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ABSTRACT
Emerging NUMA/CXL-based tiered memory systems with hetero-

geneous memory devices such as DRAM and NVMM deliver ultra-

fast speed, large capacity, and data persistence all at once, offering

great promise to high-performance in-memory key-value stores. To

fully unleash the performance potential of such memory systems,

this paper presents BonsaiKV, a key-value store that makes the best

use of different components in a tiered memory system. The core of

BonsaiKV is a tri-layer hierarchical storage architecture that sepa-

rates data indexing, persistence, and scalability from each other and

realizes each of them within a specialized software-hardware layer.

We design BonsaiKV with a set of novel techniques, including col-

laborative tiered indexing, NVMM congestion control mechanisms,

fine-grained data striping, and NUMA-aware data management,

to leverage hardware strengths and tackle device deficiencies. We

compare BonsaiKV with state-of-the-art NVMM-optimized key-

value stores and persistent index structures using a variety of YCSB

workloads. Evaluation results demonstrate that BonsaiKV outper-

forms others by up to 7.69×, 19.59×, and 12.86× in read-, write- and

scan-intensive scenarios, respectively.
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1 INTRODUCTION
In-memory key-value store (KVS) has become an indispensable

building block of today’s cloud computing systems, serving in

numerous scenarios like object caching [60], web indexing [65],

and stream processing [10]. Conventional DRAM-based KVS, such

as Memcached [60], Redis [3], and RAMCloud [62], reap high-

performance DRAM to deliver orders of magnitude performance

speedup over HDD- or SSD-based counterparts [11, 50, 53].

However, DRAM inefficiencies in cost, density, and scaling lim-

itation raise severe concerns for today’s in-memory key-value

stores [58, 64]. Cloud service providers still heavily rely on cheap,

slow storage devices (e.g., flash-memory-based SSDs) to compensate

for DRAM shortcomings [23, 43]. Unfortunately, such workarounds

often cause slow and unpredictable key-value store performance [82],

failing to meet the strict performance requirements driven by big

data applications [25, 40, 48, 51, 82].

The advent of heterogeneous memory systems [55, 67, 68] with

emerging non-volatile memories (e.g., 3D XPoint [81], PCM [66], Z-

NAND [1]) and cache coherent interconnect protocols (e.g., CXL [28],

OpenCAPI [73], NVLink [47]) promise a solution to address this

tension. For example, non-volatile main memory (NVMM) sys-

tems offer nano-seconds access latency, maximum 512GB capacity

per DIMM slot, storage-like data persistence, byte-addressability

via memory controllers [30, 81]. Also, the NUMA architecture and

CXL-basedmemory expansion [16] enable low-cost and application-

transparent memory capacity scale-up. All these technologies ex-

hibit distinctive and attractive characteristics, together forming

a tiered memory hierarchy. Given the current device/technology
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availability, this paper focuses on a NUMA system with DRAM-

NVMM hybrid memory.

With such exciting and revolutionary characteristics and fea-

tures, however, how to fully unleash the performance potential of

such memory systems for key-value stores is still nontrivial and

poorly explored. Specifically, this paper identifies three major chal-

lenges to this end. (1)DRAM is fast and has small latency variations

against different access patterns. A consensus derived from current

research is to use DRAM data structures for fast key-value index-

ing [5, 14, 31, 34]. Unfortunately, the small capacity and high price

of DRAM modules constrain such use in indexing large volumes

of data for the production environment [9, 19, 60]. (2) NVMM ex-

hibits relatively small bandwidth [17, 30, 81]. Data writes issued

by increasing parallel executing thread easily saturate the small

bandwidth, causing severe NVMM traffic congestion [84] or even

leading to performance collapse under high contention [86]. (3) A
tiered DRAM-NVMM memory system incorporates multiple mem-

ory nodes consisting of channel-isolated memory modules [81].

How to scale key-value stores by leveraging hardware-provided

parallelism and mitigating remote memory access overheads is not

well understood.

With these challenges in mind, we present BonsaiKV, a fast, scal-

able, persistent key-value store on tiered, heterogeneous memory

systems. BonsaiKV features a DRAM-NVMM tri-layer hierarchical

storage architecture that spans across a hybrid, large-scale memory

system consisting of distinct memory devices.

BonsaiKV aims to leverage hardware strengths and tackle device
deficiencies to fulfill efficient indexing, fast persistence, and high
scalability in a key-value store simultaneously. Targeting these goals,
it incorporates a set of novel key-value data indexing, persistence,

and scalability techniques:

● We propose collaborative tiered indexing by exploiting both

DRAM’s fast speed and NVMM’s large capacity to reduce the

data index memory consumption without compromising index-

ing performance §4.1.

● We develop an analytical model to understand NVMM congestion

and then propose two congestion control mechanisms to reduce

traffic interference and mitigate bandwidth contention §4.2.

● We devise a scalable fine-grained data stripe scheme by fully

leveraging memory channel-level parallelism §4.3.

● We propose an adaptive KV data replication mechanism and a

write-optimal data coherence protocol to alleviate remote mem-

ory access overheads §4.3.

We implement BonsaiKV prototype from scratch on a commodity

DRAM-NVMM platform. Functionality separation and layer spe-

cialization of BonsaiKV allows its three layers to be independently

designed, implemented, and optimized, which greatly simplifies its

development and enables easy adoption on other heterogeneous

memory systems §4.4.

We compare BonsaiKVwith three state-of-the-art DRAM-NVMM

key-value stores (LSM-tree-based ListDB [41], Log-structured Flat-

Store [14, 77], Hash-based Viper [5]) and three persistent index

structures (trie-based PACTree [42], B
+
-tree-based FAST-FAIR [35],

hybrid-index DPTree [87]). We also use a variety of YCSB work-

loads [15] to evaluate BonsaiKV performance. Evaluation results

demonstrate that BonsaiKV significantly outperforms state-of-the-

art works under different data-intensive scenarios.
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Figure 1: Modern Tiered Heterogeneous Memory System

The rest of this paper is organized as follows. Section §2 demon-

strates the background andmotivation of our work. Section §3 gives

an overview of BonsaiKV. Section §4 elaborates on the design and

implementation. Section §5 thoroughly evaluates the effectiveness

of techniques and the overall performance of BonsaiKV. Finally,

Section §6 gives a conclusion.

2 BACKGROUND AND MOTIVATION
2.1 Modern Tiered Heterogeneous Memory
With the explosive demand for big data storage and the advance

of memory technologies, modern computer systems in data cen-

ters have embraced tiered memory systems with heterogeneous

memory mediums for different trade-offs [49, 55]. As depicted in

Figure 1, in addition to DRAMDIMM, programmers are able to lever-

age a wide range of emerging technologies to expand their memory

space. For example, NVMM-based persistent DIMM has been com-

mercialized to serve as compensation for DRAM [2]. In a typical

DRAM-NVMM hybrid system, where both are attached to the mem-

ory bus and addressed by the integrated memory controller (iMC),

it provides fast speed, large capacity, and data persistence [81]. Fur-

thermore, inter-CPU coherent interconnects (e.g., Intel UPI) also

scale the memory out of a single CPU to a non-uniform memory

access (NUMA) architecture.

Recently, such efforts have been extended to CXL memory ex-

pansion [28, 49, 55], which defines the standard interface exposed

to the host CPU, and has no constraints on memory/storage types.

In CXL memory expansion, devices are treated as a regular NUMA

node without CPU cores, enabling software-transparent memory

expansion and offloading with load/store memory semantics, and

all memory management software for regular NUMA systems can

be seamlessly applied. Last but not least, advanced networking

technologies have brought disaggregated memory [22, 29, 68] to

the horizon for even larger memory capacity and higher resource

utilization. All these innovations provide extensive design space for

data center applications [70, 75, 79], exerting significant influence

on system and architecture exploration.

2.2 Challenges and Related Works
We summarize and discuss three major technical challenges of

building key-value stores on DRAM-NVMM. Moreover, we analyze

related works and present a technical comparison of various state-

of-the-art key-value stores in Table 1.

DRAM is fast but has limited capacity. DRAM outperforms

NVMM for lower latencies and smaller variance for different access

patterns. As a result, a line of research works [5, 13, 14, 52, 61, 80, 87]

use volatile data structures to index data stored in the NVMM. Using
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Table 1: Comparison of Various Key-Value Stores. Most key-
value stores excessively use DRAM for fast indexing, which causes
high DRAM consumption. Second, NVMM congestion is a common
problem for key-value stores, yet no effective solutions exist. Finally,
current key-value stores support multi-DIMM, multi-node architecture
poorly. They only provide page-level data striping and NUMA-aware
memory allocation.

Indexing Persistence Scalability

Project Speed

DRAM

Usage

Interf-

erence

Conte-

ntion

Inter-

leave

NUMA-

aware

HiKV [80] Fast High High High %
FAST-FAIR [35] Slow % High High %
DPTree [87] Fast Medium High High %
FlatStore [14] Fast High High High 4KB

Viper [5] Fast High High High 4KB

LB
+
-tree [52] Medium Medium High High 4KB

PACTree [42] Slow % High High 4KB

ListDB [41] Slow Low High High 4KB

BonsaiKV Fast Low Low Low 256B

: NUMA-unaware; : NUMA-aware NVMM Memory Allocation;

: NUMA-aware NVMM Memory Allocation and Data Access.

fast DRAM improves data indexing speed. However, the current

DDR4 DRAM module capacity ranges from 8GB to 32GB, which is

far less than the NVMM capacity (128-512GB for Intel DCPMM [2]).

Indexing large volumes of data causes heavy DRAM pressure. We

find this data indexing solution even becomes infeasible in the

production environment [9].

HiKV [80], Viper [5], and FlatStore [14] cause high DRAM con-

sumption. For every key-value pair in the NVMM, they create

a volatile indexing entry (︀key, address⌋︀ and manage entries us-

ing tree-like or hash table-based DRAM data structures. A recent

RocksDB study from Facebook reports that a database node stores

nearly eight hundred gigabytes of social graph data [57]. Assume

the average key and value sizes are 27 bytes and 126 bytes, respec-

tively [9]. Indexing these key-value data consumes around 183GB

of precious DRAM resources. It occupies over 95% of DRAM space

for our testbed machine §5.

To reduce the heavy DRAM pressure, hybrid DRAM-NVMM tree

structures (e.g., FPTree [61] and LB
+
-tree [52]) store leaf nodes in

the large-sized NVMM. However, the overall indexing performance

is compromised due to low NVMM node lookup performance. The

reasons are twofold. The first one is expensive NVMM access to leaf

node metadata and key-value data. Moreover, they usually store a

leaf node in a device. The poor NVMM bandwidth limits the entry

search efficiency in the same node.

In addition, ListDB [41] only places a small MemTable in DRAM.

Most of its lookups need to search the multi-level LSM tree in

NVMM. Therefore, its indexing speed is quite slow. For fast but small
DRAM, how to reduce the memory consumption without degrading
the data indexing performance is the first challenge.

NVMM congestion preventing fast persistence. In a tiered

memory system, the device bandwidth varies across tiers. A remote

NUMA memory node or a CXL-connected device has smaller band-

width than the local memory bandwidth [49, 55]. Similarly, NVMM

and DRAM also have a large bandwidth gap (3-10×). The small

NVMM bandwidth is easily saturated with a burst of data requests.

This phenomenon resembles the network congestion [20]. For data
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Figure 2: NVMM Bandwidth Performance Characteristics.
(a) shows that NVMM bandwidth is easily saturated with a large data
persistence granularity or an increasing thread number. (b) demon-
strates that a smaller data striping size delivers better hardware par-
allelism and higher throughputs.

persistence, NVMM congestion leads to two severe consequences:

traffic interference and bandwidth contention.
In NVMM congestion, memory traffic of different data flows

has strong interference, causing unpredictable client performance.

This problem is especially serious for log-structured key-value

stores (e.g., ListDB [41], FlatStore [14]). A log-structured key-value

store is equipped with background garbage collection (GC) threads.

When GC threads clean stale logs, they compete for limited band-

width resources with foreground user threads. Consequently, high-

prioritized user requests are unable to be served in time. Further-

more, storing the entire index in the NVMM like FAST-FAIR [35]

and PACTree [42] exacerbates this issue.

Besides, NVMM congestion also leads to the heavy bandwidth

contention. The value size could be quite large in modern key-value

data storage. For instance, UP2X, an AI/ML service database in

Facebook, has an average value size of 3.6KB. Its maximum value

size even exceeds 100KB [9]. A recent cache study also suggests

that user requests are often bursty [6]. These massive, large-sized

data writes stress the limited NVMM bandwidth.

We study the bandwidth contention with an experiment. This ex-

periment creates multiple memory regions. A region is interleaved

across six NVMM devices. Threads persist data in their private

regions. Our experimental results in Figure 2a show that bandwidth

contention easily happens for a large data persistence size or in-

creasing threads. The root cause of the high bandwidth contention

is the mismatch between data request transmission rate and NVMM

device service rate [86]. This rate disparity is proportional to the

data persistence size and the thread number. Section §4.2.1 gives a

detailed analysis.

Heavy NVMM congestion is a serious problem for data persis-

tence. Table 1 investigates that all existing key-value stores suffer

from this issue. Unfortunately, none of them have effective con-

gestion control mechanisms to deal with it. Other works require

special hardware mechanisms, e.g., MBA [84] and DVFS [36]. For

example, MT
2
[84] reduces the bandwidth contention by regulating

the memory bandwidth with Intel MBA. FairHym [36] throttles

CPU frequency using DVFS to alleviate interference among tasks

running on DRAM and NVMM. In summary, for data persistence
techniques, how to address NVMM congestion is the second challenge.
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Scaling to large-scale memories. To achieve the memory ca-

pacity scaling, DRAM-NVMM systems adopt the NUMA architec-

ture. Each memory node incorporates multiple memory DIMMs

connecting to the iMC through independent channels. Existing key-

value stores lack sufficient support for multi-DIMM, multi-node

memory architecture.

First, multi-DIMM allows channel-level parallelism (CLP). Intel

DCPMM utilizes CLP to interleave data across memory devices in

a page granularity [81], which is widely used in current key-value

stores [5, 14, 41, 42]. However, this coarse-grained data striping

mode cannot fully exploit the channel-level parallelism. We per-

form an experiment to confirm it. For every thread, we create a

24GBmemory region spread across six NVMMs (NVMM0-NVMM5)

with a specific striping size. Threads read data from devices in a

round-robin manner (NVMM0 → ⋯ → NVMM5 → NVMM0⋯).

The experiment varies the striping size and the thread number.

Figure 2b suggests that the total throughput is higher for a small

data striping size.

We explain such parallelism gain as follows. Modern CPUs sup-

port having multiple independent memory requests in-flight [12],

which makes room for utilizing CLP. Yet, only a small number of

consecutive memory access can be served in parallel due to re-order

buffer (ROB) and line fill buffer (LFB) capacity limitations in the

processor [69, 76, 85]. Thus, smaller striping size makes outstanding

successive instructions more likely to be sent on multiple channels,

resulting in higher bandwidth utilization. When the thread number

is above sixteen, threads with different striping sizes deliver similar

latency due to the small NVMM bandwidth.

Second, previous research works report that remote NVMM

access is quite expensive [30, 42]. The performance gap between

remote and local memory access exceeds over 40% [42]. Currently,

only ListDB [41] and PACTree [42] provide NUMA-aware mem-

ory allocation. The braided skiplist in ListDB spans list nodes

across NUMA nodes. However, it ignores remote list nodes during

data lookup. As list nodes are unevenly distributed, ListDB cannot

achieve balanced search performance.

For DRAM key-value stores, delegation [7, 33] and replication [8,

56] are two widely used methods to mitigate the NUMA impact.

The delegation method uses a dedicated thread for handling data

requests issued from clients. However, the centralized delegation

design easily becomes a bottleneck in the large-scale memory en-

vironment [7]. The replication method requires data coherence

protocols to achieve coherent, NUMA-aware data access. Existing

protocols are often write-intensive as they introduce many data

writes for invalidating or synchronizing remote copies when data

update happens [8, 27, 56]. These additional memory writes are

unfriendly to NVMM.

Finally, how to scale to multi-DIMM, multi-node memory systems
by exploiting the hardware parallelism and minimizing the remote
memory access impact is the third challenge.

3 BONSAIKV OVERVIEW
We propose BonsaiKV, a fast, scalable, persistent key-value store

on DRAM-NVMM memory systems. Figure 3 presents BonsaiKV

architecture. It exhibits a tri-layer hierarchical system architecture
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Figure 3: BonsaiKV Tri-Layer Hierarchical Architecture

that spans a tiered, heterogeneous memory system equipped with

multiple channel-independent DRAM and NVMM DIMMs.

BonsaiKV carefully tailors the KV data storage format in each

layer. The basic KV data storage units in these layers are namely in-

dex node (inode), persistent log, and data node (dnode). These three
layers are specialized in efficient key-value indexing, fast data persis-
tence, and large-memory scaling. To achieve these aims, BonsaiKV

introduces four novel design principles.

P1. Combining DRAM’s high speed and NVMM’s large ca-
pacity to achieve fast and memory-efficient indexing. Bon-
saiKV splits the indexing over two distinct memory tiers. It com-

pensates for the DRAM’s small capacity by offloading part of the

indexing into the large NVMM and improves indexing performance

by uploading small, lookup-critical metadata onto fast DRAM.More-

over, these two indexing tiers are optimized separately with hard-

ware characteristics.

P2. Regulating data persistence granularity to address the
NVMMcongestion.Weuncover a strong correlation between data

persistence size and NVMM congestion with an analytical model.

Then, BonsaiKV proposes NVMM congestion control mechanisms

that regulate data persistence granularity to effectively address

memory traffic interference and bandwidth contention challenges.

P3. Full utilization of CLP to parallelize data reading. Bon-
saiKV proposes a novel key-value data stripe design by exploiting

the channel-level parallelism. Logically, it aggregates a number

of key-value pairs to ease data management. Physically, strips of

key-value pairs are spread across memory devices. It greatly bene-

fits scan since data can be fetched in parallel through independent

memory channels.

P4. Scaling to multi-node architecture (NUMA) by localiz-
ing data access. NUMA architecture poses severe challenges for

key-value stores due to the non-uniform memory access property.

BonsaiKV always localizes data writes. Also, it adopts an adap-

tive data replication mechanism to alleviate remote memory read

costs. The data coherence is achieved with a write-optimal, self-

invalidation-based protocol.

Data Flow across Layers. These three layers cooperate to serve
four types of key-value data requests: get/put/del/scan. For all re-
quests, they are first issued to the index layer ( 1 ). The index layer

uses the requested key to perform a collaborative tiered lookup.

It first finds the associated indexing entry in the DRAM tier ( 2 ).

Then, the remaining key-value data indexing is performed in the
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NVMM tier ( 3 ). It searches for the target data which are stored in

either log or dnode.

For put/del, they create new logs in the log layer in 4 . A del
request has a tombstone value in the log. The log checkpoint thread

flushes logs to the data layer in 5 . After key-value data are moved

from logs to dnodes, BonsaiKV inserts, updates, or removes asso-

ciated indexing entries in the DRAM tier, i.e., indexing tier mod-

ification (ITM in 6 ). Finally, key-value pairs stored in the dnode

deliver superior access parallelism with its data striping scheme,

supporting fast scan ( 7 ).

4 DESIGN AND IMPLEMENTATION
4.1 Index Layer Design
4.1.1 Approach Overview. We propose collaborative tiered index-

ing to resolve the trade-off between DRAM consumption and index-

ing performance. We design a low-cost shim layer between DRAM

and NVMM indexing tiers. It reduces the DRAM consumption by of-

floading part of the DRAM index to the NVMM tier in a transparent

and incremental way. Due to index offloading, the whole indexing

task is split into two parts. Most of the lookup path executes in the

fast DRAM tier. To improve NVMM tier indexing performance, the

indexing metadata are uploaded onto DRAM. Also, we parallelize

data lookup with multiple NVMM devices.
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Figure 4: Transparent, Incremental DRAM Index Offloading

4.1.2 Offloading DRAM Index to NVMM Tier. In BonsaiKV, a key-

value item put/del event generates a log at first. A volatile index-

ing entry is also created for this log. BonsaiKV uses an in-DRAM

Masstree [54] to manage all indexing entries. Logs are transient.

Log checkpoint migrates key-value pairs stored in distributed logs

and aggregates them into dnodes. Aggregated key-value pairs in

the dnode only need one DRAM indexing entry. Thus, the DRAM

index size is reduced. Nevertheless, this index offloading is intrusive

as tracking key-value pairs from logs to dnodes requires laborious

modification to the DRAM index. To overcome this, we design a

shim layer to realize transparent, efficient index offloading.

The shim layer is interposed underneath the DRAM index. It

consists of a list of volatile inodes. The inode is responsible for

tracking key-value pairs stored either in log or dnode. Figure 4

shows that an inode includes an unsorted array containing sixteen

log IDs and a dnode ID. The bitmap is used to denote valid log IDs.

It also contains a lfence and a rfence which are the minimal and

maximal keys of this inode. BonsaiKV does not duplicate keys in the

inode but leverages NVMM’s large capacity to store keys inside logs.

We set the inode size to two cache lines to utilize CPU adjacent cache

line prefetch [12]. Every inode requires a pair (︀lfence, inode_addr⌋︀

in the plug-in index atop the shim layer.

Initially, there is an empty inode in the shim layer whose lfence/r-

fence is −∞/+∞. Note that an inode insert does not alter lfence/r-

fence. When the inode is full, it is split into two inodes. Suppose

the middle key of the full inode is γ . The key space of two inodes

are [−∞,γ ] and [γ , +∞], respectively.

After the log checkpoint, several key-value pairs are stored inside

anm-fanout dnode in NVMM.When logs are flushed, associated log

IDs in the inode are cleaned. If all logs of an inode are checkpointed,

this inode could be freed to reduce DRAM pressure. The associated

pair (︀lfence, inode_addr⌋︀ in the upper layer DRAM index also can

be removed. However, if the dnode’s lfence is within this inode key

range, we cannot free this inode. Otherwise, the DRAM index is

unable to find this dnode anymore.

As the log checkpoint aggregates key-value pairs in NVMM

dnodes, the DRAM index size is reducing increasingly. Moreover,

because inodes in the shim layer are responsible for tracking logs and
dnodes dynamically, this incremental index offloading is transparent
to the upper layer DRAM index. In the best case,m key-value pairs

only need an indexing entry in the inode, thereby reducing the

DRAM space usage to
1

m .

4.1.3 Collaborative Tiered Lookup. A get involves both DRAM and

NVMM tier lookup. These two indexing tiers collaborate to serve

the data lookup request.

DRAM indexing. The thread first searches the plug-in DRAM

index for the last indexing entry whose key is less than or equal

to the requested key. Then it reads the inode. An inode lookup

could search either log or dnode. The inode uses the fingerprint

mechanism for fast log lookup [61]. A fingerprint is a one-byte

hash value of a key. An inode lookup computes the key fingerprint,

checks the bitmap, and finds those log IDs with the same fingerprint.

Then it passes log IDs to the NVMM indexing tier.

The plug-in index and shim layer can be viewed as a whole

index. The concurrency control is split into two parts. The plug-

in index uses its synchronization approach to search inodes. The

inode lookup is lock-free. Coordination between readers andwriters

uses version lock for optimistic concurrency control [42]. We use a

quiescent-state-based reclamation technique [32] to achieve safe

inode access. In addition, writer-writer conflicts are resolved with

a spin lock.

NVMM indexing. The log region is organized as a linear array.

Given valid log IDs, NVMM indexing uses them to index logs in

the array and compares keys with the requested key. If there is

a match, it returns the key-value item. As fingerprint collision is

rare [61], it guarantees that there is only one NVMM read to the

key during lookup in common cases. For a collision, it reads those

keys with the same fingerprint to determine which one is the target

key. If there are no matched keys in logs, the remaining indexing is

performed in the associated dnode. The dnode provides a striped

data layout. It uses DRAM-resident metadata to parallelize entry

lookup with multiple devices. Details are in §4.3.1.
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4.2 Log Layer Design
The log layer uses a log-structured memory method. However, the

small NVMM bandwidth prevents fast data persistence. This section

first presents an analytical model to understand NVMM congestion.

Then, we propose two effective mechanisms to address the NVMM

congestion efficiently.

Figure 6 shows that every CPU has a log region. A log contains

a 4-byte log size, an 8-byte value, or a 6-byte logical value offset

and a 2-byte value size, an 8-byte timestamp, and a 1-byte log

type. The variable-sized key is stored at the tail of the log. Large,

variable-sized values are striped, which is described in §4.3.1.

4.2.1 NVMM Congestion Analytical Model. Let N and G denote

the thread number and the data persistence granularity in bytes.

Modern out-of-order execution instruction pipeline supports issu-

ing multiple memory requests simultaneously. A memory request

first queries the L1-D cache. If there is a miss, it puts this request

in a microarchitectural buffer called line-fill buffer (LFB) [69, 76]

and consults the lower cache hierarchy and the main memory.

Assume the CPU allows maximal k outstanding memory re-

quests. For example, k equals 12 for Intel skylake microarchitec-

ture [69, 76]. The cache line size is C . We define the data transmis-

sion rate (DTR) without any granularity restriction as v . The DTR

vG of data persistence granularity G is
min (G,k ⋅C)

k ⋅C ⋅ v . The CPU
only allows maximal k in-flight memory requests. The total DTR

vtotal of N threads is
min (G,k ⋅C)

k ⋅C ⋅v ⋅N . We define the data service

rate of the NVMM medium as vS .
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Figure 5: Thread Throughput with Different Data Persis-
tence Granularities

From this model, we draw two important conclusions. First,

the data transmission rate is proportional to the data persistence

granularityG . The thread with a larger data persistence granularity

delivers a higher data transmission rate. Consequently, hardware

units like LFB, WPQ, and NVMM buffer are likely populated with

its data. Hence, its memory requests are first served and the thread

exhibits a higher priority.

We also conduct an experiment to confirm it. The experiment

creates two concurrent running threads. They persist data to the

same NVMM device. We fix the data persistence granularity of one

thread as 256B and vary the other from 256B to 4KB. Figure 5 shows

that the thread with a large persistence granularity yields higher

throughputs. Second, the congestion is proportional to the total

data transmission rate vtotal . If vtotal is greater than the NVMM

service rate vS , the NVMM device buffer is heavily contended and

the data thrash begins [86].

4.2.2 NVMMCongestion ControlMechanism. This analytical model

inspires two techniques that reduce traffic interference and mitigate

bandwidth contention.
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Figure 6: NVMM Congestion Control Mechanisms

Reducing NVMM traffic interference. There are two persis-
tent data flows in BonsaiKV: (i) foreground log persistence caused

by put/del; (ii) background log flush to the data layer. Log flush

incurs unexpected memory interference for co-running foreground

threads. We propose prioritized persistence technique to reduce

NVMM traffic interference.

From the analytical model, we find that a larger data persis-

tence granularity yields a higher priority. We design a private 2KB

volatile log combining buffer (LCB) for every worker thread. The

LCB is used to pack logs in 2 . The non-log-embedded key data

are also stored in the LCB. Packed data are persisted at once in

3 . The background thread adopts a small persistence size to flush

logs. Increasing the data persistence granularity for foreground

threads reduces traffic interference from background threads. An-

other advantage of using log packing is reducing log metadata

read-after-persist, which amortizes performance costs induced by

clwb inefficiency [18].

Mitigating NVMM bandwidth contention. As stated in §2.2,

large-sized value persistence causes heavy bandwidth contention.

We propose staging persistence to address this.

From the analytical model, the NVMM bandwidth contention

is positively correlated to the total data transmission rate vG ⋅ N .

Reducing the thread DTR vG is a useful method to avoid device

buffer contention, thereby reducing the bandwidth contention. Ac-

cording to vG =
min (G,k ⋅C)

k ⋅C ⋅v , thread DTR is proportional to the

persistence granularity G . To reduce the data transmission rate vG ,
the staging persistence technique uses sfence to divide the value

data flow into a series of small, fixed-sized stages and persist data

in each stage at a time ( 1 ).

Every stage has a small persistence granularity. Moreover, the

memory fence forces two consecutive stages s1 and s2 to obey a

strict order. The next stage s2 cannot begin until data in s1 finishes
persisting. Data from multiple threads’ stages are flushed to the

NVMM device in 4 . We deliberately slow down the data transmis-

sion. Reducing DTR prevents data bursts from happening in the

device buffer and thus avoids data thrash.

Another contention mitigation method is throttling parallel exe-

cuting threads (i.e., reducing N in vtotal ) [86]. Section §5.3 shows

that this method is heavy-weight for key-value stores due to non-

negligible communication overheads.

Crash consistency. BonsaiKV supports durable linearizability

(DL) [21, 26, 37], which is an acknowledged correctness condition

for NVMM data structures [26, 35, 42] and key-value stores [14, 41].

In a client-server model, multiple clients issue requests to the server

and wait for responses. A worker fetches requests and puts logs
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into the LCB. To ensure the correct persist order, values are made

durable before keys. Only after logs in LCB are persisted atomically,

the worker notifies clients in 5 . These operations become visible

and complete. If a crash happens before log persistence, these in-

flight requests will be abandoned. Although unfinished requests

lose their data, the all-or-nothing condition in durable linearizability
is still ensured.

Discussion. In realistic workloads [4, 9, 82], key sizes are usually
small, whereas value sizes have a wide distribution. For large-sized

value writes, the major performance bottleneck is bandwidth con-

tention. Thus, the staging persistence is effective. On the other

side, when value sizes are small, write persistence priority is more

important. We store values along with keys in the LCB to ensure

the high priority of data persistence.

4.3 Data Layer Design
The data layer scales out to multi-DIMM, multi-node memory sys-

tems with fine-grained data striping exploiting channel-level paral-

lelism and NUMA-aware data management.

4.3.1 Exploiting Channel-Level Parallelism. As shown in Figure 7,

we partition a dnode into multiple fixed-sized strips (256B for our

platform) including a meta strip and several data strips. The total

number of strips is aligned with the number of memory channels

per CPU (six in this paper). The meta strip contains a 40-element

fingerprint array, a bitmap, and other metadata. A data strip con-

tains eight entry slots. A dnode entry contains a 24-byte key, or an

inline 16-byte key and an 8-byte pointer to the remaining key data,

an 8-byte value, or a 6-byte logical value offset and a 2-byte value

size, and a volatile 2-byte epoch used in data coherence protocol.

The order array records the dnode entry order.

Each NVMM device has a memory pool which is partitioned

into a number of 256-byte blocks to store either meta or data strips.

Figure 7 depicts that six strips belonging to a dnode reside at the

same offset within every device’s memory pool. Strips belonging

to a dnode are spread randomly across all NVMM devices within a

NUMA node, which avoids bottlenecked memory devices due to

hot data access.

Large values are also striped. Values are organized linearly in

a logical address space. Their logical address offsets and sizes are

kept in the logs or dnode entries. Physically, the value is partitioned
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Figure 7: Fine-grained Data Striping by Exploiting Channel-
level Parallelism

intom-byte units, which are spread across N NVMMs in a round-

robin manner. Every device has a value pool for storing fixed-sized

units. m and N are 256 and 6 in our paper. Besides, small-sized

keys dominate in realistic workloads [4, 9, 82]. Hence, most of the

keys are dnode-inline. Unlike values, We manage overflow key data

using a slab-based allocator instead of striping them.

Distributed dnode lookup. A dnode lookup needs to find both

meta and data strips in the different devices. We fully utilize avail-

able NVMM devices during entry lookup. Each dnode has a 4-byte

ID in the inode, as shown in Figure 4. This ID is split into two parts:

a 3-bit NUMA memory node ID and a 29-bit strip index. Shown

in Figure 8, the thread locates the memory node ( 1 ) and uses the

hashed strip index to find the strip permutation array entry ( 2 ).

The global strip permutation array is read-only, non-volatile, and

replicated by all memory nodes. It records the device IDs of meta

and data strips.

Figure 8 shows that the meta strip is stored in the sixth NVMM of

NUMA node1. Suppose a node has six NVMMs. The memory device

of the meta strip is NVMM11 ( 3 ). The dnode strips are organized as

a linear array. The thread uses the strip index to read the metadata

strip ( 4 ). This NVMM meta strip access procedure only happens

once. We duplicate the fingerprint and the bitmap in the DRAM.

As a consequence, the subsequent dnode metadata accesses happen

in the DRAM.
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Figure 8: Dnode Meta Strip Access Procedure

Key fingerprints are stored in the meta strip. For the requested

key-value pair, the thread calculates its fingerprint to find the fin-

gerprint array index i . The data strip number is i⇑n (n is the number

of data strip entries). It uses i⇑n as the index to read the strip permu-

tation array entry to get the device ID. Then, similar to step 4 , it

locates the data strip in the device with the NUMA node ID and the

strip index encoded in the dnode ID. Finally, it fetches the (i%n)th
entry in the data strip which contains the target key-value pair.

If there are fingerprint collisions, candidate dnode entries are

fetched in parallel if they belong to different data strips. If the

dnode entry contains a value offset, we use this value offset to

fetch all units from the value pool. Given a logical value offset

and the value pool base address, the device number and the start

memory address of the kth value unit are ((o f f set +mk)⇑m)%N
and base + (o f f set +mk)⇑N , respectively.

Parallel range query.Dnode entries are unordered. However, a
scan should return a sorted entry array. To address this, we propose

a two-phase parallel strip scan technique. This technique maximizes

the memory channel utilization during range queries.

Suppose a strip hasm 64-byte data (m = 4 in our 256B-striping

setting). As shown in Figure 7, reading a dnode uses prefetch instruc-

tions to load kth 64-byte data of all data strips into the CPU cache

from different channels first. It repeats this with the next 64-byte

data in all strips until k reachesm. This phase preloads strip entries
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from different memory devices into the CPU cache. Because the

NVMM access latency is much longer than the CPU cache access,

we remove this bottleneck by parallelizing long NVMM medium

access using the channel-level parallelism. Then, it reads sorted

key-value pairs from the cache using the order array. Besides, a

scan also reads all valid logs of this inode. It continues reading until

the key exceeds the given range.

4.3.2 NUMA-aware Data Management. The data layer provides

adaptive data replication to localize data read. If there is a remote

read to a dnode entry, readers perform a hot key identification

using the count-min sketch method [38]. If it is a hot entry, readers

copy the dnode entry to their local memory nodes. As a result, a

dnode entry could have N −1 replicas at most for N memory nodes.

Accessing these N −1 replicas requires N −1memory addresses. To

avoid the extra memory usage, the data layer provides a uniform

way for threads running on different memory nodes to access the

dnode entries.

Section §4.3.1 presents a striped dnode layout across devices

within a memory node. Further, every memory node uses the same

dnode striping setting, and every dnode strip resides at the same

memory offset in each NVMM. Therefore, wherever a dnode entry is

copied to which memory node, readers can use the same procedure

in the Figure 8 to access a dnode entry except using a different

NUMA node ID.
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Figure 9: Illustrative Examples of WoSI Protocol

Data coherence. Data replication requires maintaining coher-

ence between the main data and its replicas. Existing protocols

incur excessive data writes for maintaining the replica coherence.

We propose Writer-optimized Self-Invalidation (WoSI) protocol to

achieve write-optimal data coherence.

Analogously to self-invalidation techniques [44, 45], WoSI re-

quires each memory node to maintain data validity by itself without

any cross-node communication or global coordination [8, 56, 63].

Figure 9 illustrates the protocol. The main version and the replica of

entry e are denoted asmain(︀e⌋︀ and replica(︀e⌋︀, respectively. There
is a global clock t . Each replica has a local timestamp tr recording
its fetch time. Readers first check the replica timestamp before ac-

cessing the data. If t − tr > ∆t where ∆t is the valid time period

threshold, it indicates that the replica expires and readers should

re-fetch the data (E2).

Nevertheless, self-invalidation techniques suffer from low writer

performance [71], i.e., writers have to stall until all replicas expire.

WoSI solves this by leveraging the log layer to separate new data
writes from old data versions. For example, at T2, although there is

a replica(︀e3⌋︀ for e3 in the data layer, the thread still can write the

new data into a log. BonsaiKV updates the inode in the shim layer

to make the new data visible to readers (E1) and causes replica(︀e3⌋︀
to become invisible (E3). Thus, writers proceed without waiting for

all replicas to become invalid, and no coherence is violated.

Additionally, log checkpoints may raise data coherence viola-

tions. For instance, a replica(︀e1⌋︀ is created atT3. Then, a new loд(︀e1⌋︀
for e1 is created at T4. The log checkpoint begins at T5. If we flush
the log to main(︀e1⌋︀ but replica(︀e1⌋︀ is still valid, it causes a data

version conflict betweenmain(︀e1⌋︀ and replica(︀e1⌋︀. To deal with it,

we set the time interval between the log checkpoint start time and

the log flush start time greater than ∆t .

4.3.3 Log Checkpoint and Recovery. A checkpoint starts when the

log number exceeds the threshold. The worker threads fetch logs

into DRAM and merge them with timestamps. Worker threads

group logs into clusters. A cluster has a dnode and several logs

whose keys are within this dnode key range. The master thread

balances dnodes among all memory nodes and assigns clusters to

workers. Workers perform conflict-free, localized data writes on

disjoint dnodes in the log flush.

During a log checkpoint, only log flush affects system states.

Its crash consistency is achieved with three key points. First, logs

are removed only when they are flushed. Second, the dnode entry

insert and remove are idempotent. Inserting or removing an entry

multiple times has no side effect. Third, the log flush order makes no

difference during recovery since a key-value pair only has a newest

data version after the log merging. During recovery, BonsaiKV

rebuilds the volatile shim layer and the DRAM index and redoes

the log checkpoint.

4.4 Discussion and Future Usage
Currently, BonsaiKV is designed and implemented on a regular

NUMA machine with both DRAM and NVMM. However, its tech-

niques are generalized and applicable to other tier memory systems

like CXL-connected heterogeneous memories [55].

Specifically, DRAM cell scalability almost reaches the physical

limitation [64], whereas surging storage class memories, such as Z-

NAND [1] and PCM [66], are much denser and scale up to terabytes.

Hence, the performance and capacity gaps still exist, which are

tackled by our collaborative tiered indexing.

Second, the rate improvement of memory is less than that of

microprocessor [83]. More severely, growing data-intensive applica-

tions stress the memory performance [49]. This hardware evolution

trend and application demand exacerbate the memory congestion

issue. BonsaiKV uses data packing and sfence-based congestion

control techniques to address this challenge. Because the real CXL-

based memory system exposes the same interface as the existing

DRAM-NVMM system [74], our persistence techniques are gener-

alized to such systems.

Finally, PCIe-connected CXL devices deliver superior bandwidth

than DRAM via lane-level parallelism (~40GB/s for DDR5 DRAM vs.

~64GB/s for PCIe Gen5×16 [39]). Similar to the DIMM-based NUMA
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architecture, the I/O controller is integrated into the processor chip.

It also causes non-uniform access speed to PCIe devices plugged in

different physical domains [72]. Exploiting hardware-provided par-

allelism and alleviating non-uniform access impact is still important.

Therefore, our scalable techniques are also applicable.

5 EVALUATION
5.1 Experiment Methodology
Testbed machine. Experiments are performed on a dual-socket

Intel Optane DC Persistent Memory machine. There are two Intel

Xeon Gold 5220R processors. Each processor has twenty-four phys-

ical cores running at 2.20GHz with hyper-threading disabled. Each

chip has two memory controllers and six memory channels. This

machine has a total of 1.5TB (12×128GB) DCPMM in fsdax mode

and 192GB (12×16GB) DDR4 DRAM. Besides, it also has a 1TB Sam-

sung solid-state drive. We use the directory-based cache coherence

protocol in the experiment. The operating system is Ubuntu 18.04

with Linux kernel version 5.4.0. The compiler is GCC-8 with -O3

optimization. We use jemalloc [24] for DRAM allocation for all

key-value stores.

Compared solutions. We compare BonsaiKV with (1) three

NVMMkey-value stores: LSM-tree-based ListDB [41], log-structured

FlatStore [14, 77], hash-based Viper [5] and (2) three persistent

index structures: trie-based PACTree [42], B+-tree-based FAST-

FAIR [35], and hybrid index DPTree [87]. We do not compare Bon-

saiKV with LB
+
-tree. LB

+
-tree is unstable due to incomplete soft-

ware fallback mechanism [42, 52].

We create a 4KB-interleaved NVMM region across six devices

in a socket for all key-value stores except BonsaiKV. For NUMA-

unaware key-value stores and indexes, we use the device mapper

tool to create a striped device across all interleaved NVMMs [41].

The lookup cache in ListDB is set to 1GB.We also configureMasstree

as the DRAM index for FlatStore. We set the user/worker thread

number ratio to two for ListDB, DPTree, and BonsaiKV.

Table 2: YCSB Workload Configuration

Workload K/V Size Distribution Preload Ops

Integer

Load, A, C, D,

E

8B/8B Uniform 5M 2.5M

String

Load 24B/16KB Uniform 240K 120K

A 24B/16KB Zipfian 240K 120K

C, D 24B/1KB Zipfian 0.5M 5M

E 24B/8B Uniform 5M 0.5M

Benchmarks.We create a set of microbenchmarks to evaluate

BonsaiKV core techniques. We also use the synthetic YCSB bench-

mark suit [15] for deep experimental analysis. Table 2 lists the

configurations of various YCSB workloads. The operation number

in Table 2 is per-thread. Every key-value store is populated with

a number of key-value records before the experiment. We use the

index-microbench to generate YCSB workload traces [15, 78]. To

stress the NUMA impact, we evenly distribute all threads across

two sockets. BonsaiKV enables data replication for skewed access

distribution experiments. For BonsaiKV, its data validity threshold

in the WoSI protocol is set to five seconds.

5.2 Indexing Technique Evaluation
We evaluate the performance and the DRAM consumption of three

variants of collaborative tiered indexing. All variants use the same

Masstree implementation. The first approach (BonsaiKV+DRAM-

only) is similar to FlatStore [14]. It creates a DRAM indexing entry

for each key-value pair. The second approach (BonsaiKV+data of-

fload) offloads the data storage and the part of indexing into NVMM.

The last approach uploads lookup-related metadata onto DRAM.

This experiment uses YCSB-C workload with 100% of get. Each
thread inserts 150 millions of 16-byte records.
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Figure 10: Evaluating Indexing Techniques

Figure 10 shows that offloading indexing from DRAM to NVMM

degrades the throughput by up to 44%. Retaining lookup-related

metadata in DRAM closes the performance gap and delivers similar

performance as the DRAM-only approach. It even slightly outper-

forms BonsaiKV+DRAM-only. The reason is the lookup-friendly

dnode design. Both of them only induce an essential NVMM read to

the entry during lookup. Differently, Masstree uses an ordered leaf

node layout. A node lookup requires an expensive linear search,

whereas our dnode design performs O(1) entry lookup.

DRAM-only indexing causes heavy memory pressure. Figure 10

shows that indexing 3.6 billion eight-byte key-value pairs (~53GB)

consumes nearly 107GB DRAM. In contrast, BonsaiKV+data offload

solution only costs 8.3GB DRAM. The DRAM-resident metadata

consumes 7GB more memories. Overall, our indexing technique

saves 6.9× DRAM space while achieving comparable performance

as the DRAM indexing.

5.3 Persistence Technique Evaluation
This section evaluates performance and effectiveness of our per-

sistence techniques. Every thread preloads five million eight-byte

key-value records. Afterward, every thread performs five million

update operations. Experiments run twelve user threads and six

checkpoint threads in a socket. For experimental comparison, we

also disable the log checkpoint and vary the data packing size to

study its effect.

Figure 11a shows that throughput increases and gradually ap-

proaches that without checkpoint when the packing size becomes

large. It suggests that a large packing size in the prioritized persis-

tence technique decreases the interference from the log checkpoint

and increases the log persistence priority. Figure 11a also demon-

strates that the log packing improves throughput by up to 5.15×

over no packing setting due to zero write amplification and the

reduced number of cache line read-after-persist.
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Figure 11: Evaluating Persistence Technique

Then, we analyze the performance of different staging persis-

tence sizes. We use the YCSB-Load workload in this experiment.

Every thread inserts 240K records with 16KB value. We vary both

thread number and staging persistence size. The baseline disables

the staging persistence technique. For small thread numbers, the

NVMMbandwidth contention is low. Thus all configurations achieve

the similar performance in Figure 11b. The baseline throughput

decreases dramatically when the thread number increases. For large

thread numbers, the 256-byte staging persistence size performs best.

As the contention level is proportional to the DTR, a small persis-

tence size reduces the transmission rate effectively and prevents

device buffer contention.

OdinFS uses opportunistic delegation (OD) to limit the parallel

thread number [86]. We implement it in BonsaiKV. Figure 11b

shows that the opportunistic delegation outperforms the baseline.

However, profiling results show that this technique suffers from

severe communication overheads for the ring buffer cache thrash.

This technique is more applicable to file systems instead of key-

value stores. It is because file system calls have lengthy execution

paths which can amortize extra overheads.

5.4 Scalability Technique Evaluation
We evaluate the parallelism benefits of our data striping. We com-

pare BonsaiKV with PACTree. PACTree organizes entries in a tree

node as a linear array. We use the YCSB-E workload with 24-byte

keys and 8-byte values. Figure 12a shows sequential entry scan in

PACTree is unable to fully utilize all NVMM bandwidth. BonsaiKV

yields a 49.04% better bandwidth utilization and 42.71% higher

throughputs than that of PACTree.
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Figure 12: Evaluating Scalability Technique

We compare WoSI with another two typical data coherence pro-

tocols: Write-Invalidation (WI) in ccKVS [27] and Write-Update

(WR) in HydraList [56]. We run a thread per socket and vary its

read/update operation number ratio. Each thread performs five mil-

lion operations. We use the number of R/W cache lines to measure

the protocol overhead and break it down into sub-categories. Fig-

ure 12b shows that the WoSI protocol introduces local timestamp

reads and fewwrites for timestamp updates. WI protocol also incurs

local DRAM access for maintaining the state transition for each

entry like MESI protocol [63]. Besides, remote DRAM writes also

increase for propagating messages to invalidate remote copies. The

WI protocol induces heavy NVMM writes because it synchronizes

all replicas when a data update occurs.

5.5 Sensitivity Study
Key length. In this experiment, we run YCSB-Load, YCSB-C, and

YCSB-E workloads and vary the key length. The value size is eight

bytes. The variable-sized keys are efficiently supported by our log-

structured method. Particularly, a key-value put in the YCSB-Load

workload creates a log and writes it sequentially to the device. As

shown in Figure 13, for different key lengths, sequential writes

have no performance impact on the put performance. When the

key size is larger than 48 bytes, the throughput degrades due to

small NVMM bandwidth limitations.
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Figure 13: Key Length Sensitivity Study

YCSB-C and YCSB-E workloads issue massive data get and scan
requests, respectively. Before this experiment, we flush all logs to

dnodes. Therefore, for these two workloads, either a get or scan
reads data from the dnode. When the key size exceeds 24 bytes,

Figure 13 shows that workload throughputs decrease owing to extra

NVMM reads to pointers and pointer deference costs. Figure 13

also shows that the scan performance is especially hurt due to more

intensive pointer deferences.

Table 3: DRAM and NVM Space Consumption (GB) of Five
Key-Value Stores

# Thread DPTree ListDB FlatStore Viper BonsaiKV

1 0.01/0.02 1.03/0.14 0.15/0.11 0.21/0.08 0.02/0.09

24 0.14/2.34 1.07/4.18 3.59/2.72 4.96/1.92 0.53/2.38

48 0.35/4.51 1.13/8.11 7.19/5.58 10.59/3.81 1.06/4.83

Memory consumption. We measure the DRAM and NVMM

consumption of five key-value stores. Table 3 lists DRAM and

NVMM consumption after loading five million 16-byte key-value
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Figure 14: YCSB Workloads Evaluation Results. BonsaiKV denotes the proposed full-fledged key-value store. BonsaiKV-Checkpoint,
BonsaiKV-Staging Persistence, and BonsaiKV-Replica denotes a full-fledged BonsaiKV disables log checkpoint, staging persistence, and data
replication, respectively. BonsaiKV+PT stores the entire string key outside the dnode and uses a pointer to access the key.

pairs per thread into each key-value store. ListDB achieves con-

stant DRAM consumption for its fixed-size lookup cache setting.

FlatStore and Viper use 6.78× and 9.99× more DRAM space than

BonsaiKV. DPTree is DRAM frugal due to its split tree structure

and large leaf node fanout.

Besides key-value data, every log in ListDB has an eight-byte

pointer and an eight-byte version. Thus, ListDB has the highest

memory space amplification. Viper consumes the smallest NVMM

space due to condensed data layout and per VPage metadata. Other

key-value stores occupy a similar NVMM space.

5.6 Write-intensive Workload
We use YCSB-Load workload to stress the put performance. We

first describe the integer key experiment results. Figure 14a shows

that BonsaiKV achieves a linear speedup when the thread num-

ber increases and outperforms others significantly. As the worker

thread number is twelve, its throughput reaches a peak at 36-thread

for CPU competition between user and worker threads. We disable

the log checkpoint in BonsaiKV-Checkpoint. When the user thread

number is smaller than 36, its throughput is close to that of Bon-

saiKV. It demonstrates that our prioritized persistence technique

effectively prevents the performance interference from background

worker threads.

BonsaiKV performs 2× better than hash-based Viper. We find

three bottlenecks in Viper. First, Viper data layout design is NUMA-

unaware. Second, its VPage metadata are frequently updated, caus-

ing heavy cache line thrash due to clwb inefficiency. Third, its CCEH

implementation [59] incurs severe segment lock contention. FAST-

FAIR also suffers from similar performance issues in its tree node

metadata management. Besides, FAST-FAIR adopts an in-order key

design, which introduces costly key movements during node up-

dates. Seven-phase data merging in DPTree causes high background

performance costs. PACTree uses a trie [46] in its search layer. It

incurs excessive small, random accesses, leading to heavy NVMM

write amplification.

LSM-tree-based ListDB provides fast key-value put by just in-

serting an entry into the MemTable in the DRAM and creating a

write-ahead log in the NVMM. ListDB is slower than log-structured

FlatStore and Viper for its inefficient skip list walk duringMemTable

insert. Surprisingly, BonsaiKV performs much better than FlatStore.

The put execution path in these two key-value stores is similar:

creating a log, performing a Masstree tree walk, and inserting an

indexing entry. Differently, BonsaiKV offloads the index to the

NVMM tier, which effectively reduces the Masstree size. FlatStore

has a higher Masstree, which leads to a relatively longer tree walk

during put.
For string key experiments, most key-value stores’ throughputs

stop increasing at 6-thread and experience sharp decrement beyond

24 threads. Low NVMM bandwidth and remote value write are

two major reasons. ListDB and PACTree are NUMA-aware. Their

throughputs continue to increase slightly. BonsaiKV reaches a peak

at 18-thread and delivers stable performance thanks to its staging

persistence. Furthermore, its throughput still grows beyond one

socket for its localized log writes.

We also disable the staging persistence technique. Experiment

results show that high NVMM bandwidth contention degrades Bon-

saiKV’s throughputs greatly. Furthermore, interleaving NVMM de-

vices increases bandwidth contention as a single NVMM is accessed

by all threads. In BonsaiKV, four log regions share an NVMM device,
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which also helps alleviate the bandwidth contention. It accounts for

the remaining performance gap. BonsaiKV+PT’ throughputs are

close to BonsaiKV’s. Similar to fixed-sized key writes, variable-sized

key persistence is also NVMM-friendly, sequential writes.

5.7 Read-intensive Workload
Both YCSB-C and YCSB-D are read-intensive workloads. Every

thread issues 10× more get requests than the preload operation

number to fully stress the data indexing performance. FlatStore is

1.65× slower than BonsaiKV. The reasons are twofold. First, Bon-

saiKV’s dnode fanout is 3× wider than Masstree’s leaf node fanout,

resulting in a smaller tree height and shorter lookup path than

that of FlatStore’s Masstree. Second, BonsaiKV keeps fingerprints

in the fast DRAM, which effectively overcomes NVMM indexing

performance shortcomings.

FAST-FAIR has high linear search overheads in its node lookup

caused by the large tree node read and unscalable NVMM. ListDB in-

troduces a hash-based DRAM cache to avoid NVMM skip list lookup.

Even so, get of ListDB suffers from expensive cachemisses. The poor

data locality and pointer-chasing accesses caused by the NVMM

skip list degrade the lookup performance. Although PACTree uses

fast ART [46] as the index structure, NVMM’s poor performance

impedes its data lookup efficiency.

The base tree in DPTree is a hybrid index that puts the upper

layer in the DRAM. It has a wide leaf node fanout with a low tree

and uses a hash table to manage leaf node entries. A get in DPTree

only introduces one cache line fetch from the NVMM. BonsaiKV

uses the volatile fingerprint design. A get incurs one more data

read to the DRAM. Moreover, its index tree is higher than DPTree.

These two reasons account for their small performance difference.

Viper shows a 28.84% higher throughput than BonsaiKV. Because

Viper uses a hash table for the DRAM index, its data indexing speed

is higher than that of the Masstree-based BonsaiKV due to fewer

DRAM accesses.

Next, we run workloads with a 1KB string value using Zipfian

distribution. All systems are bottlenecked by the data reading and

achieve similar throughputs. When the thread number exceeds 24,

NUMA-unaware key-value store throughputs decrease dramatically

because of costly remote data reads. BonsaiKV throughput scales

linearly thanks to the adaptive data replication. BonsaiKV-Replica

disables the adaptive data replication. When the thread number

exceeds 24, massive remote reads significantly hurt its performance.

BonsaiKV+PT performs slightly worse than BonsaiKV. Because the

major bottleneck is large-sized data reads, extra pointer deference

overheads are negligible.

5.8 Scan-intensive Workload
YCSB-E consists of 95% scan and 5% put. ListDB and Viper have

no scan implementations. FlatStore is a log-structured key-value

store, so it exhibits extremely poor data locality. Scanning a range

of key-value pairs in FlatStore causes many small, random reads

which are suboptimal NVMM access patterns. DPTree and FAST-

FAIR use pointers to access string keys. PACTree and BonsaiKV

adopt an inline key design. Reading a range of entries has a smaller

memory footprint and better locality. Moreover, striped data layout

in BonsaiKV further enables parallel data read for scan.

When the thread number exceeds 24, all key-value stores are

bottlenecked by remote reads. The pointer-based key design has

a bigger performance impact on YCSB-E. Other workloads spend

more time on data indexing or persistence. Pointer deference time

occupies a smaller portion of the total execution time.

5.9 Read-Write Mixed Workload
For YCSB-A workload, DPTree is slow due to poor insert perfor-

mance. A put first inserts the key-value pair into the buffer tree,

and then data are merged into the base tree. Its multi-phase merge

causes high garbage collection costs, causing write stalls. FlatStore

achieves balanced get/put performance for its log-structured data

layout and volatile index design. BonsaiKV still outperforms Flat-

Store by up to 1.8× at peak performance due to its superior data

indexing and persistence technique.

BonsaiKV achieves comparable throughputs as that of Viper.

Even though its indexing performance lags behind Viper, its supe-

rior data persistence performance compensates for this weakness.

In ListDB, searching the L0 requires many PMTable lookups, which

exacerbates its slow get performance.

When the experiment uses a large 16KB value, key-value store

performance is dominated by the value persistence. DPTree, FAST-

FAIR, ListDB, Viper, and PACTree achieve similar performance.

FlatStore outperforms them for its lazy-persist allocator design.

Its allocation policy avoids frequent metadata persistence over-

heads. Nevertheless, its throughput increment stops at 12-thread

for NVMM bandwidth limitation. In contrast, staging persistence

in BonsaiKV mitigates bandwidth contention, and its throughput

increases continuously.

When the thread number is greater than 24, all key-value store

throughputs experience a shrink beyond one socket. Again, Bon-

saiKV throughput scales irrespective of NUMA impact. Localized

log writes and adaptive data replication effectively reduce remote

data access. However, its throughput stops increasing at 36-thread

for small NVMM bandwidth.

6 CONCLUSION
This paper pinpoints and analyzes three major challenges that pre-

vent exploiting tiered heterogeneousmemory systems for key-value

stores. We describe the design and implementation of BonsaiKV,

a fast, scalable, and persistent in-memory key-value store, with a

range of novel and efficient techniques to design BonsaiKV hier-

archical storage architecture. Extensive experiments demonstrate

BonsaiKV reaps heterogeneous memory strength and yields signif-

icant performance gains.
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