
Sample-Efficient Cardinality Estimation Using
Geometric Deep Learning

Silvan Reiner
University of Konstanz
silvan.reiner@uni.kn

Michael Grossniklaus
University of Konstanz

michael.grossniklaus@uni.kn

ABSTRACT
In database systems, accurate cardinality estimation is a cornerstone
of effective query optimization. In this context, estimators that use
machine learning have shown significant promise. Despite their
potential, the effectiveness of these learned estimators strongly
depends on their ability to learn from small training sets.

This paper presents a novel approach for learned cardinality
estimation that addresses this issue by enhancing sample efficiency.
We propose a neural network architecture informed by geomet-
ric deep learning principles that represents queries as join graphs.
Furthermore, we introduce an innovative encoding for complex
predicates, treating their encoding as a feature selection problem.
Additionally, we devise a regularization term that employs equali-
ties of the relational algebra and three-valued logic, augmenting
the training process without requiring additional ground truth
cardinalities. We rigorously evaluate our model across multiple
benchmarks, examining q-errors, runtimes, and the impact of work-
load distribution shifts. Our results demonstrate that our model
significantly improves the end-to-end runtimes of PostgreSQL, even
with cardinalities gathered from as little as 100 query executions.

PVLDB Reference Format:
Silvan Reiner and Michael Grossniklaus. Sample-Efficient Cardinality
Estimation Using Geometric Deep Learning. PVLDB, 17(4): 740 - 752, 2023.
doi:10.14778/3636218.3636229

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dbis-ukon/jgmp.

1 INTRODUCTION
In recent years, learned query optimization, in general, and learned
cardinality estimation, in particular, has become an increasingly
active research area. The original vision is simple and appealing:
Use meta-data about query executions from log files to train ma-
chine learning models and improve the performance of the query
optimizer. Such training data comes at no additional cost since it is
a byproduct of regular system operation.

Recent methods have strayed from this vision by competing
for lower and lower errors or runtimes without accounting for
the cost of gathering ground truths. Firstly, models are trained on
an abundance of training data: Cardinality estimation models, in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636229

particular, are often trained with tens of thousands to a hundred
thousand training queries. Secondly, some models not only require
lots of training queries but also very particular information about
each training query: Query optimizers using reinforcement learning
often demand the same query to be executed multiple times with
different plans to calculate relative costs, while recent advances in
cardinality estimation were made possible by collecting the true
cardinality of all of potentially thousands of subplan queries of each
query in the training set. By demanding these large amounts of
specific training data, existing methods are not fit to function from
query logs alone. Instead, they demand the computation of massive
amounts of supplemental ground truths, which must be accounted
for when analyzing the training costs. These demands are a major
contributor to the slow adoption of learned query optimization in
practice contrasting with the active research area.

In this paper, we return to the original vision for learned query
optimization and build a cardinality estimation model that can
realistically be trained with cardinalities from query logs alone. We
must address two major challenges to achieve this objective.

Firstly, it is crucial to improve the sample efficiency of our models
in order to learn from the limited training data available in query
logs. By improving sample efficiency, we can make progress on
three major issues in learned cardinality estimation: the cold start
problem, query distribution shifts, and data distribution shifts. A
more sample-efficient model will outperform classical estimators
more quickly on new databases, adapt to new query types with
fewer examples, and make do with only cardinalities from the most
recent queries.

Secondly, we have to take into account that query logs do not pro-
vide an unbiased sample of subplan query cardinalities. Generally,
query optimizers choose subplans with low expected cardinalities,
leading to a bias that can exclude subplans with very high cardi-
nalities that are part of catastrophic plans from the training set.
Figure 1 visualizes this bias for the Join Order Benchmark by com-
paring the cumulative fraction as a function of the true cardinality
of all subplan queries with the ones selected by the PostgreSQL
optimizer (PG-selected) and that are, therefore, contained in the
query log. The mean cardinality for all subplan queries is 14,000,000,
as opposed to only 330,000 for PG-selected subplan queries. It is
essential to evaluate the impact of this bias on the models since it
potentially limits their practical applicability.

Geometric deep learning can improve the sample efficiency by
exploiting the inherent structure of the problem and incorporate
invariances into the architectures. We examine the strengths and
weaknesses of current state-of-the-art learned cardinality estima-
tors in this light and propose a novel architecture to address them.

740

https://doi.org/10.14778/3636218.3636229
https://github.com/dbis-ukon/jgmp
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636229
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Cumulative distribution of all JOB subplan queries
or only subplan queries part of plans chosen by PostgreSQL.

Specifically, we present the following contributions in this paper:
• A novel neural network architecture for cardinality estima-
tion that represents queries as join graphs, using geometric
deep learning principles to enhance learning effectiveness
(Section 3.4).

• A unique approach to the encoding of complex predicates
as a feature selection problem, leading to a new encoding
method that reduces inference time and improves estimation
accuracy (Section 4.1).

• A regularization term that leverages equalities of the rela-
tional algebra to enhance training, all without necessitating
additional ground truth cardinalities (Section 5).

Furthermore, we conduct a comprehensive evaluation of our
novel approach (Section 6), featuring

• an exhaustive evaluation on multiple benchmarks, compar-
ing the q-errors and execution times of various models,

• an in-depth analysis exploring how biases of query logs and
workload distribution shifts affect model performance, and

• an ablation study of the effects of various design choices on
performance of our neural network architecture.

2 RELATEDWORK
Learned methods for query optimization can be divided into two
broad categories: The first category consists of query-driven meth-
ods that need to be trained with a workload of queries. The second
category consists of cardinality estimators that use unsupervised
learning to summarize the data distribution in the database. These
models are trained without a training workload.

2.1 Query-Driven Methods
Query-driven methods can further be divided into regression mod-
els for query cardinalities or plan costs trained with supervised
learning and fully learned query optimizers that model query opti-
mization as a Markov decision process.

Three main types of representation structures are inputs to these
models: single fixed-length vectors, tree-structured representations,
and multi-sets. The simplest structure represents a query as a single
fixed-length vector. This vector is typically generated as engineered
encodings [4, 25, 32] or with the use of embedding techniques [18].

While this approach is simple and enables the application of a
wide range of machine learning techniques, the constant size of
the vector limits its expressivity as an infinite space of possible
queries has to be reduced to a finite vector. The other two represen-
tations solve this problem using variable-size structures (like trees
or sets) over fixed-length encodings of the query elements. Thus,
the representations can grow with the queries.

Tree-structured representations are based on logical or physical
algebra expressions. These representations can then be processed
with, among others, tree convolutional, recurrent, or transformer
neural networks. Naturally, this representation is especially suited
for learned cost models [11, 43] since the execution cost is a function
of a physical plan. Such representations [28, 35] have also been eval-
uated as both cost models and cardinality estimators. By restricting
the representation to left-deep plans, we get a special case where a
query is represented as a series of joins. This representation is suit-
able for models using recurrent neural networks [25]. In addition
to cost models, a tree-structured representation is also a natural
choice for reinforcement-learned query optimizers [19, 36, 40, 44]
since they create increasingly complex subplans with each step. In
this framework, the tree-structured representation for the subplan
is often combined with a representation for the whole query to
describe the current state in the Markov decision process [2, 20].

The last type of representation was introduced with the learned
cardinality estimator MSCN [16]. It consists of three multi-sets of
encoding vectors. Each element in the first multi-set represents a
table occurrence, each element in the second multi-set represents a
join, and finally, each element in the third multi-set represents a
predicate. In the MSCN architecture, these multi-sets of encoding
vectors are aggregated to one single-dimensional vector using deep
sets [41]. These aggregated embeddings for each set are then con-
catenated into a single embedding vector. Fully-connected neural
network layers can then process them to estimate the cardinality of
the query. The MSCN architecture has repeatedly proven itself to
be the current state of the art for learned query-driven cardinality
estimation [9, 14]. Various improvements for learned query-driven
cardinality estimators have been proposed for or tested as an exten-
sion of MSCN, such as loss functions [23] and encodings [22, 24].

2.2 Unsupervised Data-Driven Methods
Unsupervised data-driven methods have also been proposed for
cardinality estimation. Currently, there are multiple main families
of methods. The first family consists of autoregressive models with
NeuroCard [38] and its predecessor for single tables Naru [37]. The
second family consisting of DeepDB [12] and FLAT [45] utilize sum-
product networks [26]. Outside of these two families of methods,
there is BayesCard [34] using Bayesian networks and the FactorJoin
framework [33] for combining single-table cardinality estimates
into estimates for multi-table queries.

3 DESIGN PRINCIPLES
This section discusses basic design principles for encodings and
architectures for artificial neural networks as well as how these
principles apply to cardinality estimation. Then we analyze if and
when the most commonly used query representations for learned

741

cardinality estimation satisfy these principles. Finally, we propose
our query representation that is informed by these principles.

3.1 Invariances
Generally, a neural network approximates a function 𝑓 : 𝑋 → 𝑌

from an input 𝑥 ∈ 𝑋 to an output 𝑦 ∈ 𝑌 . In specific cases, there
exist transformations of the inputs 𝑡 : 𝑋 → 𝑋 such that the output
is invariant with respect to 𝑓 : ∀𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑓 (𝑡 (𝑥)).

Ideally, invariances specific to the problem domain are incor-
porated into the design of neural network architectures [1]. The
invariances should be guaranteed to be satisfied regardless of the
values of the learnable parameters. The main benefit is reducing
the search space size of possible functions. Instead of searching
the space of all possible functions from 𝑋 to 𝑌 , we only want to
search the space of functions from 𝑋 to 𝑌 that satisfy invariance
constraints. This constraint improves the model’s sample efficiency.

For the problem of cardinality estimation, several query trans-
formations are invariant with respect to the cardinality. The for-
mulation of these invariances depends on the representation of
the queries. For SQL, such transformations are changes that only
affect the syntax but not the semantics of the query, such as re-
ordering and renaming tables. For relational algebra, they include
equivalences such as commutativity and associativity of join opera-
tors. When two relational expressions are logically equivalent, their
cardinalities are, of course, equal. For cardinality estimation, this
equivalence is prior knowledge that relies only on the relational
schema and holds independently of the content of the database.

3.2 Uniqueness
Incorporating invariances should not come at the cost of the expres-
sivity of the model. Given 𝑥1, 𝑥2 ∈ 𝑋 with differing target values
𝑓 (𝑥1) ≠ 𝑓 (𝑥2) the encodings of 𝑥1 and 𝑥2 should differ. Otherwise,
it will be impossible for the neural network able to approximate
the function 𝑓 since, with the same input encodings, the network
outputs are also the same. Applied to the problem of cardinality
estimation in relational databases, this means that queries should
have unique representations as long as they are not guaranteed to
have the same cardinality.

3.3 Analysis of the Current State of the Art
Section 2.1 introduced the currently most popular query-based
learning representations: algebraic expressions and multi-sets. Now,
we evaluate their suitability to the cardinality estimation problem
based on invariance and uniqueness principles.

First, representations based on algebraic expressions will natu-
rally satisfy the uniqueness property since two queries that share
a representation in relational algebra are necessarily equivalent.
However, they are not invariant to cardinality-preserving transfor-
mations like commutativity and associativity of the join operators.
One query can be represented by many equivalent algebraic expres-
sions. Therefore, the representation based on algebraic expressions
is at a disadvantage since this estimator additionally has to learn
that equivalent algebraic expressions have the same cardinality.
This lack of invariance significantly increases the model’s domain
and the required training data.

Second, MSCN’s multi-set representation satisfies the invariance
property since it is not dependent on algebraic transformations
or purely syntactic changes to a query. However, the multi-set
representation violates the uniqueness property (Figure 2). In this
example, the references between the members of the different sets
are lost. Joins and predicates cannot be associated with table occur-
rences unambiguously if there are multiple occurrences of the same
table. The MSCN was initially evaluated on the JOB-light bench-
mark, which does not include queries with multiple occurrences
of the same table. The multi-set representation is sufficient for this
benchmark, but the expressivity of the model is too restricted for
more complex workloads.

In summary, we have shown that representations based on al-
gebraic expressions satisfy the uniqueness property but violate
cardinality invariances, whereas, MSCN’s multi-set representation
satisfies the cardinality invariances but violates the uniqueness
property. The former gives the same query different representations,
while the latter gives different queries the same representation.

3.4 A Join-Graph-Based Query Representation
We propose a join-graph-based query representation that is both
unique and respects cardinality invariances. Compared to the multi-
set representation, it adds the missing associations between table oc-
currences, joins, and predicates. It respects cardinality invariances
because the representation depends neither on syntactic changes
to the query nor on some algebraic expression that implements it.
Figure 2 shows how this representation is unique even if one table
has multiple occurrences with different aliases in a query.

We define the join graph of a query as a labeled directed graph
(𝑉 , 𝐸, 𝜏, 𝜋) with the following components.

• A set of nodes 𝑉 with one node for each table occurrence.
• A set of labeled directed edges 𝐸 ⊆ 𝑉 ×𝑉 × 𝐹 with one edge
for each join.

• A node labeling function 𝜏 : 𝑉 → 𝑇 .
• A predicate function 𝜋 : 𝑉 → 𝑃 .

𝐹 is the set of foreign keys in the relational schema. An edge (𝑢, 𝑣, 𝑓)
represents a join between tables occurrences 𝑢 and 𝑣 with the fk-
pk join condition on 𝑓 ∈ 𝐹 . The edge is directed from foreign
key (fk) to primary key (pk). 𝑇 is the set tables in the relational
schema. The function 𝜏 assigns each table occurrence to its table.
𝑃 is the set of three-valued logic expressions using columns in the
relational schema. The function 𝜋 assigns each table occurrence to
the predicates referencing it.

3.5 Scope
Ourmodel requires a list of supported joins to label and later encode
the edgesmeaningfully. The foreign keys in the schema are a natural
choice since they typically account for a large number of joins. With
this choice, we restrict each edge in our join graphs to a fk-pk join.

A query containing fk-fk joins can easily be transformed into a
query that only contains fk-pk joins. In the case that a fk-fk join
condition is already implied by two fk-pk join conditions, it can be
removed from the query. Otherwise, we add a table occurrence to
which both foreign keys point. Then we add the two corresponding
fk-pk join conditions such that our fk-fk join condition becomes

742

SELECT * FROM movies m
JOIN movies s ON s.sequel_of_id = m.id
JOIN roles r ON r.movie_id = s.id
WHERE m.year = 2000;

(a) Query a

SELECT * FROM movies m
JOIN movies s ON s.sequel_of_id = m.id
JOIN roles r ON r.movie_id = m.id
WHERE s.year = 2000;

(b) Query b

({movies, movies, roles},
{sequel_of_id = id, movie_id = id},
{year = 2000})

(c) MSCN’s multi-set representation of
Query a and Query b

movies
year = 2000 movies roles

id=sequel_of_id id=movie_id

(d) Join graph for Query a

roles movies
movies

year = 2000

id=sequel_of_idmovie_id=id

(e) Join graph for Query b

Figure 2: Two queries which are indistinguishable with MSCN’s multi-set representation but have unique join graphs.

roles roles roles

actors

movie_id=movie_id actor_id=actor_id

ac
to
r_
id
=i
d id=actor_id

(a) Initial join graph

roles

movies

roles roles

actors

mo
vi
e_
id
=i
d id=movie_id ac

to
r_
id
=i
d id=actor_id

(b) Preprocessed join graph

Figure 3: Join graph preprocessing: By adding an oc-
currence of table movies, the fk-fk join r2.movie_id =
r1.movie_id is transformed into two fk-pk joins. The fk-fk
join r3.actor_id = r2.actor_id is redundant.

redundant and can be removed. Figure 3 shows an example for both
cases. Since this transformation does not change the cardinality of
the query, we can use it to directly represent fk-fk joins.

Still, queries may contain elements not directly supported by our
representation, such as non-fk joins, anti and outer joins, aggrega-
tions, and others.We deliberately do not to support these operations
directly since they would drastically expand the size of our model’s
input space, increasing the required training data. Instead, we focus
on the most common query elements. Using traditional cardinality
estimation formulas, the cardinality of not directly supported ex-
pressions can be estimated based on our cardinality estimations of
their child expressions. Our experimental evaluation demonstrates
that this approach is effective.

4 ENCODING AND MODEL ARCHITECTURE
We define a novel deep learning architecture called Join Graph Mes-
sage Passing (JGMP) that incorporates the invariance and unique-
ness properties specific to cardinality estimation. First, we describe
how the components of the join graph are encoded and then how a
cardinality is estimated based on those encodings.

4.1 Table and Predicate Encodings
In Section 3.1, we examined the importance of invariance to cardinal-
ity-preserving transformations for an estimator, focusing on trans-
formations that preserve the cardinality based on a schema without
considering the database state. In this section, we extend our discus-
sion on invariance by incorporating the database state, providing
a more comprehensive understanding of invariance in cardinality
estimation. We then use this understanding to analyze different
ways of encoding predicates and design a novel method.

As an example, consider a state of table movies (see Table 1) con-
taining only six rows. Table movies can occur in different queries
filtered by different predicates. Table 2 gives an example of six predi-
cates of occurrences of table movies. We observe that the predicates
a, b, c, and d all filter the table movies similarly. They all only select
Movie 1. Predicate a and b represent the simplest case: They are
syntactically equivalent. The predicate a and c can be identified as
semantically equivalent since the predicate year <= 1973 can be
transformed into NOT year > 1973 using logical equivalence rules.
The predicates a, b, and c are guaranteed to yield the same result
without considering the state of table movies. However, predicate
d is neither syntactically nor semantically equivalent to predicates
a, b, and c. To see that this predicate yields the same result as the
others, we have to compute the effect of the predicate on the table
movies. For predicate d, the equivalence to the other predicates
depends on the current state of table movies.

This example illustrates three different types of equivalence be-
tween predicates. Predicates a and b are an example of the strictest
type, namely syntactic equivalence. Predicates a and c are an ex-
ample of the second strictest type, namely semantic equivalence.
Finally, predicates a and d are an example of the least strict type,
which depends on the current state of the table. We will call this
type table-state equivalence. In this hierarchy of equivalence types,
syntactic equivalence implies semantic equivalence, and semantic
equivalence implies table-state equivalence.

The three types of equivalences are invariances of the cardinal-
ity of queries. All of them should ideally be incorporated into the
encodings. Syntactic equivalence is incorporated trivially. Only a
non-deterministic function could violate this invariance. Semantic
and table-state equivalence are more challenging to incorporate.
Various predicate encodings have been proposed as parts of learned
cardinality estimators, cost models, and query optimizers. Most of

743

Table 1: Table movies.

id name year
1 The Godfather 1972
2 The Sting 1973
3 The Godfather Part II 1974
4 One Flew Over The Cuckoo’s Nest 1975
5 Rocky 1976
6 Annie Hall 1977

Table 2: Example predicates for occurrences of table movies.

Predicate Table Bitmap
a name LIKE ’%Godfather%’ AND year <= 1973 1 0 0 0 0 0
b name LIKE ’%Godfather%’ AND year <= 1973 1 0 0 0 0 0
c name LIKE ’%Godfather%’ AND NOT year > 1973 1 0 0 0 0 0
d id = 1 1 0 0 0 0 0
e year BETWEEN 1973 AND 1974 0 1 1 0 0 0
f NOT name IN (’Rocky’, ’The Sting’) 1 0 1 1 0 1

these techniques are either predicate-based (generating one encod-
ing vector per comparison predicate) or column-based (generating
one encoding vector per column).

In their most common form, predicate-based techniques rep-
resent each comparison predicate with a vector of multiple com-
ponents: A one-hot encoding for the column, a one-hot encoding
for the comparison operator and some encoding for the value. To
represent negations, a fourth component can be added. Naively,
predicate-based techniques do not incorporate semantic equiva-
lences. The predicate year <= 1973 will be encoded differently
from NOT year > 1973. This problem can only be addressed by
transforming predicates into a canonical form. However, canoniz-
ing complex predicates involving disjunctions is problematic since
slight changes to a predicate can lead to completely different canon-
ical forms. Again, it is challenging to learn from such an unstable
representation.

Müller et al. [22] propose a column-based technique that parti-
tions the domain of each column and featurizes complex predicates
with a vector indicating which partitions are fully selected, par-
tially selected, or not selected. This technique incorporates semantic
equivalence. Whether a partition is selected or not does not depend
on arbitrary syntactic details.

Both predicate-based and column-based techniques do not incor-
porate table-state equivalence. These encodings do not depend on
the data in the table, except for minimum and maximum values of
numeric columns used in normalization and partitioning. Thus, the
encoding cannot represent correlations between the table columns.
As a consequence, these encodings reduce the sample efficiency be-
cause the model has to learn how the table columns are correlated.
Additionally, the number of dimensions of the neural net’s input
increases with the number of table columns or with the number of
comparison operator types.

Sample bitmaps are a technique first proposed by Kipf et al. [16]
in addition to their predicate encoding. Before training a model, an
ordered sample of 𝑛 random rows is extracted from each table. Then
the predicate is evaluated for each row in the sample. The 𝑖th bit of

the sample bitmap of length 𝑛 is given by 1 if the 𝑖th sample row
satisfies the predicate and 0 if it does not. The last column of Table 2
shows the bitmaps for a sample of all rows of table movies ordered
ascendingly by their id. A sample bitmap is an encoding with the
desired invariance to table-state equivalences. In our example, the
table-state equivalent predicates a, b, c, and d have the same sample
bitmap (1, 0, 0, 0, 0, 0).

However, sample bitmaps also have major disadvantages that
have limited their adoption in learned cardinality estimators [23].
Very selective predicates might not satisfy any sample rows. In this
case, the sample bitmap is all zeros and not an informative predicate
description. Therefore, large sample sizes are often chosen to reduce
the likelihood of zero-valued bitmaps. However, such long bitmaps
are expensive to compute and increase the model’s size. As a result,
model training and inference are slower, and the model is more
prone to overfitting.

We aim to shorten the sample bitmaps while keeping the infor-
mation they carry. This compression is a feature selection problem
[13, 27], where the sample rows are the features to be selected to
describe table occurrences and their predicates. Supervised feature
selection algorithms typically rely on repeated training and evalua-
tion of models, making them computationally expensive. Instead,
we apply the greedy unsupervised feature selection algorithm by
Farahat et al. [5]. This algorithm selects a diverse set of features and
removes the redundant ones. A feature 𝑓 is considered redundant
with respect to a set of other features 𝑆 if it is a linear combination
of the features in 𝑆 . In our example, Movie 5 is considered redun-
dant with respect to the empty set ∅ since its vector is all zeros.
Movie 6 is redundant with respect to the set {Movie 4} since its
vector is a duplicate of Movie 4’s vector. Movie 3 is redundant with
respect to the set {Movie 2,Movie 4} since its vector is the sum of
Movie 2 and Movie 4’s vectors.

To apply the algorithm, we randomly select up to 105 sample
rows of a table and evaluate them on the set of𝑚 ≤ 1000 occur-
rences of the table in our training data to get a vector of length
𝑚 for each row. We eliminate sample rows with duplicate vectors
to eliminate trivially redundant sample rows. All-one vectors are
also removed despite not necessarily being redundant since they do
not help to distinguish between the table occurrences. The vectors
for the remaining sample rows form a matrix, where each row rep-
resents a table occurrence, and each column represents a sample.
Then the greedy unsupervised feature selection algorithm is applied
to this matrix. It iteratively selects diverse features and stops when
the desired number of features is reached or when all remaining
features are redundant with respect to the already selected features.

For our example, the algorithm greedily selects sample rows
in the order: Movie 1,Movie 3,Movie 2. As the remaining rows are
redundant with respect to the sample, the algorithm terminates.
Based on this sample, Predicates a, b, c, and d are encoded as (1, 0, 0),
Predicate e as (0, 1, 1), and Predicate f as (1, 1, 0).

This process results in a predicate featurization invariant to
table-state equivalences. Additionally, the encodings are short and
quickly computed during inference.

The feature selection algorithm introduces a bias to the samples
that could negatively impact the quality of the estimations of a
traditional sampling-based estimator. This bias does not affect our
learned estimator since it does not explicitly compute selectivities

744

roles

movies

roles roles

actors

(0,1
,1) (0,1,1) (1,0

,1) (1,0,1)

(0,1
,0) (0,1,0) (1,0

,0) (1,0,0)

Figure 4: Join encodings for the query in Figure 3: Foreign
key one-hot encodings are colored in violet and the direc-
tion component in red.

as equally weighted averages of the sample bitmaps. Instead, the
purpose of the sample bitmaps is to similarly encode predicates
that select similar sets of rows, regardless of how the predicates
are expressed. The feature-selection algorithm ensures that the
encoding has a higher resolution in areas with a lot of training data
and lower resolution in areas with less data.

In addition to these bitmaps, we use PostgreSQL’s cardinality es-
timates for table occurrences as input to JGMP, which is a common
practice [16, 23] that empirically improves estimation quality.

4.2 Join Encodings
In Section 3.4, we have represented queries as labeled join graphs
with one directed edge for each join. A message passing neural
network always passes messages in the direction of the edges. For
our application, passing messages in both directions of a join in-
creases the model’s ability to use the join graph’s structure. For
this reason, we add a reversed edge for each edge in the join graph.
Two concatenated components comprise the edge encoding: The
first component is a one-hot encoding of the length of all foreign
keys in the schema. The second component is a single number 1
if the edge is in the natural direction (fk-pk) or 0 if it is reversed
(pk-fk). Figure 4 shows an example of this encoding.

4.3 Model Architecture
The JGMP model has three main parts. In the first part, the sample
bitmaps are used to compute embeddings for each table occurrence.
In the second part, messages are passed over the edges of the join
graph to learn about the structure of the query. In the third part,
the table occurrence embeddings are aggregated to an embedding
of the whole query, which is fed into fully connected layers to
produce the final cardinality estimate. Only one model has to be
trained for each database since message-passing neural networks
can generalize over graphs of varying structures.

In the following equations, we represent multi-layer perceptrons
with LeakyReLU activation functions as MLP, aggregation func-
tions as agg, and concatenations as ∥. Table 3 shows our choices
for the hyperparameters of all modules.

4.3.1 Table Occurrence Embedding. Table occurrences 𝑖 are char-
acterized by their sample bitmaps 𝑠𝑖 and a PostgreSQL cardinal-
ity estimate 𝑐𝑖 (see Section 4.1). Sample bitmaps for occurrences
of different tables are semantically unrelated, meaning that any
similarity between two sample bitmaps from different tables is co-
incidental. Additionally, sample bitmap lengths can differ. Due to
these factors, we employ separate weights𝑊𝜏 (𝑖) and biases 𝑏𝜏 (𝑖)
when calculating embeddings for occurrences 𝑖 of tables 𝜏 (𝑖). The

Table 3: JGMP hyperparameters.

Neural Network Architecture
Hyperparameter Value

sample bitmap 𝑠𝑖 length for occurrences 𝑖 of all tables ≤ 16
length of ℎ0

𝑖
for all table occurrences 𝑖 33

layer sizes ofMLPedges (8)
of message passing layers 𝑁 3

layer sizes ofMLPnmp_in for 𝑛 ∈ {1, 2, ..., 𝑁 } (32)
of attention heads of aggnmp for 𝑛 ∈ {1, 2, ..., 𝑁 } 4

output size of aggnmp for 𝑛 ∈ {1, 2, ..., 𝑁 } 32
layer sizes ofMLPnmp_out for 𝑛 ∈ {1, 2, ..., 𝑁 } (32)

of attention heads of aggquery 8
output size of aggquery 1024
layer sizes ofMLPquery (256)
total # of parameters ≈ 420 000

Training
Hyperparameter Value

optimizer Adam [15]
learning rate 𝜆 0.0005
of epochs 300
batch size 32

PostgreSQL cardinality estimates 𝑐𝑖 are then concatenated with
these embeddings:

ℎ0𝑖 =

(︂
𝑊𝜏 (𝑖)𝑠𝑖 + 𝑏𝜏 (𝑖)

)︂
∥ 𝑐𝑖 . (1)

4.3.2 Message Passing. We obtain the embedding 𝑔𝑘 of each edge
𝑘 in the join graph using a fully connected neural network based
on the join encoding 𝑒𝑘 (see Section 4.2):

𝑔𝑘 = MLPedges (𝑒𝑘) . (2)

Next, we update node embeddings by applying 𝑁 custom mes-
sage passing neural network layers [7, 8, 30]. This approach allows
the neural network to leverage the join graph’s structure, introduc-
ing a useful inductive bias for learning local correlations between
neighboring nodes. For 𝑛 ∈ {1, 2, ..., 𝑁 } the following equations
define the message passing layers:

𝑚𝑛
𝑗,𝑘

= MLPnmp_in

(︂
ℎ𝑛−1𝑗 ∥ 𝑔𝑘

)︂
, (3)

ℎ𝑛𝑖 = MLPnmp_out
⎛⎜⎝ℎ𝑛−1𝑖 ∥ aggnmp

(𝑗,𝑘) ∈N(𝑖)

(︂
𝑚𝑛

𝑗,𝑘

)︂⎞⎟⎠ . (4)

Here, we compute the message𝑚𝑛
𝑗,𝑘

from a node 𝑗 via an edge
𝑘 to a node 𝑖 in the 𝑛th message passing layer. The updated node
embedding ℎ𝑛

𝑖
is computed based on the old node embedding ℎ𝑛−1

𝑖
and the aggregation of messages over the neighborhood N(𝑖).

4.3.3 Query Embedding and Final Estimate. We use skip connec-
tions, which have been shown to improve the performance of graph
neural networks for a wide range of applications [39], to compute
the final node embeddings ℎ𝑖 . The final node embeddings are then
aggregated to an embedding 𝑞 for the whole query. The final layer
with weights𝑊final and bias 𝑏final has only one neuron and uses an
exponential activation function. This choice is suitable for the last

745

layer since the true cardinalities are always positive and can differ
by many orders of magnitude.

ℎ𝑖 = ℎ0𝑖 ∥ ℎ1𝑖 ∥ ... ∥ ℎ𝑁𝑖 (5)

𝑞 = MLPquery

(︄
aggquery

𝑖∈𝑉
(ℎ𝑖)

)︄
(6)

card. est. = e𝑊final𝑞+𝑏final (7)

4.3.4 Aggregation Function. For the aggregations in the message
passing layers aggmp and the aggregation of table occurrence em-
beddings aggquery, we use a modified multi-head attention aggre-
gation function [29]. The multi-head attention aggregation function
includes learnable parameters and calculates weighted averages of
the elements. With these learned weights, it can attend to impactful
query features and is thus more expressive than more straight-
forward aggregation functions such as mean, sum, minimum, and
maximum. Given a set 𝑆 with elements 𝑖 and their embeddings 𝑥𝑖 ,
our aggregation function agg is given by

agg
𝑖∈𝑆

(𝑥𝑖) = MultiHead
𝑖∈𝑆

(𝑥𝑖) ∥ |𝑆 |. (8)

Our modification is the concatenation of the set cardinality |𝑆 |,
i.e., for our two uses of aggregations, the degree of nodes in the
join graph or the total number of nodes in the join graph. In some
cases, the unmodified attention-based aggregation function cannot
distinguish between sets of different sizes [42]. Thus, we implement
this modification to improve the model’s ability to learn from the
structure of the join graph.

5 SELF-SUPERVISED REGULARIZATION
In this section, we first describe how we train cardinality estima-
tion models in a supervised way. Then, we introduce a new set of
constraints on the cardinality estimations and incorporate them
into our models by adding a regularization term to our loss func-
tion. This additional term can be computed without using true
cardinalities.

5.1 Supervised Training
We use the mean squared logarithmic error as a loss function to
train our models. For a batch containing 𝑛 subplan queries 𝑞𝑖 with
a true cardinality 𝐶 (𝑞𝑖) and an estimated cardinality �̂� (𝑞𝑖), it is
given by

losssupervised =
1
𝑛

𝑛∑︂
𝑖=1

(︂
log �̂� (𝑞𝑖) − log𝐶 (𝑞𝑖)

)︂2
. (9)

Calculating the loss in a logarithmic space is helpful since cardi-
nalities vary by orders of magnitudes. Without the logarithm, the
loss would be dominated by a few subplan queries with the largest
cardinalities. With the use of the mean squared logarithmic error,
we ensure that the source of the loss is distributed more evenly
among the subplan queries.

5.2 Cardinality Constraints
In Section 3.1 and Section 4.1, we presented invariances of the cardi-
nality of queries and subsequently incorporated these invariances
into our model as hard constraints. In addition, cardinalities of

queries have further constraints that go beyond the invariances
incorporated into the architecture.

In the following, we will introduce a list of such constraints.
The list is not exhaustive and can be extended with additional
constraints that cover, for example, different comparison operators.
We express the selected constraints using relational algebra.

• Foreign Key Constraint
𝐶 (𝑥 fk=𝑡 .pk 𝑡) ≤ 𝐶 (𝑥), where fk is a foreign key attribute
in the relation 𝑥 , 𝑡 is a base table and there exists a foreign
key constraint from attribute fk to attribute pk. If there is
a NOT NULL constraint on column fk, we get the stronger
cardinality constraint of 𝐶 (𝑥 fk=𝑡 .pk 𝑡) = 𝐶 (𝑥).

• Monotonicity of Inequality Comparisons
𝐶 (𝜎𝑡 .𝑐<𝑣 (𝑥)) ≤ 𝐶 (𝜎𝑡 .𝑐<𝑢 (𝑥)), where 𝑐 is an attribute in
relation 𝑥 , and 𝑣 and 𝑢 are values in the domain of 𝑐 with
𝑣 < 𝑢. Note that predicates with the comparison operators
>, ≤, and ≥ have similar constraints.

• Law of the Excluded Fourth
𝐶 (𝑥) = 𝐶 (𝜎𝑎 (𝑥))+𝐶 (𝜎¬𝑎 (𝑥))+𝐶 (𝜎𝑎 IS NULL (𝑥)), where 𝑎
is a three-valued condition on the relation 𝑥 . If there is a NOT
NULL constraint on 𝑎, the cardinality constraint simplifies to
𝐶 (𝑥) = 𝐶 (𝜎𝑎 (𝑥)) +𝐶 (𝜎¬𝑎 (𝑥)), which is equivalent to the
law of the excluded third in Boolean logic.

• Inclusion-Exclusion Principle
𝐶 (𝜎𝑎∨𝑏 (𝑥)) +𝐶 (𝜎𝑎∧𝑏 (𝑥)) = 𝐶 (𝜎𝑎 (𝑥)) +𝐶 (𝜎𝑏 (𝑥)), where
𝑎 and 𝑏 are conditions on the relation 𝑥 . If 𝑎 and 𝑏 are
mutually exclusive, the cardinality constraint simplifies to
𝐶 (𝜎𝑎∨𝑏 (𝑥)) = 𝐶 (𝜎𝑎 (𝑥)) +𝐶 (𝜎𝑏 (𝑥)).

These constraints are well known, but they are, to the best of our
knowledge, not explicitly enforced by any existing query-driven
learned cardinality estimator. Although, this weakness has been
documented with different constraints in the past [10, 31], no so-
lution to enforce them has been proposed. When such constraints
are not enforced, they have to be learned by example, increasing
the required training data.

5.3 Self-Supervised Regularization
We propose a self-supervised regularization term to incorporate
these cardinality constraints into the training of models. In addition
to the supervised loss (see Equation 9), we calculate a loss term
based on a set of constraint examples 𝐸. A constraint example is
an instance of the constraints given in Section 5.2 using specific
queries. Examples 𝑒𝑖 = (𝐿𝑖 ,★𝑖 , 𝑅𝑖) ∈ 𝐸 generally have the form(︂∑︁

𝑞∈𝐿𝑖 𝐶 (𝑞)
)︂
★𝑖

(︂∑︁
𝑞∈𝑅𝑖 𝐶 (𝑞)

)︂
, where the ★𝑖 -operator is either =

or ≤, and 𝐿𝑖 and 𝑅𝑖 are the sets of queries with cardinalities on the
left-hand and right-hand sides of the equality or inequality. The
loss for such a set of examples 𝐸 is given by

lossconstraints =
1
|𝐸 |

∑︂
𝑒𝑖 ∈𝐸

𝑓 (𝐿𝑖 ,★𝑖 , 𝑅𝑖)2 (10)

𝑓 (𝐿𝑖 ,★𝑖 , 𝑅𝑖) =
{︄
𝑔(𝐿𝑖 , 𝑅𝑖) if ★𝑖 is =
ReLU (𝑔(𝐿𝑖 , 𝑅𝑖)) if ★𝑖 is ≤

(11)

𝑔(𝐿𝑖 , 𝑅𝑖) = log ⎛⎜⎝
∑︂
𝑞∈𝐿𝑖

�̂� (𝑞)⎞⎟⎠ − log ⎛⎜⎝
∑︂
𝑞∈𝑅𝑖

�̂� (𝑞)⎞⎟⎠ . (12)

746

SELECT * FROM movies m
WHERE m.year < 1973 OR m.year > 1975;

(a) Query 𝑞1

SELECT * FROM movies m
WHERE m.year < 1973;

(b) Query 𝑞2

SELECT * FROM movies m
WHERE m.year > 1975;

(c) Query 𝑞3

Figure 5: A constraint example with 𝐶 (𝑞1) = 𝐶 (𝑞2) +𝐶 (𝑞3).

Similar to the supervised loss, we use the logarithm to avoid too
much emphasis on queries with large estimated cardinalities. For
constraint examples that are equalities, the loss function is the mean
squared logarithmic error of the left-hand and the right-hand side
of the equation. For constraint examples that are inequalities, we
use the ReLU-function, which will be 0 as long as the inequality is
satisfied. With the normalizing factor 1

|𝐸 | , the loss is independent
of the amount of generated examples.

To illustrate the regularization term, consider the constraint
example of the inclusion-exclusion principle in Figure 5. The con-
tribution of this specific example to the loss is the square of

𝑓

(︂
{𝑞1},=, {𝑞2, 𝑞3}

)︂
= 𝑔 ({𝑞1}, {𝑞2, 𝑞3}) (13)

= log
(︂
�̂� (𝑞1)

)︂
− log

(︂
�̂� (𝑞2) + �̂� (𝑞3)

)︂
. (14)

While the supervised loss is computed by comparing each esti-
mation of the model �̂� to a true cardinality 𝐶 , the regularization
term is calculated by comparing estimations of the model with each
other. Thus, it can be calculated without gathering ground truths.

Finally, the total loss for training the model is given as the sum
of both losses:

losstotal = losssupervised + lossconstraints . (15)

The resulting semi-supervised total loss complements the infor-
mation given by the supervised loss for queries with known car-
dinalities with the information about the constraints given by the
self-supervised loss.

The main advantage of this approach is its flexibility. This loss
component can be added to improve the training of any neural
network architecture for cardinality estimation. Additionally, it is
also flexible w.r.t. the constraints. Depending on the query language
and the expected workload, further constraints can be added.

5.3.1 Generating Constraint Examples. To calculate our loss term,
we first have to generate sets of constraint examples. Generally, we
work with an infinite space of possible queries whereas the actual
workloads only cover a small subset of this space. Thus, while we
will not be able to enforce the constraints over the whole space,
we can focus on enforcing them for queries in our workload and
similar queries.

To generate an example, we first select a random subplan query
of a query in our training set. This subplan query can be unlabeled
since we do not necessarily know the cardinalities of all subplan
queries. Then, we use this query as a starting point to generate a
constraint example using pattern matching.

Consider the example shown in Figure 5. With the starting query
𝑞1, we generate an example of the inclusion-exclusion principle.
The disjunction m.year < 1973 OR m.year > 1975 matches the
pattern 𝑎 ∨ 𝑏 and thus the queries 𝑞2 and 𝑞3 are generated. Note,
that in this case 𝑎 and 𝑏 are mutually exclusive. Therefore, we can
omit the query that corresponds to the term 𝜎𝑎∧𝑏 (𝑥). Whenever
possible, we choose the stricter versions of the constraints since
they carry more information.

We generated two new queries that are similar to our initial
training queries for this constraint example. For the next example,
we can then randomly choose between using another subplan query
in the training set with probability 𝑝 or one of the two newly
generated queries with probability 1 − 𝑝 . Setting 𝑝 = 1 restricts the
generation to examples involving subplan queries of queries in our
training set. Setting 𝑝 = 0 results in a random walk through the
space of possible queries. For our experiments we choose 𝑝 = 1

2 .
This choice is a trade-off between the diversity of examples and
focusing on examples with queries similar to those in our workload.

Generating these constraint examples is computationally cheap
compared to generating data for fully supervised training since
calculating their ground truths is not necessary. However, when
we only consider the pure training time, excluding the time for
generating ground truths, it is a significant cost. Ideally, we would
generate a completely new and large set of constraint examples for
each epoch of training to minimize the potential for overfitting, but
we make trade-offs to keep the training times low. We reuse those
90% of constraint examples from the previous epoch with the largest
contributions to our loss. The other 10% are discarded and replaced
by newly generated examples. Additionally, in every mini-batch,
we use as many constraint examples to calculate lossconstraints as
there are labeled subplan queries used to calculate losssupervised. In
some training scenarios, there can be thousands of labeled subplan
queries for a query. In these cases, scaling the number of cardinality
examples up accordingly is too expensive so we limit it to 1000 per
batch.

6 EXPERIMENTAL EVALUATION
We systematically evaluate the performance of the JGMP archi-
tecture and the self-supervised regularization using cardinality
constraints. This section describes our experimental setup and our
results for different experiments, including q-errors, and runtimes.

6.1 Experimental Setup
In the following, we describe the execution environment, workloads,
training sets, and competitors used in our evaluation.

6.1.1 Environment. All experiments were run on a Linux Server
with a 4.5 GHz AMD Ryzen Threadripper 3970X 32-Core Processor,
256 GB RAM, and a GeForce RTX 3090 24 GB GPU. We use the GPU
for training, but for inference, we only use the CPU to get a fair
comparison between PostgreSQL and the machine learning meth-
ods. The runtime experiments are executed on PostgreSQL 14.5.
We inject the cardinalities using an updated version of Han et al.’s
PostgreSQL patch [9].

We use PostgreSQL’s default configuration with the following
exceptions: We increase the size of the shared buffers to 32GB and

747

Table 4: Query set statistics.

Name Database Tables Foreign
Keys Queries Table Occurrences

per Query
String

Predicates Disjunctions Multiple Occurrences
of the Same Table

Non-FK
Joins

Non-Inner
Joins

STATS-CEB STATS-CEB 8 11 146 2 - 7 No No No No No
JOB-light IMDb 6 5 70 2 - 5 No No No No No

JOB IMDb 21 24 113 4 - 17 Yes Yes Yes No No
IMDb-CEB IMDb 15 16 3123 6 - 16 Yes Yes Yes No No

DSB DSB 23 54 360 5 - 24 Yes Yes Yes Yes Yes

the working memory to 4GB since the default values are not appro-
priate for current hardware. We further disable the GEQO optimizer
and join collapsing to search the whole plan space deterministically
even for large queries.

6.1.2 Data and Query Sets. Table 4 shows an overview of the
query sets used in our evaluation. We use the STATS-CEB [9], the
DSB [3] and three query sets for the IMDb database: JOB-light [16],
JOB [17] and IMDb-CEB [23]. JOB-light and STATS-CEB queries
cover smaller schemas and contain simpler predicates and query
structures. JOB, IMDb-CEB and DSB contain queries with large
join graphs covering more tables. In addition, DSB contains many
query elements not directly supported by our methods, which we
handle as explained in Section 3.5. For DSB we use a scale factor of
1 GB and generate 10 instances each for the query templates in the
“Agg” and “MultiBlock”1 query sets.

6.1.3 Competitors. Our primary focus in this evaluation is on
query-driven learned cardinality estimators. Our experiments test
three different architectures: MSCN, MSCN-Hybrid, and JGMP. We
include MSCN [16] as the current state of the art for query-driven
learned cardinality estimation [9, 14] and use the extensions to the
encoding described in Flow-Loss [23] to support string predicates
and disjunctions. JGMP is our architecture as described in Sec-
tion 4. MSCN-Hybrid is our adaption of the MSCN using elements
from JGMP. In MSCN-Hybrid, our bitmaps from feature-selected
rows (see Section 4.1) replace the predicate-based encoding, the
LeakyReLU activation function replaces the ReLU activation func-
tion, and multi-head attention aggregation (see Equation 8) replaces
sum aggregation. We include MSCN-Hybrid to better differentiate
between the impact of the high-level neural network architecture
and query representation on the one hand and the impact of our
encoding and less prominent design choices on the other hand.

The use of self-supervised regularization (see Section 5) is or-
thogonal to the choice of architecture. For each of the three archi-
tectures, we include one version without the regularization (MSCN,
MSCN-Hybrid, JGMP) and onewith the regularization (MSCN+Reg.,
MSCN-Hybrid+Reg., JGMP+Reg.).

Additionally, we use the cardinality estimates of the unsuper-
vised data-drivenmethods BayesCard [34], DeepDB [12], FLAT [45],
and NeuroCard [38] provided in the Git repository2 for the STATS
benchmark [9]. These unsupervised methods only apply to the
STATS-CEB and the JOB-light workloads since they do not support
the string predicates in the other workloads.

1We exclude Query Template 81 from our experiments as most of its instances time out
even for true cardinalities due to inconsistent behavior of the PostgreSQL optimizer.
2https://github.com/Nathaniel-Han/End-to-End-CardEst-Benchmark
(last accessed: 12/12/2023)

6.1.4 Training with SubplanQueries. Training sets for query-driven
models do not only contain cardinalities for the whole queries but
also for their subplan queries. The number of subplan queries for
each query varies greatly with the number of table occurrences.
For the JOB, the number ranges from 12 for the simplest queries
to over 14,000 for the most complex query. Therefore, we test two
options for training the query-driven models with subplan queries.

In the first option, we add all subplan queries to the training set.
This option is in line with evaluations of query-driven models on
the JOB in other publications [23, 24]. However, this option makes
highly unrealistic assumptions about the availability of training
data in real-world scenarios. It requires the execution of potentially
large amounts of subplan queries for each query in the training
set, as each execution only provides cardinalities for a few subplan
queries. In addition, we also have to gather cardinalities for costly
subplan queries with high cardinalities that the query optimizer
otherwise would never need to execute.

In the second option, we only train the model with PG-selected
subplan queries. PG-selected subplan queries are defined as those
subplan queries that are implemented by a subplan of PostgreSQL’s
execution plan. The cardinalities of PG-selected subplan queries can
be gathered with a single execution of PostgreSQL’s plan. However,
our definition of PG-selected subplan queries excludes subplans
containing pushed-down filters such as a table indexed by a nested
loop join since the cardinality of the subplan without the pushed
down filter cannot be determined from the execution.

A query with 𝑛 table occurrences can have up to 𝑛 single-table
PG-selected subplan queries and 𝑛 − 1 PG-selected subplan queries
with joins, totaling a maximum number of 2𝑛 − 1 PG-selected sub-
plan queries. This option is much more realistic because cardinali-
ties for these subplan queries are accumulated incidentally within
regular system operation. However, it provides only a small and
biased sample of all subplan queries since query optimizers favor
subplans with low estimated cardinalities.

6.1.5 Advanced Mini-Batching. Our models are implemented using
PyTorch Geometric [6]. We use the package’s functionality for
advanced mini-batching to ensure fast training and inference times.
Advanced mini-batching is a way to handle varying tensor sizes. In
our case, the tensor sizes vary because we have different numbers
of table occurrences and joins in each query.

Naively, each tensor can be padded to a maximum size, while
masking ensures that the padding does not affect the estimates.
However, this approach is computationally inefficient because a
cardinality estimation for a small join graph is as expensive as the
estimation for the largest join graph.

748

https://github.com/Nathaniel-Han/End-to-End-CardEst-Benchmark

Advanced mini-batching is a more efficient alternative. By con-
catenating the tensors of the join graphs in a batch and increment-
ing edge index tensors and batch index tensors appropriately, the
set of join graphs in a batch is processed as one large disconnected
join graph. This transformation enables fast parallel computations
with little overhead.

For the most critical applications, we can get additional speedups
exploiting shared computations: In practice, we rarely want to esti-
mate only one cardinality per query. Instead, cost models require
cardinalities for a potentially large set of subplan queries for each
query. Similarly, in the training set, we have access to multiple sub-
plan queries for each query. Table occurrences and joins are shared
between these subplan queries. Thus, we can accelerate inference
and training and reduce memory consumption by sharing compu-
tations up to a certain point. The shared computations include the
calculation of the encodings, the computation of the edge embed-
dings 𝑔𝑘 , and the first table occurrence embeddings ℎ0

𝑖
. From this

point on, the computations cannot be shared anymore since they
depend on the join graph structure, which varies between the sub-
plan queries. The shared embeddings are then replicated for each
subplan query that needs them using an index-select operation.

While this implementation provides significant speedups, it is re-
strictive during training since the subplan queries of a query cannot
be spread across mini-batches. Thus, our batch size hyperparameter
signifies the number of queries in a mini-batch, while the number
of contained subplan queries varies between mini-batches.

For a fair comparison, we also implemented advanced mini-
batching and shared computations for MSCN and MSCN-Hybrid.

6.2 Cross-Validation Experiments
We perform five-fold cross-validation experiments on the STATS-
CEB, JOB-light, JOB and DSB. For the benchmarks containing few
queries (STATS-CEB, JOB-light, JOB), we repeat this ten times to
reduce the variance in our evaluation, giving 50 trained models
per method, training set, and benchmark. The training sets either
contain all or only PG-selected subplan queries. For JOB, we also
distinguish between assigning queries one-by-one into training and
test sets and assigning groups of queries with the same template to-
gether into training and test sets. This grouped assignment is more
challenging than the query-by-query assignment as the test set
does not contain any queries derived from templates in the training
set. Table 5 shows the results of the cross-validation experiments
in terms of q-error [21] and execution time of the plan selected by
the PostgreSQL query optimizer using the cardinality estimates.

The best query-driven method, JGMP+Reg., is on par in terms
of q-errors and runtimes with the best unsupervised methods on
benchmarks where those are applicable, regardless of whether
JGMP+Reg. is trained with all or only PG-selected subplan queries.
In addition to their limited scope, Table 6 shows that unsupervised
models are generally larger and scale poorly with schema size.

Comparing the different benchmarks, we notice that the bench-
marks are not equally difficult. The simplest benchmark is JOB-light
with small q-errors and similar runtimes for all methods. STATS-
CEB is a more challenging benchmark with higher q-errors and a
28% execution time increase from true cardinalities to PostgreSQL

Table 5: Results of cross-validation experiments.

Train.
Set Method q-Error Execution Time [s]

Med. G.M. Mean Med. G.M. Mean

STATS-CEB
TrueCard 1 1 1 0.18 0.36 17.11
PostgreSQL 1.64 3.27 584.9 0.24 0.48 21.87

da
ta
-

dr
iv
en

BayesCard 1.18 2.31 18.6 0.20 0.40 17.56
DeepDB 1.98 3.26 133.4 0.22 0.44 19.44
FLAT 1.68 2.62 112.0 0.19 0.42 17.44

NeuroCard 951.23 2 · 103 2 · 109 0.35 0.71 43.43

al
l

su
bp

la
n
qu

er
ie
s MSCN 2.76 4.44 735.6 0.19 0.43 20.93

MSCN+Reg. 2.20 3.36 286.0 0.19 0.41 21.76
MSCN-Hyb. 2.17 3.32 181.0 0.20 0.42 19.68

MSCN-Hyb.+Reg. 2.13 3.12 95.5 0.20 0.41 19.21
JGMP 1.34 1.71 3.3 0.18 0.37 17.45

JGMP+Reg. 1.37 1.77 4.1 0.18 0.37 17.59

PG
-s
el
ec
te
d

su
bp

la
n
qu

er
ie
s MSCN 2.77 5.30 3437.6 0.20 0.49 21.54

MSCN+Reg. 2.47 4.42 1808.6 0.2 0.47 28.56
MSCN-Hyb. 2.10 3.76 3110.3 0.21 0.49 29.06

MSCN-Hyb.+Reg. 2.38 3.87 1105.8 0.21 0.46 20.88
JGMP 1.58 2.38 85.0 0.19 0.40 19.07

JGMP+Reg. 1.60 2.43 52.9 0.20 0.40 18.64

JOB-light
TrueCard 1 1 1 0.97 0.57 7.60
PostgreSQL 1.27 1.70 2.9 1.10 0.59 7.74

da
ta
-

dr
iv
en

BayesCard 1.14 1.40 1.9 0.91 0.57 7.64
DeepDB 1.66 1.66 2.2 1.06 0.62 7.67
FLAT 1.23 1.39 1.7 0.93 0.61 7.64

NeuroCard 2.15 2.74 4.7 1.11 0.59 7.79

al
l

su
bp

la
n
qu

er
ie
s MSCN 2.25 3.00 9.2 1.06 0.68 7.88

MSCN+Reg. 2.22 3.16 14.7 1.03 0.67 7.84
MSCN-Hyb. 1.92 2.31 4.9 1.02 0.63 8.05

MSCN-Hyb.+Reg. 1.75 2.22 4.8 1.05 0.63 7.96
JGMP 1.12 1.27 1.6 0.98 0.58 7.63

JGMP+Reg. 1.13 1.30 1.9 0.98 0.59 7.66

PG
-s
el
ec
te
d

su
bp

la
n
qu

er
ie
s MSCN 2.59 3.69 12.6 1.23 0.75 10.09

MSCN+Reg. 2.25 3.23 13.3 1.21 0.68 7.95
MSCN-Hyb. 1.89 2.61 6.7 1.15 0.62 7.74

MSCN-Hyb.+Reg. 1.94 2.54 5.9 1.10 0.62 7.85
JGMP 1.25 1.52 2.1 1.04 0.61 7.75

JGMP+Reg. 1.24 1.47 2.1 1.04 0.61 7.77

JOB
TrueCard 1 1 1 0.17 0.18 0.45
PostgreSQL 108.00 149.09 46991.9 0.23 0.30 1.03

al
l

su
bp

la
n
qu

er
ie
s MSCN 3.40 4.87 325.4 0.28 0.30 0.98

MSCN+Reg. 3.62 5.17 51.3 0.25 0.26 0.86
MSCN-Hyb. 2.69 3.89 31.8 0.25 0.23 0.80

MSCN-Hyb.+Reg. 2.70 3.83 34.3 0.22 0.21 0.79
JGMP 2.18 3.01 33.1 0.21 0.22 0.67

JGMP+Reg. 2.15 2.88 19.1 0.21 0.21 0.65

PG
-s
el
ec
te
d

su
bp

la
n
qu

er
ie
s MSCN 10.18 16.86 1534.2 0.29 0.38 2.51

MSCN+Reg. 8.98 13.70 294.0 0.23 0.27 1.16
MSCN-Hyb. 6.80 11.08 356.1 0.21 0.23 0.67

MSCN-Hyb.+Reg. 5.82 8.94 249.1 0.20 0.22 0.65
JGMP 4.84 7.46 126.9 0.21 0.23 0.70

JGMP+Reg. 4.35 6.48 79.0 0.20 0.21 0.57

gr
ou

pe
d
al
l

su
bp

la
n
qu

er
ie
s MSCN 5.68 8.35 1127.7 0.28 0.32 1.18

MSCN+Reg. 5.53 7.98 994.0 0.25 0.27 0.88
MSCN-Hyb. 5.52 11.88 684.7 0.24 0.25 0.81

MSCN-Hyb.+Reg. 5.93 12.75 739.2 0.24 0.23 0.88
JGMP 4.01 6.93 254.0 0.21 0.23 0.70

JGMP+Reg. 4.57 9.84 735.1 0.21 0.22 0.66

gr
ou

pe
d
PG

-s
el
.

su
bp

la
n
qu

er
ie
s MSCN 10.78 17.59 16476.7 0.32 0.45 7.02

MSCN+Reg. 10.02 15.49 41778.3 0.25 0.31 1.34
MSCN-Hyb. 10.86 20.00 2764.8 0.23 0.26 0.97

MSCN-Hyb.+Reg. 11.90 22.35 2683.5 0.23 0.25 0.83
JGMP 6.93 12.09 450.3 0.22 0.24 0.67

JGMP+Reg. 7.60 15.59 1614.3 0.21 0.22 0.59

DSB
TrueCard 1 1 1 0.82 0.65 12.24
PostgreSQL 2.04 3.14 184.1 0.77 0.77 12.58

al
l

su
bp

la
n
qu

er
ie
s MSCN 1.85 2.71 10.6 0.87 0.80 17.37

MSCN+Reg. 1.82 11.8 2.58 0.86 0.79 13.86
MSCN-Hyb. 1.60 2.27 44.2 0.89 0.79 12.60

MSCN-Hyb.+Reg. 1.85 2.62 72.1 0.86 0.79 12.79
JGMP 1.94 2.73 70.9 0.86 0.66 12.71

JGMP+Reg. 1.76 2.47 63.0 0.84 0.67 12.91

PG
-s
el
ec
te
d

su
bp

la
n
qu

er
ie
s MSCN 17.85 28.83 2310.4 0.95 0.93 17.97

MSCN+Reg. 9.59 12.55 117.7 0.93 0.87 17.80
MSCN-Hyb. 100.31 105.29 3809.0 0.93 0.90 21.84

MSCN-Hyb.+Reg. 26.86 32.07 620.2 0.96 0.87 17.76
JGMP 45.70 52.10 1587.7 0.91 0.77 17.68

JGMP+Reg. 13.36 15.03 120.3 0.82 0.67 12.50

749

Table 6: Model sizes [MB].

Method STATS-CEB JOB-light JOB DSB
BayesCard 5.9 1.6 n/a n/a
DeepDB 162 34 n/a n/a
FLAT 310 3.4 n/a n/a

NeuroCard 337 6.9 n/a n/a
MSCN 0.4 0.4 0.5 0.7

MSCN-Hybrid 0.5 0.4 0.5 0.5
JGMP 1.7 1.7 1.7 1.7

estimates. In the STATS-CEB benchmark, we observe a high vari-
ance in execution times between the queries in the benchmark.
For example, the three longest-running queries comprise 72% of
the total PostgreSQL execution time of all 146 queries. Since a few
queries dominate the mean execution times, we also report the
geometric mean (G.M.) as a more robust measure. JOB is a more
challenging benchmark with high q-errors and a 129% execution
time increase from true cardinalities to PostgreSQL estimates.

The results support the hypothesis that training with only PG-
selected subplan queries is more challenging than training with
all subplan queries. We generally observe larger q-errors for all
methods on all benchmarks and longer execution times, especially
on JOB and DSB. Similarly, the workload shift resulting from as-
signing queries to training and test sets in groups of similar queries
also provides an additional challenge on JOB. However, we can
observe that different models are affected by these two additional
difficulties to a different degree. While the geometric mean execu-
tion time of MSCN deteriorates from 0.30 s to 0.45 s, the geomeric
mean execution time of JGMP only increases from 0.22 s to 0.24 s.

Using the self-supervised regularization term during training
further improves the sample efficiency. While the benefits of the
regularization are less obvious for the easier benchmarks, there are
clear improvements on JOB, especially when training only with
PG-selected subplan queries. This improvement is not surprising
since the regularization term will have the most impact when we
need more training data. The MSCN-Hybrid architecture generally
ranks between the MSCN and JGMP architectures across different
benchmarks and training options. This result shows that both the
overall architecture with the join graph representation of queries,
as well as the combination of our proposed encoding of complex
predicates and more minor innovations, contribute to the improved
performance of JGMP.

On DSB, we observe only a 3% increase in mean execution times
from true cardinalities for directly supported subplan queries to
PostgreSQL estimates, indicating a limited potential to improve
the plans of the few longest-running DSB queries. However, the
respective 18% increase in geometric means shows considerable
potential for relative runtime improvements over the whole query
set. Using all subplan queries as training data, all models can reduce
the q-errors compared to PostgreSQL. However, only JGMP can
improve PostgreSQL’s geometric mean execution time. Training
with only PG-selected queries is especially challenging on this
benchmark since expressions that are not directly supported can
further reduce the size of the training set, which is reflected in the
q-errors of all models. In this scenario, the consistency between the
estimates enforced by our regularization proves beneficial again,
as JGMP+Reg. is the only model that outperforms PostgreSQL’s

Table 7: Mean cardinality estimation inference time [s] per
query including all of its subplan queries.

Method STATS-CEB JOB-light JOB DSB
MSCN 0.0045 0.0042 0.0493 0.0239

MSCN-Hybrid 0.0069 0.0064 0.0610 0.0281
JGMP 0.0104 0.0099 0.0729 0.0283

Table 8: Mean training times [min].

Method All
Subplan Queries

PG-Selected
Subplan Queries

MSCN 0.2 0.1
MSCN+Reg. 6.7 2.4
MSCN-Hybrid 1.9 1.6

MSCN-Hybrid+Reg. 8.6 4.1
JGMP 2.4 2.0

JGMP+Reg. 7.3 3.9

execution times. Overall, the experiments on DSB show that query-
driven learned cardinality estimation can be beneficial even on
workloads containing not directly supported expressions.

Table 7 shows the inference times per query to gather all sub-
plan query cardinality estimates required by the PostgreSQL query
optimizer. The inference times do not depend on the training set
or the regularization. We observe that the inference times on JOB
and DSB are higher than those on STATS-CEB and JOB-light since
the queries in the former workloads are much more complex and,
therefore, contain more subplan queries that need to be estimated.
JGMP’s improved estimates come at the cost of higher inference
times compared to MSCN due to the added cost of the more com-
plex computations in the message passing and aggregation layers.
Overall, the inference times for all model architectures on all bench-
marks are short compared to the differences in execution times,
showing that using learned cardinality estimation can provide a
net benefit. The efficient implementation of the models using ad-
vanced mini-batching and shared computations between subplan
queries, as explained in Section 6.1.5, is a major contributor to the
low inference times.

Table 8 shows the training times for all methods on JOB. Overall
training times for any method do not exceed 9 minutes due to the
small training sets and efficient implementation. However, we ob-
serve an expected increase in training times in the more complex
model architectures and an additional increase when training with
regularization. Arguably, the differences in the estimation quality
are large enough to justify this additional overhead. The increased
training time for the regularization is mainly due to the genera-
tion of constraint examples. Notably, more constraint examples are
generated for the training with all subplan queries, which is also
reflected in the training times. Using the regularization term is a
trade-off between training times and quality of estimates that is
especially appealing when there is only minimal training data.

6.3 Varying Training Set Size & Workload Shift
We further investigate how the amount of available training data in-
fluences the performance of the query-driven estimators using the
IMDb-CEB containing over 3000 queries. Specifically, we randomly
assign subsets of sizes ranging from 128 to 2048 to the training set.
We repeat this process with different random subsets resulting in

750

Table 9: Results of the workload shift experiment.

Train.
Set Method q-Error Execution Time [s]

Med. G.M. Mean Med. G.M. Mean

TrueCard 1 1 1 0.17 0.18 0.45
PostgreSQL 108.00 149.09 46991.9 0.23 0.30 1.03

IM
D
B-
CE

B
pg

-s
el
ec
te
d

su
bp

la
n
qu

er
ie
s MSCN 14.12 23.45 31606.3 0.42 0.56 4.21

MSCN+Reg. 11.28 17.70 2628.3 0.43 0.40 1.78
MSCN-Hyb. 8.89 14.33 2063.4 0.30 0.35 1.31

MSCN-Hyb.+Reg. 8.12 14.28 3730.0 0.26 0.31 1.01
JGMP 10.07 17.84 34782.5 0.31 0.35 2.49

JGMP+Reg. 9.79 17.23 2255.8 0.31 0.31 0.92

10 trained models for each method and training set size. In these
experiments, we train the models exclusively with PG-selected sub-
plan queries since it is more realistic and challenging than training
with all subplan queries.

Figure 6 shows the results of this experiment on the IMDb-CEB.
JGMP is the best-performing architecture regarding q-errors and
execution times across all training set sizes. However, it is notable
that the differences between the architectures are least pronounced
for the largest and increase for smaller training sets. This behavior
further supports our claim that the JGMP architecture is more
sample-efficient than its competitors. Similarly, the regularization
term provides the greatest benefits when training with few queries.
Interestingly, we observe that for large training sets, the variants
with regularization have larger q-errors but much lower execution
times. While a fully supervised loss function tries to minimize the q-
error more directly, the self-supervised regularization term ensures
that the estimates are mutually consistent. While this consistency
between subplan query estimates is not necessarily reflected in
lower q-errors, it is crucial for generating good plans. This effect
underscores the recent critiques of q-errors as the only metric for
cardinality estimation [9, 23] and the need for injecting cardinality
estimates into query optimizers to gather execution times.

We use the models trained on IMDb-CEB with the largest train-
ing set size of 2048 to conduct a workload shift experiment. These
trained models are evaluated without any modifications on the JOB
queries, referencing tables and columns that do not appear in the
IMDb-CEB. Table 9 shows the results of this experiment. Regu-
larization is valuable in this highly challenging scenario. Models
trained with regularization use the constraint examples to gather

Figure 6: Performance of different architectures on IMDb-
CEB for varying training set sizes.

Table 10: Results of the predicate encoding ablation study
on JOB using JGMP with regularization.

Train.
Set Method q-Error Execution Time [s]

Med. G.M. Mean Med. G.M. Mean

TrueCard 1 1 1 0.17 0.18 0.45
PostgreSQL 108.00 149.09 46991.9 0.23 0.30 1.03

PG-sel.
subplan
queries

16 FS (default) 4.35 6.48 79.0 0.20 0.21 0.57
16 FS w/o PG-est. 5.45 8.21 649.6 0.22 0.25 0.99

No samples 6.15 9.47 151.9 0.24 0.27 0.81
16 random 5.2 7.94 154.3 0.22 0.26 0.82
1000 random 5.14 7.71 27036.5 0.21 0.25 0.86

information on queries outside the original training set. Notably,
both architectures that use bitmaps from feature-selected samples
perform similarly well, indicating that this approach is beneficial
for generalization and against overfitting.

6.4 Ablation Study
We conduct an ablation study to assess the influence of our pred-
icate encoding in more detail. The results of this ablation study
using cross-validation on the JOB trained with PG-selected subplan
queries are shown in Table 10. We compare the default JGMP con-
figuration with 16 feature-selected samples (16 FS) to four different
variants: “16 FS w/o PG-est.” is the only variant omitting the Post-
greSQL estimates in the base table encodings, “no samples” omits
the samples completely, “16 random” and “1000 random” use ran-
dom samples of the respective sizes. The feature-selected samples
provide a clear benefit compared to all other variants regarding
q-errors and execution times. Similarly, the PostgreSQL estimates
in the encoding also improve the estimates.

7 CONCLUSION
We showed that the JGMP architecture and self-supervised reg-
ularization based on cardinality constraints improve the sample
efficiency of learned query-driven cardinality estimators. We also
showed that learned query-driven estimators can outperform classi-
cal cardinality estimators and come close to using true cardinalities
in terms of execution times, even with training data from only 100
query executions. These findings underscore the great potential of
geometric deep learning in query optimization. In query optimiza-
tion, we are blessed with highly structured data. Incorporating this
structure into our models is critical to the success of this line of
research.

While our evaluation shows great promise and the efficient im-
plementation of our models reduces inference times, learned cardi-
nality estimation, in general, still comes at the cost of additional
overheads. Our experiments include many examples where these
overheads pay off. However, there will always be fast-executing
queries where classical cardinality estimators perform well enough,
and the benefit of learned cardinality estimation is not worth the
cost. For this reason, it is critical future work to design inexpensive
heuristics for database systems to determine for which queries,
workloads, or databases to use learned cardinality estimation.

ACKNOWLEDGMENTS
This work is in part supported by Grant No. GR 4497/5 of the
Deutsche Forschungsgemeinschaft (DFG).

751

REFERENCES
[1] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geo-

metric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. https:
//doi.org/10.48550/ARXIV.2104.13478

[2] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer towards Generating Efficient and Robust Query Execution Plans. Proc.
VLDB Endow. 16, 7 (2023), 1777–1789. https://doi.org/10.14778/3587136.3587150

[3] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya.
2021. DSB: A Decision Support Benchmark for Workload-Driven and Tradi-
tional Database Systems. Proc. VLDB Endow. 14, 13 (2021), 3376–3388. https:
//doi.org/10.14778/3484224.3484234

[4] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.org/
10.14778/3329772.3329780

[5] Ahmed K. Farahat, Ali Ghodsi, and Mohamed S. Kamel. 2013. Efficient greedy
feature selection for unsupervised learning. Knowl. Inf. Syst. 35, 2 (2013), 285–310.
https://doi.org/10.1007/s10115-012-0538-1

[6] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019). arXiv:1903.02428

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings
of the International Conference on Machine Learning, ICML 2017 (Proceedings of
Machine Learning Research, Vol. 70). 1263–1272.

[8] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017.
1024–1034.

[9] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Tan Wei Liang, Kai
Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A Com-
prehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–765.
https://doi.org/10.14778/3503585.3503586

[10] Haoyu He, Tianhao Wei, Huan Zhang, Changliu Liu, and Cheng Tan. 2022.
Characterizing Neural Network Verification for Systems with NN4SYSBENCH.
In Workshop on Formal Verification of Machine Learning.

[11] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.
https://doi.org/10.14778/3551793.3551799

[12] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/3384345.
3384349

[13] Alan Jovic, Karla Brkic, and Nikola Bogunovic. 2015. A review of feature se-
lection methods with applications. In International Convention on Information
and Communication Technology, Electronics and Microelectronics, MIPRO 2015.
1200–1205. https://doi.org/10.1109/MIPRO.2015.7160458

[14] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jae-
hyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. SIGMOD
Rec., 1214–1227. https://doi.org/10.1145/3514221.3526154

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In 3rd International Conference on Learning Representations, ICLR
2015.

[16] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In Proc. Conf. on Innovative Data Systems Research (CIDR).

[17] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[18] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963. https://doi.org/10.14778/3476249.3476254

[19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making Learned Query Optimization Practical.
SIGMOD Rec. 51, 1 (2022), 6–13. https://doi.org/10.1145/3542700.3542703

[20] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https://doi.org/
10.14778/3342263.3342644

[21] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993. https://doi.org/10.14778/1687627.1687738

[22] Magnus Müller, Lucas Woltmann, and Wolfgang Lehner. 2023. Enhanced Featur-
ization of Queries with Mixed Combinations of Predicates for ML-based Cardi-
nality Estimation. In Proceedings International Conference on Extending Database
Technology, EDBT 2023. 273–284. https://doi.org/10.48786/edbt.2023.22

[23] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[24] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533. https://doi.org/10.14778/3583140.3583164

[25] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. CoRR
(2019). arXiv:1905.06425

[26] Hoifung Poon and Pedro M. Domingos. 2011. Sum-Product Networks: A New
Deep Architecture. In UAI 2011, Proceedings of the Conference on Uncertainty in
Artificial Intelligence. 337–346.

[27] Saúl Solorio-Fernández, Jesús Ariel Carrasco-Ochoa, and José Fco. Martínez-
Trinidad. 2020. A review of unsupervised feature selection methods. Artif. Intell.
Rev. 53, 2 (2020), 907–948. https://doi.org/10.1007/s10462-019-09682-y

[28] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017. 5998–6008.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations, ICLR 2018.

[31] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654. https://doi.org/10.14778/3461535.3461552

[32] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-
gang Lehner. 2019. Cardinality estimation with local deep learning models.
In Proceedings of the Second International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2019. 5:1–5:8.
https://doi.org/10.1145/3329859.3329875

[33] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2022. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. CoRR (2022). https://doi.org/10.48550/arXiv.2212.05526 arXiv:2212.05526

[34] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework
for Cardinality Estimation. CoRR (2020). arXiv:2012.14743

[35] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2022. A Unified Transferable Model for ML-Enhanced
DBMS. In Conference on Innovative Data Systems Research, CIDR 2022.

[36] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
SIGMOD Rec., 931–944. https://doi.org/10.1145/3514221.3517885

[37] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[38] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019), 279–292.
https://doi.org/10.14778/3368289.3368294

[39] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design Space for Graph
Neural Networks. InAdvances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020.

[40] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc. VLDB
Endow. 15, 13 (2022), 3924–3936. https://doi.org/10.14778/3565838.3565846

[41] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan
Salakhutdinov, and Alexander J. Smola. 2017. Deep Sets. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017. 3391–3401.

[42] Shuo Zhang and Lei Xie. 2020. Improving Attention Mechanism in Graph Neural
Networks via Cardinality Preservation. In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI 2020. 1395–1402. https://doi.org/10.
24963/ijcai.2020/194

[43] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670. https://doi.org/10.14778/3529337.3529349

[44] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479. https://doi.org/10.14778/3583140.3583160

[45] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. https:
//doi.org/10.14778/3461535.3461539

752

https://doi.org/10.48550/ARXIV.2104.13478
https://doi.org/10.48550/ARXIV.2104.13478
https://doi.org/10.14778/3587136.3587150
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1007/s10115-012-0538-1
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.14778/3551793.3551799
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3476249.3476254
https://doi.org/10.1145/3542700.3542703
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.48786/edbt.2023.22
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3583140.3583164
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.48550/arXiv.2212.05526
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.14778/3565838.3565846
https://doi.org/10.24963/ijcai.2020/194
https://doi.org/10.24963/ijcai.2020/194
https://doi.org/10.14778/3529337.3529349
https://doi.org/10.14778/3583140.3583160
https://doi.org/10.14778/3461535.3461539
https://doi.org/10.14778/3461535.3461539

	Abstract
	1 Introduction
	2 Related Work
	2.1 Query-Driven Methods
	2.2 Unsupervised Data-Driven Methods

	3 Design Principles
	3.1 Invariances
	3.2 Uniqueness
	3.3 Analysis of the Current State of the Art
	3.4 A Join-Graph-Based Query Representation
	3.5 Scope

	4 Encoding and Model Architecture
	4.1 Table and Predicate Encodings
	4.2 Join Encodings
	4.3 Model Architecture

	5 Self-Supervised Regularization
	5.1 Supervised Training
	5.2 Cardinality Constraints
	5.3 Self-Supervised Regularization

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Cross-Validation Experiments
	6.3 Varying Training Set Size & Workload Shift
	6.4 Ablation Study

	7 Conclusion
	Acknowledgments
	References

