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ABSTRACT
Cohesive multipartite subgraphs (CMS) in heterogeneous informa-

tion networks (HINs) uncover closely connected vertex groups of

multiple types, enhancing real applications like community search

and anomaly detection. However, existing works for HINs pay

less attention to searching CMS. In this paper, we leverage well-

established concepts of meta-path and densest subgraph to propose

a novel CMS model called the densest P-partite subgraph. Given a

multipartite subgraph of an HIN induced by 𝑖= | P | types of vertices
defined in a query meta-path P (i.e., a P-partite subgraph), we de-
vise a novel density function which is the number of the instances

of P over the geometric mean of the sizes of 𝑖 different types of

vertex sets in the subgraph. A P-partite subgraph with the highest

density serves as the optimum result. To find the densest P-partite
subgraph in an HIN with 𝑛 vertices, we first design an exact algo-

rithm with a runtime cost equivalent to solving Θ( |M | ) instances of
the min-cut problem where |M |=O( ( 𝑛

𝑖
)𝑖 ). Then, we attempt a more

efficient approximation algorithm that achieves a ratio of
1

𝑖
but still

incurs the cost of solving Θ( |M | ) instances of our proposed peeling

problem. Both approaches struggle with scalability due to Θ( |M | ).
To overcome this bottleneck, we improve the exact algorithm with

novel pruning rules that non-trivially reduce the number of min-cut

problem instances to solve to O( |M | ) . Empirically, 70-90% instances

are pruned, making the improved exact algorithm significantly

faster than the approximation algorithm. Extensive experiments on

real datasets demonstrate the effectiveness of the proposed model

and the efficiency of our algorithms.
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1 INTRODUCTION
Network data emerged in real-life applications, including but not

limited to e-commerce, cybersecurity, online video platforms, health,

and social networks, are naturally heterogeneous since multiple
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types of vertices (objects) and edges (relationships) are involved.

Cohesive subgraph search is fundamental and vital to network data

analytics as it can naturally exhibit strongly correlated vertices. As a

natural consequence, cohesive subgraph search over heterogeneous

information networks (HINs) has drawn significant attention lately

due to its practicality in revealing communities with multiple types

of objects having different relationships. However, existing works

pay less attention to cohesive multipartite subgraph-related prob-

lems, i.e., they focus more on discovering correlations of the same

type of objects [8, 16, 32] or two types of objects [5, 19, 21, 30, 31].

There are few models supporting the search of cohesive multipar-

tite subgraphs. The work of [15] requires many cohesive query

parameters, and [14] can only deal with clique-based query pat-

terns. In addition, both works concern search problems that are

NP-hard. Despite the complications of HINs, users still prefer effi-

cient searches with the least prior knowledge. Indeed, novel models

for HINs requiring fewer query parameters are desired.

Our problem. In this paper, we propose a novel cohesive multipar-

tite subgraph model for HINs as follows that builds on the densest

subgraph concepts [9, 17]. Then, we devise efficient algorithms for

the corresponding search problem.

Effective density function. There are two considerations when de-

signing density functions for multipartite subgraphs. Firstly, ver-

tices of different types may not be directly connected, which raises

questions about how to effectively bind these vertices together. Sec-

ondly, a multipartite subgraph comprises multiple types of vertices

representing multiple types of objects, so the size distribution over

different types of vertices should be taken into account to make

subgraphs with different vertex distributions comparable. There-

fore, an effective subgraph density function for HIN should address

these concerns. We propose such a multipartite density function

with the following numerator and denominator.

Numerator. To address the first concern, we adopt the widely ap-

plied concept of meta-paths, which are sequences of different vertex

types and edge types between two given vertex types. With the

concept of meta-paths, we allow users to specify multipartite sub-

graphs consisting of types of vertices and edges in the meta-path,

denoted as the P-partite subgraph. We then use the number of

the meta-path instances as the numerator of the density function,

which nicely binds multi-typed vertices via instances of meta-paths.

Denominator. To address the second concern, we incorporate ideas

from the geometric mean. Specifically, for a P-partite subgraph

that includes 𝑖 types of vertices V={𝑉1,...,𝑉𝑖 }, the denominator of

our proposed density function is the 𝑖th root of the product of the

sizes of the 𝑖 types of vertices. Given that the denominator includes
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Figure 1: A networking heterogeneous graph

multiplication of the sizes of 𝑖 vertex sets, it reflects the maximum

possible number of meta-path instances in a P-partite subgraph.
Thus, together with the meta-path based numerator, our proposed

density function is normalized, making P-partite subgraphs with
different vertex distributions comparable. Moreover, thanks to the

𝑖th root, maximizing such a density function encourages the overall

size of the P-partite subgraph to be large.

The density and densest P-partite subgraph. We define the density

of the P-partite subgraph as the fraction of the numerator and

denominator, denoted as 𝜌. Given all possible P-partite subgraphs
contained in an HIN, finding a P-partite subgraph with the highest

𝜌 serves as the research problem to be addressed in this paper, i.e.,

the densest P-partite subgraph search problem.

Applications. We choose two typical applications of our search

problem and introduce a specific application scenario.

Cybersecurity. In cybersecurity applications, the interactions over

software, computers, users etc., can naturally be modelled as a

heterogeneous network [11, 23]. P-partite subgraph can discover

intensively interacting software, computers and users, identifying

and monitoring anomalous behaviours, including but not limited

to spreading worms, scanning activities and various DDoS attacks.

E-commerce. Many popular online shopping applications deal with

heterogeneous network data [13] that could comprise users, web

pages, products and so on, where interactions can capture be-

haviours such as user-rate-product, webpage-list-product, and user-

purchase-product. Densest P-partite subgraphs can reveal users

interested in similar webpages or products, which is useful for adver-

tisements, recommendations, etc. Moreover, extensive interactions

between users and products, such as abnormally high frequencies

of rating and purchasing, can also be captured by densest P-partite
subgraphs, indicating possible fraudulent transactions/rates.

Application scenario. Figure 1 shows an HIN for a computer commu-

nication network [24] (which is a typical scenario for cybersecurity)

consisting of four types of vertices, whose meta-schema is a path, i.e.

user→port#→protocol→server. An interesting analysis of Figure 1

is user group discovery [24].

Existing approaches. Existing methods mentioned in [24] or (𝑘,𝑝 )-
core based approaches [8, 16, 32] share similar ideas. They first

create virtual edges over the user-type vertices, leading to a de-

rived homogeneous graph. Then, cohesive subgraphs in the de-

rived homogeneous graph serve as the discovered user groups,

where the cohesiveness could be modularity, minimum degree,

etc. As mentioned in [24], the effectiveness of such methods heav-

ily relies on the quality of the derived virtual edges and the dis-

covered group could be better if the quality of the virtual edges

is high. The main reason causing the difficulties of deriving a

high-quality virtual edge is that a virtual edge summarises too

much structural information. A typical approach to link users

is via instances of meta-paths. For instance, let the meta-path

be user→port#→protocol→server→protocol→port#→user, and it

is clear that 𝑢1 is adjacent to both 𝑢2 and 𝑢5 in the derived homoge-

neous graph. However, according to the structure shown in Figure 1,

𝑢1 is more extensively connected to 𝑢2 compared to the connections

between 𝑢1 and 𝑢5.

Using densest P-partite subgraph. By considering user→port# →
protocol→server as a query meta-path P, Figure 1 can be naturally

treated as a P-partite graph. Then, we can discover a densest P-
partite subgraph in Figure 1 directly without the need to derive

virtual edges over users. The densest P-partite subgraph is the sub-

graph induced by the red-coloured vertices. 𝑢1 and 𝑢2 are within

the same group. This makes great sense in this application scenario

because 𝑢1 and 𝑢2 share similar networking behaviours compared

to others, i.e., they communicate to similar servers via similar ports

and protocols. In relation to cybersecurity, users in the above dis-

covered group can be treated as potential malicious collaborative

attackers since they are in the same densest P-partite subgraph
that are connected via abnormally intensive interactions through

similar software, ports and servers. Besides, the discovered densest

P-partite subgraph reveals vulnerable ports, protocols, and servers.

Challenges. Although algorithms for densest subgraph search in

simple graphs, directed graphs, and bipartite graphs have been stud-

ied extensively, none of them can be directly applied to searching a

densest P-partite subgraph. To the best of our knowledge, the two

closest algorithms are [9] and [22], where [9] deals with a density

function with a numerator that is closest to ours, while [22] focuses

on a density function with a denominator being the square root of

the multiplication of two vertex set sizes, which is a special case

of our problem. The principal challenges for our densest P-partite
subgraph search problem are as follows. First, is it possible to solve

the problem exactly in polynomial time? Second, can we approx-

imately solve the problem more efficiently that also comes with

an approximation guarantee? Third, are these solutions scalable so

that reasonably large datasets can be handled?

Our approaches. We first demonstrate that the densest P-partite
subgraph problem can be potentially solved in polynomial time at

the framework level. This is achieved by proving that the fractional

programming technique [26] can be applied to our problem. Intu-

itively, to maximize a fractional function 𝜌 ( ·)= 𝑓 ( ·)
ℎ ( ·) , a transformed

auxiliary optimization problem, i.e., maximizing 𝑧 ( ·)=𝑓 ( ·)−𝜌ℎ ( ·),
can be constructed. By solving a set of these auxiliary optimization

problems with varying 𝜌, the optimum solution that maximizes

𝜌 ( ·)= 𝑓 ( ·)
ℎ ( ·) can be obtained. We use the term ‘potentially solved’ as

we assume that the auxiliary optimization problem related to our

studied objective can be solved in polynomial time. However, this

is challenging since the denominator ℎ ( ·) contains the higher-order
(𝑖th) root of multiplication over the sizes of 𝑖 vertex sets.

To cope with the issue, we further transform ℎ ( ·) to make the

𝑖th root of multiplication over the sizes of 𝑖 vertex sets a linear

combination of the sizes of 𝑖 vertex sets. Here, in the transformed

linear combination, each size of a vertex set is multiplied by a fixed

parameter that we propose. We refer to these parameters as the

𝑖-root of the multiplication parameter set, denoted as iRM-set, M.

Although we later show that for a fixed M the corresponding aux-

iliary optimization problem can be exactly solved by our proposed
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flow network-based algorithm, the entire algorithm remains ineffi-

cient. This is because the densest P-partite subgraph can only be

derived after testing every possible M∈M according to the different

possible size distributions of 𝑖 vertex sets in a P-partite subgraph,
where |M | is bounded by O( ( 𝑛

𝑖
)𝑖 ) in terms of the total number of

vertices (𝑛) in an HIN.

To improve efficiency, we first attempt approximation and pro-

pose a
1

𝑖
-approximation peeling algorithm. The design and proof

are nontrivial. First, the conventional vertex peeling process is more

favorable for a density function whose denominator is in terms of

the sum of vertice sizes. Second, the existing proof idea in [1] only

works when 𝑖=2. To address the above concerns, we further utilize

the iRM-set to propose a new peeling algorithm for our problem,

which makes the peeling process aware of the multiplication of

the sizes of 𝑖 vertex sets. Then we prove that the subgraph with

the highest density derived during the peeling process has at least

1

𝑖
-approximation for the optimum result w.r.t. a given iRM-set. By

trying every possible iRM-set, a subgraph with the highest density

is secured to have
1

𝑖
-approximation w.r.t. the global optimum re-

sult. Although expensive flow computations have been replaced by

cheaper peelings, Θ( |M | ) instances of peelings greatly restrict the

scalability of the approximation algorithm.

To propose scalable algorithms, we seek opportunities for prun-

ing iRM-sets. We observe that by finding min-cuts using the exact

algorithm, two types of density upper bounds can be derived for the

use of pruning iRM-sets. Empirically, this can surprisingly prune

up to 80% of iRM-sets, which makes the flow-based exact algo-

rithm much faster than the approximation algorithm. Last but not

least, we also propose a vertex pruning rule, which takes advantage

of the early derived large density from our approximation algo-

rithm. Along with the iRM-set pruning techniques, we propose

a practically efficient exact algorithm that achieves the best run-

time performance and solves O( |M | ) instances of min-cut problems,

which is much smaller than Θ( |M | ) in practice.

Contributions. Our main contributions are summarized below.

• Wepropose a novel densest P-partite subgraphmodel. (Section 2)
• We develop an exact algorithm to solve the densest P-partite
subgraph problem in polynomial time. (Sections 3 and 4)

• We provide an approximate solution and prove an approximation

ratio of
1

𝑖
. (Section 5)

• We propose novel pruning rules, which significantly accelerates

the exact algorithm. (Section 6)
• We conduct extensive experiments on real datasets to demon-

strate the superior effectiveness and efficiency of our proposed

methods. (Section 7)

2 PRELIMINARY & PROBLEM FORMULATION
Frequently used symbols are shown in Table 1.

2.1 Preliminary
We first introduce some well-known concepts.

Heterogeneous information networks HINs. An HIN is defined

as a directed graph 𝐺=(𝑉 ,𝐸 ) with a vertex type mapping function

𝜙 :𝑉→A and an edge type mapping function 𝜓 :𝐸→R, in which every

𝑣∈𝑉 has a unique vertex type 𝜙 (𝑣) ∈A and every 𝑒∈𝐸 has a unique

edge type 𝜓 (𝑒 ) ∈R.

Table 1: Notations
Notation Definition

𝐴 a vertex type

A the set of all vertex types in an HIN

P=(𝐴1,...,𝐴𝑖 ) a simplified meta-path with 𝑖 types of vertices

V={𝑉1,...,𝑉𝑖 } a P family

V the set of all possible P families

𝐺 (V) a P-partite subgraph induced by 𝑉1∪...∪𝑉𝑖
F(V) all instances of P contained in 𝐺 (V)
H(V) 𝑉1×...×𝑉𝑖
V∗ 𝜌 (𝑉 ∗ ) is the optimum (maximum)

M={𝑚1,...,𝑚𝑖 },M′ different iRM-sets

M the set contains all possibleM
VM a P family whose {|𝑉1 |,...,|𝑉𝑖 |} conforms toM
V∗M 𝜌 (𝑉 ∗M ) is the maximum ∀ V conforming toM

𝜌∗ and 𝜌∗M abbreviations for 𝜌 (𝑉 ∗ ) and 𝜌 (𝑉 ∗M )
𝛾 a guessed or derived density value

Network schema. The network schema is a meta template for an

HIN 𝐺=(𝑉 ,𝐸 ) with the vertex type mapping 𝜙 :𝑉→A and the edge

type mapping function 𝜓 :𝐸→R, which is a directed graph defined

over vertex types A, with edges as relations from R, denoted as

𝑇𝐺=(A,R).
Figure 1 shows an HIN consisting of four types of vertices:

𝐴1,𝐴2,𝐴3, and 𝐴4 corresponding to User, Port#, Protocol, and Server

respectively, and three types of edges: (𝐴1,𝐴2 ) , (𝐴2,𝐴3 ) , (𝐴3,𝐴4 ) corre-
sponding to (𝑈𝑠𝑒𝑟,𝑃𝑜𝑟𝑡#), (𝑃𝑜𝑟𝑡#,𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ), and (𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙,𝑆𝑒𝑟𝑣𝑒𝑟 ), re-
spectively. Given a vertex 𝑢𝑖 for 1≤𝑖≤6, 𝜙 (𝑢𝑖 )=𝐴1 corresponds to

User-typed vertices and other types of vertices have similar map-

pings to Port#, Protocol, and Server. Given an edge (𝑢𝑖 ,𝑝 𝑗 ) for 1≤𝑖≤6,
1≤ 𝑗≤8,𝜓 ( (𝑢𝑖 ,𝑝 𝑗 ) ) refers to the edge type of (𝑈𝑠𝑒𝑟,𝑃𝑜𝑟𝑡#) . Similar edge

mappings apply to other edges connecting: 1) Port# and Protocol-

typed vertices, and 2) Protocol and Server-typed vertices.

Meta-path. A meta path P is a path defined on the network schema

𝑇𝐺 , and is denoted in the form of 𝐴1

𝑅
1−−→𝐴2

𝑅
2−−→...

𝑅𝑖−1−−−−→𝐴𝑖 , which de-

fines a composite relation 𝑅=𝑅1◦𝑅2◦...◦𝑅𝑖−1 between type 𝐴1 and 𝐴𝑖 ,

where ◦ denotes the composition operator on relations. For simplic-

ity, we denote P as an ordered set in forms of (𝐴1,𝐴2,...,𝐴𝑖 ).
Instance of P. Given a permutation of vertices 𝑝=(𝑣1,𝑣2,...𝑣𝑖 ) , 𝑝 is an
instance of a meta path P=(𝐴1,𝐴2,...,𝐴𝑖 ) , if 𝑝 satisfies that for any two
consecutive vertices 𝑣𝑗 ,𝑣𝑗+1 (1≤ 𝑗<𝑖) in 𝑝, 𝜓 ( (𝜙 (𝑣𝑗 ),𝜙 (𝑣𝑗+1 ) ) )=𝑅 𝑗 holds.

For instance, let the meta path P be (𝑈𝑠𝑒𝑟,𝑃𝑜𝑟𝑡#,𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ) in Fig-

ure 1, paths such as (𝑢1,𝑝1,𝑝𝑟1), (𝑢1,𝑝5,𝑝𝑟2 ), are instances of P.
Now we discuss frequently used definitions in this paper.

Definition 1. P vertex set family (P-family). Given P = (𝐴1,

..., 𝐴𝑖 ), we define a vertex set family V={𝑉1,...,𝑉𝑖 } as a P vertex set

family if for 1≤ 𝑗≤𝑖, 𝑉𝑗 ⊆𝑉 (𝐴 𝑗 ) and 𝑉𝑗≠∅. We also define the union of

all possible P vertex set families of 𝐺 as V.

Definition 2. P-family V induced multipartite subgraph (P-
partite subgraph). Given a P-family V={𝑉1,...,𝑉𝑖 }, we define the
subgraph induced by 𝑉1∪...∪𝑉𝑖 as the P-family induced subgraph,

denoted as 𝐺 (V), which is a simplification of 𝐺 (𝑉1∪...∪𝑉𝑖 ).

Definition 3. P-family V induced P instances. Given a P-family

V={𝑉1,...,𝑉𝑖 }, we define all P instances contained in 𝐺 (V) as the P-
family V induced P instances, denoted as F(V).
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For example, in Figure 1, V𝑒𝑥𝑎={{𝑢1,𝑢2 },{𝑝1,𝑝2,𝑝3,𝑝4,𝑝5 },{𝑝𝑟1,𝑝𝑟2 }}
is a P-family given P=(𝑈𝑠𝑒𝑟,𝑃𝑜𝑟𝑡#,𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ). Accordingly, these ver-
tex induced subgraph is a P-partite subgraph. In this P-partite
subgraph, | F (V𝑒𝑥𝑎 ) |=20.
Remark. Different from general definitions of HINs, we treat𝐺 and

𝑇𝐺 as undirected graphs but treat a given meta-path P as directed.

This allows more query meta-paths available, and therefore more

multipartite subgraphs can be explored.

2.2 Density of P-partite subgraph
In this section, we formally define the density of a subgraph w.r.t.

provided meta-path P and introduce the research problem studied

in this paper.

Definition 4.Density 𝜌. Given a P-family of 𝑖 vertex sets V=

{𝑉1,...,𝑉𝑖 }, and let H(V) be 𝑉1×...×𝑉𝑖 , the density of V induced multi-

partite subgraph is defined as follows.

𝜌 (V) = | F (V) |

|H(V) |
1

𝑖

(1)

Problem 1.Densest P-partite subgraph problem. Given an HIN

𝐺=(𝑉 ,𝐸 ) with schema 𝑇𝐺=(A,R), a meta-path P=(𝐴1,...,𝐴𝑖 ), find a P-
family V∗={𝑉 ∗

1
,...,𝑉 ∗𝑖 } such that there exists no P-family V′ with

𝜌 (V′ )>𝜌 (V∗ ). Alternatively, this statement can be expressed as find-

ing a P-family 𝑉 ∗ that solves the argument of the maxima below:

V∗ = argmax{𝜌 (V) |V ∈ V}, (2)

where V is the union of all possible P-families.

As in the previous example, given P=(𝑈𝑠𝑒𝑟,𝑃𝑜𝑟𝑡#,𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ), the
V𝑒𝑥𝑎 induced P-partite subgraph has a density of

20

(2×5×2)
1

3

≈7.368,

which is also a densest P-partite subgraph. The runner-up is 𝑉 ′=

{{𝑢4,𝑢5,𝑢6 },{𝑝6,𝑝𝑝 ,𝑝8 },{𝑝𝑟4,𝑝𝑟5,𝑝𝑟6 }} induced P-partite subgraph, which
has a density of

22

(3×3×3)
1

3

≈7.333.

Technical scope. Given 𝐺 and P, we need some preprocessing

to reduce the search space, count and enumerate instances of P,
which ensures the efficiency of solving Problem 1 but is not the

main focus of Problem 1. To avoid sidetracking, we mainly focus

on solving Problem 1 for a connected multipartite subgraph induced

by a P-family of V.

3 FRACTIONAL PROGRAMMING BASED
FRAMEWORK

We propose to use a fractional programming (FP) framework to

solve Problem 1 exactly. Although this framework has been suc-

cessfully adapted to densest subgraph (DS) problems with various

density functions such as [29] and [3], it is still necessary to verify

whether it is feasible to solve Problem 1 whose density (fractional)

function has a denominator consisting of higher-order roots.

Unlike existing works that often mix up explanations of frac-

tional programming-based densest subgraph search algorithms

with flow network techniques, we aim to concisely explain and

prove the correctness of using the fractional programming-based

framework to solve Problem 1 without resorting to flow networks.

3.1 Warm-up: the initial transformation
Intuition. A fractional programming based method solves a frac-

tional optimization problem by introducing an auxiliary optimiza-

tion problem with a linear formulation, which can iteratively help

𝑣1
1

𝑣2
1

𝑣3
1

𝑣1
2

𝑣2
2

𝑣3
2

𝑣1
3

𝑣2
3

𝑣3
3

𝑝1=(𝑣1
1
,𝑣1
2
,𝑣1
3
)

𝑝2=(𝑣1
1
,𝑣1
2
,𝑣2
3
)

𝑝3=(𝑣2
1
,𝑣1
2
,𝑣1
3
)

𝑝4=(𝑣2
1
,𝑣1
2
,𝑣3
3
)

𝑝5=(𝑣2
1
,𝑣2
2
,𝑣1
3
)

𝑝6=(𝑣2
1
,𝑣2
2
,𝑣2
3
)

𝑝7=(𝑣2
1
,𝑣3
2
,𝑣3
3
)

𝑝8=(𝑣3
1
,𝑣1
2
,𝑣1
3
)

𝑝9=(𝑣3
1
,𝑣1
2
,𝑣2
3
)

𝑝10=(𝑣3
1
,𝑣2
2
,𝑣1
3
)

𝑝11=(𝑣3
1
,𝑣2
2
,𝑣2
3
)

Figure 2: A toy example

verify or improve an intermediate solution for the fractional opti-

mization problem until an optimum solution is derived.

We first introduce the auxiliary optimization problem of Prob-

lem 1 that eliminates the fraction.

Problem 2.Auxiliary optimization problem (AOP). Sharing the
same input as Problem 1, and 𝛾 ∈{𝜌 (V) |V∈V}, AOP finds a P-family

V∗′ that maximizes the equation below.

𝜁 (V, 𝛾 ) = | F (V) | − 𝛾 |H(V) |
1

𝑖 (3)

I.e., AOP solves the arguments of the maxima as follows.

V∗′ = argmax{𝜁 (V, 𝛾 ) |V ∈ V} (4)

Intuitively, Equation 3 can help verifying a P-family set that

has the optimum density 𝜌 (V∗ ) (simplified as 𝜌∗). Besides, given a

guessed density 𝛾 , solving Problem 2 can indicate whether there

exists a P-partite subgraph having density greater, equal or less

than the guessed density. Last but not least, solving Problem 2

can derive P-families that converge to a P-family with optimum

density. The above correlations are formally defined as follows
1
.

Correlation 1. When 𝛾=𝜌∗ and 𝜌 (V∗′ )=𝜌 (V∗ ) , 𝜁 (V∗′,𝜌∗ )=0 must hold.

Correlation 2. Let 𝛾>𝜌∗,then 𝜁 (V∗′,𝛾 )<0 must hold.

Correlation 3. Let 𝛾<𝜌∗, then, 𝜁 (V∗′,𝛾 )≥𝜁 (V∗,𝛾 )>0 must hold.

Correlation 4. Let 𝛾2=
|F (V∗′ ) |

|H(V∗′ ) |
1

𝑖

, where V∗′ is argmaxV={𝜁 (V,𝛾1 ) |V∈

V}, then 𝛾2>𝛾1 must hold unless 𝛾1=𝜌
∗
.

Using Correlations 1 to 4, two approaches [10, 29] could be used to

solveAOP but without the prerequisite of flow network techniques.

Guess & verification based approach. We may guess a value 𝛾

via binary search, solve the corresponding Problem 2, and then

adjust 𝛾 according to Correlations 2 and 3. As such, we can eventually

approach to 𝜌∗ and V∗ and verify them via Correlation 1.

Iterative approach. By Correlation 4, given a connected 𝐺 (V) , we
can first set 𝛾 to be

|F (V) ) |

|H(V) |
1

𝑖

and then derive an improved 𝛾 ′ by using

V∗′ of argmaxV={𝜁 (V,𝛾 ) |V∈V}. We can progressively approach to

V∗ by iteratively replacing the current 𝛾 with the improved 𝛾 ′ until

the conditions in Correlation 1 are satisfied, leading to 𝜌∗ and V∗.
By the above analysis, it seems possible to solve Problem 1

as efficiently as the DS problem. However, this is a pitfall since,

we have hidden the difficulties of solving Problem 2, i.e., H(·)
has 𝑖 variables and they are in the form of multiplication. Novel

techniques are needed to further transform Equation 3 so that the

corresponding optimization problem can be solved efficiently.

3.2 The refined transformation
To the best of our knowledge, it is an open problem to solve Prob-

lem 2 due to the fact that H(·) in 𝜁 ( ·) has to deal with 𝑖 sets of

vertices. We propose a novel formulation that transforms the multi-

plication of vertex sizes of 𝑖 types in H(·)
1

𝑖 to the sum of weighted

vertex sizes for 𝑖 types, i.e., from non-linear to linear. After this

1
The proofs are in our technical report [4].
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refined transformation, we demonstrate that the refined Problem2

maintains similar effects as the discussed correlations and therefore

can be used to solve Problem 1.

First, we introduce the refined 𝜁 that incorporates a new set of

parameters M={𝑚1,...,𝑚𝑖 } in addition to V={𝑉1,...,𝑉𝑖 } and 𝛾 ,

𝜁 (V, 𝛾,M) = | F (V) | − 𝛾

𝑖
(𝑚1 |𝑉1 | + . . . +𝑚𝑖 |𝑉𝑖 | ), (5)

where M is defined as follows.

Definition 5. 𝑖-root of multiplication parameter set (iRM-set).
Given the set of sizes for V, denoted by 𝑋={ |𝑉1 |,..., |𝑉𝑖 | }, the elements

of an iRM-set is defined in the following format for all 1≤ 𝑗≤𝑖:

𝑚 𝑗 =
( |𝑉1 | · . . . · |𝑉𝑖 | )

1

𝑖

|𝑉𝑗 |
, (6)

i.e., an iRM-set is M={𝑚1,...,𝑚𝑖 }.

Given two sets of sizes for two P-families, it is possible that they

lead to the same iRM-set. We formally define such a relationship

as follows.

Definition 6. iRM-sets conformance. Given 𝑋 ′={ |𝑉 ′
1
|,..., |𝑉 ′𝑖 | } with

M′={𝑚1

′,...,𝑚𝑖
′ } , we define that 𝑋 ′ and M′ conform to an existing

M={𝑚1,...,𝑚𝑖 }, if and only if for all 1≤ 𝑗≤𝑖,𝑚 𝑗
′=𝑚 𝑗 . Similarly, given V,

we define that V conforms to M when { |𝑉1 |,..., |𝑉𝑖 | } conforms to M.

For instance, in Figure 2, given V={{𝑣1
1
,𝑣3
1
},{𝑣1

2
,𝑣2
2
},{𝑣1

3
,𝑣2
3
}}, its 𝑋 is

{2,2,2} and M is {1,1,1}. Given V′={{𝑣1
1
,𝑣2
1
,𝑣3
1
},{𝑣1

2
,𝑣2
2
,𝑣3
2
},{𝑣1

3
,𝑣2
3
,𝑣3
3
}}, its

𝑋 ′ andM′ are {3,3,3} and {1,1,1} respectively. Therefore,M′ conforms

to M and we also say V′ conforms to M.

Remark. In Equation 5, M and V are treated as two distinct sets

of variables. The vertex sizes of 𝑖 types of vertices in V may or may

not conform to M. Accordingly, we define the refined auxiliary

optimization problem as follows.

Problem 3.Refined AOP (RAOP). Sharing the same input as Prob-

lem 2, and a fixed M, RAOP finds a P-family V∗′ that maximizes

Equation 5, i.e., RAOP solves arg max as follows.

V∗′ = argmax{𝜁 (V, 𝛾,M) |V ∈ V} . (7)

Next, we show that solving RAOP for a given M helps solving

Problem 1. Since we have a new parameter set M, we use V∗M to

denote a P-family that has corresponding 𝑖-type vertex sizes in

accordance with M and has the highest density 𝜌∗M . V
∗′
is used to

denote an optimal P-family that is a solution of RAOP with M as

a parameter, which has a density of 𝜌 (V∗′ ) . Note that the following
analysis will consider cases whether V∗′ conforms to the given M
or not. Therefore, we use M∗′ to denote the parameter set that the

sizes of V∗′ conform to.

Lemma 1.When 𝛾=𝜌∗M , 𝜌 (V
∗′ )=𝜌 (V∗M ) , and M

∗′
conforms to M, then

𝜁 (V∗′,𝛾,M)=0 must hold.

Proof. First, Equation 5 can be organized as follows.

𝜁 (V∗′, 𝛾,M) = | F (V∗′ ) |⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
1

− 𝛾

𝑖
( |𝑉1∗′ | · . . . · |𝑉𝑖 ∗′ | )

1

𝑖 ( 𝑚1

𝑚1
∗′ + . . . +

𝑚𝑖

𝑚𝑖
∗′ )⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

2

(8)

Since M∗′ conforms M,
𝑚

1

𝑚
1
∗′ +...+

𝑚𝑖
𝑚𝑖
∗′ =𝑖 holds. What is more, since

𝛾=𝜌 (V∗′ )=𝜌∗M , 𝜁 (V
∗′,𝛾,M)=0 hold.

Lemma 2.When 𝛾=𝜌∗M , 𝜁 (V
∗′,𝜌∗,M)=0, but M∗′ does not conform to

M, then 𝜌 (V∗′ )>𝜌∗M must hold.

Proof. Since 𝜁 (V∗′,𝜌∗,M)=0, the below equation holds.

𝛾 = 𝜌∗M =
𝑖𝜌 (V∗′ )

𝑚
1

𝑚
1
∗′ + . . . +

𝑚𝑖
𝑚𝑖
∗′

. (9)

By the inequality of arithmetic and geometric means, the following

inequality must hold:

𝑚1

𝑚1
∗′ + . . . +

𝑚𝑖

𝑚𝑖
∗′ ≥ 𝑖 ( 𝑚1

𝑚1
∗′ · . . . ·

𝑚𝑖

𝑚𝑖
∗′ )

1

𝑖 . (10)

By the definition of iRM-set, the right part of the inequality, ( 𝑚
1

𝑚
1
∗′ ·

...· 𝑚𝑖
𝑚𝑖
∗′ )

1

𝑖 =1 holds, which means ( 𝑚
1

𝑚
1
∗′ +...+

𝑚𝑖
𝑚𝑖
∗′ )≥𝑖. What is more,

( 𝑚
1

𝑚
1
∗′ +...+

𝑚𝑖
𝑚𝑖
∗′ )=𝑖 if and only if

𝑚
1

𝑚
1
∗′ =...=

𝑚𝑖
𝑚𝑖
∗′ . As such 𝜌 (V∗′ )>𝜌∗M

must hold since
𝑖

𝑚
1

𝑚
1
∗′ +...+

𝑚𝑖
𝑚𝑖
∗′

<1.

Lemma 3.Given fixed 𝛾 and M and when 𝜁 (V∗′,𝛾,M)<0 , then there

is no V′⊆V with 𝜌 (V′ )≥𝛾 when the sizes of V′ conform to M.

Lemma 4.Given fixed 𝛾 and M and when 𝜁 (V∗′,𝛾,M)>0, then 𝛾<𝜌∗M
must hold and there exists V′ with 𝜌 (V′ )≥𝛾 .

Lemma 5. Let 𝛾2=
|F (V∗′ ) |

|H(V∗′ ) |
1

𝑖

, where V∗′ is argmaxV={𝜁 (V,𝛾1,M) |V∈V},

then 𝛾2>𝛾1 must hold unless 𝛾1=𝜌
∗
M or 𝛾1>𝜌

∗
M .

Please see our technical report [4] for proofs of Lemmas 3 to 5.

Both the guess & verification and iterative approaches can be

adapted, leading to the following theorem.

Theorem 1. Given a fixed M, we can find V∗′ that has 𝜌 (𝑉 ∗′ )=𝜌 (V∗M ) ,
or 𝜌 (V∗′ )>𝜌 (V∗M ).

Proof. If using the guess & verification approach, we can attempt

different 𝛾 and when 𝛾=𝜌 (V∗M ), the search terminates at either

Lemma 1 or Lemma 2, which leads to V∗′ with 𝜌 (V∗′ )=𝜌 (V∗M ) or
𝜌 (V∗′ )>𝜌 (V∗M ). If using the iterative approach, we can start the

search with V, i.e., the entire input vertices. Then, by Lemma 5, it

iteratively derives a larger density P-family set until it terminates

with one of Lemma 1, Lemma 2, or Lemma 3. As discussed, Lemma 1

or Lemma 2 lead to V∗′ with 𝜌 (𝑉 ∗′ )=𝜌 (V∗M ) or 𝜌 (V∗′ )>𝜌 (V∗M ). For
Lemma 3, we can derive V∗′ with 𝜌 (V∗′ )>𝜌 (V∗M ).

From the analyses above, it is clear that by exploring every

possible M, Problem 1 can be precisely solved. We will provide a

detailed algorithm and time complexity analysis after explaining

how to solve RAOP in polynomial time in the next section.

Discussion. Using fractional programming is one way to solve

Problem 1, which essentially involves solving a set of reformulated

problems devoid of non-linear components (fractions and multipli-

cations). There might be other techniques with similar effects, for

instance, convex programming.

We would like to note that our solution is different from the idea

of reducing Problem 1 to a set of vertex-weighed densest subgraph

problems [25]. This is because given a set of parameters M, our

method establishes the optimum solution of RAOP to 𝜌∗M (or 𝜌∗M ’s

upper bound) as shown in Theorem 1, leading to pruning opportu-

nities that will be introduced later. In contrast, the reduction-based

approach instead establishes the optimum density of the vertex-

weighted densest subgraph for a given M as a lower bound of 𝜌∗M .

Then, only when M is optimum, the two densities coincide.

4 FLOW-BASED EXACT ALGORITHM
In this section, we reduce Problem 3 to the max-flow/min-cut prob-

lem with our proposed flow networks. Then, we show the complete

exact algorithm for Problem 1 and analyze its time complexity.
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4.1 Flow network and min-cut expression
We formally define the structure of a flow network 𝐷=(𝑁,𝐸 ). We

prefer using the term node when discussing a flow network and

vertex in the context of an HIN
2
.

Input. The flow network is built using V, P instances in 𝐺 (V)
denoted as 𝑃 , along with the given iRM-set M and density 𝛾 .

Node creation. We create the 𝑠 and 𝑡 nodes first, followed by creating

nodes for each vertex in V, i.e., 𝑖 sets of nodes 𝑁1,...,𝑁𝑖 for the vertices

in 𝑉1,...,𝑉𝑖 . Additionally, we create a node 𝑛𝑝 for each instance of P.
Directed edge creation. For each instance of P, i.e., 𝑝∈𝑃 , we connect
its corresponding node 𝑛𝑝 to the nodes representing vertices form-

ing 𝑝 with an infinite capacity. We also create an edge from the

source node 𝑠 to every 𝑛𝑝 with capacity 𝑐 (𝑠,𝑛𝑝 )=1. Next, we set the
capacity between a node 𝑛 𝑗 representing a vertex in 𝑉𝑗 and the

target node 𝑡 as 𝑐 (𝑛 𝑗 ,𝑡 )= 1

𝑖
𝛾𝑚 𝑗 , where 1≤ 𝑗≤𝑖.

For instance, Figure 3 shows the flow network 𝐷 for the P-partite
subgraph in Figure 2. Star nodes represent each path shown in

Figure 2, while diamond, circle, and square nodes represent the

three types of vertices in Figure 2. As shown in Figure 3, edges are

differentiated by colors. Edges with the same color have the same

capacity, as indicated by the sample edges with capacities.

Cut expressions. Now, we are ready to show three candidate

min-s-t-cut expressions for 𝐷.

Exp 1: only 𝑠 in S. In this case, only edges from 𝑠 to each 𝑛𝑝 are cut.

As such, the cut expression is:

𝐶1 ({𝑠 },𝑇 ) =
∑︂

𝑛𝑝 ∈𝑇
𝐶 ({𝑠 }, {𝑛𝑝 }) = |𝑃 |, (11)

where |P| is the total number of P instances contained in 𝐺 (V).
Exp 2: only 𝑡 in T. In this case, only edges from nodes representing

vertices contained in V are cut. The cut expression is as follows.

𝐶2 =
∑︂

𝑛
1
∈𝑁𝑖

𝑐 ({𝑛1 }, {𝑡 }) + . . . +
∑︂

𝑛𝑖 ∈𝑁𝑖

𝑐 ({𝑛𝑖 }, {𝑡 }) =
1

𝑖
|𝑁1 |𝛾𝑚1 + . . . +

1

𝑖
|𝑁𝑖 |𝛾𝑚𝑖

(12)

=
𝛾

𝑖
( |𝑁1 | · . . . · |𝑁𝑖 | )

1

𝑖 ( 𝑚1

𝑚1
′ + . . . +

𝑚𝑖

𝑚𝑖
′ ) .

(13)

Exp 3: general case. In this case, some edges are cut from 𝑠 to nodes

representing instances of P, and some edges are cut from nodes

representing vertices to 𝑡 . W.l.o.g, let 𝑁𝑠 𝑗 for all 1≤ 𝑗≤𝑖 denote the
vertices of 𝑉𝑗 contained in 𝑆 , 𝑁𝑠𝑝 denote the nodes representing

instances of P contained in 𝑆 . Similarly, the same applies for 𝑁𝑡 𝑗

and 𝑁𝑡𝑝 . We assume that the set of integers { |𝑁𝑠1 |,..., |𝑁𝑠𝑖 | } conforms

an iRM-set M′, where M′ and M may be the same or different.

Then, the cut can be expressed as:

𝐶3 =
∑︂

𝑛𝑝 ∈𝑁𝑡𝑝

𝑐 ({𝑠 }, {𝑛𝑝 }) +
∑︂

𝑛
1
∈𝑁𝑠1

𝑐 ({𝑛1 }, {𝑡 }) + . . . +
∑︂

𝑛𝑖 ∈𝑁𝑠𝑖

𝑐 ({𝑛𝑖 }, {𝑡 }) (14)

= |𝑃 | − (
∑︂

𝑛𝑝 ∈𝑁𝑠𝑝

𝑐 ({𝑠 }, {𝑛𝑝 }) −
1

𝑖
( |𝑁𝑠1 |𝛾𝑚1 + . . . + |𝑁𝑠𝑖 |𝛾𝑚𝑖 ) ) (15)

= |𝑃 | − ( |𝑁𝑠𝑝 |⏞ˉ̄⏟⏟ˉ̄⏞
1

− 𝛾

𝑖
( |𝑁𝑠1 | · . . . · |𝑁𝑠𝑖 | )

1

𝑖 (𝑚1

𝑚′
1

+ . . . + 𝑚𝑖

𝑚′
𝑖⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

2

) ) . (16)

For instance, Figure 3 shows a possible Exp3, where edges (𝑠,𝑝4 ) ,
(𝑠,𝑝7 ) , (𝑣1

1
,𝑡 ) , (𝑣2

1
,𝑡 ) , (𝑣3

1
,𝑡 ) , (𝑣1

2
,𝑡 ) , (𝑣2

2
,𝑡 ) , (𝑣1

3
,𝑡 ) , and (𝑣2

3
,𝑡 ) have been cut.

We would like to mirror Equation 16 to Equation 8, i.e., parts 1

and 2 in both equations are in the same format. This indicates that

2
Please see our technical report [4] for a concise max-flow/min-cut problem revision

𝑠

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11

𝑣1
1

𝑣2
1

𝑣3
1

𝑣1
2

𝑣2
2

𝑣3
2

𝑣1
3

𝑣2
3

𝑣3
3

𝑡

1 ∞
1

𝑖
𝛾𝑚1

1

𝑖
𝛾𝑚2

1

𝑖
𝛾𝑚3

Figure 3: Constructed flow network and edge capacity

finding min-cut in 𝐷 can maximize Equation 8. We are now ready

to show finding min-cuts in 𝑁 is equivalent to solving Problem 3.

4.2 Min-cut and problem equivalence
In this subsection, we show how V′ derived by a min-cut of 𝐷 can

be used to solve Problem 3 w.r.t. M using the following theorems.

We use 𝜌∗M denote the optimum density w.r.t.M.

Theorem 2.When a min-cut of 𝐷 contains {𝑁𝑠1,...,𝑁𝑠𝑖 } representing
vertices V′={𝑉𝑠1,...,𝑉𝑠𝑖 } whose { |𝑁𝑠1 |,..., |𝑁𝑠𝑖 | } conforms toM, if 𝜌 (V′ )=
𝛾=𝜌∗M , a min-cut of 𝐷 with |𝑆 |>1 must be expressed as 𝐶2 or 𝐶3 with

the min-cut value of |𝑃 |.

Theorem 3.When a min-cut of 𝐷 contains {𝑁𝑠1,...,𝑁𝑠𝑖 } representing
vertices V′={𝑉𝑠1,...,𝑉𝑠𝑖 } whose { |𝑁𝑠1 |,..., |𝑁𝑠𝑖 | } does not conform to M,

and 𝐶3 has the value of |𝑃 |, 𝜌 (V′ )>𝜌∗M .

Theorem 4.When a min-cut of 𝐷 contains {𝑁𝑠1,...,𝑁𝑠𝑖 } representing
vertices V′={𝑉𝑠1,...,𝑉𝑠𝑖 }, if 𝛾>𝜌∗M , regardless whether { |𝑁𝑠1 |,..., |𝑁𝑠𝑖 | }
conforms to M or not, a min-cut of 𝐷 must be expressed as 𝐶1 with

the value of |𝑃 |, i.e., 𝜌 (V′ )>𝛾 .

Theorem 5.When a min-cut of 𝐷 contains {𝑁𝑠1,...,𝑁𝑠𝑖 } representing
vertices V′={𝑉𝑠1,...,𝑉𝑠𝑖 }, if 𝛾<𝜌∗M and { |𝑁𝑠1 |,..., |𝑁𝑠𝑖 | } does not conform
to M, a min-cut of 𝑁 must be expressed as 𝐶3 with a min value less

than |𝑃 | and 𝜌 (V′ )≥𝛾 .

Theorem 6. Let 𝛾 ′=𝜌 (𝑉 ′ ), where 𝜌 (𝑉 ′ ) is derived by a min-cut in the

form of 𝐶3 in 𝑁 with 𝛾 , then 𝛾 ′>𝛾 must hold unless 𝛾 ′≥𝜌∗M .

Theorems 2 to 6 are essentially min-cut based expressions for

Lemmas 1 to 5. Since they share similar proof ideas, we omit the

proofs for Theorems 2 to 6.

The flow-based algorithm for a fixed M. It is trivial to see that

by replacing Problem 3 to the above discussed min-cut problem,

the iterative approach can either find an optimum density (𝜌∗M )

(Theorems 2) or an upper bound of 𝜌∗M . We may also use the guess

& verification approach and derive similar results.

For instance, by using the iterative approach, let M={1,1,1} and
initial 𝛾 be the density of the entire graph shown in Figure 2, i.e.,

3.67, the min-cut of 𝐷 in Figure 3 is shown by the annotated cut

edges. In the case, the 𝑆 partition contains a subgraph induced by

P-family V′={{𝑣1
1
,𝑣2
1
,𝑣3
1
},{𝑣1

2
,𝑣2
2
},{𝑣1

3
,𝑣2
3
}}, which has a higher density

of 4.36. Then 𝛾 is replaced as 4.36. In this case, the min-cut of 𝐷

becomes Exp 1. By Theorem 4, 𝜌∗M<4.36. Therefore, the optimum

solution w.r.t. M cannot beat the subgraph induced by V′.
The complete algorithm. The iterative approach for deriving the

exact result is outlined in Algorithm 1. The algorithm’s steps are

self-explanatory, so we will not discuss them in detail.
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Algorithm 1: Exact algorithm
Input: 𝐺 ,V={𝑉1,...,𝑉𝑖 }

1 M,𝑋 ,V∗←∅, generate M by calling iRMGenerator(1,𝑋 );
2 foreachM∈M do
3 𝛾=𝜌 (V) , construct flow network 𝐷 based on 𝛾 andM ;

4 V′ ← find a min-cut of 𝐷;

5 while 𝛾<𝜌 (V′ ) do
6 𝛾←𝜌 (V′ ) , update capacities of 𝐷 with 𝛾 ;

7 V′ ← find a min-cut of 𝐷;

8 If 𝜌 (V∗ )<𝜌 (V′ ) then V∗ ← 𝜌 (V′ ) ;

9 return V∗;
10 Procedure iRMGenerator(𝑗,𝑋)
11 if 𝑗==𝑖+1 then calculateM based on 𝑋 , M←M∪{M}, return;
12 for 𝑧← 1 to |𝑉𝑗 | do iRMGenerator(𝑗+1, 𝑋∪{z});

For instance, let us go back to the example. We have shown that

when M={1,1,1}, a P-partite subgraph with a density of 4.36 can

be derived. In fact, for all other possible values of M, Algorithm 1

cannot derive a P-partite subgraph with a higher density than

4.36. Therefore, the P-family V={{𝑣1
1
,𝑣2
1
,𝑣3
1
},{𝑣1

2
,𝑣2
2
},{𝑣1

3
,𝑣2
3
}} induced

subgraph is the global optimum result.

Time complexity. The iterative approach runs in Θ( |M | |F | ) with
the parametric flow network [10]. |F | is O( |𝑉 (𝐷 ) |3 ), |M | and |𝑉 (𝐷 ) |
can be bounded by O( ( 𝑛

𝑖
)𝑖 ) , where 𝑛 is the number of vertices in 𝐺 .

While it is clear that the algorithm runs in polynomial time when

𝑖≪𝑛, the time complexity is high in general. We then attempt an

approximation algorithm that may have better scalability.

5 APPROXIMATION ALGORITHM
We have demonstrated that V∗ can be found exactly in polynomial

time. Despite the solution optimality, the exact algorithm runs

slowly. In this section, we look for a greedy-based approximation

algorithm that trades off solution accuracy for speed.

Our proposed algorithm is inspired by [1], in which the tech-

nique is for a density function with a denominator in the form of

a square root of multiplication of sizes for two vertex sets. The

main challenge here is to adapt it to our density function, derive a

guaranteed approximation ratio and design an efficient algorithm.

Since the algorithm deals with vertices, we introduce some new

notations first. 𝑣𝑗 denotes a vertex in 𝑉𝑗 for 1≤ 𝑗≤𝑖 (where 𝑉𝑗 ∈V).
𝑃 (𝑣𝑗 ,𝐺 (V) ) denotes the set of P-instances containing 𝑣𝑗 in 𝐺 (V).
We use ( ·)∗ and ˆ︂( ·) to indicate the optimum and approximation.

Approximation algorithm. Overall speaking, Algorithm 2 peels

the graph according to M while keeping track of the largest density

and the corresponding P-family as output. Specifically, for 𝐺 (V),
Algorithm 2 selects a vertex 𝑣𝑗 ∈𝑉𝑗 (1≤ 𝑗≤𝑖), such that there is no

other vertex 𝑣𝑗 ′
′∈𝑉𝑗 ′ (1≤ 𝑗 ′≤𝑖) with

|𝑃 (𝑣𝑗 ′
′,𝐺 (V) ) |

𝑚𝑗 ′
<
|𝑃 (𝑣𝑗 ,𝐺 (V) ) |

𝑚𝑗
, where

that 𝑗 ′ is allowed to be the same as 𝑗 . Next, 𝑣𝑗 and its incident

edges are removed. Algorithm 2 then evaluates 𝜌 of the residual

P-partite subgraph and updates ˆ︁𝜌 and ˆ︂V if 𝜌 of the residual P-
partite subgraph is greater than ˆ︁𝜌. The above steps are repeated
for progressively reducing subgraphs until the residual V is not a

P-family, and then Algorithm 2 returns ˆ︁𝜌 and ˆ︂V as the result.

Algorithm 2: Approximation algorithm w.r.t. M
Input: 𝐺 (V),M

1 ˆ︁𝛾←0, ˆ︁V←{∅1,...,∅𝑖 };
2 while ∀1≤ 𝑗≤𝑖 𝑉𝑗≠∅ do
3 let 𝑗 ′ be an integer of [1,𝑖 ] and 𝑣𝑗 ′ be a vertex in 𝑉𝑗 ′ ;

4 for 𝑗=1 to 𝑖 do
// greediness 1

5 𝑣𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑣 {|𝑃 (𝑣,𝐺 (V) ) |𝑣∈𝑉𝑗 };

// greediness 2

6 if |𝑃 (𝑣𝑗 ,𝐺 (V) ) |𝑚𝑗
<
|𝑃 (𝑣𝑗 ′ ,𝐺 (V) ) |

𝑚𝑗 ′
then 𝑗 ′, 𝑣𝑗 ′ ← 𝑗 , 𝑣𝑗 ;

7 update V by removing 𝑣𝑗 ′ from 𝑉𝑗 ′ ∈V and remove edges

incident to 𝑣𝑗 ′ ;

8 if 𝜌 (V)≥ˆ︁𝛾 then ˆ︁𝛾←𝜌 (V) , ˆ︁V←V;
9 return ˆ︁V and ˆ︁𝛾 ;
Alternative interpretation of Algorithm 2. Given a P instance,

i.e., (𝑣1,...,𝑣𝑖 ) , we can assign this instance to one of the vertices. Thus,
P instances in 𝐺 (V) can be assigned to every vertex, such that the

sum of the assignments of each vertex equals the total number of P
instances in 𝐺 (V) . Algorithm 2 allocates the P instances following

the greedy rule. For each 𝑣∈𝑉 (𝐺 (V) ), 𝑣 is assigned 𝑎𝑙𝑙𝑜𝑐 (𝑣) P in-

stances, and
∑︁𝑖

𝑗=1

∑︁
𝑣∈𝑉𝑗

𝑎𝑙𝑙𝑜𝑐 (𝑣)= |𝑃 |. Let𝑚𝑎𝑥 𝑗 be𝑚𝑎𝑥 {𝑎𝑙𝑙𝑜𝑐 (𝑣) |𝑣∈𝑉𝑗 }
for 1≤ 𝑗≤𝑖.
Approximation analysis. We are ready to show the approxima-

tion guarantee.

Upper bound for 𝜌∗M . Considering 𝐺 (V∗ ) having the local optimal

density 𝜌∗M and |𝑃∗M | instances of P , the following inequality holds:

|𝑉 ∗
1
|𝑚𝑎𝑥1 + . . . + |𝑉 ∗𝑖 |𝑚𝑎𝑥𝑖 ≥ |𝑃∗M | . (17)

Then, by dividing ( |𝑉 ∗
1
| ·...· |𝑉 ∗𝑖 | )

1

𝑖 on both side of the inequality,

we establish an upper bound of 𝛾∗M as follows:

|𝑉 ∗
1
|𝑚𝑎𝑥1

( |𝑉 ∗
1
| · . . . · |𝑉 ∗

𝑖
| )

1

𝑖

+ . . . +
|𝑉 ∗
𝑖
|𝑚𝑎𝑥𝑖

( |𝑉 ∗
1
| · . . . · |𝑉 ∗

𝑖
| )

1

𝑖

=
𝑚𝑎𝑥1

𝑚1

+ . . . + 𝑚𝑎𝑥𝑖

𝑚𝑖

≥
|𝑃∗M |

( |𝑉 ∗
1
| · . . . · |𝑉 ∗

𝑖
| )

1

𝑖

= 𝛾∗M . (18)

Upper bound from Algorithm 2. When a vertex 𝑣𝑗 ∈𝑉𝑗 (1≤ 𝑗≤𝑖) is re-
moved from the current 𝐺 (V), by greediness 1 shown in Algo-

rithm 2, since it is 𝑎𝑟𝑔𝑚𝑖𝑛𝑣𝑗
{ |𝑃 (𝑣𝑗 ,𝐺 (V) ) |𝑣𝑗 ∈𝑉𝑗 }, then |𝑃 (𝑣𝑗 ,𝐺 (V) ) | =

𝑎𝑙𝑙𝑜𝑐 (𝑣𝑗 ) ≤ |𝑃 (𝐺 (V) ) ||𝑉𝑗 |
, where |𝑃 (𝑣𝑗 ,𝐺 (V) ) | is the number of P instances

in the current𝐺 (V) . By greediness 2, the following inequality holds.

𝑚𝑖𝑛{
|𝑃 (𝑣𝑗 ,𝐺 (V) ) |

𝑚 𝑗
|1 ≤ 𝑗 ≤ 𝑖 } ≤ ( |𝑃 (𝑣1,𝐺 (V) ) |

𝑚1

· . . . · |𝑃 (𝑣𝑖 ,𝐺 (V) ) |
𝑚𝑖

| )
1

𝑖 (19)

Then, since |𝑃 (𝑣𝑗 ,𝐺 (V) ) |≤ |𝑃 (𝐺 (V) ) ||𝑉𝑗 |
and 𝑚1 ·...·𝑚𝑖=1, Equation 19

can be written as:

𝑚𝑖𝑛{
|𝑃 (𝑣𝑗 ,𝐺 (V) ) |

𝑚 𝑗
|1 ≤ 𝑗 ≤ 𝑖 } ≤ |𝑃 (𝐺 (V) ) |

( |𝑉1 | · . . . · |𝑉𝑖 | )
1

𝑖

≤ ˆ︁𝛾, (20)

where ˆ︁𝛾 is the highest density derived by Algorithm 2. Equation 20

establishes an upper bound for any
𝑎𝑙𝑙𝑜𝑐 (𝑣𝑗 )

𝑚𝑗
including for (1≤ 𝑗≤𝑖)

𝑚𝑎𝑥𝑗

𝑚𝑗
, i.e.,

𝑚𝑎𝑥𝑗

𝑚𝑗
≤ˆ︁𝛾 .

Approximation ratio of Algorithm 2. Based on the above analysis,

putting
𝑚𝑎𝑥𝑗

𝑚𝑗
≤ˆ︁𝛾 into Equation 18, 𝑖ˆ︁𝛾≥𝜌∗M holds. As such the approx-

imation ratio of Algorithm 2 is
1

𝑖
.
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Considering the P-partite graph in Figure 2 as an input, and let

M={1,1,1}. With such M, since𝑚1=𝑚2=𝑚3=1, Algorithm 2 essentially

peels vertices according to the number of P instances that each

vertex involves. One possible peeling process is as follows. It first

decides to remove 𝑣3
2
according to lines 5 and 6 in Algorithm 2

and then remove 𝑣3
3
, which leads to a subgraph with a density

of 4.36. After that, Algorithm 2 continues to remove 𝑣1
1
, and the

remaining subgraph has a density of 4. Algorithm 2 further peels

other vertices but cannot lead to a subgraph with a density greater

than 4.36. Therefore, 4.36 is the approximate density w.r.t. M.

1

𝑖
-approximation regardless M. It is clear that after running

Algorithm 2 for every M, the maximum density derived is an

1

𝑖
-approximation w.r.t. the optimum density of Problem 1 by the

above discussions.

If we continue the example for M={1,1,1}, we eventually have

the approximate density of 4.36. As shown in the example in the

exact algorithm section, the approximate density is the same as the

global optimum result. Therefore, the actual approximation ratio

for this example is 1, which is greater than the lower bound
1

3
.

Time complexity. The amortized time complexity of Algorithm 2

is O(𝑖 |𝑃 |+𝑖 |𝑉𝑚𝑎𝑥 |𝑙𝑜𝑔 ( |𝑉𝑚𝑎𝑥 | ) ), where |𝑃 | is P instances in 𝐺 (V) and
|𝑉𝑚𝑎𝑥 | is max{ |𝑉1 |,..., |𝑉𝑖 | }. The first non-trivial cost for the loop (lines
2 to 10) is visiting vertices in P instances so that, for any resid-

ual vertex 𝑣, |𝑃 (𝑣,𝐺 (V) ) | can be correctly updated. Another non-

trivial cost is to derive the vertex to be deleted. A vertex 𝑣𝑗 ∈𝑉𝑗 will

be updated up to |𝑉𝑚𝑎𝑥 | times. For an update, we need to adjust

the heap, which takes up to O( |𝑉𝑚𝑎𝑥 | ) aromatized time using a fi-

bonacci heap. Since each vertex is removed at most once, which

takes O(𝑖 |𝑉𝑚𝑎𝑥 |𝑙𝑜𝑔 ( |𝑉𝑚𝑎𝑥 | ) ) time.

In order to achieve a global
1

𝑖
-approximation guarantee, it is nec-

essary to run Θ( |M | ) instances of Algorithm 2, which compromises

its scalability. This motivates us to study pruning techniques.

6 ADVANCED EXACT ALGORITHM
In this section, we propose various pruning techniques first and

then propose an advanced exact algorithm.

Rationale. The first bottleneck in the previous algorithm is that in

order to obtain the results, all possible iRM-sets need to be checked.

It is natural to ask whether trying every iRM-set is necessary. Sec-

ondly, we give every vertex in V an opportunity. However, if a

vertex 𝑣 has very few 𝑃 (𝑣,𝐺 (V) ) compared to most of the other

vertices, it should be pruned. What is the pruning condition so that

vertices residing in V∗ are safe?We will answer these two questions

in this section first.

6.1 Pruning iRM-sets
The two pruning ideas are based on Lemmas 1 and 5 and their

analyses discussed in Section 3.2.

Pruning opportunity 1: w.r.t. M, finding min-cuts converges
to 𝜌∗M . In this case, for M, using the guess & verification approach

makes the result converge to 𝜌∗M , shown in Lemma 2. By Equation 9

in the proof of Lemma 2, it is possible that
𝑚

1

𝑚′
1

+...+𝑚𝑖
𝑚′
𝑖
>𝑖 while 𝜌 (V′ )>

𝜌∗M , as such, the following lemma establishes the pruning basis.

Lemma 6. Given an optimum V′ w.r.t. M found by the min-cut, if M′

of 𝑉
′
does not conform to M, i.e., 𝜌 (V′ )>𝜌∗M , then any M′′ satisfying

the following condition can be pruned:

𝑖 ≤ 𝑚1

𝑚1
′′ + . . . +

𝑚𝑖

𝑚𝑖
′′ ≤

𝑚1

𝑚1
′ + . . . +

𝑚𝑖

𝑚𝑖
′ . (21)

The correctness of Lemma 6 is clear by Equation 9. This is be-

cause, to maintain the equality 𝜌∗M=
𝑖𝜌 (V′ )

𝑚
1

𝑚
1
′ +...+

𝑚𝑖
𝑚𝑖
′
, givenM′′ satisfying

the above condition, 𝜌 (V′ ) has to be smaller.

Pruning opportunity 2: w.r.t. M, finding min-cuts does not
converge to 𝜌∗M . In this case, as previously discussed, lines 5 to 7 in

Algorithm 1 derive a result with density higher than 𝜌∗M , denoted

by 𝜌∗M , and then terminate based on the condition in Theorem 4.

LetV′ be a P-familymaking Equation 9 holds, i.e., 𝜌∗M=
𝑖𝜌 (V′ )

𝑚
1

𝑚
1
′ +...+

𝑚𝑖
𝑚𝑖
′
.

By Theorem 4 and Exp3, we have the fact that,
𝑖𝜌 (V′ )

𝑚
1

𝑚
1
′ +...+

𝑚𝑖
𝑚𝑖
′
<𝜌∗M .

More precisely, let 𝛿=𝜌∗M−𝜌
∗
M , the equation below must hold.

𝜌∗M −
𝑖𝜌 (V′ )

𝑚
1

𝑚
1
′ + . . . +

𝑚𝑖
𝑚𝑖
′

= 𝛿 (22)

Similar to Equation 9, given M′′ satisfying conditions in Lemma 6,

𝜌 (V′ ) has to be smaller, so that the equality can hold. This means,

the pruning condition in Lemma 6 can be directly applied in this

case. However, such a pruning rule does not fully take the advantage

of extra 𝛿 . We further propose to using the equality below.

𝜌∗M =
𝑖𝜌 (V′ )

𝑚
1

𝑚
1
′ + . . . +

𝑚𝑖
𝑚𝑖
′
+ 𝛿 =

𝑖𝜌 (V′ )
𝐵

, (23)

where 𝐵 can be computed accordingly. We are ready to propose

the lemma below.

Lemma 7. Given an optimum V′ w.r.t. M found by the min-cut, a de-

rived upper bound density, and the derived 𝐵, then any M′′ satisfying
the following condition can be pruned.

𝑖 ≤ 𝑚1

𝑚1
′′ + . . . +

𝑚𝑖

𝑚𝑖
′′ ≤ 𝐵. (24)

The correctness is clear by the above discussion.

For instance, for the example shown in Figure 2, when Algo-

rithm 1 dealing with M={1,1,1}, Algorithm 1 runs in pruning con-

dition 2. If the pruning condition in Equation 21 is applied, only a

few iRM-sets can be pruned. In contrast, by applying the pruning

condition in Equation 24, nearly 80% iRM-sets can be pruned. This

is because Algorithm 1 finds the global optimum result when deal-

ing with M={1,1,1}, which is greatly larger than the local optimum

density w.r.t. M={1,1,1}, and the pruning condition in Equation 24

takes advantages of such a difference.

Discussion. In summary, the opportunities of pruning M rely on

two conditions. First, 𝜌∗M has been derived. Second, a subgraph with

a density larger than 𝜌∗M is derived. When dealing with a Problem 3

w.r.t. M, we cannot prune other M if the two conditions cannot be

satisfied simultaneously.

6.2 Pruning vertices
Let 𝜌∗M be the optimum density w.r.t. M, which can be expressed as

follows:

𝑃1

𝑚1

+ . . . + 𝑃𝑖

𝑚𝑖
= 𝑖𝜌∗M , (25)

where 𝑃1,...,𝑃𝑖 denote average numbers of P instances that each ver-

tex involves in 𝑉 ∗
1
,...,𝑉 ∗𝑖 respectively. We have the following lemmas.

Lemma 8. Given any optimum V∗={𝑉 ∗
1
,...,𝑉 ∗𝑖 } conforming M ,

𝑃𝑗

𝑚𝑗
=𝜌∗M

must hold for 1≤ 𝑗≤𝑖.
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Algorithm 3: Advanced exact algorithm

Input: V
1 V∗←∅;

2 foreachM∈M do
3 compute ˆ︁V w.r.t.M using Algorithm 2;

4 if 𝜌 ( ˆ︁V)>𝜌 (V∗ ) then V∗← ˆ︁V;
5 prune 𝐺 (V) using Pruning Rule 1 using 𝜌 (V∗ ) andM;

6 foreach connected P-subgraph in the pruned 𝐺 (V) do
7 call lines 3 to 7 in Algorithm 1 to derive V′;

8 if 𝜌 (V′ )>𝜌 (V∗ ) then V∗←V′;
9 prune M if pruning conditions are satisfied;

10 return V∗;

Lemma 9. In an optimum result V∗={𝑉 ∗
1
,...,𝑉 ∗𝑖 } w.r.t. M={𝑚1,...,𝑚𝑖 }, a

vertex 𝑣 in 𝐺 (V∗ ) must have |𝑃 (𝑣,𝐺 (V∗ ) ) |≥
𝜌∗M

1

𝑚
1

+...+ 1

𝑚𝑖

.

The proofs for the two lemmas are in our technical report [4].

The above pruning idea can be further generalized as follows.

Pruning rule 1.Given V, M={𝑚1,...,𝑚𝑖 }, a global density lower

bound 𝛾 , any vertex 𝑣∈𝑉 (𝐺 (V) ) with |𝑃 (𝑣𝑗 ,𝐺 (V) ) |< 𝛾
1

𝑚
1

+...+ 1

𝑚𝑖

can be

pruned and the pruning propagates until for all 𝑣 in the residual𝐺 (V)
cannot be pruned when solving RAOP w.r.t. M.

Initially, the approximation result w.r.t. M can serve as a lower

bound, and the lower bound can be improved during the process.

6.3 Active pruning based algorithm
Now we are ready to show the advanced exact algorithm incorpo-

rating the proposed prunings.

Algorithm 3 shows the main steps. When processing M that

cannot be pruned via applying Lemmas 6 and 7 at line 9, it first

computes an approximate result with respect to M and checks

whether the best density found so far can be improved (lines 3-

4). It then prunes vertices based on Pruning rule 1. Afterwards,

the algorithm calls an iterative approach for each connected P-
subgraph in the pruned graph 𝐺 (V) and updates V∗ if the derived
V′ has a higher density. The algorithm then checks which iRM-set

prunings can be applied and prunes iRM-sets as much as possible.

Finally, the algorithm returns V∗ once M becomes an empty set.

Time complexity. Algorithm 3 has a time complexity of O( ( 𝑛
𝑖
)𝑖 |F | ) .

Although there are additional costs associated with pruning iRM-

sets, vertices, and computing approximate results, these costs are

not dominant compared to the cost of computing maximum flows.

Algorithm 3 runs significantly faster than the approximate algo-

rithm since it evaluates far fewer iRM-sets.

7 EXPERIMENTAL STUDY
In this section, extensive experiments are conducted to evaluate the

effectiveness and efficiency of the proposed model and algorithms.

Datasets. For the study, we use seven real datasets from different

applications shown in Table 2. The first 5 datasets have been widely

used for evaluating cohesive subgraphmodels for HINs such as in [8,

16, 32]. The last two reflect on the application scenario discussed in

the introduction and they are benchmark networking datasets [24].

Table 2: Datasets
Dataset |𝐴| |𝑅 | |𝑉 | |𝐸 | 𝑚𝑎𝑥 ( |P|)

MovieLens [18] 5 4 2,672 104,747 4

DBLP [18] 5 4 37,795 174,851 4

Douban [18] 6 6 37,597 1,714,941 4

DBpedia [32] 414 673 8,970,120 31,216,862 ≥ 9
Freebase [32] 1,231 1,576 89,934,641 464,233,167 ≥ 9
cisco(g22) [24] 4 3 16,177 1,390,120 4

cisco(g21) [24] 4 3 52 1282 4

Table 3: Model effectiveness evaluation
Dataset Model 𝑑𝑒𝑠P3 𝑑𝑒𝑠P4 HeterSim3 HeterSim4

MovieLens

DPpS 0.83 0.78 0.71 0.68
VDkpC 0.29 0.27 0.32 0.31

MAvgP 0.57 0.53 0.48 0.38

iBF 0.65 0.61 0.58 0.52

rCom 0.46 0.34 0.39 0.33

DBLP

DPpS 0.78 0.72 0.83 0.79
VDkpC 0.37 0.31 0.27 0.21

MAvgP 0.49 0.41 0.47 0.41

iBF 0.57 0.49 0.57 0.51

rCom 0.41 0.39 0.52 0.51

Freebase

DPpS 0.66 0.58 0.69 0.68
VDkpC 0.09 0.13 0.15 0.13

MAvgP 0.29 0.21 0.33 0.29

iBF 0.28 0.31 0.33 0.39

rCom 0.28 0.23 0.39 0.32

The critical statistics of the datasets are shown in Table 2. The

detailed dataset descriptions are available in our technical report [4].

Query meta-path batches. Following similar approaches adopted

in [8, 16, 32], for each dataset, pools of meta-paths are generated.

For datasetsMovieLens, DBLP, cisco(g22), and cisco(g21), all pos-
sible meta-paths with | P | of 3 and 4 are generated. For DBpedia
and Freebase, 20 meta-paths are generated, which are meta-paths

leading to the top-20 largest P-partite subgraphs for | P | from 3 to

9, respectively. If there are less than 20 meta-paths for some | P |,
all available meta-paths are generated. To reduce irrational results,

unless explicitly explained, for an experiment, we first randomly

get non-repeated 10 meta-paths as queries from the query pools

and average the result. Then, we repeat the randomization 5 times

and take the average again as the reported results

7.1 Effectiveness evaluations
Models for comparisons. To the best of our knowledge, no work

focuses on discovering the densest P-partite subgraphs. Instead, we
adapt several recently proposedmodels that can potentially discover

cohesive P-partite subgraphs and use these adapted models
3
below

as baselines for comparing to our model denoted by DPpS.
Meta-path based models. The vertex-disjoint (𝑘,P)-core [8] (denoted
by VDkpC) and maximizing average instances of P (denoted by

MAvgP) models are used for comparisons.

Models generalizing bipartite cohesiveness. We used an extension of

the butterfly-core model [7] (denoted by iBF) as the baseline.
Minimum degree based model. We also compare our model with the

relational community model [15] (denoted by rCom).

3
Please see our technical report [4] for detailed discussions on adaptions.
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Parameter configurations. For all methods, meta-paths are gen-

erated in the same way as discussed before. Our proposed model

and MAvgP are cohesiveness parameter-free, whereas VDkpC, iBF,
and rCom require parameters. For VDkpC, iBF and rCom, we try

all possible parameter setups and report the maximum possible

values for the corresponding metrics.

The results for small, medium and large datasets, i.e.,MovieLens,
DBLP, and Freebase are shown in Table 5. Please see results for

Douban and DBpedia in our technical report.

P-partite cohesiveness evaluation. We report the meta-path

density, which is a natural extension of edge density and is defined

as follows: Given a P-partite graph induced by V={𝑉1,...𝑉𝑖 }, the
meta-path density is 𝑑𝑒𝑠P(V)= F(V)

|𝑉
1
| ·...· |𝑉𝑖 |

. Column 𝑑𝑒𝑠P3 and 𝑑𝑒𝑠P4
in Table 3 show the densities for query batches with | P | of 3 and
4, respectively. For all datasets, our proposed model DPpS clearly

has the ability to discover P-partite subgraphs with high meta-

path density. This is mainly because DPpS is designed for this

purpose, with the suitable searching or approximation objective.

It is also worth mentioning that iBF and rCom have the potential

to discover high meta-path density P-partite subgraphs as well;
however, finding the right parameters is difficult. In comparison,

DPpS is cohesive parameters free while preserving the ability to

discover high meta-path density P-partite subgraphs. Furthermore,

the experimental evaluation also distinguishes DPpS from models

aiming to group vertices of the same type, represented by VDkpC.
VDkpC has limited ability to discover dense P-partite subgraphs.
Heterogeneous similarity [28] evaluation. We report average

heterogeneous similarities (HeteSim) between pairs of vertices

connected via instances of P as well as sub meta-paths of P in

the discovered cohesive P-partite subgraphs. HeteSim is a pop-

ular similarity measurement for vertices connected by instances

of an asymmetric meta-path. The higher the HeteSim score be-

tween two vertices, the more correlated the two vertices are. It

is also worth mentioning that PathSim, used in [8, 16, 32], is for

measuring vertices of the same type connected via instances of a

systematic meta-path. Columns HeteSim3 and HeteSim4 in Table 3

show the HeteSim scores for query batches with | P | of 3 and 4,

respectively. Among all cohesive P-partite subgraphs discovered
by various models in the tested datasets, the cohesive P-partite
subgraphs discovered by our proposed model, i.e., DPpS, contain
more correlated vertices of different types. Especially for DBLP,
the average HeteSim scores are as high as 0.83 and 0.79 for | P | of 3
and 4, respectively. For the schema-enriched datasets DBpedia and
Freebase, the vertices of different types are not connected as exten-

sively as simple schema datasets such as DBLP. This leads to lower

scores for all methods. However, DPpS still finds the best P-paritite

Table 4: Evaluated variants of the proposed algorithm
Algorithm Details

ExactGV For eachM, use the guess and verification approach.

ExactIt For eachM, use the iterative approach (Algorithm 1).

ExactGVVP ExactGV plus vertex pruning shown in Lemma 8

ExactItVP ExactIt plus vertex pruning shown in Lemma 8

AdvExactGV ExactGV plus Lemma 6 and Lemma 8.

AdvExactGVIt Algorithm 3 incorporating all the prunings

Approximate For eachM, use Algorithm 2.

subgraphs. In contrast, other models are much less effective with

reasons similar to before. The experimental results justify the supe-

riority of our proposed model for applications needed to discover

highly correlated vertices of different types.

Case study and F1 score evaluation. Previous evaluation demon-

strates the advantages of DPpS in discovering strongly correlated

and connected vertices of different types. Below we demonstrate

that, in real-world application scenarios, DPpS is also effective for

grouping vertices of the same type. For the case study, we revisit the

cybersecurity scenario discussed in the introduction, in which two

networking datasets g21 and g22 [24] were collected with ground

truth groups and the same meta-schema shown in Figure 1.

Methodology. The ground truth groups contain non-overlapping

members/users, so we borrow ideas from [21] to generate a matched

number of groups for evaluation as follows. Every time the most co-

hesive P-partite subgraph is generated, induced user-typed vertices

are extracted as a resulting group and then removed. This process

is repeated until the matched number of groups is reached or no

more groups can be generated.

We report the average F1 scores over all groups in Figure 4. For

both g21 and g22, we filter the edges in the graph by setting a

threshold on the number of packets. For instance, g21(5) denotes

that edges in g21 with no less than 5 packets are kept, and so on

with other filterings. The first noticeable result is that our proposed

DpPS has the highest F1 score among all setups. This is because,

in this application scenario, users in the same group communicate

with similar servers via similar protocols and port numbers. As

such, the networking data within groups exhibit densely connected

structures over vertices with types of User, Port Number, Protocol,

and Server, which can be captured by our proposed DpPS model.

Another interesting result is that by increasing the threshold of the

packet number, the F1 scores for all methods increase steadily. This

indicates that weights on edges could affect the quality of results

in cyber networks. This is because packages could be transferred

unintentionally by some unknown accidents such as software bugs,

etc. By sensitively filtering edges with low weights (low number

of packages), the irrelevant interactions over vertices can be elimi-

nated. Therefore, the effectiveness can be improved.

7.2 Evaluations on algorithms and techniques
Implementations. To comprehensively evaluate the performance

of the proposed methods, we implemented variants (i.e., using guess

& verification or iterative approaches) of the exact algorithm such

as Algorithm 1 and the best Algorithm 3 (or AdvExactGVIt) with

all the prunings. All variant names and corresponding adopted

techniques are detailed in Table 4, where the first six variations find
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Table 5: Running time (in ×100 seconds) and approximation ratio

Dataset

ExactGV ExactIt Approximate ExactGVVP ExactItVP AdvExactGV AdvExactGVIt

|P |=3 |P |=4 |P |=3 |P |=4 |P |=3 |P |=4 |P |=3 |P |=4 |P |=3 |P |=4 |P |=3 |P |=4 |P |=3 |P |=4
MovieLens - - - - 54 (0.63) 191 (0.58) 324 - 123 - 9.9 27 2.9 6

DBLP 913 - 721 - 41 (0.81) 169 (0.67) 34 - 11 109 6.2 1.1 2.3 5.9

Douban - - - - 121 (0.49) 984 (0.41) - - - - 34 89 7.7 16

DBpedia - - - - - - - - - - 196 453 24 88

Freebase - - - - - - - - - - 183 517 21 96

cisco(g22) - - - - 107 (0.76) 789 (0.71) - - - - 24 91 6.2 22

exact results and the last one (corresponding to Algorithm 2) finds

an approximate result. Among the exact algorithms, AdvExactGVIt

serves as the solution to our model DPpS in the model effectiveness

evaluation (Table 3). We also implemented every best online search

algorithm of the compared models. For VDkpC,rCom, and MAvgP,
the implemented algorithms find the exact results. For iBF, it finds
approximate results. All algorithms are implemented in C++.

Measures. We measure the algorithm runtime with the total CPU

time (in seconds), excluding the I/O cost of loading the graph from

disk to main memory. A timeout of 48 hours is set, denoted as ’-’.

Experiments are conducted on a PC with an AMD 3900x CPU, 32GB

DDR4 3600Hz memory, and Windows 11 (build 22621.1555). Each

algorithm is run no less than 10 times if the running time is less

than 24 hours (3 times otherwise). The average results are reported.

Scalability w.r.t. data size. For each dataset, we select fixed per-

centages of vertices in each type of vertices and compute their

induced subgraphs. For each fixed percentage other than 100% in

Figure 5, 10 different sets of V are randomly selected on which

algorithms work. | P | is set to be 3. The average results forMovie-
Lens and DBpedia are reported, and the other datasets have similar

results. Since both ExactGV and ExactIt have to try every M on un-

pruned subgraphs, they have limited scalability even onMovieLens,
i.e., they cannot finish within the cut-off time when there are 100%

of vertices. Other algorithms onMovieLens can finish within the

cut-off time; however, the running time difference is dramatic. The

two algorithms, AdvExactGV and AdvExactGVIt, scale much better

even compared to Approximate. On the large dataset DBpedia, the
scalability differences are more dramatic. Only AdvExactGV and

AdvExactGVIt can scale to the complete dataset.

Scalability w.r.t. | P |. Table 7 shows the scalability of AdvExactGV

and AdvExactGVIt when varying | P | from 5 to 9. The results are dra-

matic since as | P | increases, the running time of each method goes

down steadily rather than increases greatly for the two datasets.

This is different from the cases when | P | increases from 3 to 4.

The reason is that as | P | increases, the corresponding connected

P-partite subgraphs become smaller since distant types of vertices

have weaker relationships. In [8], the authors observed similar

trends and only considered short Ps in their experiments.

Running Time. We report the running times of all algorithms on

each dataset for meta-paths comprising 3 and 4 types of vertices.

We present and analyze the results via the following comparisons.

Guess & verification vs iterative approach. In Table 5, columns Ex-
actGV and ExactIt show the running times of the exact algorithms

that use our proposed flow network but apply different strategies

when processing a given M. However, they have limited ability

to deal with large datasets since both of them have to try every

possible M. Nevertheless, ExactIt runs slightly better than ExactGV
on DBLP. The reason is that for most M, ExactIt only runs two or

just one min-cut algorithm. That is, for a givenM, ExactIt generates
a subgraph with near-global optimum density, and then it ends M
via the condition in Theorem 4. After that, for other M′, since a
near-global optimum density has been generated, ExactIt just ends
M′ via the condition in Theorem 4. In contrast, for each M, Ex-
actGV has to attempt many possible 𝛾 values via a binary approach

so that it ends M with either Theorem 2 or Theorem 3. The above

discussion explains why ExactIt runs faster than ExactGV. Addi-
tionally, as shown in columns ExactGVVP and ExactItVP in Table 5,

the performance difference between the two algorithms under the

vertex pruning technique is more apparent. This is also because

ExactItVP can derive near-global optimum results quicker, so the

vertex pruning becomes more effective according to Lemma 9.

Vertex pruning vs iRM-Set pruning. In Table 5, columns ExactGVVP
and ExactItVP report the running times for the exact algorithms

with the vertex pruning technique, and AdvExactGV and AdvExact-
GVIt display the running times under both vertex and iRM-set prun-

ing. However, the further step of applying iRM-set pruning, makes

AdvExactGV and AdvExactGVIt significantly faster. Especially for

AdvExactGVIt, it can finish reasonably fast (i.e., 9600 seconds) on

the largest dataset Freebase. The results verify the effectiveness

of the proposed iRM-set pruning technique and demonstrate that

pruning iRM-sets is a more critical step for our studied problem.

This is understandable since reducing the number of evaluated

iRM-sets clearly saves time for finding min-cuts.

AdvExactGV vs AdvExactGVIt. By further analyzing the running

time differences of AdvExactGVIt and AdvExactGV, the importance

of iRM-set pruning becomes clearer. By pruning more iRM-sets,

AdvExactGVIt runs several times faster than AdvExactGV, and the

larger the datasets are, the more significant the differences are.

Approximation vs AdvExactGVIt. Finally, it is interesting to see that

the running times of Approximate are much slower than our best ex-

act algorithm AdvExactGVIt. This is mainly because AdvExactGVIt
evaluates much fewer M, and for each M that cannot be pruned,

vertex pruning further reduces the cost. It is worth mentioning that

Approximate has the ability to find P-partite subgraphs with high

density after trying a few M. However, such high density cannot

be utilized for pruning iRM-sets for Approximate as the pruning
is based on the results of min-cut. It is also worth mentioning that

AdvExactGVIt takes advantage of Approximate at the early stage,

which is another reason for making AdvExactGVIt fast.
Efficiency of different models. We report the time cost for each com-

paredmodel that finds the optimum result for each setting in Table 6.

The first observation is that VDkpC, iBF, and rCom are not as fast
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Figure 5: Scalability

as reported in their corresponding papers. This is because they

have to try different parameters to maximise the efficiency of the

corresponding setting. The second observation is that our proposed

best algorithm (AdvExactGVIt) runs slower than all the compared

models as DPpS’ model complexity demands algorithms consuming

more time. It is worth noticing that AdvExactGVIt does not slow

greatly, given that the effectiveness of DPpS is clearly better. Our

model and algorithms are great choices if a user needs high-quality

P-partite subgraphs and would like to spend a reasonable time.

Empirical approximation ratio. The empirical approximation

ratios of our approximate algorithm are reported in brackets in the

column Approximate of Table 5. The proven theoretical worse-case

approximation ratio is
1

|P | , while the empirical ratios in the table are

larger than
1

3
or

1

4
by clear margins. For instance, when | P |=4 for

cisco(g21), the empirical approximation ratio of 0.71 is 2.84 times

larger or better than the theoretical approximation ratio of 0.25.

Since approximate results can be used for pruning, the empirical

advantage also contributes to our advanced exact algorithms.

8 RELATEDWORK
Cohesive subgraph search inHINs. Many novel cohesive models

have been proposed for HINs based onwell-studied cohesivemodels

in unipartite and bipartite graphs. For instance, 𝑘-core model has

been adapted to (𝑘,P)-core [8, 16] and relational community [15], 𝑘-

truss to (𝑘,P)-truss [32], and 𝑘-clique to𝑚-clique [14]. The Butterfly-

core model [7] combines both the 𝑘-core and 𝑘-bitruss models. Most

of them aim to group the same type of vertices cohesively and target

different application scenarios. A few of them [15, 30, 31] can be

adapted to search cohesive multipartite subgraphs, which require

users to have great prior knowledge to specify cohesive parameters.

In contrast, our model is free of cohesive parameters.

Cohesive bipartite subgraph search. Searching cohesive sub-

graphs in bipartite graphs has also drawn considerable attention.

Popular models such as (𝛼,𝛽 )-core [19], bitruss [30, 31], densest

bipartite subgraph [27], biclique [5, 21], and biplex [20, 33], ascend-

ingly ordered by searching difficulty, have been studied. The first

three models can be exactly solved in polynomial time while the rest

cannot due to NP-hardness. These bipartite models were designed

considering just one type of edge whereas our densest P-partite
subgraph model utilizes instances of a meta-path consisting of mul-

tiple types of edges for connecting multiple types of vertices. The

densest bipartite subgraph model [27] is the closest to ours while

our studied model in HINs is a non-trivial extension that requires

novel and carefully designed algorithms to solve the corresponding

searching problem in polynomial time.

Table 6: Efficiency of compared models (in ×100 seconds)
Dataset VDkpC MAvgP iBF rCom

|P | 3 4 3 4 3 4 3 4

MovieLens 4.3 5.1 1.2 1.6 3.2 4.4 2.1 2.7

DBLP 2.3 2.7 0.7 1.2 2.8 3.2 1.9 2.2

Freebase 8.8 17 3.2 4.8 21 31 2.9 3.8

Table 7: Scalability w.r.t. | P | (in seconds)
Dataset |P |=5 |P |=6 |P |=7 |P |=8 |P |=9

DBpedia 8,792 8,139 7,321 5,201 3,989

Freebase 10,321 8,761 7,801 6,891 6,173

Cohesive subgraph search in multipartite graphs. There are a
few works [6, 34] focusing on cohesive subgraph search in multi-

partite graphs. These models focus more on clique-based models in

star multipartite graphs and lead to NP-hard searching problems.

In contrast, our proposed problem is meta-path driven and can be

solved in polynomial time.

Densest subgraph (DS) problem. Recently, many breakthroughs

have been made in approximating DS [3, 12, 29, 29] in unipartite

graphs (including directed graphs). The breakthroughs involved

the novel approaches of convex programming [25], flow and super-

modularity techniques [2], which generalize
1

2
-approximation to

(1−𝜖 )-approximation. In [2], the authors showed that the directed

DS problem can be reduced to the vertex-weighted DS problem

and connections exist among variants of the DS problem in unipar-

tite graphs. More efficient methods have been proposed, such as

those in [9, 22]. Despite the novel breakthroughs, a key technical

factor that bridges the directed densest subgraph problem to the

vertex-weighted densest subgraph problem is a ratio parameter

proposed in [1]. The parameter was used in all the latest methods.

In this paper, we generalize such a ratio parameter to our iRM-set,

which can deal with a density function whose denominator is in a

multiplication form of multiple vertex sets instead of just two.

9 CONCLUSION
In this paper, we propose a novel densest P-partite subgraph model.

We first introduce an exact algorithm to search for the densest P-
partite subgraph model, which requires solving O( ( 𝑛

𝑖
)𝑖 ) instances

of the min-cut problem. To achieve reasonable scalability, we pro-

pose a
1

𝑖
-approximation algorithm. Although the approximation

algorithm can avoid the expensive min-cut problem, it still needs

to solve O( ( 𝑛
𝑖
)𝑖 ) instances of the peeling subproblem. Therefore,

we propose novel pruning rules that can significantly reduce sub-

problem instances that need to be solved and the input size of

each aforementioned subproblem. The advanced exact algorithm

equipped with the proposed prunings can even outperform the

approximation algorithm on real datasets. We conducted extensive

experiments to justify the effectiveness of the densest P-partite
subgraph model and the efficiency of the proposed algorithms.
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