently translate to a two-party setting.

Differentially private blocking has been introduced by Inan et

al. [19]. The idea is to pad the LSH block sizes with differentially

private noise using dummy elements. The approach was later re-

fined by Kuzu et al. [29] and Cao et al. [6]. Cao et al. identified

a privacy flaw in the previous protocols leading to a successful

attack that they presumably fixed. However, as He et al. [17] point

out that the protocol by Cao et al. still does not satisfy differential

privacy. Instead, they propose a somewhat weakened definition of

differentially privacy that takes the output of the private matching

into account. Loosely speaking, they only consider databases neigh-

bours for differential privacy if they produce the same output in the

matching. This definition is natural for PRL, since the unmatched

records remain differentially private. One could have also defined

neighbours as the union of any database combined with the output

records (assuming there are no duplicates). However, in general the

definition in He et al.’s paper is a strong weakening of differential

privacy. Furthermore, differential privacy still leaks information. It

is well accepted that differential privacy does not protect against

property inference attacks [2, 13]. A property inference could, e.g.,

try to determine the size or presence of a group in an ethnic, gen-

der or religious minority in the datasets. Humphries et al. [18]

and Stadler et al. [38] have further shown that much weaker mem-

bership inference attacks may still be feasible despite differential

private protection when the data is not uniformly sampled.

Prior to these rigorous approaches, several ad-hoc approaches

have been proposed. Karapiperis et al. [24] provide a good overview

of these methods. Some of them also use a form of locality-sensitive

hashing and combine it with anonymization, e.g., 𝑘-anonymization

of the data prior to hashing.𝑘-anonymity protects the quasi-identifier

of a record, but not its sensitive attributes which may, however,

require the most protection during PRL. Other methods use a pub-

lic reference dataset and bin records according to their proximity

to the public records. Note that, although the reference dataset

is public, this does not necessarily provide any protection to the

blocking of the private records. One has to take into account that

the adversary also knows the public dataset and can compute the

proximity function.

There are alternatives to blocking in PRL which can also pro-

vide cryptographic security. One can compare all pairs, as Yakout

et al. [43], but that does not scale to large datasets (even none

privately). One can expand the records to (all) possible variations

and then use exact matching instead of approximate matching, as

Wen and Dong [42], but He et al. [17] already point out that this

approach is as inefficient as comparing all pairs. Exact matching

can be very efficiently performed using private set intersection

(PSI) [12, 37, 44]. In PSI records can be deterministically encrypted

using a joint key and then compared in plain which makes blocking

obsolete. However, this approach only works for exact matching,

since encryption destroys any similarity between records.

Private matching protocols are much easier to implement with

cryptographic security. Even the edit distance can be efficiently

implemented using two-party computation [22]. However, in the

interest of even higher efficiency ad-hoc approaches have been

also proposed. Schnell et al. [36] propose to match on Bloom filters

computed on keyed hash functions over ngrams. However, there

exists a plethora of attacks on this method [41] and retrofitting

security is a tedious task.

In this paper, we propose the first cryptographically secure block-

ing method for private record linkage using LSH. We provide a

simulation-based proof (Section 5.1). Such additional security is

always a benefit if it does not come at the expense of accuracy or

efficiency. Since we use LSH – compared to LPH by Khurram and

Kerschbaum – we provide state-of-the-art accuracy. Furthermore,

our approach is an order of magnitude faster than the LSH-based

PRL by He et al. which only provides differential private protection.

4 PROTOCOL OVERVIEW
In this section, we describe our protocol for private record linkage.

We summarize our notation in Table 1. A subscript or superscript

of 𝐴 or 𝐵 indicates the data structure to be at Alice’s or Bob’s site,

respectively. We first provide an overview and then describe the

technical details. Our protocol proceeds in three steps:

81

Table 1: Common notation

𝑇 Data set

𝑛 Size of data set

𝑅 Alice’, Bob’s or either record

𝑂 Output

𝑐 Number of matches

𝑡 Length of LSH

ℓ Number of LSH bins

𝑑 Number of LSH functions

𝐵, 𝐵𝑖 LSH bins, LSH bin numbered 𝑖

𝑆 , 𝑆𝑖 Smoothed bin, smoothed bin numbered 𝑖

(1) Preprocessing: A local step where each party hashes their

records to bins, and then smoothes the frequency of the

bins.

(2) Secret bin join. A private computation step that does an

oblivious join operation on the bins.

(3) Record-to-record comparisons. A private computation step

that compares each pair of records inside a joined set of

bins.

Locality
Sensitive
Hashing

Preprocessing (1)

T

Figure 1: Blocking using an LSH

We can illustrate the steps with a small example. Assume Al-

ice has the data set 𝑇𝐴 = {𝐶𝑎𝑡, 𝐷𝑜𝑔,𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒} and Bob has the

data set 𝑇𝐵 = {𝐴𝑒𝑟𝑜𝑝𝑙𝑎𝑛𝑒, 𝐵𝑖𝑟𝑑,𝐶𝑎𝑟 }. We assume the only match-

ing records are “Airplane” and “Aeroplane”. In the preprocessing

step, Alice hashes her elements into two bins 𝐵1 = {𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒,𝐶𝑎𝑡}
and 𝐵2 = {𝐷𝑜𝑔} using an LSH. We show a figurative example in

Figure 1. We detail the smoothing algorithm in the next section,

but after smoothing Alice has four bins: 𝑆𝐴
1,𝑡𝑎𝑔=1

= {𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒},
𝑆𝐴
2,𝑡𝑎𝑔=1

= {𝐶𝑎𝑡}, 𝑆𝐴
3,𝑡𝑎𝑔=2

= {𝐷𝑜𝑔}, and 𝑆𝐴
4,𝑡𝑎𝑔=3

= {𝐷𝑢𝑚𝑚𝑦}.
Bob locally performs similar steps and ends up with: 𝑆𝐵

1,𝑡𝑎𝑔=1
=

{𝐵𝑖𝑟𝑑}, 𝑆𝐵
2,𝑡𝑎𝑔=1

= {𝐴𝑒𝑟𝑜𝑝𝑙𝑎𝑛𝑒}, 𝑆𝐵
3,𝑡𝑎𝑔=2

= {𝐶𝑎𝑟 }, and 𝑆𝐵
4,𝑡𝑎𝑔=4

=

{𝐷𝑢𝑚𝑚𝑦}. The smoothing algorithm results in a uniform number of

elements in a fixed number of bins and hence leaks no information

to the other party. We show a figurative example in Figure 2.

Some bins have been split into several with the same tag. Hence,

we can no longer perform a 1:1 bin matching, but need to perform

a secret bin join, the second step. In this step all bins 𝑆
𝐴/𝐵
𝑖,𝑡𝑎𝑔

with

the same tag are joined, but without revealing any information

about the bins or their tags. Hence, we end up with five joined

pairs: 𝑆𝐴
1,𝑡𝑎𝑔=1

⊲⊳ 𝑆𝐵
1,𝑡𝑎𝑔=1

, 𝑆𝐴
1,𝑡𝑎𝑔=1

⊲⊳ 𝑆𝐵
2,𝑡𝑎𝑔=1

, 𝑆𝐴
2,𝑡𝑎𝑔=1

⊲⊳ 𝑆𝐵
1,𝑡𝑎𝑔=1

,

𝑆𝐴
2,𝑡𝑎𝑔=1

⊲⊳ 𝑆𝐵
2,𝑡𝑎𝑔=1

, and 𝑆𝐴
3,𝑡𝑎𝑔=2

⊲⊳ 𝑆𝐵
3,𝑡𝑎𝑔=2

.

Smoothing + Padding

Preprocessing (2)

Figure 2: Smoothing of the bins

In the last step, record-to-record comparison, we securely com-

pare all elements in a bin to all elements in a paired bin. One pair

of bins (𝑆𝐴
1,𝑡𝑎𝑔=1

⊲⊳ 𝑆𝐵
2,𝑡𝑎𝑔=1

), contains the elements “Airplane” and

“Aeroplane” and the match is found. We show a figurative example

of the two last steps in Figure 3.

⨝

⨝

⨝

Secure Bin Join, R-to-R Comparison
Alice

Pairwise
Comparison

Bob

Pairwise
Comparison

Pairwise
Comparison

Secure
Join

Secure
Join

Secure
Join

Figure 3: Completing the protocol

4.1 Preprocessing
In this step, each party, Alice or Bob, locally hashes their records in

𝑇𝐴 or𝑇𝐵 , respectively, into (local) bins. The frequency of records in

each bin is then smoothed to hide the distribution of records before

proceeding to private computation. Since this step is symmetric

between Alice and Bob and without involvement of the other party,

we use 𝑇 as a notation to mean either 𝑇𝐴 or 𝑇𝐵 and 𝑛 to mean 𝑛𝐴
or 𝑛𝐵 , respectively.

To hash the elements we use a locality sensitive hash (LSH) func-

tion. Compared to locality-preserving hash (LPH) functions as used

82

Sample

n1:Sam n2:amp n3:mpl n4:ple

π1(n1) π1(n2) π1(n3) π1(n4)π1 min(π1(n1),...,π1(n4)) =g1

πi(n1) πi(n2) πi(n3) πi(n4)πi min(πi(n1),...,πi(n4)) =gi

g1 g2 .. gm B1
hash1(sum(g))

gm+1 gm+2 .. gm+m B2
hash2(sum(g))

Figure 4: Illustration of the locality sensitive hashing func-
tion

by Khurram and Kerschbaum in the first efficient, cryptographi-

cally secure PRL protocol, LSH have the advantage that they are

available for a wider domain of input ranges and often have lower

error rates. There exist several LSH in the literature for different

notions of locality and our protocol can use any of them with no

further modifications. In the next section, we describe the LSH we

use to evaluate accuracy in our experiments.

Locality Sensitive Hash Function. To better compare strings in

the presence of errors, we preprocess string values using minhash

[4, 5]. Minhash first splits an input string into𝜂 overlapping n-grams

(substrings of length 𝑛). We denote the resulting n-grams 𝛼 𝑗 , for

𝑗 ∈ [1, 𝜂]. Then minhash hashes each n-gram to an integer 𝛽 𝑗 : 𝛽 𝑗 =

hash(𝛼 𝑗). These integers are randomly permuted to another integer

𝛾 𝑗,𝑘 by 𝑡 uniformly chosen permutation functions 𝜋𝑘 (𝑘 ∈ [1, 𝑡]),
that is 𝛾 𝑗,𝑘 = 𝜋𝑘 (𝛽 𝑗). Minhash then computes the minimum 𝜃𝑘 =

min𝑗≤𝜂 (𝛼 𝑗,𝑘). The resulting vector 𝜃 is an indicator of the similarity

of the strings. The shorter the minhash, the more dissimilar the

strings can be to result in the same minhash 𝜃 .

A parameter of the LSH is its number ℓ of bins. Given ℓ LSH bins,

[𝐵1, . . . , 𝐵ℓ], a locality sensitive hash function hashes a record 𝑅 to

an integer 𝑖 in [1, ℓ]. Then, we write 𝑅 ∈ 𝐵𝑖 .
We map the minhash vector 𝜃 to a uniformly chosen bin 𝐵𝑖

(𝑖 ∈ [1, ℓ]). We compute 𝜌 =
∑︁𝑡
𝑘=1

𝑚𝑘 . We uniformly choose two

32-bit primes 𝑝1 and 𝑝2. We compute 𝑖 for 𝐵𝑖 as 𝑖 = (𝜌 ·𝑝2 mod 𝑝1)
mod ℓ .

We summarize this step in Algorithm 1.

Algorithm 1 Blocking(T)

𝐵 ← {∅}ℓ
for R in T do

𝑖 ← 𝐿𝑆𝐻 (𝑅)
𝐵𝑖 ← 𝐵𝑖 ∪ {𝑅}

end for
return B

This process is repeated 𝑑 times, so that we end up with 𝑑 sets

of bins, with ℓ bins in each set. Every string is hashed into one bin

for each set, creating 𝑑 duplicates of it across all the bins.

Frequency Smoothing. After binning elements using the LSH,

we independently smooth the frequency of the bins of each of the

𝑑 replicated sets. Two non-identical sets of records may result in

different numbers of elements in a bin and hence may be distin-

guishable by the other party when used as input to the private

computation. Padding each bin to a maximum number results in an

inefficient algorithm, since there exist datasets where all records

are in the same bin. Hence, each bin would need to be padded to the

entire dataset size. He et al. [17] use differentially private padding,

but this still leaks information about the set, since differential pri-

vacy does not hide properties, e.g., whether the set contains (more)

Canadians or Americans, or whether several subjects suffer from

a common illness. Instead, we use the frequency smoothing algo-

rithm by Grubbs et al. [16]. This algorithm not only uses padding,

but also splits bins with many elements into several bins. It results

in a deterministic number of bins with equal and deterministic

frequency. We review the algorithm here for completeness.

For a total number of records𝑛, a party first prepares 2ℓ smoothed

bins 𝑆1, ..., 𝑆2ℓ , each with size 𝜎 = ⌈𝑛ℓ ⌉. For a bin 𝐵𝑖 output by

the LSH of size |𝐵𝑖 | = 𝛼𝜎 + 𝛽 , let 𝛼 be the largest integer such

that 𝛽 is non-negative. A party then puts the 𝛼 times 𝜎 randomly

chosen records of 𝐵𝑖 into one of 𝛼 different bins {𝑆 𝑗 , . . . , 𝑆 𝑗+𝛼−1},
and the remaining 𝛽 records of 𝐵𝑖 into another bin 𝑆 𝑗+𝑘 . Each bin

{𝑆 𝑗 , . . . , 𝑆 𝑗+𝛼 } has an associated tag 𝑖 to show that they are from

the same bin 𝐵𝑖 used by the LSH. After distributing all bins in 𝐵,

there are at most ℓ bins in 𝑆 which are completely empty, since

each such bin must be a remainder of a bin in 𝐵, and there at most

ℓ completely filled bins, because at least 𝑛 records are required to

fill ℓ bins in 𝑆 . Consequently, all records in 𝐵 always fit into 𝑆 (2ℓ

bins are always sufficient).

Then a party pads each bin in 𝑆 to size 𝑠 using dummy records

that deterministically do not match any record in the other party’s

dataset. A party needs to add 2ℓ ⌈𝑛ℓ ⌉ − 𝑛 = 𝑂 (𝑛) such dummy

records to pad all bins to size 𝑠 . We summarize the pseudo-code of

this step in Algorithm 2. The function 𝑁𝑜𝑖𝑠𝑒 (𝑃𝑎𝑟𝑡𝑦) generates a
dummy record that is not in the domain of regular records and not

in the domain of dummy records of the other party. The function

𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 randomly permutes the elements in a set. Applying it

to each smoothed bin 𝑆𝑖 , ensures that each record 𝑅 of 𝑇 (and

each dummy record) is at a uniformly random location within its

smoothed bin 𝑆𝑖 .

4.2 Private Bin Join
After frequency smoothing, we can no longer match bins one-to-

one, as e.g., done by He et al. [17], since there can be multiple bins

from the same LSH bin. However, these bins have the same tag and

we can perform a regular (oblivious) equi-join to select all pairs

with the same tag. To do so, we simply view each party’s set 𝑆 as

a table and join them on the 𝑡𝑎𝑔 attribute. The join needs to be

oblivious to not reveal information during the private computation

protocol. We use the oblivious join protocol by Krastnikov et al. [28].

However, this protocol has been designed with trusted execution

environments in mind and we intend to use it in a multi-party

83

Algorithm 2 Smoothing(B)

𝑆 ← 2ℓ 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡𝑠

𝑖 ← 1

𝑗 ← 1

𝑠𝑖𝑧𝑒 ← ⌈𝑛ℓ ⌉
while 𝑖 ≤ 2ℓ do

𝑆 𝑗 .𝑡𝑎𝑔← 𝑖

𝑚 ←𝑚𝑖𝑛(𝑠𝑖𝑧𝑒, |𝐵𝑖 |)
𝑘 ← 0

while 𝑘 < 𝑚 do
𝑅

$← 𝐵𝑖
𝐵𝑖 ← 𝐵𝑖 \ {𝑅}
𝑆 𝑗 ← 𝑆 𝑗 ∪ {𝑅}
𝑘 ← 𝑘 + 1

end while
𝑗 ← 𝑗 + 1
if size == |B[i]| then

𝑖 ← 𝑖 + 1
end if

end while
for 𝑆𝑖 ∈ 𝑆 do

while |𝑆𝑖 | < 𝑠𝑖𝑧𝑒 do
𝑅 ← 𝑁𝑜𝑖𝑠𝑒 (𝑃𝑎𝑟𝑡𝑦)
𝑆𝑖 ← 𝑆𝑖 ∪ {𝑅}

end while
𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑆𝑖)

end for
return S

computation protocol. Hence, we need to make a few adjustments.

In particular, we need to reduce the round complexity of several

traversals in the protocol. We do this by replacing linear scans (2ℓ

rounds) with parallel scans of depth log(ℓ) + 1. We first describe

the original algorithm, and then show the changes we made to it to

make it suitable for a multi-party computation protocol.

4.2.1 Krastnikov et al.’s Algorithm. Krastnikov et al.’s algorithm

proceeds in three steps: Obtaining group dimensions, oblivious

distribution, and oblivious expansion.

Obtaining Group Dimensions. In this step, the parties privately

compute the number of matching bins in the other party’s set. This

number is required to later expand each table (the “tablized” set 𝑆),

such that it can be one-to-one aligned (joined) with the other table.

The algorithm starts by putting bins of both parties’ tables into a

single, joint table. In addition, each row is assigned an attribute 𝑡𝑖𝑑

of 1 or 2, respectively, to indicate their table of origin. Since we join

on the 𝑡𝑎𝑔 attribute, the algorithm first sorts the rows by their 𝑡𝑎𝑔

attribute and then their 𝑡𝑖𝑑 attribute. After sorting, Krastnikov et

al.’s algorithm does a forward linear pass on the combined table to

count the number of bins with the same 𝑡𝑖𝑑 and 𝑡𝑎𝑔, and another

backward linear pass on the table to populate the results. This is

a step that we need to modify in our algorithm to enhance the

performance, as discussed later in this section. The count of rows

with the same tag in Alice’s table is stored in the attribute 𝛼1 and

the count of elements with this tag in Bob’s table is stored in 𝛼2.

We write 𝛼𝑖
1
and 𝛼𝑖

2
for the counts of tag 𝑖 ∈ [1, . . . , ℓ].

Oblivious Distribution. After obtaining group dimensions, the

rows are separated into two tables again, based on their 𝑡𝑖𝑑 attribute.

The challenge is now to position (or distribute) each row from the

input table, such that it one-to-one aligns with a row to be joined

by the other table in its output table. Krastnikov et al.’s algorithm

distributes a row (bin) 𝐵𝑖 to position calculated based on 𝐵𝑖−1’s last
position, the item count, and 𝛼𝑖

1
, 𝛼𝑖

2
.

Krastnikov et al. use an oblivious distribution algorithm. Specifi-

cally, the rows are distributed to the target positions by hopping

intervals of powers of 2. That is, in each iteration 𝑗 ∈ [1, . . . , 𝛾], the
rows are moved forward by 2

𝛾−𝑗
positions, where 𝛾 = ⌈log 𝛽⌉ and

𝛽 is the total number of matching pairs, i.e., the size of the joint

table, previously computed by the algorithm. After 𝛾 iterations, the

bins are at their target positions.

Oblivious Expansion. After distributing the rows, the empty rows

in the resulting table need to be filled with values copied from their

adjacent rows. Krastnikov et al. also use a linear pass for this step,

which we need to modify as described in the next section.

4.2.2 Modification: Round Complexity of Traversal. There are three
traversals in Krastnikov et al.’s join protocol. For a table of size𝑛, the

most straightforward implementation – a linear scan – has 𝑂 (𝑛)
rounds in a multi-party computation. This is prohibitively slow

even for small dataset sizes. We can convert these linear scans into

parallel scans if we can formulate the function computed on each

row as an associative function [9]. Then, by recursively separating

the array into two halves, and applying the associative function over

the two halves, we obtain the traversal result in 𝑂 (log𝑛) rounds,
and each round executing𝑂 (𝑛) functions. Since the latency of multi-

party computation is usually dominated by the communication and

in particular the number of communication rounds, this reduction in

the number of communication rounds greatly improves the overall

efficiency.

We describe the forward pass in the step ’Obtaining Group Di-

mensions’ as an example and the other linear passes are transformed

correspondingly. Let 𝛼1 [𝑗] denote the value of the attribute 𝛼1 in
row 𝑗 , and similarly for other attributes 𝛼2, 𝑡𝑎𝑔, and 𝑡𝑖𝑑 . Our exam-

ple linear scan then initializes the 𝛼1 and 𝛼2 attributes for tag 1 as

follows.

tag tid 𝛼1 𝛼2

1 1 1 0

1 2 0 1

In subsequent rows 𝑗 , the example linear scan uses the following

truth table to set the 𝛼1 and 𝛼2 attributes.

We modify the linear scan to a parallel scan with an associative

function [9]. The parallel scan starts with blocks with one row

each and then recursively merges adjacent blocks into larger blocks

until ending up with one block. For blocks of size 1 the associative

function uses the following truth table.

tid 𝛼1 𝛼2

1 1 0

2 0 1

84

Table 2: Truth table for linear scan

tag[j] tid[j] tid[j]

= = = 𝛼1 [𝑗] 𝛼2 [𝑗]
tag[j-1] tid[j-1] 1

true true true 𝛼1 [𝑗 − 1] + 1 𝛼2 [𝑗 − 1]
true true false 𝛼1 [𝑗 − 1] 𝛼2 [𝑗 − 1] + 1
true false any 𝛼1 [𝑗 − 1] 1

false any true 1 0

false any false 0 1

In subsequent steps two adjacent blocks are merged into one.

We consider the two blocks to have 𝛾 and 𝛽 rows, respectively.

The first block (block with smaller row numbers) has 𝛾 rows, and

we denote its 𝑗𝑡ℎ row as 𝑃1[𝑗]; the second block has 𝛽 rows, and

we denote its 𝑗𝑡ℎ row as 𝑃2[𝑗]. We consider the 𝑗𝑡ℎ row of the

resulting block to be 𝑄 [𝑗]. We first copy the rows of the first block

𝑃1 into the resulting block 𝑄 : 𝑄 [𝑗] = 𝑃1[𝑗] for 0 < 𝑗 ≤ 𝛾 . Then,

we copy the rows of the second block 𝑃2: 𝑄 [𝑗] = 𝑃2[𝑗 − 𝛾] for
𝛾 < 𝑗 ≤ 𝛾 + 𝛽 . Afterwards, we compute an associative function

over the rows 𝑗 > 𝛾 of the resulting block 𝑄 using the following

truth table:

Table 3: Truth table for parallel scan

tag[j] tid[j] tid[j]

= = = 𝛼1 [𝑗] 𝛼2 [𝑗]
tag[𝛾] tid[𝛾] 1

true true true 𝛼1 [𝛾] + 𝛼1 [𝑗] 𝛼2 [𝑗]
true true false 𝛼1 [𝛾] 𝛼2 [𝛾] + 𝛼2 [𝑗]
true false any 𝛼1 [𝛾] + 𝛼1 [𝑗] 𝛼2 [𝑗]
false any true 𝛼1 [𝑗] 𝛼2 [𝑗]
false any false 𝛼1 [𝑗] 𝛼2 [𝑗]

Analysis. We show that the functions using Table 2 in a linear

scan and Table 3 in a parallel scan compute the same output.

We call the function to compute 𝛼1, 𝛼2 of the updated 𝑗𝑡ℎ row 𝑟 ′
𝑗

from the previous two rows 𝑟 𝑗−1, 𝑟 𝑗 in the linear pass 𝑓1 (𝑟 𝑗−1, 𝑟 𝑗),
and the function in the parallel scan to compute 𝛼1, 𝛼2 of the up-

dated 𝑗𝑡ℎ row 𝑟 ′
𝑗
from the previous two rows 𝑟𝛾 , 𝑟 𝑗 𝑓2 (𝑟𝛾 , 𝑟 𝑗).

We first prove that, if we substitute 𝑓1 with 𝑓2. That is, if we

use 𝑓2 in the linear pass, we end up with the same result. For 𝑓1,

since the values of 𝛼1 and 𝛼2 of 𝑟 𝑗 are not used, these values can

be arbitrary, and do not affect the resulting values of 𝑟 ′
𝑗
. Thus, we

define the values the same way as we initialize 𝑎1, 𝑎2 for 𝑓2 in the

table:

tid 𝛼1 𝛼2

1 1 0

2 0 1

Since we use 𝑓2 in place of 𝑓1, the value of 𝑟 𝑗 when we calculate

𝑓2 (𝑟 𝑗−1, 𝑟 𝑗) is the value that we initialize 𝑟 𝑗 with, so we can substi-

tute these by the constant values we use for initialization. Then,

if we look at the truth table of 𝑓2, with values of 𝛼1 [𝑗] and 𝛼2 [𝑗]
substituted with that from the initialization table, we see that it is

exactly the same as that of 𝑓1. So, we have proven that these two

functions are equivalent, if used in the linear pass.

We now prove that 𝑓2 is associative, i.e., it can be used in parallel

scan.

We consider two orders of applying 𝑓2 on 3 rows of records:

𝑟1, 𝑟2, 𝑟3, where 𝑟1 < 𝑟2 < 𝑟3 in the order that the records were

sorted by before this step, that is, increasing order of 𝑡𝑎𝑔, then

increasing order of 𝑡𝑖𝑑 . An extended truth table for three rows is

shown in Table 4. We compare the result of 𝑓2 (𝑟1, 𝑓2 (𝑟2, 𝑟3)) with
𝑓2 (𝑓2 (𝑟1, 𝑟2), 𝑟3). In order to compose the functions, we need the

result of applying 𝑓2 of two rows to be a row, then we extend the

result of 𝑓2 from just (𝛼1, 𝛼2) to (𝑡𝑎𝑔, 𝑡𝑖𝑑, 𝛼1, 𝛼2), with 𝑡𝑎𝑔, 𝑡𝑖𝑑 equal

to the second argument to 𝑓2. We call the 𝑡𝑎𝑔 and 𝑡𝑖𝑑 of 𝑟1, 𝑟2, 𝑟3
to be 𝑡𝑎𝑔[1], 𝑡𝑎𝑔[1], 𝑡𝑎𝑔[3] and 𝑡𝑖𝑑 [1], 𝑡𝑖𝑑 [2], 𝑡𝑖𝑑 [3], then we can

write a table of results based on these values, which is the same

with both application orders. So, we have proven that the truth

Table 3 can be used in a parallel scan.

4.3 Record-to-Record Comparison
After sets of smoothed bins have been joined, our PRL protocol

simply compares each pair of records in the joint bins. Any com-

parison function 𝑒𝑞 can be used. However, those functions that

are efficiently implementable in multi-party computation lead to a

higher efficiency of the entire protocol. We use the same assump-

tions of the related work by Khurram and Kerschbaum [25] in order

to enable a fair comparison of the protocols. In our efficiency evalu-

ation, we implemented exact equality as a baseline for performance

measurements. In our accuracy evaluation, we assume the existence

of the perfect comparison function that returns the ground truth.

Furthermore, it separates the influence of the blocking algorithm

(LPH or LSH) from the influence of the matching algorithm in ac-

curacy evaluation. Any improvement of the matching algorithm

can be applied to either protocol, but they necessarily differ in the

blocking algorithm which is what we evaluate. We summarize the

pseudo-code of this step in Algorithm 3. Let 𝑆𝐴 and 𝑆𝐵 be smoothed

bins from Alice or Bob, respectively, which have the same tag, i.e.,

they have been joined in the previous step. We then compare each

record in bin 𝑆𝐴 to each other record in bin 𝑆𝐵 .

Algorithm 3 Record to Record Compare(𝑆𝐴 , 𝑆𝐵)

for 𝑅𝐴 ∈ 𝑆𝐴 do
for 𝑅𝐵 ∈ 𝑆𝐵 do

if 𝑒𝑞(𝑅𝐴, 𝑅𝐵) = 𝑡𝑟𝑢𝑒 then
Output 𝑅𝐴 to Alice

Output 𝑅𝐵 to Bob

end if
end for

end for

5 EVALUATION
Webuilt a C++ prototype of the protocol for efficiencymeasurement,

and a Python plain text computation version of the algorithm for

85

Table 4: Extended truth for parallel scan over three rows.

tag[1] tag[2]

= = tid[1] tid[2] tid[3] 𝛼1 𝛼2
tag[2] tag[3]

true true 1 1 any 𝛼1 [1] + 𝛼1 [2] + 𝛼1 [3] 𝛼2 [3]
true true 1 2 2 𝛼1 [1] + 𝛼1 [2] 𝛼2 [2] + 𝛼2 [3]
true true 2 2 2 𝛼1 [1] 𝛼2 [1] + 𝛼2 [2] + 𝛼2 [3]
false true any 1 any 𝛼1 [2] + 𝛼1 [3] 𝛼2 [3]
false true any 2 2 𝛼1 [3] 𝛼2 [2] + 𝛼2 [3]
any false any any any 𝛼1 [3] 𝛼2 [3]

accuracy measurement. The C++ prototype was based on the ABY

framework [7, 10].

5.1 Security Proof
We prove that our protocol is secure in the semi-honest (or passive

or honest-but-curious) security model. In this model, an adversary

passively observes the computation and tries to infer additional

information, but follows the protocol specification. Such an attack

is almost impossible to detect, since the output and steps of the

protocol are unaffected. To the contrary, many active attacks can

be detected by inspection of log files which can be deployed along-

side semi-honest security. The semi-honest model is practically

deployed [21, 44]. Any protocol secure in the semi-honest model

can be transferred into one secure in the malicious model using

Goldreich’s compiler [14]. The malicious model provides protection

against active attacks during the protocol. However, it is commonly

too inefficient to deploy and does not provide protection against

attacks before the protocol, such as input substitution which can

exfiltrate the entire dataset. Indicators of input substitution can be

detected from log files.

We say a protocol is secure in the semi-honest model, if there

exist two simulators Sim𝐴/𝐵 for the views View𝐴/𝐵 , respectively.

Sim𝐴 (𝑇𝐴, 𝑛𝐵,𝑂, 𝑐) = View𝐴 (𝑇𝐴,𝑇𝐵)
Sim𝐵 (𝑇𝐵, 𝑛𝐴,𝑂, 𝑐) = View𝐵 (𝑇𝐴,𝑇𝐵)

Theorem 5.1. There exist two simulators Sim𝐴 (𝑇𝐴, 𝑛𝐵,𝑂, 𝑐) and
Sim𝐵 (𝑇𝐵, 𝑛𝐴,𝑂, 𝑐) whose output is computationally indistinguishable
from the view of the respective party during the execution of our
protocol.

Proof. Our proof is by construction. Wlog. we construct the

simulator for Alice’s view. The simulator for Bob’s view is analo-

gous, since our protocol is symmetric.

We construct the simulator using the three steps of our protocol:

preprocessing, bin join, and record-to-record comparison.

Preprocessing. This step is mostly performed locally on each

party’s dataset. Only the output of the preprocessing after frequency

smoothing is shared as an input to a secure two-party computation.

Hence, we only need to prove that this input is simulatable given the

information to the simulator. According to Grubbs et al.’s analysis of

their frequency smoothing [16], Alice receives 2𝑑ℓ bins with ⌈𝑛𝐵/ℓ⌉
elements in each bin. The content of each element is secret-shared

in the ABY framework and simulatable by a random number.

Secure Bin Join. Goldreich’s composition theorem [14] in the

semi-honest model allows us to prove security of the composed

protocol by proving security of each step. Since we predominantly

use greater-than or equality comparisons, our (entire) protocol

is implemented over Boolean shares in ABY, i.e., the protocol by

Goldreich et al. (GMW) [15]. Krastnikov et al. [28] prove that their

algorithm implements a circuit and hence translation to GMW is

straightforward. Our modifications change the round complexity

of the computation, but are still circuits as can be easily verified

from their description. Furthermore, a specification of the protocol

in ABY ensures that the compiled protocol is secure and we do

not release intermediate values. Hence, our simulator executes an

arbitrary oblivious join over two smoothed LSH hash tables with

2𝑑ℓ bins each and a number of elements corresponding to the input

tables sizes that produces a joint table of size 𝑐/(⌈𝑛𝐵/ℓ⌉ · ⌈𝑛𝐴/ℓ⌉).
Record-to-Record Comparison. Each comparison is implemented

as a secure computation in GMW. We can apply the composition

theorem again and compose 𝑐 individual comparisons to the full

record-to-record comparison. Note that we randomly perturb the

order of records in the bins and the order of joint bins is random. The

simulator hence performs 𝑐 arbitrary comparisons and randomly

releases the elements in the output 𝑂 of the protocol given to the

simulator as input.

This completes the construction of Alice’s simulator and Bob’s

is analogous, since our protocol is symmetric. Both simulators

together complete the proof. □

5.2 Efficiency Measurement
For different sizes of input, and different numbers of bins, we need

different numbers of comparisons, which leads to different amounts

of computation time required.Wemeasure the relationship between

the number of comparisons and the computation time needed. The

number of comparisons is the number of comparisons performed

in Section 4.3, and the computation time is measured in CPU time

of both parties combined. The experiments were performed on a

Ubuntu virtual machine on VirtualBox with 6 virtual cores (using 6

of 8 cores of 2 Intel i7-9750H @ 2.60GHz CPU), and 8 GB memory.

For both parties, we set our input numbers to be in the range

of 0 to 2
16 − 1 as outputs of their LSHs. Then, for a given input

size 𝑛, we randomly generate 𝑛 numbers with uniform probability

in the range. We put them into bins based on their values, where

the bins are uniform intervals between 0 and 2
16 − 1. The bins are

prepared as in Section 4.1. Then, the bins are privately joined and

their contents are securely compared as in Section 5.

86

Figure 5: Efficiency measurement, CPU time (in seconds)
over number of comparisons

The result using fixed parameters for the LSH function is depicted

in Figure 5 and shows the expected linear correlation between

number of comparisons and CPU time. From the results, we derive

a correlation equation of 𝑡 = 0.000135𝑐 + 7.84. Using this equation,

we can estimate the amount of computation time 𝑡 (in seconds)

required given the number 𝑐 of comparison. For example, in one

hour of computation time, we can approximately perform 2.65×107
comparisons.

5.3 Accuracy Measurement
For comparison with the related work [25], we use the same two

datasets for our accuracy measurement: BNB/TPL, and NCVR. We

measure the accuracy of our algorithm, with respect to various

parameters of the locality sensitive hash function. We estimate

efficiency by measuring the number of comparisons needed and

using our correlation formula to approximate the computing time.

As done in related work [17, 25], we assume that our match

function that compares two elements is 100% accurate, i.e., returns

the ground truth. Hence, any inaccuracy in our experiments must

stem from the LSH and the corresponding efficiency gains of PRL

protocol. Since multi-party computation allows implementing any

function, one can always implement a match function that provides

them with the best result. Note that these functions are efficient,

since they take a small input of a pair of elements. Thus, for each

pair of records that is similar in the ground truth, if one of their

duplicates is hashed into the same bin, we observe a true positive;

if none were hashed into the same bin, we observe a false negative;

the accuracy is measured by
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
.

We vary the following parameters of the LSH. One parameter

is the length of the vector of min-hash values, 𝑡 . This affects how

similar two strings have to be, for them to be in the same bin. A

second parameter is the number of duplicates of each record, 𝑑 . The

more duplicates we have for a record, the more likely a matching

pair ends up in the same bin, but also the more comparisons are

needed. A third parameter is the number of bins per duplicate, ℓ .

The more bins we have per duplicate, the less likely a matching

pair ends up in the same bin, but less comparisons are needed. Our

experiments explore the performance-efficiency trade-off of these

parameters 𝑡 , 𝑑 and ℓ .

5.3.1 BNB/TPL. The British National Bibliography (BNB) [3] con-

tains records of the publishing activity of the United Kingdom and

the Republic of Ireland since 1950. We only included the records

with ISBN numbers. The Toronto Public Library (TPL) Open Data

[8] contains a catalogue of books. We only included those with

ISBN numbers.

The BNB/TPL dataset contains records of information about

books. Each record includes the following 4 fields: ISBN number,

book name, author’s first name, and author’s last name. We set the

ground truth to be the records with exact match on the field ’ISBN

number’. Then, we perform PRL based on the remaining fields, that

is book name, author’s first name, and author’s last name. From

these two datasets, we selected 100000 records respectively, with

the least value of ISBN. Thus, we obtained two datasets with 100000

records each, and 19.267 matching records across the two datasets.

The dataset was prepared in a similar manner to related work

[25], with the difference that we have selected the 100000 records

in both datasets with the least ISBN number to compare, which is

about 1/20 the size of their dataset.
We first varied the length of the vector of min-hash values, 𝑡 . We

fixed 𝑑 = 32 and ℓ = 1024, while varying the value of 𝑡 , selecting

from 1, 2, 3, 4. We obtained the results depicted in Figure 6a, and

concluded that 𝑡 = 2 offers a good trade-off between efficiency and

accuracy.

Then, we varied the number of duplicates of each record, 𝑑 . We

fixed 𝑡 = 2 and ℓ = 1024, while varying the value of𝑑 , selecting from

4, 8, 16, 32, 64. We obtained the results in Figure 6b, and concluded

that 𝑑 = 32 offers a good trade-off between efficiency and accuracy.

Finally, we varied the number of bins per duplicate, ℓ . We fixed

𝑡 = 2 and 𝑑 = 32, while varying the value of ℓ , selecting from

512, 1024, 2048, 4096, 8192. We obtained Figure 6c, and concluded

that ℓ = 1024 offers a good trade-off between efficiency and accu-

racy.

5.3.2 NCVR. The state of North Carolina keeps track of active and

inactive voters since 2005, and provides a point-in-time snapshot

of information of those voters in the North Carolina Voter Register

(NCVR) [35]

We chose the snapshots taken at the beginning of the years 2014

and 2017. The records contain fields including ncid, first name,

middle name, last name, age, and birth place. Of these 6 fields,

we used the first field (ncid) to determine the ground truth of a

matching record, and the remaining 5 for our algorithm to find a

match. From the two datasets (ncvr at year 2014 and ncvr at year

2017), we selected 100000 records respectively, with the least value

of ncid. Thus, we obtained two datasets with 100000 records each,

and 84.391 matching records across the two datasets.

The dataset was prepared in a similar manner to the work by

Khurram and Kerschbaum [25], with the difference that we have

selected the 100000 records in both datasets with the least ncid

number to compare, which is about 1/100 the size of their dataset.
In addition, we have selected the data from the beginning of 2014

and 2017, while they selected from the data from November 2014

and 2017.

87

(a) BNB_TPL Result for varying vector length,
accuracy vs. number of comparisons

(b) BNB_TPL Result for varying number of du-
plicates, accuracy vs. number of comparisons

(c) BNB_TPLResult for varying number of bins
per duplicate, accuracy vs. number of compar-
isons

(d) NCVR Result for varying vector length, ac-
curacy vs. number of comparisons

(e) NCVR Result for varying number of dupli-
cates, accuracy vs. number of comparisons

(f) NCVR Result for varying number of bins
per duplicate, accuracy vs. number of compar-
isons

Figure 6: Accuracy results for BNB_TPL (left) and NCVR (right)

(a) BNB_TPL result within one hour for different sized inputs, accu-
racy vs. number of comparisons

(b) NCVR results within one hour for different sized inputs, accuracy
vs. number of comparisons

Figure 7: dataset sizes over number of comparisons within an hour for BNB_TPL (left) and NCVR (right)

We first varied the length of the vector of min-hash values, 𝑡 . We

fixed 𝑑 = 32 and ℓ = 1024, while varying the value of 𝑡 , selecting

from 1, 2, 3, 4. We obtained the results depicted in Figure 6d, and

concluded that 𝑡 = 2 offers a good trade-off between efficiency and

accuracy.

Then, we varied the number of duplicates of each record, 𝑑 . We

fixed 𝑡 = 2 and ℓ = 1024, while varying the value of 𝑑 , selecting

from 4, 8, 16, 32, 64. We obtained the results depicted in Figure 6e,

and concluded that𝑑 = 32 offers a good trade-off between efficiency

and accuracy.

Finally, we varied the number of bins per duplicate, ℓ . We fixed

𝑡 = 2 and 𝑑 = 32, while varying the value of ℓ , selecting from

512, 1024, 2048, 4096, 8192. We obtained the results depicted in Fig-

ure 6f, and concluded that ℓ = 1024 offers a good trade-off between

efficiency and accuracy.

5.4 Comparison to Related Work
We compare efficiency to both, He et al.’s and Khurram and Ker-

schbaum’s work [17, 25] and accuracy to Khurram et al.’s work.

We do not compare accuracy to He et al., since we can always

implement their algorithm in our protocol and it is possible to

88

implement our algorithm in their protocol, i.e., the record link-

age algorithms are interchangeable between the two protocols.

However, we achieve better security without additional differential

private leakage, and we do so at a comparable cost. The code for

neither of the two related works is available, such that we cannot

reliably replicate their results. Therefore we compare based on the

results reported in their papers. The parameters of the experiments

reported by He et al. and Khurram and Kerschbaum can be sum-

marized as follows. He et al. [17] uses two data sets: the Taxi data

set [34] and the ABT-Buy data set [27]. Khurram and Kerschbaum

use four data sets: the Taxi data set, the OpenStreet Map/Yelp, the

British National Bibliography [3]/Toronto Public Library [8] and

the North Carolina Voter Register [35]. Accuracy on the Taxi data

set is trivially 100% for both Khurram and Kerschbaum and He et

al. (and hence us). Therefore, we do not use that data set for compar-

ison. The OpenStreetMap/Yelp data set is not publically available,

so we compare using the other two data sets. However, Khurram

and Kerschbaum post-processed the data sets and the resulting data

sets are not available. We summarize our known changes to data set

post-processing in Section 5.3 and the comparison in Section 5.4.1.

For efficiency, we compare the number of element comparisons

and the wall-clock time. The number of comparisons is due to the

blocking algorithm and padding. The wall-clock time is further

influenced by the cryptographic protocol and the hardware. He et

al. use two threads on a 3.1 GHz Intel Core i7 CPU with 16 GB RAM.

Khurram and Kerschbaum use two 2.2 GHz Intel Xeon E7 CPU

with 108 GB of RAM. We use two 2.6 GHz Intel Core i7 CPUs with

8 GB memory. All protocol software runs single-threaded (where

other cores are available for system software). In comparison, He

et al. use a faster CPU and Khurram and Kerschbaum a slower one.

He et al. do not implement the cryptographic protocol and hence

their memory resources may not be representative. We have much

lower memory requirements than Khurram and Kerschbaum, since

we do not need to fit the entire circuit of the protocol into memory.

We summarize the comparison of wall-clock time in Section 5.4.2.

Khurram and Kerschbaum did not document the number of com-

parisons or how to calculate them and therefore in Section 5.4.3 we

compare the number of element comparisons only to He et al.

5.4.1 Accuracy. We compare our accuracy results from Section 5.3

for the common parameter set of 𝑡 = 2, ℓ = 1024, and 𝑑 = 32

to Khurram and Kerschbaum [25]. Khurram and Kerschbaum use

different parameters for their window size and number of iterations.

We used both the default parameters of a log(𝑛) window size and

𝑖 = 1 iterations and the best accuracy reported. Table 5 shows that

our protocol’s accuracy exceeds that of Khurram and Kerschbaum’s

protocol by up to 10%.

Table 5: Accuracy on the same data sets

Ours [25] with log(𝑛), 𝑖 = 1 [25] best

BNB/TPL 99.74% 85.4% 89.7%

NCVR 99.97% 97.9% 98.6%

5.4.2 Wall-Clock Time. To compare wall-clock time to related

work [17, 25], we attempt to estimate how many records can be

compared within one hour (approximately 2.65× 107 comparisons).

We varied the number of records, as well as 𝑑 and ℓ , while fixing

𝑡 = 2. The results are depicted in Figures 7a and 7b. We found

that with both datasets having 40000 records, if we set 𝑑 = 16 and

ℓ = 2048, we can achieve 99.3% and 99.9% accuracy within one

hour.

He et al. [17] report 80 hours for two datasets with 5000 records

each. Khurram and Kerschbaum [25] report 1 hour for two datasets

with 4000 records each. These numbers are influenced by the cryp-

tographic protocols and different hardware. Table 6 shows the sum-

mary.

Table 6: Wall-clock time throughput

Ours [17] [25]

Records per hour 40000 560
1

4000

5.4.3 Number of Comparisons. We compare the number of element

comparisons, which is independent of the cryptographic protocol

and hardware. Khurram and Kerschbaum [25] require comparisons

proportional to the windows size (e.g. log(𝑛)) times data set size 𝑛.

However, this number is scaled by a constant which is not docu-

mented as well as any total number of comparisons. Hence, we do

not include Khurram and Kerschbaum in this comparison.

The exact number of element comparisons in He et al.’s and

our protocol is parameter and data set-dependent. However, the

expected number of parameters is data set-independent. We can

compare the expected number of comparisons using the same LSH

parameters.

Table 7: Number of dummy elements per bin

𝑛 10
4

10
5

10
6

10
7

10
8

Ours 40 50 60 70 80

[17] 𝜖 = 0.1 3834 4571 5308 6045 6781

[17] 𝜖 = 0.5 766 914 1061 1209 1356

[17] 𝜖 = 1 383 457 530 604 678

[17] 𝜖 = 2 191 228 265 302 339

We have 𝑛 data elements and ℓ bins repeated 𝑑 times. Hence the

expected load of a bin is
𝑛
ℓ . He et al. add dummy elements to each

bin depending on the differential privacy parameters 𝜖 and 𝛿 . They

have

𝜂0 = −
𝑑 log((𝑒𝜖/𝑑 + 1) (1 − (1 − 𝛿)1/𝑑))

𝜖

expected dummy elements per bin. Due to the splitting of bins, we

add an expected half bin of dummy elements. We have

𝜂1 =
𝑛

2ℓ

expected dummy elements per bin. The total expected number of

comparisons is in both protocols

𝑑ℓ

(︂𝑛
ℓ
+ 𝜂

0/1
)︂
2

1
Assuming running time is proportional to 𝑛2

.

89

It suffices to compare the dummy elements 𝜂0 and 𝜂1 per bin. We set

𝑑 = 32, 𝛿 = 1/𝑛, and ℓ = 𝑛
6 log(𝑛)

2
. We summarize our comparison

in Table 7. With these parameters He et al. always requires a higher

number of comparisons than us.

6 CONCLUSIONS
We present a new PRL protocol that uses LSH blocking, but is

cryptographically secure. This improves over previous work that

use LSH with differential privacy in security, since it leaks less

information, and performance as demonstrated by our prototype.

It also improves over equally secure previous work in performance

and accuracy, since it replaces the use of an LPH with an LSH.

Further research is needed to improve the performance of PRL.

ACKNOWLEDGEMENTS
We gratefully acknowledge the support of the Natural Sciences and

Engineering Research Council (NSERC) for grants RGPIN-05849,

IRC-537591, and the Royal Bank of Canada. This work benefited

from the use of the CrySP RIPPLE Facility at the University of

Waterloo.

A FORMAL SECURITY COMPARISON
A.1 Cryptographic Security
Khurram and Kerschbaum were the first to present a PRL pro-

tocol secure in the cryptographic setting of multi-party computa-

tions [25]. They use the same definition adapted fromGoldreich [14]

in the semi-honest model. A protocol is secure if a party’s view

View𝐴/𝐵 can be (computationally indistinguishably) simulated from

only input and output of that party. Formally, let 𝑂 be the set of

matching record pairs. Let View𝐴/𝐵 be the view of Alice and Bob,

respectively, i.e., the messages received and the random coins cho-

sen during the protocol execution. We say a protocol is secure in

the semi-honest model, if there exists two simulators Sim𝐴/𝐵 for

the views View𝐴/𝐵 , respectively.

Sim𝐴 (𝑇𝐴, 𝑛𝐵,𝑂) = View𝐴 (𝑇𝐴,𝑇𝐵)
Sim𝐵 (𝑇𝐵, 𝑛𝐴,𝑂) = View𝐵 (𝑇𝐴,𝑇𝐵)

If such a simulator exists, then the following statement holds for

any polynomial-time adversary A:

𝑃𝑟 [A(Sim𝐴/𝐵) = 1] = 𝑃𝑟 [A(View𝐴/𝐵) = 1]

We use the same definition for our protocol, but add the leakage

of the total number of comparisons 𝑐 ≤ 𝑛𝐴 ·𝑛𝐵 . The total number of

comparisons is necessarily part of any view, but in case of Khurram

and Kerschbaum, it is a deterministic function of the input length.

We analyze this leakage in Section A.3.

A.2 Computationally Differentially Private
Security

He et al. already used LSH but also used a strictly weaker defini-

tion of security [17]. They use the concept of differential privacy.

In differential privacy, we consider neighbouring inputs 𝑇𝐴/𝐵 and

2
This approximates our parameters in the evaluation and our protocol then scales in

𝑂 (𝑛 log(𝑛)) .

𝑇 ′
𝐴/𝐵 which differ in at most one record. The adversary that com-

putational differential privacy considers is no longer restricted to

strict indistinguishability (as in Appendix A.1) but bounded indistin-

guishability [32]. Loosely speaking, the view of a party may differ

between neighbouring datasets, but is restricted by the differen-

tial privacy parameter. Formally, let 𝜖, 𝛿 be the privacy parameters.

We say a protocol is secure in the computational differential pri-

vacy model, if for all neighbouring datasets 𝑇𝐴/𝐵 and 𝑇 ′
𝐴/𝐵 and all

polynomial-time adversaries A it holds that

𝑃𝑟 [A(View𝐴 (𝑇𝐴,𝑇𝐵) = 1] ≤ 𝑒𝜖𝑃𝑟 [A(View𝐴 (𝑇𝐴,𝑇 ′𝐵)) = 1] + 𝛿
𝑃𝑟 [A(View𝐵 (𝑇𝐴,𝑇𝐵) = 1] ≤ 𝑒𝜖𝑃𝑟 [A(View𝐵 (𝑇 ′𝐴,𝑇𝐵)) = 1] + 𝛿

He et al. observed that this strict definition is incompatible with

PRL and hence further weakened it to consider the output 𝑂 of

the protocol. 𝑇𝐴/𝐵 and 𝑇 ′
𝐴/𝐵 are only neighbours if they produce

the same output 𝑂 . This allows the protocol to output 𝑂 without

violating the security definition. Note that this is a strictly weaker

definition than cryptographic security. It leaks the same informa-

tion, i.e., output and what can be inferred from one party’s input

and output, as the cryptographic definition, but it also additionally

leaks bounded information about the datasets in the view. In the

protocol of He et al. this is the padded length of the bins which

result in the total number of comparisons. Since the bound is with

respect to a single change in the datasets, multiple changes, so

called properties, e.g., if an ethnic, religious or marginalized group

is part of the input, are leaked with much higher probability and

can be inferred with high accuracy. We remove the differentially

private padding of the bins and instead smooth the bins to remove

this leakage and attack vector.

A.3 Leakage

0

10

20

30

40

50

60

70

6.27 6.295 6.32 6.345

F
re

qu
e

n
cy

Number of Comparisons (Millions)

Figure 8: Distribution of number of comparisons for 𝑛 =

10000, 𝑙 = 1024, 𝑑 = 32.

Our protocol leaks the number of comparisons, whereas the

protocol by Khurram and Kerschbaum [25] does not.We empirically

measure this leakage. We run the following experiment. We fix a

database with 𝑛 = 10000 entries for Alice and parameters 𝑙 = 1024

and 𝑑 = 32 as used in our accuracy evaluation. We then choose

a random database for Bob (𝑛 = 10000) and count the number of

comparisons. We repeat this experiment 10000 times and graph

the results as an X-Y-plot in Figure 8. We see the expected normal

distribution and can compute an empirical information entropy. We

conclude that when comparing 𝑛 = 10000 elements, we leak less

than 9 bits of information about the entire data set.

90

REFERENCES
[1] Ali Al-Lawati, Dongwon Lee, and PatrickMcDaniel. 2005. Blocking-aware private

record linkage. In International Workshop on Information Quality in Information
Systems (IQIS).

[2] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani,

Domenico Vitali, and Giovanni Felici. 2015. Hacking smart machines with

smarter ones: How to extract meaningful data from machine learning classifiers.

International Journal of Security and Networks 10, 3 (2015), 137–150.
[3] British National Bibliography. 2023. Available at https://www.bl.uk/collection-

metadata/metadata-services.

[4] Andrei Z Broder. 1997. On the resemblance and containment of documents. In

Compression and Complexity of Sequences (SEQUENCES).
[5] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.

1998. Min-wise independent permutations. In ACM Symposium on Theory of
Computing (STOC).

[6] Jianneng Cao, Fang-Yu Rao, Elisa Bertino, and Murat Kantarcioglu. 2015. A

hybrid private record linkage scheme: Separating differentially private synopses

from matching records. In IEEE International Conference on Data Engineering
(ICDE).

[7] ABY Source Code. 2023. Available at https://github.com/encryptogroup/ABY.

[8] Toronto Public Library Open Data. 2023. Available at https://opendata.tpl.ca/.

[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In Network
and Distributed Systems Security Symposium (NDSS).

[11] Halbert L Dunn. 1946. Record Linkage. American Journal of Public Health and
the Nations Health 36, 12 (1946), 1412–1416.

[12] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient private

matching and set intersection. In International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT).

[13] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. 2018.

Property inference attacks on fully connected neural networks using permutation

invariant representations. In ACM Conference on Computer and Communications
Security (CCS).

[14] Oded Goldreich. 1998. Secure multi-party computation. Manuscript. Available

at https://www.wisdom.weizmann.ac.il/~oded/pp.html.

[15] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game, or a completeness theorem for protocols with honest majority. In ACM
Symposium on Theory of Computing (STOC).

[16] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency smoothing

for encrypted data stores. In USENIX Security Symposium (USENIX Security).
[17] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. 2017.

Composing differential privacy and secure computation: A case study on scaling

private record linkage. In ACM Conference on Computer and Communications
Security (CCS).

[18] Thomas Humphries, Simon Oya, Lindsey Tulloch, Matthew Rafuse, Ian Goldberg,

Urs Hengartner, and Florian Kerschbaum. 2023. Investigating membership

inference attacks under data dependencies. In IEEE Computer Security Foundations
Symposium (CSF).

[19] Ali Inan, Murat Kantarcioglu, Gabriel Ghinita, and Elisa Bertino. 2010. Pri-

vate record matching using differential privacy. In International Conference on
Extending Database Technology (EDBT).

[20] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. 1997.

Locality-preserving hashing in multidimensional spaces. In ACM Symposium on
Theory of Computing (STOC).

[21] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,

Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On de-

ploying secure computing: Private intersection-sum-with-cardinality. In IEEE
European Symposium on Security and Privacy (EuroS&P).

[22] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards practical privacy

for genomic computation. In IEEE Symposium on Security and Privacy (S&P).
[23] Alexandros Karakasidis and Vassilios S Verykios. 2011. Secure blocking+ secure

matching= secure record linkage. Journal of Computing Science and Engineering
5, 3 (2011), 223–235.

[24] Dimitrios Karapiperis, Vassilios S Verykios, Eleftheria Katsiri, and Alex Delis.

2016. A tutorial on blocking methods for privacy-preserving record linkage.

In International Workshop on Algorithmic Aspects of Cloud Computing (ALGO-
CLOUD).

[25] Basit Khurram and Florian Kerschbaum. 2020. SFour: a protocol for cryptograph-

ically secure record linkage at scale. In IEEE International Conference on Data
Engineering (ICDE).

[26] Kunho Kim and C Lee Giles. 2016. Financial entity record linkage with random

forests. In International Workshop on Data Science for Macro-Modeling (DSMM).
[27] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity

resolution approaches on real-world match problems. Proceedings of the VLDB
Endowment 3, 1 (2010). https://dbs.uni-leipzig.de/research/projects/object_

matching/benchmark_datasets_for_entity_resolution

[28] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient

oblivious database joins. Proceedings of the VLDB Endowment 13, 11 (2020),

2132–2145.

[29] Mehmet Kuzu, Murat Kantarcioglu, Ali Inan, Elisa Bertino, Elizabeth Durham,

and Bradley Malin. 2013. Efficient privacy-aware record integration. In Interna-
tional Conference on Extending Database Technology (EDBT).

[30] Glenda Lawrence, Isa Dinh, and Lee Taylor. 2008. The Centre for Health Record

Linkage: a new resource for health services research and evaluation. Health
Information Management Journal 37, 2 (2008), 60–62.

[31] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet Physics Doklady, Vol. 10. 707–710.
[32] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational differential privacy. In International Cryptology Conference (CRYPTO).
[33] Christopher L Morgan, Craig J Currie, and John R Peters. 2000. Relationship

between diabetes andmortality: a population study using record linkage. Diabetes
Care 23, 8 (2000), 1103–1107.

[34] NYC Taxi and Limousine Commission. [n.d.]. TLC Trip Record Data. Available

at https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[35] North Carolina Voter Registry. 2023. Available at https://www.ncsbe.gov/results-

data/voter-registration-data#historical-data.

[36] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. 2009. Privacy-preserving

record linkage using Bloom filters. BMC medical informatics and decision making
9, 1 (2009), 1–11.

[37] Adi Shamir. 1980. On the power of commutativity in cryptography. In Interna-
tional Colloquium on Automata, Languages and Programming (ICALP).

[38] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. 2022. Synthetic

data–anonymisation groundhog day. In USENIX Security Symposium (USENIX
Security).

[39] Rebecca C Steorts, Samuel L Ventura, Mauricio Sadinle, and Stephen E Fienberg.

2014. A comparison of blocking methods for record linkage. In International
Conference on Privacy in Statistical Databases (PSD).

[40] Dinusha Vatsalan, Dimitrios Karapiperis, and Vassilios S Verykios. 2022. Privacy-

preserving record linkage. arXiv preprint arXiv:2212.05682 (2022).
[41] Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Rainer Schnell. 2022.

A taxonomy of attacks on privacy-preserving record linkage. Journal of Privacy
and Confidentiality 12, 1 (2022).

[42] Zikai Wen and Changyu Dong. 2014. Efficient protocols for private record

linkage. In ACM Symposium on Applied Computing (SAC).
[43] Mohamed Yakout, Mikhail J Atallah, and Ahmed Elmagarmid. 2009. Efficient

private record linkage. In IEEE International Conference on Data Engineering
(ICDE).

[44] Moti Yung. 2015. From mental poker to core business: Why and how to deploy

secure computation protocols?. In ACM Conference on Computer and Communi-
cations Security (CCS).

91

https://www.bl.uk/collection-metadata/metadata-services
https://www.bl.uk/collection-metadata/metadata-services
https://github.com/encryptogroup/ABY
https://opendata.tpl.ca/
https://www.wisdom.weizmann.ac.il/~oded/pp.html
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.ncsbe.gov/results-data/voter-registration-data#historical-data
https://www.ncsbe.gov/results-data/voter-registration-data#historical-data

	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Protocol Overview
	4.1 Preprocessing
	4.2 Private Bin Join
	4.3 Record-to-Record Comparison

	5 Evaluation
	5.1 Security Proof
	5.2 Efficiency Measurement
	5.3 Accuracy Measurement
	5.4 Comparison to Related Work

	6 Conclusions
	A Formal Security Comparison
	A.1 Cryptographic Security
	A.2 Computationally Differentially Private Security
	A.3 Leakage

	References

