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ABSTRACT
Robust multivariate time series forecasting is crucial in many cyber-
physical and Internet of Things applications. Existing state-of-the-
art robust forecasting models decompose time series into indepen-
dent functions covering trends and periodicities. However, these
independent functions fail to capture correlations among multiple
time series, thereby reducing prediction accuracy. Moreover, ex-
isting robust forecasting models treat certain abrupt but normal
changes, e.g., caused by holidays, as outliers because they occur
infrequently and have data distributions that resemble those of out-
liers. This exacerbates model bias and reduces prediction accuracy.
This paper aims to capture correlations across multiple time series
and abrupt but normal changes, thereby improving prediction accu-
racy. We employ weak labels to partition the dataset into source and
target domains. Then, we propose the Domain Adversarial Robust
Forecaster (DARF). This forecasting model is based on adversarial
domain adaptation and includes two novel modules: Correlated
Robust Forecaster (CORF) and Domain Critic. Specifically, CORF
constitutes an encoder-decoder framework proficient at robust mul-
tivariate time series forecasting, and Domain Critic works to reduce
data bias. Extensive experiments and discussions show that DARF
is capable of state-of-the-art forecasting accuracy.
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1 INTRODUCTION
The ongoing, rapid deployment of the Internet of Things and of
cyber-physical and cloud monitoring systems results in the genera-
tion of massive volumes of time series data that hold the potential
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to enable a broad range of applications [9, 11, 12, 23, 36, 50]. A
multivariate time series is a collection of correlated, time-aligned
time series. For instance, in power transmission, an increase in the
temperature of metal conductors is accompanied by an elevation in
their electrical resistance. Thus, variables in a multivariate time se-
ries are often inherently correlated. Empowering a model to capture
correlations across multiple time series can significantly enhance
prediction accuracy for each variable, which in turn benefits many
applications. Fig. 1 depicts a real-world multivariate time series
composed of three variables. A forecasting model is trained on
historical time series and is then employed to predict future values,
demarcated by the black dashed line.
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Figure 1: Illustration of time series with outliers, events, and
abrupt changes.

The prediction accuracy is influenced by factors such as the
model’s ability to capture correlations and complex temporal dy-
namics and its robustness to outliers. Specifically, the multivariate
time series in Figure 1(a) has independent and correlated outliers.
Independent outliers are outliers that appear in a single time series
at a time point due to, e.g., machine malfunction of one machine in
a cluster, while correlated outliers are outliers that appear across
multiple time series at a time point. In practical scenarios, temporal
patterns with limited samples, e.g., resulting from holidays, human
behavior, or other predictable yet infrequent events, may resemble
outliers; see Fig. 1(b). This resemblance can cause a forecasting
model to mistake temporal dynamics due to regular events for
outliers, causing the model to disregard infrequent but important
temporal features.

This paper studies the problem of robust forecasting for multi-
variate time series, i.e., how to predict future time series based on
historical data while being robust to outliers in the historical data
that would otherwise reduce prediction accuracy. It is crucial to en-
sure that event features are not treated as outliers. By developing a
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model with these capabilities, we enable more accurate forecasting
of future time series.

State-of-the-art methods for robust multivariate time series fore-
casting often utilize seasonal-trend decomposition (STD) [34, 39,
48, 52]. These methods usually decompose input time series into
multiple trend and seasonality functions, effectively hypothesizing
that the time series consists of trend and seasonality backbones.
A backbone encompasses prior knowledge of both trends and sea-
sonal patterns, thereby enhancing robustness to overfitting caused
by outliers.

Although existing solutions for robust time series forecasting
represent important progress, unresolved problems remain that
significantly influence the accuracy of robust forecasting.
Challenge 1: It is challenging for existing forecasting methods
to handle multivariate time series with outliers. Seasonal-trend
decomposition-based methods fail to capture temporal dynamics
among multivariate time series because these methods decompose
each time series or variable independently. Graph neural networks
(GNN) [30, 42, 43], a prevalent approach to leveraging correlations
in multivariate time series forecasting, suffer from limited robust-
ness. Specifically, when multiple time series exhibit outliers simulta-
neously, a GNN, serving as a propagator of correlations, intensifies
the biases induced by these outliers. This phenomenon, as shown
in Fig. 1(a), is referred to as a “correlated outlier.”
Challenge 2: Distinguishing event features from outliers can be
challenging. Existing methods, including STD- and GNN-based ap-
proaches, employ statistical machine-learning frameworks. These
methods are data-driven and rely on large numbers of time series
samples to capture features. Consequently, these models struggle
to capture event features when the numbers of samples that belong
to events are limited. Additionally, since the patterns of events
and outliers are similar, it is generally difficult for these models to
accurately fit event features while disregarding outliers.

To overcome these challenges, we propose an adversarial domain
adaptation framework called Domain Adversarial Robust Forecaster
(DARF). More specifically, DARF addresses the two challenges as
follows.
Addressing challenge 1: To ensure that DARF can capture correla-
tions across multiple time series while remaining robust to outliers,
we equip DARF with a correlated robust forecaster (CORF), which
is an asymmetric encoder-decoder framework. CORF’s encoder is
a graph convolutional network that is designed to extract correla-
tions among multiple time series and produce correlated features.
CORF’s decoder is a seasonal-trend decomposition-based compo-
nent that decomposes the correlated features into seasonal and
trend backbones to achieve robustness to outliers.
Addressing challenge 2: Distinguishing event features from out-
liers is crucial, as it ensures model robustness while enhancing
prediction accuracy. However, labeling individual outliers is time-
consuming and expensive. To overcome this, we integrate weak
supervision into DARF, employing readily available event labels,
such as public holidays. We assign time series without weak labels
to a source domain and assign those with weak labels to a tar-
get domain. Then, the adversarial training ensures that the model
captures event features effectively. By minimizing the distribution
divergence between the source and target domains, themodel aligns
the distribution of time series where events occurred with that of

time series without events. This approach enables the model to
simultaneously capture event features and retain robustness to
outliers.

In summary, it is crucial to enable robust forecasting that can
capture correlations in multivariate time series. Moreover, captur-
ing event features is essential both theoretically and practically to
improve prediction accuracy. We make three main contributions:

• We propose a novel asymmetric encoder-decoder framework,
called CORF, that comprises a GNN-based encoder designed to
capture correlations among multiple variables and an STD-based
decoder designed to ensure robustness.

• We introduce a novel adversarial domain adaptation framework
to handle event features, leveraging weakly labeled data to dis-
tinguish source and target domains.

• We conduct extensive experiments on public real-world data sets
that demonstrate state-of-the-art prediction accuracy. The ex-
perimental results show that the proposed DARF can effectively
capture event information and improves robustness to outliers.

The remainder of the paper is organized as follows. Section 2 covers
preliminaries. Section 3 provides details the methodology. Section 4
reports on the experimental study. Section 5 reviews related works
and Section 6 concludes.

2 PRELIMINARIES
2.1 Multivariate Time Series Forecasting
We denote an observation in a multivariate time series by x𝑡 ∈ R𝑁 ,
where 𝑡 is a timestamp and 𝑁 indicates the number of variables in
the observation. Amodel F uses a historical series ⟨x𝑡−𝐻+1, x𝑡−𝐻+2
, . . . , x𝑡 ⟩ to forecast a future series ⟨x̂𝑡+1, x̂𝑡+2, . . . , x̂𝑡+𝐹 ⟩, where 𝐻
and 𝐹 are the length of historical and future series, respectively.
The forecasting procedure is formulated as follows.

FΦ (x𝑡−𝐻+1, x𝑡−𝐻+2, ..., x𝑡 ) = (x̂𝑡+1, x̂𝑡+2, ..., x̂𝑡+𝐹 ), (1)

where Φ represents the parameters learned from training.

2.2 Weak Labels
Weak labels, which can often be acquired in an easy and cost-
effective manner, serve to provide extra, pertinent information
with the purpose of improving forecasting performance. For time
series data, weak labels often relate to semantics associated with
timestamps. For example, a weak label may indicate whether a
timestamp is associated with an event such as a holiday, peak
hours, or a sporting event. A raw dataset D = {(H𝑖 , F𝑖 )}𝐼𝑖=1 con-
tains 𝐼 multivariate time series. Here, for the 𝑖-th time series, H𝑖 =
⟨x𝑖,𝑡−𝐻+1, x𝑖,𝑡−𝐻+2, . . . , x𝑖,𝑡 ⟩ denotes the historical series, while
F𝑖 = ⟨x𝑖,𝑡+1, x𝑖,𝑡+2, . . . , x𝑖,𝑡+𝐹 ⟩ represents the ground truth of the
future series. Weak labels are used to divideD into a source domain,
DS = {(H𝑖 , F𝑖 )}𝐼S𝑖=1, where the corresponding weak labels indicate
that no events occur, and a target domain,DT {(H𝑗 , F𝑗 )}𝐼T𝑗=1, where
the corresponding weak labels indicate the occurrences of events.
For example, when we use weak labels indicating holidays, the
source domain contains the time series from non-holidays, whereas
the target domain contains the time series from holidays. We have
𝐼S + 𝐼T = 𝐼 , and we often have 𝐼S > 𝐼T , i.e., the source domain has

767



more samples than does the target domain. The proposed model is
trained by the divided source and target domains.

2.3 Self-adaptive Graph Learning
A graph 𝐺 = (V, E,A) is comprised of a set of nodesV , a set of
edges E, and adjacency matrix A ∈ R𝑁×𝑁 of weights that capture
the correlations among the 𝑁 nodes. If 𝑣𝑖 , 𝑣 𝑗 ∈ V and (𝑣𝑖 , 𝑣 𝑗 ) ∈
E, the non-zero value of A𝑖, 𝑗 denotes the weight of edge (𝑣𝑖 , 𝑣 𝑗 );
otherwise, the value is zero. In time series forecasting, the nodes
represent variables, and A captures the correlations among these
variables. Instead of using a traditional static graph with a structure
predefined by domain experts, we employ a self-adaptive graph
learning component [42]. This is because the correlations among
variables in multivariate time series are often hidden. The self-
adaptive adjacencymatrixA is learned during training. The learning
procedure is defined as follows.

M1 = tanh(𝛼E1Θemb1)
M2 = tanh(𝛼E2Θemb2)

A = ReLU(tanh(M1MT
2 −M2MT

1 )),
(2)

where E1 and E2 denote randomly initialized variable embeddings,
Θemb1 andΘemb2 are learnable parameters, tanh(·) is the hyperbolic
tangent function, ReLU(·) is the rectified linear unit activation
function.

3 METHODOLOGY
3.1 Framework of DARF
In this section, we provide the details of the DARF framework.
Furthermore, we explain how DARF utilizes weak labels to establish
the source and target domains, and how it constructs an adversarial
domain adaptation for time series forecasting.
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Figure 2: The DARF Framework. DARF employs weak labels
to partition the source and target domains. It then pre-trains
CORF using the source domain, followed by adversarial train-
ing of DARF using both domains. The trained CORF serves
as the final forecaster.

An overview of DARF is shown in Fig. 2. We first utilize weak
labels to divide raw dataset D = {(H𝑖 , F𝑖 )}𝐼𝑖=1 into source domain
DS = {(H𝑖 , F𝑖 )}𝐼S𝑖=1 and target domain DT {(H𝑗 , F𝑗 )}𝐼T𝑗=1. In this
study, we assign any time series that includes holiday labels to the

target domain and assign the remaining time series to the source
domain.

Then, DARF uses the source domainDS to pre-train its encoder-
decoder framework, CORF. Prior to adversarial training, we pre-
train the model using source domain DS to establish the distribu-
tion of model parameters within the latent space. This facilitates the
convergence of model parameters to the distribution of the target
domain DT during adversarial training. At this point, the goal of
CORF is to minimize the forecasting loss, Lfor , which is defined as
follows.

Lfor (DS ;G, F ) =
1
𝐼S

𝐼S∑︁
𝑖=1

𝑙for (F (G(H𝑖 )), F𝑖 ), (3)

where G(·) represents the CORF encoder, F (·) indicates the CORF
decoder, and 𝑙for (·) denotes the loss function for the CORF decoder.
Here, the CORF encoder, a GNN, is leveraged to capture correlations,
while the CORF decoder, a forecasting model grounded in STN,
ensures model robustness. The parameters being optimized are Θ
and Φ, which belong to the CORF encoder and the CORF decoder,
respectively. The detailed procedure is covered in Section 3.2.

Once CORF completes pre-training, we initiate theweakly guided
adaptation for both the source and target domains. As illustrated
in Fig. 2, the symbol ⊕ denotes the merging of sampling from the
source and target domains, drawing samples from both source and
target domains simultaneously for training on an equal scale. For
instance, if DARF draws ten samples from the source domain, it will
extract ten samples from the target domain. The rationale is that
there are fewer in the target domain than in the source domain. By
balancing the sampling scale, the model balances the loss between
the target and source domains during training, thereby enhancing
the model’s capacity to capture event features. Subsequently, the
learned parameters Θ and Φ are utilized to initialize CORF’s pa-
rameters. Given our adoption of an adversarial learning strategy,
the CORF encoder serves as the generator within the adversarial
network, while the Domain Critic acts as the discriminator. The
Domain Critic is a neural network designed to reduce the distribu-
tion divergence between the source and target domains. Thus, the
Domain Critic tries to maximize the domain lossLdom to reduce the
distance between the source and target domains. When the domain
loss is larger, it becomes more difficult for the Domain Critic to
distinguish whether a feature belongs to the source or the target
domain, indicating that their distributions are getting closer. The
domain loss Ldom is defined as follows.

Ldom (DS,DT ;C,G) =

𝑙dom
©­« 1
𝐼S

𝐼S∑︁
𝑖=1
C(G(H𝑖 )),

1
𝐼T

𝐼T∑︁
𝑗=1
C(G(H𝑗 ))ª®¬ ,

(4)

where C(·) denotes the Domain Critic and 𝑙dom (·) represents the
metric to determine the distribution divergence. A set of parameters
being optimized are 𝛀 which belong to the Domain Critic.

The adversarial manner necessitates alternating training be-
tween the CORF encoder and the Domain Critic. Therefore, the
comprehensive optimization objective of weakly guided adaptation
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is defined as follows.
min
Θ,Φ

max
Ω
L(D;G, F ) =min

Θ,Φ
max

Ω
Lfor (DS ;G, F )

+ Lfor (DT ;G, F )
− Ldom (DS,DT ;C,G)

(5)

Here, we implement adversarial domain adaptation in time series
forecasting by minimizing the forecasting loss Lfor and maximiz-
ing the domain loss Ldom. The detailed procedure is presented in
Section 3.3.

DARF repeatedly carries out the weakly guided adaptation until
Θ, Φ, and Ω converge. It retains the model structure of CORF along
with its encoder and decoder parameters, Θ and Φ. At this moment,
CORF serves as the final forecaster.

3.2 CORF Pre-training
In this section, we delve into the principles of CORF, elucidating
how its encoder captures correlations within multivariate time
series, and how its decoder decomposes time series to ensure ro-
bustness to outliers. To lay the groundwork for the weakly guided
adaptation in reducing the distribution divergence between source
and target domains, we detail how to pre-train CORF on the source
domain, facilitating the convergence of CORF parameters in the
latent space.

3.2.1 CORF Encoder. Correlation plays a pivotal role in multi-
variate time series forecasting, as it uncovers relationships and
dependencies among various time series. However, traditional ro-
bust forecasting frameworks primarily concentrate on enhancing
the model’s robustness to outliers via decomposing time series
individually, which hinders their ability to effectively utilize the
correlations.

As illustrated in Fig. 3, the CORF encoder processes the input his-
torical time series H𝑖 = ⟨x𝑖,𝑡−𝐻+1, x𝑖,𝑡−𝐻+2, ..., x𝑖,𝑡 ⟩, and generates
correlated features G𝑖 = ⟨g𝑖,1, g𝑖,2, ..., g𝑖,𝐻 ⟩. To capture short-term
temporal dynamics, two gated 1-D convolutional neural networks
(CNN-1 and CNN-2) [18] are utilized, which in turn assist the graph
convolutional network in propagating information among neigh-
boring time series via the learned adjacency matrix A =

∑𝐾
𝑘=1 A𝑘 .

This approach facilitates the extraction of correlations and the trans-
formation of raw time series into representations within the latent
space.

The CORF encoder employs a diffusion convolution layer [20]
to establish these correlations, resulting in correlated features G𝑖 .
The diffusion processes delineate the manner in which information
propagates throughout the graph structure, capturing long-range
dependencies and higher-order relationships among multiple time
series. It is formulated as follows.

G𝑖 = MLP(
𝐾∑︁
𝑘=1

A𝑘X′𝑖Θdcl), (6)

where G𝑖 denotes the output correlated features, A𝑘 represents the
𝑘-th learned self-adaptive adjacency matrix obtained through Eq. 2,
with 𝐾 signifying the diffusion steps. X′

𝑖
refers to the input signals,

while Θdcl indicates the learned matrix. The MLP(·) represents a
3-layer perceptron utilized to reshape the representation, ensuring
the alignment of input features for the CORF decoder.

The input signal of diffusion convolution layer X′
𝑖
is generated

by the gated 1-D CNNs, which are employed to construct represen-
tations containing short-term temporal information. The efficacy of
the gating mechanism has been demonstrated to be advantageous
in capturing temporal features [10]. The gated CNNs take input
H𝑖 = ⟨0, x𝑖,𝑡−ℎ+1, x𝑖,𝑡−ℎ+2, ..., x𝑖,𝑡 ⟩, where the padded 0 corresponds
to PAD as illustrated in Fig. 3. The output of these gated CNNs,
denoted as X′

𝑖
, is formulated as follows.

X′𝑖 = tanh(Θcnn1X𝑖 + 𝑏𝑖𝑎𝑠1) ⊙ 𝜎 (Θcnn2X𝑖 + 𝑏𝑖𝑎𝑠2), (7)

where tanh(·) denotes the hyperbolic tangent function, 𝜎 (·) repre-
sents the sigmoid function, ⊙ indicates the Hadamard Product, and
Θcnn1, Θcnn2, 𝑏𝑖𝑎𝑠1, and 𝑏𝑖𝑎𝑠2 correspond to learned parameters.

Here, we obtain the output of the CORF encoder, correlated
features G𝑖 , which blend features frommultiple time series. Because
G𝑖 passes through a diffusion convolution layer, which propagates
features of multiple time series through adjacency matrices A.

3.2.2 CORF Decoder. The CORF decoder is tasked with robustly
predicting future time series. We design the decoder with two
primary considerations in mind: capturing complex temporal dy-
namics effectively and decomposing seasonal-trend backbones. To
achieve these objectives effectively, we design a two-level structure
that encompasses both intra-block and inter-block components.
For simplicity, the decoder depicted in Fig. 3 comprises a single
trend and seasonal block. However, we accommodate a customiz-
able number of blocks to cater to diverse types of time series with
multiple trend and seasonal patterns.

The CORF decoder takes correlated features G𝑖 as input and gen-
erates forecasting series F̂𝑖 = ⟨x̂𝑖,𝑡+1, x̂𝑖,𝑡+2, ..., x̂𝑖,𝑡+𝐹 ⟩. The CORF
decoder is a residual neural network that aggregates the outputs
from each block. Consequently, the outputs of the trend and sea-
sonal blocks are independently decomposed functions with fixed
analytic forms, exhibiting robustness to outliers.

From the intra-block perspective, we design two distinct trend
and seasonal blocks to capture the trend and seasonal temporal
dynamics. For instance, the trend block receives correlated features,
denoted as Gtre . As shown in Fig. 3, the trend block is the first block,
resulting in Gtre being equal to G𝑖 . The trend block generates two
polynomials: the forecast polynomial F̂tre , tasked with predicting
future trend patterns, and the backcast polynomial Ĝtre , which con-
centrates on reconstructing historical trend patterns. Specifically,
the intra-block components utilize gated temporal convolutional
networks (TCN-1 and TCN-2) [42, 43], which have been shown to
exhibit advantages such as capturing long-range dependencies and
providing robustness. The output of gated temporal convolutional
networks G′tre in the trend block is defined as follows.

G′tre = tanh(Φtcn1Gtre + 𝑏𝑖𝑎𝑠3) ⊙ 𝜎 (Φtcn2Gtre + 𝑏𝑖𝑎𝑠4), (8)

where Φtcn1, Φtcn2, 𝑏𝑖𝑎𝑠3 and 𝑏𝑖𝑎𝑠4 are the learned parameters. Sub-
sequently, the backcast and forecast layers receive G′tre as input
and generate the corresponding reconstructed and forecasted poly-
nomials, respectively. The forecast trend polynomial F̂tre is defined
as follows.

𝝉 = FC(Φfor1G′tre)

F̂tre =
𝑃∑︁
𝑝=0

𝝉𝑝 f𝑝 ,
(9)
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Figure 3: Overview of CORF. The CORF encoder captures correlations among multiple time series and outputs correlated
features, while the CORF decoder detects temporal dynamics in the time series and outputs decomposed seasonality and trend
to achieve strong robustness to outliers.

where FC(·) represents the forecast layer, a fully connected layer
featuring the learnable parameter Φfor1. The vector f = [0, 1, ..., 𝐹 −
1]/𝐻 denotes the reconstructed observations. Additionally, 𝝉 sig-
nifies the learned parameters of the forecast polynomial, while 𝑃
indicates a hyper-parameter that controls the highest power. Simi-
larly, the backcast trend polynomial Ĝtre can be obtained using the
same approach. The gated TCNs process applied in the seasonal
block is consistent with the one employed in the trend block.Within
the seasonal block, the gated TCNs accept Gsea as input and gener-
ate G′sea as output. The main distinction is that the reconstructed
and forecasted sequences in the seasonal block are based on Fourier
Series. The forecast Fourier series F̂sea is defined as follows.

𝝐 = FC(Φfor2G′sea)

F̂sea =

⌊𝐹/2−1⌋∑︁
𝑝=0

(𝝐𝑝 cos(2𝜋𝑝f) + 𝝐⌊𝑝+𝐹/2⌋ sin(2𝜋𝑝f)),
(10)

where Φfor2 denotes the learned parameters of the fully connected
layer and 𝝐 represents the learned parameters of the forecast Fourier
series. Each module generates forecast series by producing func-
tions with fixed analytic forms, in which f serves as independent
variables. The decoder optimizes these function parameters, 𝝉 and
𝝐 , while maintaining the form of the output functions unchanged.

From the inter-block perspective, the decoder employs a residual
connection [52] between the trend and seasonal blocks. We incor-
porate residual connections to serve multiple purposes: besides mit-
igating the vanishing gradient issue and expediting convergence,
their primary function is to establish independent seasonal and
trend time series backbones. This, in turn, bolsters the model’s ro-
bustness in dealing with outliers and boosts its overall performance.
Each block receives as input the difference between the previous
block’s input and the output of that block’s backcast. For instance,
as depicted in Fig. 3, the seasonal block’s input is determined by
the difference between the trend block’s input and the output of
the reconstructed polynomial from the trend block’s backcast. The

input of the seasonal block Gsea can be defined as follows.

Gsea = Gtre − Ĝtre (11)

The reconstructed outputs from these blocks aremerged to gener-
ate the forecasted future time series. The forecasting series, denoted
by F̂, is defined as follows.

F̂ = F̂tre + F̂sea, (12)

where the forecasting series F̂ is a combination of trend and seasonal
series, thus rendering the forecasting and optimization procedures
as independent processes.

Algorithm 1 CORF Pre-training
Input: Source data DS ; historical and forecasting horizon 𝐻 , 𝐹 ;

highest power 𝑃 ; batch size 𝑏; learning rate of CORF 𝜂for
Output: Learned parameters Θ, Φ of the encoder and decoder
1: Initialisation: Initialize the parameters Θ, Φ randomly
2: while parameters Θ and Φ are not converge do
3: Load batch of time series {H𝑖 , F𝑖 }𝑏𝑖=1 from DS
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0 to ⌊𝐼S/𝑏⌋ do
5: G𝑖 ← G(H𝑖 )
6: F̂𝑖 ← F (G𝑖 )
7: Φ← Φ − 𝜂for∇ΦLfor (F̂𝑖 , F𝑖 )
8: Θ← Θ − 𝜂for∇ΘLfor (F̂𝑖 , F𝑖 )
9: end for
10: end while

3.2.3 Pre-training on the source domain. As illustrated in Alg. 1,
we employ the source domain to train the encoder-decoder frame-
work CORF. The objective is to ascertain the position of the source
domain within the latent space, thereby enabling the transfer of
the target domain into this defined space to reduce the distribution
divergence between the source and the target. Consequently, the
optimization goal is to minimize the forecasting loss, denoted as
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Lfor , defined as follows.

min
Θ,Φ
Lfor (F̂𝑖 , F𝑖 ) = min

Θ,Φ

1
𝐼S

∑︁
H𝑖 ∈DS

| |FΦ (GΘ (H𝑖 )) − F𝑖 | |1, (13)

where Θ = {𝛼,Θemb1,Θemb1,Θdcl,Θcnn1,Θcnn1} signifies the col-
lection of learnable parameters associated with the encoder, while
Φ = {Φtcn1,Φtcn2,Φfor1,Φfor2,𝝉 , 𝝐} denotes the corresponding set
for the decoder.

3.3 Weakly Guided Adaptation
Once the distribution of the source domain in the latent space is de-
termined, we use adversarial training to project the target domain
into the same latent space, aiming to minimize the distribution
divergence with the source domain. This strategy enables the CORF
decoder to better fit the event features within the target domain,
thereby boosting prediction accuracy. We first elucidate the opera-
tion of the Domain Critic and then detail the optimization process
of weakly guided adaptation.

Domian Critic
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Figure 4: Overview of Domain Critic. The blue, orange, and
black arrows denote data flows from the source, target, and
combined domains, respectively.

3.3.1 Domain Critic. The distribution divergence in marginal prob-
ability distributions between the source and target domain, coupled
with the sparsity of samples in the target domain, constitute critical
factors that impede the model’s capacity to fit the data accurately.
Domain Critic serves as a discriminator within adversarial domain
adaptation frameworks, with the primary objective of minimizing
distribution divergence.

As illustrated in Fig. 4, the Domain Critic utilizes theWasserstein
metric, also known as the Wasserstein distance [26], which aims to
minimize the distance between the correlated feature distributions
G𝑖 and G𝑗 to assist the model in capturing event features. Here, G𝑖
and G 𝑗 represent the outputs derived from the source domain DS
and the target domain DT processed through the CORF encoder,
respectively. Domain Critic accepts the correlated features G𝑖 , G𝑗

as input and generates corresponding domain distributions 𝑐𝑖 , 𝑐 𝑗
for optimizing parameters in CORF encoder and Domain Critic. A
smaller distance between the source and target domains signifies
a more similar distribution of G𝑖 and G𝑗 within the latent space.
Consequently, CORF decoder is capable of capturing features in
the target domain even when the samples in the target domain
are limited, as the CORF decoder is fully trained using the source
domain, and the distribution of the target domain resembles the
distribution of the source domain.

Initially, as shown in Fig. 4, the correlated features G𝑖 , G𝑗 are
processed through a flattened layer and a three-layer multilayer
perceptron (MLP) to generate the domain distributions 𝑐𝑖 and 𝑐 𝑗 ,
defined as follows.

𝑐𝑖 = MLP(Ωmlp · Flatten(G′𝑖 )), (14)

where Ωmlp denotes the learned parameters for the 3-layer MLP.
The generation process for the domain distribution 𝑐 𝑗 follows the
same procedure as that for 𝑐𝑖 .

Then, to achieve our optimization objective Lwd , we compute
the Wasserstein distance between the two distributions, 𝑐𝑖 and
𝑐 𝑗 . As directly calculating the integral presents challenges, we in-
stead determine the dual representation. According to the Monge-
Rubinstein theorem, the dual representation of the Wasserstein
distance [26]𝑊1 can be expressed as follows.
𝑊1 (XS,XT ) = sup

| | C | |𝐿≤1
(EG𝑖∼XS [C(G𝑖 )] − EG𝑗∼XT [C(G𝑗 )]),

(15)
where C(·) represents the Domain Critic function that transforms
correlated features G𝑖 and G𝑗 into domain distributions 𝑐𝑖 and
𝑐 𝑗 . Moreover, XS and XT signify one metric space of correlated
features, while sup(·) denotes the supremum of a set, subject to the
following Lipschitz semi-norm:

| |C| |𝐿 = sup
��������C(G𝑖 ) − C(G𝑗 )

𝑑 (G𝑖 ,G𝑗 )

��������
1
, (16)

where function 𝑑 (G𝑖 ,G𝑗 ) denotes the distance between samples G𝑖
and G𝑗 . The parameters of the Domain Critic function, C, adhere
to the 1-Lipschitz constraint, which enables us to approximate the
maximization of the loss, Lwd , defined as follows.

Lwd (𝑐𝑖 , 𝑐 𝑗 ) =
1
𝐼S

∑︁
H𝑖 ∈DS

C(G(H𝑖 )) −
1
𝐼T

∑︁
H𝑗 ∈DT

C(G(H𝑗 ))

=
1
𝐼S

∑︁
G𝑖 ∈XS

C(G𝑖 ) −
1
𝐼T

∑︁
G𝑗 ∈XT

C(G𝑗 )
(17)

Upon obtaining the optimization objective function, Lwd , it is
crucial to ensure that the final domain loss function, Ldom, adheres
to the 1-Lipschitz constraint. Weight clipping, which restricts the
model’s parameters within a fixed range, can ensure the 1-Lipschitz
constraint, but leads to gradient vanishing or exploding in model
fitting. Inspired by the research [13], we incorporate a gradient
penalty, Lgp , as defined by the formula:

Lgp (G𝑖 ,G𝑗 ) =
1
𝐼gp

∑︁
Ĝ∈X̂
( | |∇ĜC(Ĝ) | |2 − 1)

2, (18)

where Ĝ signifies a random sample taken along the line connected
the correlated feature pair G𝑖 and G 𝑗 . The set of potential samples,
X̂, comprises all possible instances of Ĝ. Furthermore, 𝐼gp denotes
the total number of samples. Employing this sampling method
effectively enforces the 1-Lipschitz constraint and simultaneously
tackles issues related to gradients vanishing and exploding.

3.3.2 Weekly guided adaptation on the source and target domain. As
depicted in Alg. 2, we simultaneously and uniformly sample from
both source and target domains generated from the weakly labeled
process. We load the parameters Θ and Φ, obtained during the pre-
training stage, into CORF. Next, we train the Domain Critic, and
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Algorithm 2 DARF Weakly Guided Adaptation
Input: Source and target data DS , DT ; historical and forecasting

horizon 𝐻 , 𝐹 ; highest power 𝑃 ; weight parameters 𝜔 ,𝜆; batch
size 𝑏; learning rate for CORF 𝜂for , and for Domain Critic 𝜂dom

Output: Learned parameters Θ, Φ of the encoder and decoder
1: Initialisation: Utilize the parameters Θ, Φ learned during pre-

training; initialize parameter of Domain Critic Ω randomly
2: while parameters Θ, Φ, and Ω are not converge do
3: Load batch of time series {H𝑖 , F𝑖 }𝑏𝑖=1 and {H𝑗 , F𝑗 }𝑏𝑗=1 from

DS and DT
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0 to max(⌊𝐼S/𝑏⌋, ⌊𝐼T/𝑏⌋) do
5: G𝑖 ← G(H𝑖 ), G𝑗 ← G(H𝑗 )
6: 𝑐𝑖 ← C(G𝑖 ), 𝑐 𝑗 ← C(G𝑗 )
7: Ω← Ω − 𝜂dom∇Ω [Lwd (𝑐𝑖 , 𝑐 𝑗 ) − 𝜔Lgp (G𝑖 ,G𝑗 )]
8: end for
9: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0 to max(⌊𝐼S/𝑏⌋, ⌊𝐼T/𝑏⌋) do
10: G𝑖 ← G(H𝑖 ), G𝑗 ← G(H𝑗 )
11: F̂𝑖 ← F (G𝑖 ) , F̂𝑗 ← F (G𝑗 )
12: 𝑐𝑖 ← C(G𝑖 ), 𝑐 𝑗 ← C(G𝑗 )
13: Φ← Φ − 𝜂for∇Φ [Lfor (F̂𝑖 , F𝑖 ) + Lfor (F̂𝑗 , F𝑗 )]
14: Θ← Θ−𝜂for∇Θ [Lfor (F̂𝑖 , F𝑖 )+Lfor (F̂𝑗 , F𝑗 )+𝜆Lwd (𝑐𝑖 , 𝑐 𝑗 )]
15: end for
16: end while

then jointly train the encoder and decoder of CORF. In generative
adversarial learning, it is essential to alternate training between the
generator and discriminator (corresponding to the CORF encoder
and Domain Critic) to maintain a balanced learning process. As a
result, we initially fix the CORF encoder and focus on training the
Domain Critic. The optimization goal is to maximize the domain
loss, given by Ldom and defined as follows.

max
Ω
Ldom = max

Ω
Lwd (𝑐𝑖 , 𝑐 𝑗 ) − 𝜔Lgp (G𝑖 ,G𝑗 ), (19)

where Ω = {Ωmlp} signifies the collection of learnable parameters
associated with Domain Critic, and𝜔 denotes the weight parameter
that balances the importance of the gradient penalty Lgp . Subse-
quently, we fix the Domain Critic and continue with the training of
both the encoder and the decoder of CORF. The objective function
is defined as follows.

min
Θ,Φ
((Lfor (F̂𝑖 , F𝑖 ) + Lfor (F̂𝑗 , F𝑗 )) + 𝜆Lwd (𝑐𝑖 , 𝑐 𝑗 )), (20)

where 𝜆 denotes the parameter that balances the importance ofLwd
and the forecasting loss Lfor . By employing an alternating training
approach, the CORF encoder is afforded the opportunity to adapt
and enhance its outputs in response to the current performance of
the Domain Critc, while the Domain Critic simultaneously learns
to adjust to the evolving outputs generated by the CORF encoder.

4 EXPERIMENTAL STUDY
4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics. We perform experimental
studies on three benchmark datasets.
Electricity: The Electricity dataset [22], alternatively referred to
as the Individual Household Electric Power Consumption Data Set,
is accessible via the UCI repository.

ETTh2: The ETTh2 dataset [51] is a dataset that records the tem-
perature and other associated variables of electricity transformers.
Traffic: The Traffic dataset [19], published by the California De-
partment of Transportation, captures traffic congestion data on
the San Francisco Bay area freeways through multiple sensors at
different locations.

Table 1: Dataset related statistics.

Dataset 𝑁 Length Split Ratio 𝐻 𝐹 Event

Electricity 4 2075259 7:1:2 6∼24 6∼24 8.89%
ETTh2 7 17420 7:1:2 6∼24 6∼24 7.34%
Traffic 862 17544 7:1:2 6∼24 6∼24 8.61%

Tab. 1 provides summary statistics related to the three datasets,
where 𝑁 denotes the number of variables, “Length” represents the
number of timestamps, “Split Ratio” indicates the train-validation-
test distribution for the entire dataset, “Event” signifies the ratio of
the number of timestamps assigned weak labels to the total number
of timestamps, and 𝐻 and 𝐹 denote the lengths of the historical and
forecasting horizons, respectively.

We adhere strictly to the scheme proposed in two previous stud-
ies [34, 37] and introduce three types of outliers—spike, dip, and
abrupt trend changes—into the three real-world datasets. Spike out-
liers refer to sudden, significant increases in the time series, such
as traffic congestion caused by an accident. Dip outliers indicate
sudden, substantial decreases in the time series, such as missing
data resulting in null values. Finally, abrupt trend changes refer to
sudden changes in the time series trend, such as a power outage
causing power consumption to remain at zero for a duration of
time.

We utilize local public holidays, including the day before, the
day of, and the day after a holiday, as weak labels to establish the
target domain. This is motivated by the observation that the feature
distribution exhibits similarity during times adjacent to holidays.
Metrics:We employ the well-established time series forecasting
metrics, mean absolute error (MAE) and mean absolute percentage
error (MAPE) [40, 41], to assess the prediction accuracy of DARF
and other baselines. Lower values for these metrics indicate higher
prediction accuracy.

4.1.2 Baselines. We chose two categories of baselines: one group
consists of methods based on graph neural networks, while the
other relies on seasonal-trend decomposition approaches. In the
graph neural network-based methods, we consider MTGNN [42]
and STEP [30]. (1) MTGNN combines the advantages of graph con-
volutional modules and temporal convolution modules. The graph
convolutional module is employed to establish short-term correla-
tions among multiple time series, while the temporal convolution
module captures the temporal dynamics of the time series, making
it particularly adept at predicting short time series. (2) STEP is a pre-
trained model that integrates transformer and graph structures. The
transformer offers significant advantages for long time series pre-
diction, and therefore, the pre-trained transformer provides more
long-term dependencies for subsequent graph structures to enhance
prediction accuracy. In seasonal-trend decomposition-based meth-
ods, we consider RobustSTL [34], CoST [39], FEDFormer [52], and
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Dlinear [48]. (3) RobustSTL is a statistical time series decomposition
model. Therefore, we first use a temporal convolutional network to
predict the time series, and then apply RobustSTL to decompose the
forecasting sequences to enhance the model’s ability to be robust
to outliers. (4) CoST utilizes a trend feature disentangler to extract
trend features, then employs a fast Fourier transform to extract
the periodic features. Lastly, a contrastive learning component is
used to learn the decomposed parts separately. (5) FEDFormer is a
transformer-based model. It first decomposes the time series into
trend and periodic components, and then connects the extracted fea-
tures using frequency-enhanced attention to improve the model’s
prediction accuracy for long sequences. (6) Dlinear initially uses
FEDFormer’s seasonal-trend decomposition module to decompose
the time series, and then adds a linear layer to learn the decomposed
features for prediction.

4.1.3 Implementation Details. All experiments are conducted on
a server running Linux 18.04 with an Intel Xeon W-2155 CPU @
3.30GHz and one Tesla V100 GPU with 30GB memory.

We utilize grid search coupled with a greedy strategy to identify
the optimal hyperparameters from the aforementioned methods.
Furthermore, we also carefully tune the hyperparameters based on
the recommendations of baselines. We utilize the Adam optimizer
with a learning rate for𝜂𝑓 𝑜𝑟 and𝜂𝑑𝑜𝑚 within the range [1𝑒−4, 1𝑒−2].
The batch size 𝑏 is selected from the set {32, 64, 128, 256, 512}. The
number of trend and seasonal blocks are chosen from the options
{1, 2, 3, 4, 5}. The value for the highest power 𝑃 is derived from
the set {1, 2, 3, 4, 5}. Additionally, weight parameters 𝜔 and 𝜆 are
chosen from the set {0.1, 0.5, 1, 2, 10}.

4.2 Comparison of Forecasting Accuracy
We conduct experiments on the aforementioned baselines and
DARF, using benchmark datasets. The results are presented in Tab. 2,
where the best results are highlighted in bold, and the second-best
are underlined. In this section, we set 𝐻 and 𝐹 to the same values.
As shown in Tab. 2, DARF demonstrates state-of-the-art prediction
accuracy across almost all datasets and for all forecasting horizon
𝐹 in comparison to the other baselines.

The graph neural network-based methods, MTGNN and STEP,
exhibit better performance when the forecasting horizon is at most
12, while their prediction accuracy weakens when the horizon
exceeds 12. This can be attributed to the construction of a static
graph in MTGNN, leading to correlations that do not change with
temporal dynamics. STEP, on the other hand, employs a pre-train
transformer-based encoder to provide long-term temporal dynam-
ics to the graph structure, resulting in better performance compared
to MTGNN when the forecasting horizon exceeds 12. However, it
only mitigates the static impact of the correlations. Consequently,
as the forecasting horizon increases, the prediction accuracy of
graph neural network-based methods tends to decline.

Methods based on seasonal-trend decomposition, such as FED-
former, NLinear, CoST, and RobustSTL, generally exhibit weaker
performance compared to graph neural network-based methods
when the forecasting horizon is at most 12, but demonstrate bet-
ter performance when the horizon exceeds 12. This is because
seasonal-trend decomposition-based methods are not impacted by
static graphs and can capture long-term features. Specifically, the

prediction accuracy of FEDformer and NLinear increases with the
rise in the forecasting horizon. Thus, FEDformer and NLinear are
robust for long time series. Furthermore, the prediction accuracy
of CoST and RobustSTL is insensitive to changes in the forecasting
horizon. However, due to their simple structures, they are unable to
capture complex temporal dynamics in time series, which prevents
them from achieving high prediction accuracy.

DARF demonstrates stable prediction accuracy across both long
and short forecasting horizons. The CORF decoder employs a de-
composition strategy, enabling it to capture long-term features
of time series, and hence, it performs well with long time series.
Moreover, the CORF decoder utilizes a residual network structure
instead of a stack of multi-layer neural networks. This accelerates
the convergence speed of model parameters and reduces the risk
of overfitting on short time series, therefore ensuring good predic-
tion accuracy on a short forecasting horizon. In addition, CORF’s
encoder enhances its ability to capture correlations between multi-
ple time series, which also contributes to improving the model’s
prediction accuracy. A more detailed explanation of the impact
of correlations and event features on robust forecasting will be
provided in the ablation study.

4.3 Ablation Study
To assess the impact of correlations, the seasonal-trend decompo-
sition framework, and event features on robust forecasting, we
conduct an ablation study, as illustrated in Tab. 3.

We establish two baselines, DARF w/o CORF-encoder-1 and
DARF w/o CORF-encoder-2, to scrutinize the effect of correlations
on robust forecasting. In DARF w/o CORF-encoder-1, we substitute
the CORF encoder with a temporal convolutional network, and in
DARF w/o CORF-encoder-2, we replace the CORF encoder with
self-attention [32]. The results indicate a decrease in prediction
accuracy in both setups compared to the original DARF, suggesting
a significant contribution of correlations to prediction accuracy.
Consequently, the CORF encoder enhances DARF’s proficiency in
capturing correlations within time series data.

To ascertain the influence of the seasonal-trend decomposition
strategy on robust forecasting, we establish three baselines: DARF
w/o CORF-decoder-1, DARF w/o CORF-decoder-2, and DARF w/o
CORF-decoder-3. These variants replace the CORF decoder with
MTGNN, a temporal convolutional network, and self-attention, re-
spectively, which are skilled in capturing correlations, short-term
temporal dynamics, and long-term temporal dynamics. Neverthe-
less, each of these variants shows a drop in prediction accuracy
compared to DARF, due to their inability to robustly handle out-
liers. This highlights that the CORF decoder equips DARF with the
capacity to withstand perturbations of outliers.

Lastly, we institute the baseline DARF w/o Domain Critic to
ascertain the contribution of the adversarial domain adaptation
framework to DARF’s capacity to capture event features. DARF
w/o Domain Critic eliminates the domain critic component of DARF
and mixes the data from both the source and target domains for
training. Compared to DARF, DARF w/o Domain Critic exhibits a
decline in prediction accuracy, as it faces difficulties in capturing
limited event features. Additionally, we selected a time series en-
compassing holidays randomly to showcase the effect of Domain
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Table 2: Forecasting comparison of different algorithms. The best result is in boldface and the second best is underlined.

Dataset Electricity Traffic ETTh2
Method 𝐹 6 12 24 6 12 24 6 12 24

MTGNN MAE 0.6341 0.6589 0.6726 0.4301 0.4683 0.6080 0.3568 0.3745 0.3858
MAPE 0.1568 0.1638 0.1677 0.0993 0.1010 0.1449 0.1452 0.1576 0.1643

STEP MAE 0.6353 0.6513 0.6685 0.4274 0.4715 0.5775 0.2980 0.3198 0.3215
MAPE 0.1496 0.1538 0.1587 0.0996 0.1082 0.1389 0.1074 0.1294 0.1218

Dlinear MAE 0.6788 0.6588 0.6383 0.6120 0.5877 0.5313 0.6346 0.4352 0.3305
MAPE 0.1657 0.1647 0.1599 0.1461 0.1391 0.1228 0.2703 0.1849 0.1408

FEDformer MAE 0.6703 0.6342 0.6340 0.5062 0.4865 0.4701 0.3519 0.3331 0.3077
MAPE 0.1638 0.1552 0.1532 0.1161 0.1115 0.1054 0.1304 0.1276 0.1271

CoST MAE 0.6582 0.6523 0.6561 0.4588 0.4698 0.4742 0.3701 0.3679 0.3808
MAPE 0.1628 0.1613 0.1631 0.1047 0.1070 0.1076 0.1468 0.1428 0.1553

RobustSTL MAE 0.6501 0.6780 0.6661 0.6508 0.7239 0.6995 0.2696 0.3499 0.3116
MAPE 0.1566 0.1635 0.1617 0.1514 0.1665 0.1631 0.1077 0.1512 0.1596

DARF MAE 0.6086 0.6063 0.5914 0.4135 0.3998 0.3676 0.2284 0.3091 0.2564
MAPE 0.1463 0.1458 0.1415 0.0891 0.0862 0.0799 0.0798 0.1177 0.1231

Table 3: Ablation study of the proposed DARF algorithm. The best result is in boldface.

Dataset Electricity Traffic ETTh2
Method F 6 12 24 6 12 24 6 12 24

DARF w/o CORF-encoder-1 MAE 0.6487 0.6317 0.6315 0.4661 0.4575 0.432 0.3161 0.3452 0.3145
MAPE 0.1564 0.1553 0.1548 0.1125 0.1078 0.0964 0.1225 0.1338 0.1419

DARF w/o CORF-encoder-2 MAE 0.6422 0.6294 0.6268 0.4683 0.4521 0.4308 0.3086 0.3327 0.3083
MAPE 0.1532 0.1520 0.1516 0.1104 0.1042 0.0927 0.1196 0.1264 0.1385

DARF w/o CORF-decoder-1 MAE 0.6254 0.6435 0.6581 0.4228 0.4451 0.5537 0.3292 0.3375 0.3424
MAPE 0.1532 0.1540 0.1625 0.0952 0.0980 0.1321 0.1284 0.1305 0.1457

DARF w/o CORF-decoder-2 MAE 0.6532 0.6714 0.6953 0.5075 0.5248 0.5828 0.3285 0.3563 0.3471
MAPE 0.1642 0.1689 0.1704 0.1204 0.1253 0.1420 0.1255 0.1372 0.1483

DARF w/o CORF-decoder-3 MAE 0.6424 0.6315 0.6284 0.4837 0.4711 0.4662 0.3126 0.3281 0.3019
MAPE 0.1588 0.1534 0.1515 0.1127 0.1106 0.1032 0.1054 0.1272 0.1295

DARF w/o Domain Critic MAE 0.6395 0.6305 0.6230 0.4351 0.4217 0.3899 0.2414 0.3323 0.2742
MAPE 0.1538 0.1526 0.1502 0.0941 0.0892 0.0835 0.0884 0.1235 0.1359

DARF MAE 0.6086 0.6063 0.5914 0.4135 0.3998 0.3676 0.2284 0.3091 0.2564
MAPE 0.1463 0.1458 0.1415 0.0891 0.0862 0.0799 0.0798 0.1177 0.1231

(a) DARF w/o Domain Critic. (b) DARF with Domain Critic.

Figure 5: The effect of Domain Critic on a Holiday Series.

Critic. As illustrated in the Fig. 5, the green curve represents the real
time series, while the red curve denotes the forecasting series. The
experimental results suggest that the adversarial domain adaptation
framework enhances DARF’s ability to seize event features.

4.4 Incremental Study of Outliers and Events
In order to investigate the impact of the ratio of outliers and events
on the robustness of DARF, we perform an incremental study of
outliers and events. Specifically, in the study of outliers, we consider
the influence on model prediction accuracy of outliers that are
independently distributed for each time series or variable, as well
as correlated outliers that occur concurrently across each time
series or variable. We perform experiments on Electricity. We set

the percentages of 1%, 3%, 5%, and 10%. These values thus indicate
the percentages of observations in the training set that are replaced
by outliers, with both the historical and the forecasting horizon set
to 12. Furthermore, for the study of events, we perform experiments,
where the ratio of the number of weak labels used for training to
the total number of weak labels, denoted as P, is adjusted to be 0%,
25%, 50%, 75%, and 100%.

4.4.1 Study of Independent Outliers. The results in Tab. 4 show
that as the proportion of outliers increases, the prediction accu-
racy of both DARF and the baselines decrease. This implies that
the larger the proportion of outliers in the training set, the larger
the disturbance to the forecasting models leading to a reduction in
their prediction accuracy. We also observe that when the propor-
tion of outliers is below 10%, seasonal-trend decomposition-based
methods demonstrate higher robustness to outliers than graph
neural network-based methods. However, when the proportion
of outliers reaches 10%, the graph neural network-based methods
exhibit the best robustness. Indeed, the traditional seasonal-trend
decomposition-based methods undergo a robustness degradation
when the proportion of outliers is high. We find that with the in-
crease in outliers, uniformly distributed outliers are misinterpreted
as periodic patterns by the seasonal module, reducing the model’s
prediction performance. Nevertheless, graph neural network-based
methods maintain robustness even at high outlier proportions. We
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Table 4: Results for Incremental Independent Outliers. The best result is in boldface and the second best is underlined.

Method MTGNN STEP Dlinear FEDformer CoST RobustSTL DARF
Ratio (%) MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

1 0.638 0.1578 0.6259 0.1482 0.6493 0.1623 0.6232 0.1523 0.6157 0.1507 0.6513 0.1581 0.6012 0.1421
3 0.6589 0.1638 0.6513 0.1538 0.6588 0.1647 0.6342 0.1552 0.6523 0.1613 0.6780 0.1635 0.6063 0.1458
5 0.6716 0.1675 0.6541 0.1592 0.6640 0.1658 0.6327 0.1550 0.6721 0.1663 0.6953 0.1783 0.6086 0.1462
10 0.6787 0.1720 0.6614 0.1624 0.6624 0.1661 0.6766 0.1677 0.7200 0.1726 0.6813 0.1679 0.6088 0.1471

Table 5: Results of Incremental Correlated Outliers. The best result is in boldface and the second best is underlined.

Method MTGNN STEP Dlinear FEDformer CoST RobustSTL DARF
Ratio (%) MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

1 0.6604 0.1643 0.6529 0.1550 0.6823 0.1703 0.6222 0.1531 0.6209 0.1504 0.6578 0.1620 0.6080 0.1459
3 0.6717 0.1674 0.6779 0.1604 0.6872 0.1718 0.6425 0.1592 0.6542 0.1563 0.6588 0.1564 0.6125 0.1470
5 0.6898 0.1723 0.6792 0.1679 0.6914 0.1727 0.6352 0.1557 0.6836 0.1608 0.6834 0.1678 0.6143 0.1472
10 0.7001 0.1775 0.6845 0.1705 0.7012 0.1733 0.6835 0.1710 0.7372 0.1771 0.6825 0.1774 0.6139 0.1482

find that when an observation of a variable at a certain times-
tamp becomes an outlier, other variables’ observations at the same
timestamp have a high probability of being normal. The graph can
propagate correlations among variables, thereby enhancing the
influence of normal observations and diminishing the impact of
outliers. CORF integrates the strengths of both, with its encoder
assuring the propagation of correlations among variables, while
the decoder improves the model’s robustness to outliers through
its seasonal-trend decomposition mechanism.

4.4.2 Study of Correlated Outliers. The results in Tab. 5 show that
with an increase in the proportion of correlated outliers, the pre-
diction accuracy of both DARF and the baselines decline, with a
more substantial decline than in the case of independent outliers.
Thus correlated outliers exert a more profound disruptive effect on
forecasting performance. Additionally, we find that for correlated
outliers, the prediction accuracy of the graph neural network-based
methods lags behind that of independent outliers. This can be at-
tributed to the limited ability of the graphs to mitigate the influence
of outliers through information propagation when outliers appear
simultaneously at a particular timestamp across all variables. Under
such circumstances, graph neural network-based methods capture
outlier information and update model parameters accordingly, lead-
ing to incorrect features being learned. Conversely, seasonal-trend
decomposition-based methods are less influenced by correlated
outliers, and their decline in prediction accuracy is less pronounced
than for graph neural networks. The reason is the fact that seasonal-
trend decomposition methods are univariate models that remain
insensitive to whether outliers occur simultaneously. In particular,
CORF’s decoder structure applies seasonal-trend decomposition
independently to each variable, thus rendering it unaffected by
correlated outliers.

Table 6: Prediction accuracy for different P.

Method P 0% 25% 50% 75% 100%

Electricity MAE 0.6305 0.6141 0.6111 0.6089 0.6063
MAPE 0.1526 0.1492 0.1487 0.1462 0.1458

Traffic MAE 0.4217 0.4102 0.4082 0.4024 0.3998
MAPE 0.0892 0.0884 0.0871 0.0867 0.0862

ETTh2 MAE 0.3323 0.3207 0.3159 0.3112 0.3091
MAPE 0.1235 0.1204 0.1193 0.1182 0.1177

4.4.3 Study of Events. As illustrated in Table 6, the prediction
accuracy of DARF exhibits an upward trend across all three datasets
with an increase in the ratio P. This can be attributed to the fact
that a larger P allows DARF to access more information pertaining
to abrupt but normal changes. The model benefits from the more
comprehensive training, enabling it to capture distinctive features.

4.5 Visualization
We proceed to provide a visualization of DARF’s functioning, cov-
ering both a correlated feature distribution analysis and an inter-
pretability analysis. These analyses offer insight into the efficacy of
the adversarial domain adaptation framework that captures event
features and elucidates how DARF interprets the forecasting time
series.

4.5.1 Distribution Analysis. In this experiment, the time series are
classified into common series, event series, and outlier series. Here,
an outlier series refers to any series that contains outliers. Next, the
common series originate from the source domain, while the event
series stem from the target domain. These time series are fed into the
CORF encoder, yielding their respective correlated features. DARF
controls the distribution of these correlated features at this stage.
By visualizing the distribution of these correlated features before
and after the training, we can observe whether DARF successfully
captures the event features and discriminates them from outlier
features.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is a
technique for visualizing high-dimensional data [31]. The higher
similarity between distributions results in closer proximity of points
in a visualization.

Fig. 6 presents the distribution of correlated features visualized
using t-SNE, where green dots represent common features, blue
dots represent event features, and red dots represent outlier features.
Fig. 6(a) shows the distribution of the correlated features before
DARF training. Here, the distribution of event features resembles
that of outlier features closely. There is a significant overlap in
the distribution of event and outlier features, indicating higher
similarity in their distributions. Conversely, Fig. 6(b) depicts the
distribution of correlated features after DARF training. The dis-
tribution of the event features exhibits a significant overlap with
the distribution of common features, while being distant from the
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(a) Before DARF Training. (b) After DARF Training.

Figure 6: Distributions of correlated features.

outlier features. The visualization thus shows how DARF can suc-
cessfully capture event features while being robust to outliers.

4.5.2 Interpretability Analysis. An approach to interpreting fore-
casted time series is to derive analytical forms for the function of
forecasted time series. The CORF decoder decomposes time series
into multiple trend and seasonal functions related to timestamps
with analytic forms. A random case from the Electricity dataset
is selected to illustrate how DARF interprets the forecasting se-
ries. We set the number of seasonal and trend blocks to 2 each. In
Fig. 7(a), the real curve and DARF’s forecasting curve are depicted
in green and red, respectively. Fig. 7(b)–(e) display the curves of
the output at the residual connections of each block in the CORF
decoder, which consist of two periodic functions and two trend
functions. The sum of these functions constitutes the green curve
in Fig. 7(a). After DARF training, the learned parameters 𝝉 and 𝝐
are retained to shape the analytic forms for the trend and seasonal
functions.

4.6 Model Scalability
We proceed to assess the scalability of DARF on the Electricity
dataset. We set the forecasting horizon 𝐹 to 12 and vary the his-
torical horizon 𝐻 among 6, 12, 24, 48, and 96. We then observe the
effects on DARF’s training time, GPU memory use, and prediction
accuracy.

Figs. 8(a) and 8(b) show that as the historical horizon𝐻 increases,
both the training time and GPU memory use of DARF increase.
Among the models covered, Dlinear performs best in terms of
training time and GPU memory use. Notably, as shown in Figs. 8(c)
and 8(d), the prediction accuracy plateaus when 𝐻 reaches and
surpasses 48. To balance the utilization of computational resources
with prediction accuracy, we suggest that the historical horizon 𝐻
is set to 1–2 times the forecasting horizon 𝐹 .

The theoretical time and space complexities of the two compo-
nents of DARF, i.e., CORF and Domain Critic, are 𝑂 (𝐻𝑁 2), and
𝑂 (𝐻𝑁 ), respectively, where 𝑁 is the number of variables. There-
fore, the overall time and space complexity of DARF is 𝑂 (𝐻𝑁 2).

4.7 Parameter Sensitivity
We conduct a sensitivity analysis of four key parameters in DARF
on the Electricity dataset: the number of blocks, the highest power

𝑃 , and the weights 𝜔 and 𝜆. The forecasting horizon 𝐹 and the
historical horizon 𝐻 are both set to 12.

As depicted in Fig. 9(a), DARF achieves the best forecasting
accuracy with 2 blocks. The number of blocks corresponds to the
number of forecasting functions. When set to 2, the forecasting
function comprises two trend functions and two seasonal functions.
In addition, DARF’s forecasting accuracy peaks at 𝑃 = 4. As 𝑃 is
the highest degree of the polynomial in the trend function and the
highest frequency in the seasonal function, higher 𝑃 values suggest
a more complex function, which increase the risk of overfitting.
Fig. 9(b) indicates that DARF performs best when 𝜔 equals 0.5.
𝜔 signifies the weight of the penalty term in the domain loss, a
higher 𝜔 enhances the generalization ability of the Domain Critic,
but reduces its capability to minimize the distribution divergence
between the source and target domains. Finally, DARF has the
best performance when 𝜆 equals 1. As 𝜆 denotes the weight of
domain loss in the overall loss, a higher 𝜆 improves DARF’s ability to
capture event features but decreases its ability to capture temporal
dynamics.

5 RELATEDWORK
Robust Forecasting: Robust time series forecasting aims to de-
velop models that can handle data outliers and variability while
still providing accurate forecasts. Seasonal-trend decomposition
and graph neural networks attempt to address this problem from
two different perspectives.

The original seasonal-trend decomposition is based on statistical
principles [34, 35, 37, 44] and can decompose time series into mul-
tiple seasonal and trend functions. Two studies [34, 37] are the first
to explore the theoretical feasibility of this method and its potential
in time series forecasting. Two other studies [35, 44] utilize multi-
scale and maximal overlap discrete wavelet transform methods
to decompose time series with multiple seasonalities into multi-
ple independent periodic functions, thus improving decomposition
accuracy. In addition, deep learning-based studies [4, 24, 39, 52]
incorporate the idea of seasonal-trend decomposition into the deep
learning framework. These methods have stronger generalization
abilities and are better at addressing overfitting, allowing them to
more accurately predict outcomes on data that is not seen during
training. One study [39] designs trend and seasonal losses using
contrastive learning and optimizes them separately to achieve the
goal of seasonal-trend decomposition. Then, two studies [4, 52]
combine the transformer framework and Fourier transformation to
decompose time series and capture a global view.

Graph neural networks are used commonly in time series fore-
casting because they can capture correlations among multiple time
series. Early graph neural networks [20, 46] are applied to traffic
flow prediction using static graph structures to capture explicit
spatial correlations among roads. Subsequent research proposes
a graph learning module [42, 43] to capture implicit spatial cor-
relations in datasets used for traffic forecasting. The most recent
studies [5, 29, 47] extend this graph learning to time series fore-
casting, proposing explicit and implicit correlations for time series
that represent both learned and known time series correlations,
respectively.
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(a) The Real vs. Forecasting. (b) The 1st Seasonality. (c) The 2nd Seasonality. (d) The 1st Trend. (e) The 2nd Trend.

Figure 7: Interpretation of forecasted time series.

(a) Training Time Changing with 𝐻 . (b) GPU Memory Changing with 𝐻 . (c) MAE Changing with 𝐻 . (d) MAPE Changing with 𝐻 .

Figure 8: Scalability of DARF.

(a) MAE Varies with Blocks and 𝑃 . (b) MAE Varies with 𝜔 and 𝜆.

Figure 9: Parameter sensitivity of DARF.

Domain Adaptation: Domain adaptation was first introduced
in computer vision [53], natural language processing [21], and
classification tasks [25, 28, 38] to contend with distinct data distri-
butions across various domains. In time series forecasting research,
one study [14] develops a transfer learning framework that trans-
fers domain-invariant feature representations from a pre-trained
stacked deep residual network to the target domains to assist in
predicting each target time series. A model [16] improves its perfor-
mance on the target domain by sharing attention across multiple
source and target domains. Additionally, a study [2] proposes a
sparse associative structure alignment model for domain adap-
tation that relaxes the discovery of causal structure to a sparse
associative structure to learn the domain-invariant representations.
DARF is the first to investigate adversarial domain adaptation for
the same dataset but with different distributions of patterns, specif-
ically domain adaptation between common time series and event
time series.
Weekly Supervised Learning:Weakly supervised learning is a
machine learning approach that utilizes training data with incom-
plete, noisy, or imprecise labels, which is known as weakly labeled

data. Early works [1, 15, 33] on weakly labeled learning occur com-
monly in computer vision. In the field of time series, a study [49]
proposes a framework for time series classification on sensors data
by extracting burst-based features from raw time series and auto-
matically extending fuzzy time points to appropriate subsequences
containing sufficient information. A study [45] explores the ap-
plication of weakly labeled data in time series prediction, giving
more granular weak labels to different patterns of time series to
improve prediction accuracy. DARF is the first to apply weakly la-
beled learning to robust forecasting and proposes a framework that
uses domain adaptation based on the characteristics of multivariate
time series data.

6 CONCLUSIONS
We propose a weakly guided adaptation model, DARF, designed to
enable robust forecasting of multivariate time series. To achieve
robust forecasting of multivariate time series, we equip DARF with
a correlated robust forecaster, whose encoder is able to capture
multivariate correlations, thereby enhancing prediction accuracy.
Additionally, the forecaster’s decoder decomposes time series into a
combination of trend and seasonal functions to achieve robustness.
DARF employs adversarial domain adaptation to reduce distribution
divergence between source and target domains, thereby capturing
event features and further improving the prediction accuracy for
time series that contain events. Looking ahead, it is promising to
extend DARF to encompass foundation models, lightweight time
series models [3, 27], traffic forecasting models [6–8], and to explore
in greater depth the interpretability of neural networks [17].
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