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ABSTRACT

Natural Language to SQL systems (NL-to-SQL) have recently shown
improved accuracy (exceeding 80%) for natural language to SQL
query translation due to the emergence of transformer-based lan-
guage models, and the popularity of the Spider benchmark. How-
ever, Spider mainly contains simple databases with few tables,
columns, and entries, which do not reflect a realistic setting. More-
over, complex real-world databases with domain-specific content
have little to no training data available in the form of NL/SQL-pairs
leading to poor performance of existing NL-to-SQL systems.

In this paper, we introduce ScienceBenchmark, a new complex
NL-to-SQL benchmark for three real-world, highly domain-specific
databases. For this new benchmark, SQL experts and domain ex-
perts created high-quality NL/SQL-pairs for each domain. To gar-
ner more data, we extended the small amount of human-generated
data with synthetic data generated using GPT-3. We show that our
benchmark is highly challenging, as the top performing systems on
Spider achieve a very low performance on our benchmark. Thus,
the challenge is many-fold: creating NL-to-SQL systems for highly
complex domains with a small amount of hand-made training data
augmented with synthetic data. To our knowledge, ScienceBench-
mark is the first NL-to-SQL benchmark designed with complex
real-world scientific databases, containing challenging training and
test data carefully validated by domain experts.
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1 INTRODUCTION

Enabling users to query structured data using natural language
is considered the key to data democratization. Natural Language
Interfaces for Databases (or NL-to-SQL systems) emerged in the
1970s [1, 4]. Early systems relied on the database schema to build a
SQL query from a natural language (NL) query (e.g., SODA [5], Pre-
cis [40]) or focused on understanding the structure of the natural
language query to map it to SQL (e.g., ATHENA [37], NaLIR [24]).
As early as 1995, the lack of benchmarks was apparent: “No stan-
dard benchmarks have yet been developed [...], any appraisal of
the current state of the field must be impressionistic” [4]. This sit-
uation changed recently, when the first large-scale benchmarks,
WikiSQL [53] and Spider [51], emerged. These allowed for training
and evaluating neural machine translation (NMT) approaches (e.g.,
[44, 48, 53]). These approaches formulate the NL-to-SQL problem
as a language translation problem, and train neural networks with
large amounts of NL/SQL-pairs.

While the first deep learning approaches [48, 53] only worked
for single tables and failed to generate complex SQL queries span-
ning multiple tables (e.g., including nested queries and complex
clauses), recent systems [7, 8, 38, 44] work on complete databases
and achieve high performance scores on the Spider benchmark
[51]. The top NL-to-SQL systems reach accuracies up to 85% on
Spider. However, the majority of databases present in Spider were
created specifically for this benchmark and are not representative
of the difficulties that arise when creating an NL interface for a real-
world database. Among the current best-performing, open-source,
systems on Spider, T5-Large [32] (with Picard [38] for constrained
decoding), SmBoP [36] and RESDSQL with NatSQL [25], are already
achieving over 70% performance. Applying a system trained on the
Spider dataset to a new domain such as astrophysics or cancer
research, yields poor results, making the adoption of such systems
to real-life applications extremely far-fetched.

The problem is that, while WikiSQL and Spider provide a com-
mon training and evaluation tool that has been a game changer for
the development of NL-to-SQL systems, they have serious limita-
tions. Each WikiSQL question is directed to a single table and not to
a relational database. The low complexity of the WikiSQL queries
makes its value for real-life applications practically limited. Spider
contains 200 relational databases from 138 different domains along
with over 10,000 natural language questions and over 5,000 complex
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Figure 1: End-to-end architecture for automatic training data generation consisting of four different phases, namely (1) Seeding
Phase, (2) SQL Generation Phase, (3) SQL-to-NL Translation Phase and (4) Discriminative Phase. The approach is used to produce
our novel benchmark dataset called ScienceBenchmark. The details of these phases are described in Section 3.3.

SQL queries, hence it targets the query complexity problem. At the
same time, it also attempts to solve the transfer learning problem
by providing a dev set with novel databases.

However, the majority of databases in the Spider benchmark are
rather simple, i.e., of low complexity, and containing only what is
considered general knowledge. Thus, we need specialized, domain-
specific benchmarks for training and evaluating NL-to-SQL systems
in scientific domains. Manually crafting such a benchmark is pro-
hibitive due to the volume of data needed and the expertise required
in scientific domains. Data augmentation, i.e. automatic benchmark
generation is the only feasible solution.

Our Approach. In this paper, we introduce ScienceBenchmark, a
complex real-world benchmark for evaluating NL-to-SQL systems.
It is the first of its kind to be developed collaboratively with SQL
experts and researchers from the fields of research policy mak-
ing, astrophysics, and cancer research. We combine the knowledge
derived from manual training data collection with an automatic
training data generation system that enables NL-to-SQL systems
that require large amounts of data for training to be bootstrapped on
complex, scientific databases where training data would otherwise
be scarce or unavailable.

The main architecture of the data augmentation system is de-
scribed in Figure 1. The system is fed a small set of manually gener-
ated NL/SQL-pairs to provide accurate and highly semantically rele-
vant information about a novel domain. SQL templates are extracted
from these seed queries, and are subsequently used to generate SQL
queries over a specific database taking into account the database
schema and contents. These SQL queries are then back-translated to
natural language using the large language model (LLM), GPT-3 [6].
For the SQL-to-NL component used in this work, we experimented
with state-of-the-art transformer-based pre-trained models that

686

have shown their NL generation capabilities by achieving state-
of-the-art scores in multiple related tasks. Our evaluation showed
that the GPT-3 [6] model achieves the best performance and is able
to generalize to new domains with very few samples (in our case,
these are the seed NL/SQL-pairs), which is why it was integrated in
our architecture. The resulting natural language questions are then
filtered using a critic model to select the most relevant NL question
for the corresponding SQL query. The resulting augmented dataset
of NL/SQL-pairs can be fed into any NL-to-SQL system for train-
ing. Our approach is generic and can boost the accuracy of any
NL-to-SQL system as demonstrated in our experiments in Table 5.

Contributions. The major contributions of our work are the
following:

e We contribute ScienceBenchmark - a new benchmark for eval-
uating NL-to-SQL systems against complex, scientific databases.
ScienceBenchmark contains more than 6,000 NL/SQL-pairs to
help researchers address the complex challenges of real-world
databases, overlooked by popular benchmarks.

e We have built ScienceBenchmark using a novel approach for
automatically generating training data for databases where little
to no training data exists. Unlike previous work that focused
on rather simple databases, we concentrate on complex, real-
world scientific databases, an area where popular NL-to-SQL
systems typically falter due to their lack of domain knowledge
and training data.

e We evaluated three state-of-the-art NL-to-SQL systems as well
as two LLMs on our benchmark. Although these systems achieve
top scores on the Spider leaderboard (above 82% accuracy), none
achieves a satisfactory score on our benchmark (only in the
range of 25-60% accuracy depending on the domain), showcas-
ing the difficulty of ScienceBenchmark.



2 THE NEED FOR A NEW BENCHMARK -
MOTIVATING EXAMPLE: ASTROPHYSICS

A NL-to-SQL system needs to address many challenges [1, 3, 18, 20].
On the one hand, a natural language question may be vague, contain
references that are even hard for a human to understand, and use
a different vocabulary from the one used in the DB. On the other
hand, the respective SQL query needs to adhere to a strict syntax
and to the underlying DB schema in order to be syntactically and
semantically correct. When applying an NL-to-SQL system to a
real-world scientific database, additional challenges arise that stem
from the nature and the domain of these databases. While the
Spider benchmark is the first large-scale dataset with complex
SQL queries, its databases cannot be considered complex. Their
subject-matter is very generalized, covering topics such as pets and
entertainment (concerts, orchestras, musicals etc.). The majority
of these databases were created by students specifically for Spider
and are not representative of real-world databases.

In what follows, we motivate the need for a novel design and
training of NL-to-SQL systems for complex, scientific databases.
We will focus our discussion on astrophysics, a very data-intensive
and highly complex scientific discipline with a long tradition of
using relational databases [41]. The challenges described here are
not only relevant for astrophysics but also for other scientific disci-
plines, such as cancer research, also included in our experimental
evaluation.

As our running example, we use the astrophysics database called
Sloan Digital Sky Survey (SDSS)!. This database stores information
about stars and galaxies at specific locations in the sky. Further
details on the complexity of this database are specified in Section 3.

Let us consider three different representative astrophysics queries
that serve as running examples for our paper.

o Q1I: Find all Starburst galaxies.

o (Q2: What is the object id, right ascension, declination and redshift
from spectroscopically observed galaxies with redshift greater
than 0.5 but less than 1?

e (3: Find the photometric objects with object ids and spectroscopic
object id whose spectroscopic class is GALAXY’, with the difference
of magnitude u and magnitude r less than 2.22 and the difference
of magnitude u and magnitude r greater than 1.

Their corresponding SQL queries are as follows:

Q1: (Spider hardness: Easy)
SELECT s.specobjid
FROM specobj AS s
WHERE s.subclass = 'STARBURST'

Q2: (Spider hardness: Medium)

SELECT s.bestobjid, s.ra, s.dec, s.z

FROM specobj AS s

WHERE s.class = 'GALAXY' AND s.z > 0.5 AND s.z < 1

Q3: (Spider hardness: Extra hard)
SELECT p.objid, s.specobjid
FROM photoobj AS p

JOIN specobj AS s ON s.bestobjid = p.objid
WHERE s.class = 'GALAXY'
AND p.u - p.r < 2.22 AND p.u - p.r > 1

As shown by these queries, the major challenges for NL-to-SQL
systems for complex, scientific databases are as follows:

!https://www.sdss.org/
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o Unseen domains: To understand a challenging domain like astro-
physics and write meaningful queries - in natural language and
SQL - extensive domain knowledge is required. Hence, neural
machine translation systems pre-trained on common knowl-
edge datasets, like Spider, typically fail in complex domains due
to the large disparity in subject matter.

o Complex, often cryptic, database schemas: Scientific databases
often store large amounts of data with hundreds of attributes.
Moreover, attributes may have extremely short names, such
ra or z (referring to right ascension and redshift, respectively,
in astrophysics) or store numerical measurements. Hence, ad-
ditional ontologies that describe the meaning or the scientific
interpretation of these attributes - which can be complex as-
trophysics descriptions including mathematical equations and
natural language texts - are required. Finally, learning the map-
ping of a token from a natural language question to the relevant
database attribute is non-trivial.

o Sophisticated queries: Domain-specific queries may be more
elaborate than the ones in Spider. For instance, astrophysics
analysis requires the use of functions and mathematical operators
between attributes, such as the difference in magnitude between
ultraviolet (u) and infrared filters (r), e.g., u - r < 2.22.

These observations expose the need for specialized benchmarks
designed to capture the particularities and semantics of the domain
at hand as well as the types of queries that need to be understood
by an NL-to-SQL system. These requirements, in combination with
the size that such a benchmark necessitates, prohibit its manual
construction.

Since large and complex schemas are hard (even for experts) to
understand and query, the question that naturally arises is how to
build such benchmarks? The answer is data augmentation, which
in turn brings its own challenges: How to build representative SQL
queries for a new database? How to come up with their NL descrip-
tions? How to do it with minimal, if any, human involvement?

3 SCIENCE BENCHMARK: A NEW
BENCHMARK FOR COMPLEX DATABASES

In this section, we present ScienceBenchmark, which is composed
of three domain-specific databases, namely research policy making,
astrophysics and cancer research. First, we introduce the databases,
showing their complexity and the characteristics of each domain.
Second, we describe the manual data collection, which includes SQL
experts writing queries with the involvement of domain experts
as part of multi-year research project called INODE - Intelligent
Open Data Exploration [2]. Third, we describe our automatic data
augmentation approach for generating synthetic training data using
GPT-3 [6]. Finally, we show the training and evaluation datasets of
our novel benchmark ScienceBenchmark.

3.1 Complex, Real-World Databases

Here, we introduce complex, real-world databases from three sci-
entific domains, which are all of significantly greater size and com-
plexity than the databases found in Spider [51]. Table 1 provides
an overview of the complexity of the Spider, KaggleDBQA[21],
BIRD[26] and ScienceBenchmark databases. The table shows that



Table 1: Complexity of the Spider, KaggleDBQA and BIRD
databases compared with the databases of our new bench-
mark dataset ScienceBenchmark. The table shows the number
of databases (DBs), tables, columns, rows per DB, average
number of rows per table and DB size. The scientific domains
of the databases contained in the ScienceBenchmark are re-
search policy making (CORDIS), astrophysics (SDSS) and can-
cer research (OncoMX).

Avg. Size #NL/SQL

Dataset DBs Tbls. Cols. Rows R/T (GB) (man.+syn.)
Spider 186 641 4,268 1.6M 2.5K 0.51 8,053+ 0
(Avg / DB) 35 23 86K 0.03 43+ 0
KaggleDBQA 8 17 179 4.7M 280K 0.4 272+ 0
(Avg / DB) 2.1 22.3 595K 0.05 34+0
BIRD 81 604 4,456 3.7B 608.8K 334 12,751+ 0
(Avg / DB) 7.5 55 4.5M 0.35 135+0
Science-

Benchmark

CORDIS 1 19 82 671K 35K 1 200 + 1306
SDSS 1 6 61 86M 14M 6.1 200 + 2061
OncoMX 1 25 106 65M 2.6M 12 200 + 1065

BIRD is significantly larger and more complex than KaggleDBQA
(i.e. number of tables, columns and rows). We also show that BIRD
has a larger number of cross-domain databases than ScienceBench-
mark. However, the complexity of each individual database of Sci-
enceBenchmark is much higher than BIRD in the number of tables
and size per database. In this sense, BIRD and ScienceBenchmark
are complementary.

Research Policy Making: The CORDIS database, i.e. Community
Research and Development Information Service?, serves as the Eu-
ropean Commission’s primary source of results from the projects
funded by the EU’s framework programs for research and innova-
tion. The database contains very detailed hierarchical information
about the framework of funding calls and the network of industrial
and academic institutions, all of which is coded in highly specific
enigmatic EU terminology.

An example of this is the acronym NUTS, which stands for
nomenclature of territorial units for statistics. Even the long form
does not necessarily give the casual user a clear idea of what kind of
information might be stored in such a column. Another challenging
aspect of this database is the amount of text (e.g. descriptive project
objectives averaging 1,821 characters) and the diversity of topics in
the database ranging from Information and Media to Nuclear Fission.
For ScienceBenchmark, we use version 2022-08 of the database, as
shown in Table 1, which comprises 19 tables and 82 columns and
has an average of 35,355 rows per table. The database size is 1 GB.
Astrophysics: The SDSS (Sloan Digital Sky Survey) — introduced
in Section 2 — is a database containing the most detailed three-
dimensional map of the universe ever made. The data collection
began in 2000 and continues today. The database has 10 tables that
contain disparate numbers of columns varying between 3 and 804
columns each. The tables contain various measurements and infor-
mation about the type of observed object (e.g. a star or a galaxy),

Zhttps://cordis.europa.eu/
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distances between observed objects, and various parameters (e.g.
right ascension, declination, photometric system filters (u, g, r, i
and z)) that have been measured in photometric or spectroscopic
observations.

In order to study star-forming galaxies, the sky is measured in
several color bands such as infrared or ultraviolet resulting in dif-
ferent spectra, i.e. alternative numerical measurements and thus
various interpretations of galaxies. Unlike on Earth, the location of
celestial objects is defined by their right ascension and declination.
Moreover, literally, hundreds of different attributes are collected for
each object, such as size, redshift, brightness, magnitudes of color
bands measurements, etc. This database contains many column
names and values that are labeled with abbreviations (rather than
natural language) that are familiar to astrophysicists but indeci-
pherable for non-specialists. In order to query this database with
an NL-to-SQL system, it was necessary to add natural language
labels for abbreviated columns (e.g. ra = right ascension). In addi-
tion to the lack of natural language labels for columns, much of the
information in the database is numerical and is used in complex
queries with mathematical operations. Querying numerical data
in natural language is significantly more complex than querying a
database comprised of mostly textual values.

Due to the limitation of the input tokens of the language model
used in our experiments, we use a subset of the database comprised
of 5 original tables and 1 additional table for photometrically ob-
served astronomical objects. As described in Table 1, there are 61
columns, averaging about 10 columns per table and an average of
14,462,875 rows per table. The size of the database is 6.1 GB.

Cancer research data: OncoMX? is a database funded by the U.S.
National Institute of Health (NIH) that integrates knowledge from
several different sources about cancer biomarkers. The version
of OncoMX used in ScienceBenchmark contains information from
cancer biomarker databases (EDRN*, FDA?®), gene expressions in
healthy anatomical entities (Bgee®), differential gene expressions
between healthy and cancerous samples (BioXpress’) and cancer
mutations (BioMuta®). As shown in Table 1, the database comprises
25 tables that have 2 to 14 columns each, for a total of 106 columns
and has an average of 2,636,771 rows per table. The size of the
database is 12 GB.

The complexity in this database lies in the heavily domain-
specific information it contains as well as the complex queries
that researchers use when exploring this database. For example,
those unfamiliar with cancer research will not know that “BRCA1”
or “BRCA2” refers to BReast CAncer gene 1and BReast CAncer gene 2,
respectively. In addition to the domain-specific information, even a
seemingly simple query in natural language such as "Show biomark-
ers for breast cancer" requires a SQL query with a multi-relational
join and several filters.

Shttps://www.oncomx.org/

4https://edrn.ncinih.gov/

Shttps://www.fda.gov/

®https://bgee.org/

7https://bioxpressbiosimilars.com/
8https://hive.biochemistry.gwu.edu/biomuta/norecord



3.2 Manual Data Collection

In this section, we detail the manual data collection for all three
databases. All of the data was generated and reviewed by an expert
group consisting of at least one SQL expert and one domain expert
in research policy-making, astrophysics, or cancer research. In total,
the team consisted of about 20 domain and SQL experts of various
age ranges and genders. All of the experts were members of the
multi-year research project INODE [2], including partners from
academia and industry.

Before starting data collection, the domain experts such as as-
trophysicists and cancer researchers introduced the SQL experts
to the domain-specific knowledge within the database. At the data
generation stage, the domain experts developed the natural lan-
guage questions, while the SQL experts were responsible for writing
the corresponding SQL queries.

It is important to note that the domain experts were given the
task of solving realistic science questions rather than simply gener-
ating complex questions based on the database. During the review
and validation phase, domain experts used their expertise to verify
the SQL queries together with the output of the SQL queries. For
each domain, we generated a training set of 100 NL/SQL pairs as
well as a test set of 100 NL/SQL pairs.

In contrast, for each database in the Spider dev set, there are far
fewer questions, 50 on average per database, ranging from 63 to
just 4 questions per database. We have double the amount of dev
set queries for our databases than in Spider.

3.3 Automatic NL-to-SQL Training Data
Generation

In this section, we present our automatic training data generation
approach. This approach is generalizable and can be applied to
any domain. We will use our running example for astrophysics
introduced in Section 2. A concrete example of the end-to-end
pipeline is depicted in Figure 1.

The process of automatic training data generation involves four
phases: 1) the Seeding Phase, where SQL templates are extracted
from the manually written seed queries, 2) the SQL Query Generation
Phase, where the templates are filled with the database content,
and schema are used to create a readable version of the query, 3)
the SQL-to-NL Translation Phase, where GPT-3 generates a set of
candidate questions, and 4) the Discriminative Phase (candidate
selection phase) that selects the top two NL questions per SQL

query.

3.3.1 Phase 1: Seeding Phase. The seeding phase ingests the man-
ually created SQL queries (as discussed in Section 3.2) and extracts
query templates. For this, the manually created queries are trans-
formed into an Abstract Syntax Tree (AST) representation called
SemQL [13]. The leaf nodes of the AST, i.e., tables (T), columns (C)
and values (V) are replaced with placeholders (denoted as (*) in
Figure 1). The resulting AST is used as a query template, which is
filled with database content in the next phase.

3.3.2 Phase 2: SQL Query Generation Phase. When populating
the query templates, the usage of randomly sampled tables and
columns without any constraints might lead to meaningless or
unrunnable queries. In order to ensure that the generated SQL
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queries are meaningful and useful to researchers in each field, we
automatically create an enhanced schema. The enhanced schema
can also be refined manually by domain experts to offer more meta-
information about tables and columns. The manual work, if needed,
is one-shot. This enhanced schema enables the exposure of the
following information to the system.

o Non-Aggregatable Columns: These columns should not be al-
lowed to appear in an attribute with an aggregation function
like SUM, AVG, MIN, MAX because such an operation is not mean-
ingful. An example below shows a query for getting an average
of all IDs of spectroscopic objects, which is executable but not
meaningful.

SELECT AVG(s.specobjid) FROM specobj as s

o Columns with Categorical Values: Typical examples are gender or
number of languages spoken by a person. These columns usually
have a low cardinality and are more likely applied to a GROUP
BY clause.

The example below stands for How many spectroscopic objects
are there for each right ascension? This question will hardly be
asked by anyone knowing the basics of astrophysics. The SQL-
statement may return millions of rows with useless information,
because of the very high cardinality of right ascension.

SELECT COUNT(*), s.ra
FROM specobj as s GROUP BY s.ra

With this constraint, the sampling procedure ensures that more
meaningful queries are generated. The SQL-statement below
retrieves the often asked question: Find the count of spectroscopic
objects grouped by their corresponding class.

SELECT COUNT(%*), s.class
FROM specobj as s GROUP BY s.class

o Columns relevant for Applying Math Operators: These columns
are chosen by our sampling algorithm to apply certain math
operators. Identifying these columns ensures that there will
be no unexpected randomness among the operands, such as
T1.length - T2.area — which is not meaningful.

e Semantically Meaningful Table and Column Names. Since com-
plex, scientific databases often contain table and column names
that are not easily interpretable for humans (e.g., ra stands for
right ascension), we introduce human-readable aliases, which
spell out the abbreviated table and column names. This facili-
tates both the automatic SQL-to-NL generation as well as the
manual creation of NL/SQL pairs since the domain experts are
aided with more meaningful names.

Let us revisit the SQL-statement query Q2 of our running exam-
ple in Section 2. It is not clear, what attribute s.z is referring to,
since there is no extra information about the column z in table
specobj. However, given the logical alias of s.z, we are able to
see that s.z stands for redshift, which can then be rewritten as
spectroscopic_object.redshift. Using the same transformation on
all tables and columns, we obtain the readable and semantically
meaningful SQL query which facilitates the development of the
corresponding NL questions.

In the next step of the second phase, query templates are filled
with the contents of the database (i.e., table names, column names,



and values) using the enhanced schema. To increase the diversity of
the queries in the synthetic dataset, we apply random sampling to
the AST representation of the template. The random sampling only
changes the leaf nodes in the AST, which represent the corresponding
columns, tables, and values. For instance, the projection column
specobjid from table specobj may be changed to column objid from
table neighbors, as shown by Generated AST (1) and Generated SQL
(1)in Figure 1. Another result of the random sampling is represented
by Generated AST (2) and Generated SQL (2). In this case, the table
specobj is still used, but the projection column z, as well as the filter
condition on the column survey, are new.

Algorithm for SQL Query Generation Algorithm 1 details the
step by step process of automatically generating a SQL query using
the AST templates and enhanced schema. We explain the algorithm
with the example shown in Figure 2. In particular, we analyze the
generation of the following SQL query which is also shown in
Figure 1:

SELECT T1. objid FROM neighbors AS T1

WHERE T1. neighbormode = 2

The algorithm starts with extracting leaf nodes from the AST
templates and initializes a new temporary set of empty hash-maps,
including Tables, Columns and Values (see lines 1 to 6).

Each set of Leaf nodes can be represented as a quadruple for a
given attribute (see line 7) which consists of the aggregator function
position, table position, column position and value position. An
example of such a quadruple is shown in Figure 2 (see the right
side of the Root-node indicated as Filter(2)). We will focus on
the leaf nodes surrounded by dotted-lines and green backgrounds.
For instance, Filter(2) refers to the filter with position 2, which
is equivalent to a query with an exact match filter. A(9) refers to
an attribute without an aggregation function. T(0) and C(1) refer
to the table with position 0, i.e. neighbors, column with position
7 without aggregation function, i.e. neighbor_mode. Finally, V(3)
refers to a value with position 3, i.e. the value 2.

This quadruple needs to be unpacked to extract the information
about tables, columns and values as described informally above.
Formally, the extraction of the tables, columns and values using
the enhanced schema is described in lines 8 to 20 of Algorithm
1. If a position of a certain table, column or value is not found
in the keys of the hash map, the respective sampling function
will select a new value within the constraints of the enhanced
schema, e.g., sampleTable() for table sampling (see line 9). Then
the corresponding hash map will add the new position-value pair. At
the end of the loop, all hash maps are filled with required position-
value pairs for tables, columns and values.

Finally, the AST is created on the fly and the corresponding SQL
is returned (see lines 21 and 22 of Algorithm 1).

3.3.3  Phase 3: SQL-to-NL Translation Phase. In the third phase of
our pipeline shown in Figure 1, we generate the natural language
questions (NLQs) that correspond to the newly generated SQL
queries. To achieve this, we use GPT-3 ° [6]. We present details on

Note that we also experimented with DBPal [46] as an alternative but we opted for
a custom pipeline using GPT-3 since the generated natural language questions are
more fluent. However, DBPal can easily be integrated in our pipeline to further extend
ScienceBenchmark with additional training data.
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Figure 2: Example of extracting & applying query templates
for automatically generating SQL queries as shown in Algo-
rithm 1. The top part shows the abstract syntax tree (AST) of
a specific query. The lower part shows how query templates
are applied for generating the SQL queries based on database
schema and data.

the evaluation of LLMs for generating NL questions given a SQL
statement in Section 4.1.

We fine-tuned GPT-3'° on a subset of 468 samples of the Spider
training data for four epochs. This alleviates the need for prompt
engineering. Thus, the input to GPT-3 is a SQL query, and we let
GPT-3 generate 8 natural language question-candidates to increase
the linguistic diversity. Since there is no additional input required
beyond the SQL query (e.g., database schema, extra information
about the DB, DB contents), this approach easily transfers to any
new database without any manual effort or need for extra data.

For the more domain-specific databases, we conduct fine-tuning
on GPT-3 with the manually created seed NL/SQL pairs. Afterwards
we apply the fine-tuned LLMs to translate SQL to NL. As in the

1OWe use a fine-tuned version of GPT-3 to generate NL questions because fine-tuning
GPT-4 is not available yet https://platform.openai.com/docs/guides/fine-tuning/what-
models-can-be-fine-tuned.



Algorithm 1: Generating SQL queries from an AST tem-
plate and the enhanced schema

Input :An AST Template Ast
Input :An enhanced schema of the target database
EnhancedSchema
Output: A new generated SQL Sql
1 begin

2 LeafNodes «— ExtractLeafNodes (Ast);
3 Tables « EmptyHashMap;

4 Columns « EmptyHashMap;

5 Values «— EmptyHashMap;

6 foreach LeafNode € LeafNodes do

7 AggregatorPosition, TablePosition, ColumnPosition,
ValuePosition « LeafNode ; // as quadruple

8 if 3TablePosition : ( TablePosition, TableValue) ¢ Tables
then

9 TableValue < SampleTable (Tables, EnhancedSchema);

Tables.update(TablePosition, TableValue);
end
if 3ColumnPosition : (ColumnPosition, ColumnValue) ¢
Columns then
ColumnValue « SampleColumn (AggregatorPosition,
TableValue, Columns, EnhancedSchema);

14 Columns.update(ColumnPosition, ColumnValue);

end

if 3 ValuePosition : (ValuePosition, ValueValue) ¢ Values
then

ValueValue < SampleValue (TableValue,

15

16

ColumnValue);
Values.update( ValuePosition, ValueValue);
end

19

20 end

Sql «— Transform (Ast, Tables, Columns, Values) ;
// Generated AST created on-the-fly

return Sql;

21

22

23 end

Spider dataset, to obtain a larger variety of questions and achieve
higher linguistic diversity, we generate several candidate NLQs
per query. This approach also approximates the Spider dataset
where each SQL query has multiple semantically equivalent natural
language questions.

3.3.4  Phase 4: Discriminative Phase. The last phase of our data
generation pipeline, as shown in Figure 1, selects the one or two best
NL questions from the set of candidates generated in the previous
phase.

Consider, for instance, the following two NL questions depicted
in Figure 1: "Find the center object which has nearest neighbor with
neighbor mode 2" and "Find the center id of nearest neighbor object
with neighbor mode smaller than 2". The discriminative phase aims
at deciding, which one better represents the SQL query "SELECT
T1.0objid FROM neighbors AS T1 WHERE T1.neighbormode = 2".

Inspired by the centroid-based text summarization method [35],
the best NLQs are those, whose word embeddings are closest to
the centroid of all sample questions. To find these points, we select
the candidates that are closest to the centroid, i.e. the geometric
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median of all embeddings. For this, we apply SentenceBERT[33], to
generate a set of sentence embeddings for all candidates: x; € R™
and 1 < i < n. The best NLQs are computed by taking the geometric
median and selecting the closest embedding.

Consider a set X € R™ which contains n embeddings of gen-
erated NL questions, x1, X2, ..., Xn, where m denotes the dimension
of embedding space. By the definition of geometric median, we
can find the closest embedding y € X with respect to the centroid
vector in the space by solving the optimization problem formalized

as f(y):

n
f(y) = argmax Z CosSim(xi, y)
yeR™ 5

1)

That is, finding the candidate NLQ whose embedding has the high-
est cosine similarity to the centroid. We perform this process k
times on the set X \ {y} until we have the top k natural language
candidates. We choose one or two best NLQs, i.e., k € {1,2}.

3.4 ScienceBenchmark Statistics

Table 2 gives an overview of our new benchmark dataset called
ScienceBenchmark which we constructed using the automatic data
generation pipeline shown in Figure 1. Note that for each of the
three domain-specific databases described in Section 3.1, we present
two manually created subsets (Seed and Dev) and one automati-
cally generated subset (Synth). The manually created Seed and Dev
queries were created by a team of 20 domain and SQL experts as de-
scribed in Section 3.2, while the Synth queries we produced by our
data generation pipeline described in Section 3.3. The Seed queries
are used for the automatic data generation pipeline to generate
synthetic data (Synth), while the Dev queries are used to evaluate
NL-to-SQL systems.

Table 2 also shows the query difficulty (a metric defined by
the creators of Spider [51]) distribution for each dataset. For the
CORDIS and SDSS datasets, we note that the complexity of the
queries is higher than the queries in the Spider Dev Set. For On-
coMX, the complexity of the queries is closer to that of the distri-
bution of the Spider dataset. This is due to the database featuring
recursive traversals of complex hierarchies of anatomical entities
which is outside of the scope of current NL-to-SQL systems. Note
that the complexities of the queries generated by our pipeline are
generally lower than the complexity of the manually created train-
ing data, or the complexity of the Spider dataset. The reason is
that with more complex templates the generated queries tend to be
semantically incorrect.

4 EVALUATING THE QUALITY OF
SCIENCEBENCHMARK

In this section, we evaluate the quality of our new benchmark
dataset ScienceBenchmark. The main objective is to answer the
following two research questions:

e Research question 1: How well do current methods work for
translating SQL to NL?

® Research question 2: What is the quality of the automatically
generated synthetic data, i.e. NL/SQL pairs?



Table 2: New benchmark dataset called ScienceBenchmark which we constructed using the automatic training data generation
pipeline shown in Figure 1. The size and complexity of the queries in the 3 databases of ScienceBenchmark are according to the
Spider [51] hardness classification scheme. The datasets Seed and Dev are manually generated by domain and SQL experts. The
datasets Synth are automatically generated. In the bottom part we also include the equivalent statistics of the Spider dataset for

comparison.

Dataset Easy Medium Hard  Extra Hard Total
CORDIS Seed 4 (4%) 15 (15%) 38 (38%) 43 (43%) 100
CORDIS Synth 726 (55.59%) 494 (37.83%) 66 (5.05%) 20 (1.53%) 1306
CORDIS Dev 25 (25%) 35 (35%) 19 (19%) 21 (21%) 100
SDSS Seed 20 (20%) 54 (54%) 2 (2%) 24 (24%) 100
SDSS Synth 326 (15.82%) 1396 (67.73%) 138 (6.7%)  201(9.75%) 2061
SDSS Dev 12 (12%) 28 (28%) 20 (20%) 40 (40%) 100
OncoMX Seed 34 (34%) 33 (33%) 19 (19%) 14 (14%) 100
OncoMX Synth 464 (43.57%) 601 (56.43%) 0 (0%) 0(0%) 1065
OncoMX Dev 21 (21%) 32 (32%) 27 (27%) 20 (20%) 100
Spider Train 1944 (22.45%) 2831 (32.7%) 1758 (20.3%) 2126 (24.55%) 8659
Spider Dev 250 (24.22%) 440 (42.64%) 174 (16.86%) 168 (16.28%) 1032

In order to answers these questions, we first present our evalu-
ation of four different LLMs for translating SQL to NL. The best-
performing LLM will then be used to generate the synthetic data.
Afterwards, we evaluate the correctness of the synthetic data for
each of the three databases of ScienceBenchmark by performing
an expert evaluation.

4.1 Evaluation of LLMs for SQL-to-NL
Translation

This section describes the experiments we performed in order to
decide which LLM to incorporate into our automatic data genera-
tion pipeline. We evaluate the accuracy of each LLM in isolation.
The best LLM is then used in Phase 3 "SQL-to-NL Translation" of
our automatic data generation pipeline shown in Figure 1.

We analyze the performance of four different LLMs, which are
all based on large-scale transformer language models [43]. We use
these LLMs for translating the SQL queries in the Spider Dev set
to natural language. We apply various automated metrics to these
results as well as an expert evaluation.

Large Language Models. We have chosen the following four LLMs
for our SQL-to-NL translation:

o GPT-2: A fine-tuned GPT-2-large model [31] with an auto-
regressive decoder-only large pre-trained language model,
which is well suited for text generation.

e GPT-3-zero: A zero-shot GPT-3 Davinci model [6], which
is a larger version of the GPT-2 model pre-trained on even
more data.

e GPT-3: A fine-tuned GPT-3 Davinci model, which is GPT-3
fine-tuned on NL/SQL pairs.

e T5: A fine-tuned T5-base model [32], which is an encoder-
decoder-based pre-trained language model developed for
machine translation.

We fine-tuned a GPT-2-large language model on the Spider train-
ing data for 20 epochs. The GPT-3 model was fine-tuned on a subset
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Table 3: Evaluation of various LLMs for generating natural
language questions given a SQL query. The goal is to vali-
date Phase 3 "SQL-to-NL Translation" of our automatic data
generation pipeline shown in Figure 1. The evaluation is per-
formed on the Spider Dev set using two different automatic
performance metrics (SacreBLEU and SententeceBERT) as
well as human experts.

Metric GPT-2 GPT-3-zero GPT-3 T5
SacreBLEU 33.85 30.36 38.55 31.79
SentenceBERT 0.840 0.870 0.888 0.864
Human Expert 0.629 0.765 0.731  0.645

of Spider for 4 epochs!!. For this, we sampled three NL/SQL-pairs
from each database in the Spider training set at random, which
resulted in a training set of 468 NL/SQL-pairs. We used a simple
prompt to trigger the translation from SQL to NL. The T5-base
model was fine-tuned on the entire Spider dataset, for 10 epochs.

Metrics. Each LLM is evaluated using the SacreBLEU score [28,
30] and the SentenceBERT score [33] automatic metrics. SacreBLEU
is an instantiation of the BLEU score which measures the word
overlap between two sentences. However, word overlap metrics do
not capture semantically equivalent natural language questions.

For instance, consider the following two sentences (1) "Find all
Starburst galaxies?" and (2) "Return all the spectroscopically observed
galaxies that lie in the starburst class.". Both statements describe the
same information request, however, they have a low BLEU score.
Thus, we also use SentenceBERT, which measures the semantic
similarity of sentences.

Additionally, since automated evaluations are not perfectly reli-
able, we also ran an expert evaluation where 7 SQL experts rated
the generated questions. For each expert, we randomly sampled 25

e decided to use only a subset of Spider to keep the costs low, since fine-tuning on
all Spider data for 20 epochs would cost 600$ (we only payed 10$). Note that 4 epochs
is the default value provided by GPT-3 for fine-tuning.



SQL queries from the Spider Dev set and let each of the four LLMs
generate the corresponding natural language question. Thus, each
expert annotated 100 SQL/synthetic question-pairs. In other words,
for each LLM, we have 175 expert annotations.

4.1.1 Results for Spider Datasets. The evaluation results on the
Spider Dev Set using various metrics are summarized in Table 3.
The first two lines show the scores given by the automatic metrics
SacreBLEU and SentenceBERT. The third line shows the evaluation
by human experts. This metric shows the ratio of samples that
human experts regarded as being correct.

We observe that the GPT-3 model outperforms the other mod-
els by a large margin in terms of SacreBLEU score. The average
SentenceBERT similarity is also highest for the fine-tuned version
of GPT-3. The human expert evaluation shows that both versions
of GPT-3 achieve significantly higher scores than GPT-2 and T5.
However, the difference between the two versions of GPT-3 are not
significant, i.e. 76.5% vs. 73.1%. Thus, we opt to use the fine-tuned
version of GPT-3 since it achieved the highest scores on ScareBLEU
and SentenceBERT.

4.1.2  Results for ScienceBenchmark. We also ran expert evaluations
for each of the three domains contained in the ScienceBenchmark.
For this, we translated 100 manually generated SQL queries (called
dev queries) to NL questions using a GPT-3 model, which was
fine-tuned on the specific database. For each database, we used
the manually created training queries and the same 468 Spider
queries used above to fine-tune GPT-3. We then performed the
expert evaluation for the domain-specific GPT-3 models.

For the CORDIS dataset, GPT-3 correctly translates SQL to NL in
82% of cases, for OncoMX 73%. For SDSS, the ratio is lower at 53%,
which is mostly due to the higher complexity of the dev queries.

Answer to Research Question 1: We have shown that LLMs
are powerful enough to generate good NL questions for a variety
of domains, be it common knowledge or highly domain-specific.

4.2 Evaluation of Synthetic Datasets (Silver
Standard) of ScienceBenchmark

We now analyze the quality of the synthetic datasets (or silver stan-
dard) for the novel domains of our ScienceBenchmark via an expert
evaluation. Note that in the previous section we only evaluated
the translation of SQL to NL for the manually written Dev Set SQL
queries. Now we evaluate the synthetic datasets of CORDIS, SDSS
and OncoMX, where both the SQL queries and the corresponding NL
questions are automatically generated using the pipeline in Figure 1.

Distantly labelled data, also known as "silver standard”" data
has been used as a resource for reliably training neural networks
when manually labelled data or "gold standard" data is scarce or
unavailable. As shown in previous work on distant supervision
[34], training data does not have to be perfect and neural networks
can learn from noisy or partially incorrect training data.

Many training data generation systems such as DBPal [46] are
based on the principal that silver standard data (possibly noisy data),
is sufficient for training. Although DBPal provides an end-to-end
systems analysis to show the effectiveness of the generated data,
they do not provide any manual analysis of the quality or accuracy
of the training data itself.
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Table 4: Manual evaluation of 100 randomly chosen synthetic
NL/SQL-pairs of ScienceBenchmark. The results show both
the semantic equivalence of the automatically generated NL
questions with their corresponding, automatically generated
SQL queries and the semantic meaningfulness of these auto-
matically generated SQL queries.

Dataset Semantic Semantic Equivalence
Meaningfulness of SQL  of NL and SQL

CORDIS  97% 83%

SDSS 97% 76%

OncoMX 91% 75%

Because the SQL queries in our data generation pipeline are
generated using rule-based algorithms and filtered with heuris-
tics crafted by domain experts to ensure the domain relevance of
the SQL queries, we evaluate the semantic equivalence of the NL
questions generated in our pipeline i.e. we check if the NL ques-
tion matches the meaning of the SQL query. First, we randomly
sampled 100 NL/SQL-pairs from each synthetic dataset (CORDIS,
SDSS, OncoMx) proportionally in line with the Spider hardness
classification schema. Afterwards, we manually evaluated the NL
questions against the matching SQL query.

Table 4 shows the results of our manual evaluation of the syn-
thetic NL/SQL pairs. First, we analyzed the semantic meaningfulness
of the generated SQL queries (see second column of Table 4). For
instance, a query that applies an aggregation over numeric data
values is considered meaningful, while applying an aggregation
over string values is not. Our results demonstrate that we generated
meaningful queries in 91 to 97% of the cases in all three datasets.

We also analyzed the semantic equivalence of the generated NL
question and the respective generated SQL query. The results show
that in 75 to 83% of the cases we observe a semantic equivalence.

In summary, the synthetic queries are automatically generated
and can be considered silver standard data. Previous experiments
have shown that (even noisy) silver standard data outperform cu-
rated datasets (see [16]). These silver standard data can even be
false. Hence, we apply the same approach and do not filter out any
query.

Answer to Research Question 2: This analysis demonstrates
that the quality of the synthetically generated or "silver standard"
data for the three novel domains of ScienceBenchmark is high. More-
over, as we will show in Section 5.3, using the synthetic datasets for
training also significantly improves the performance of NL-to-SQL
systems evaluated on ScienceBenchmark.

5 BASELINE EXPERIMENTS: USING
SCIENCEBENCHMARK TO EVALUATE
NL-TO-SQL SYSTEMS

In this section, we perform baseline experiments to evaluate the

performance of popular NL-to-SQL systems on ScienceBenchmark.

The main research questions we want to address are as follows:

® Research question 3: How well do current NL-to-SQL systems
perform on complex, real-world scientific databases?



e Research question 4: How much can NL-to-SQL systems be
improved using data augmentation when little to no domain-
specific training data is available?

5.1 NL-to-SQL Systems

To test the performance of NL-to-SQL systems on ScienceBenchmark,
we selected state-of-the-art fine-tuned and few-shot systems. The
fine-tuned systems meet the following criteria: 1) Access to the
open source model and the pre-trained model weights; 2) Access
to bidirectional conversion code between SQL and intermediate
representations (IR) of the systems, if any IR is used in the model.

Therefore, for our experiments with fine-tuned models we use
three different state-of-the-art NL-to-SQL systems: the only two
completely open source state-of-the-art NL-to-SQL systems from
the Spider leaderboard!?® (T5-Large, SmBoP) and an industrial-
strength NL-to-SQL system, which has recently been extended
to handle complex, real-world datasets (ValueNet).

e T5-Large [32] (with Picard [38] for constrained decoding). T5-
Large is alanguage model, which is pre-trained on large amounts
of text datal?.

e SmBoP [36] (with GraPPa [50]). SmBoP implements a novel
autoregressive bottom-up decoder, enhanced with the GraPPa,
which is a language model specifically pre-trained for the NL-
to-SQL task.

e ValueNet [7]. ValueNet is based on the IRNet [13] architecture
and extends the SemQL grammar by adding values to the gen-
erated queries to make them executable. To handle the SDSS
astrophysics data, we extended the SemQL grammar for Val-
ueNet to incorporate mathematical operations 1°.

To evaluate the difficulty of ScienceBenchmark, we also include
baseline experiments with two LLMs, GPT-3.5 from OpenAlI and
for comparison a newly released open source model, LLaMA2 70B
from Meta'®.

For reproducibility reasons, we provide both the source code of
our automatic training data generation approach and the datasets
of ScienceBenchmark!”.

5.2 Experimental Setup

For each of the 3 databases of ScienceBenchmark, we ran four ex-
periments:

o Spider Train (Zero-Shot): Here, we train the NL-to-SQL systems
on the Spider Train Set, and run the evaluation on the Dev Set of
the respective new domain, i.e. on the evaluation set of CORDIS,
SDSS and OncoMX.

128ince the SQL-to-NatSQL [11] conversion code is not available, as announced by the
author in their code repository,https://github.com/ygan/NatSQL, all systems integrated
with NatSQL have been excluded from our experiments.
Bhttps://yale-lily.github.io/spider

4Due to compilation issues with Picard’s decoder architecture implemented in Haskell,
we only used T5-Large without the Picard version of the code provided by Picard.
15We only incorporated the mathematical operations for ValueNet as it was straight-
forward to extend SemQL. The T5 architecture handles mathematical operations
out-of-the-box as we use the unconstrained version.

1Shttps://ai. meta.com/llama/

7The source code, the datasets, the hyperparameters, and the model-specific ex-
periments’ hardware specifications for ScienceBenchmark can be found at: https:
//sciencebenchmark.cloudlab.zhaw.ch/
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o Spider Train + Domain Train: We train the NL-to-SQL systems on
a mix of the Spider Train Set and the manually created training
data, e.g. CORDIS Train. The goal is to understand how much
impact manually generated, domain-specific training queries
have on the performance of the NL-to-SQL system.

o Spider Train + Domain Synth: We train the systems on a mix
of Spider training data and the synthetic data, which we auto-
matically generated using our training data generation pipeline.
For instance, CORDIS Synth is the automatically generated (syn-
thetic) training data for the domain research policy making.

o Spider Train + Domain Train + Synth: Here, we train the systems
on a mix of the Spider training data, manually created training
data, and synthetic data from each domain. This shows the
impact of using both synthetic and manually curated data.

The left-most column of Table 5 shows all possible settings, i.e.,
the four experiments per Dev Set (database), which is shown in
the second column. The evaluation is performed using Execution
Accuracy, which is the metric used by the Spider benchmark. In
other words, we measure in how many cases the result sets of the
predicted SQL queries correspond to the result sets of the Dev Set
SQL queries.

5.3 Experimental Results

Table 5 is divided in two parts: The left most parts show the ex-
ecution accuracy for NL-to-SQL systems with fine tuning using
ScienceBenchmark (for the experiments described in the previous
section). The right most parts of the table show results for LLMs
with prompt-engineering.

Let us first discuss the results of the NL-to-SQL systems that we
fine-tuned, i.e., ValueNet, T5-Large and SmBoP. Our results show
that ScienceBenchmark poses a challenge to current NL-to-SQL ap-
proaches. As expected, the performance of the various systems is
very low in the zero-shot setting, as the domains covered in Spider
are hardly transferable to the novel complex domains. The results
also highlight that simply augmenting the number of training sam-
ples does not enable the models to achieve high accuracy (80% and
above) on the benchmark. In fact, adding the manual and synthetic
training data of our domains, increases the scores by a large margin,
however, the absolute scores remain low. For instance, the score
increases by 23% on CORDIS when training ValueNet on all the data.
For T5-Large, data augmentation improves the zero-shot case by
45% resulting in a maximum execution accuracy of 56%. However,
with an execution accuracy of 56% the task is far from solved. This
trend is noticeable for each of the three novel domains. We also
observe that the particularities of each domain create a different de-
gree of difficulty to each system as witnessed by the different scores
each system achieves in each domain with zero-shot learning.

Let us now analyze the performance of LLMs where we use
zero-shot and few-shot prompting as shown in the right part of
Table 5. In general, we can observe that GPT-3.5 performs better
than LLaMA2, since the former has significantly more parameters
(175B vs. 70B). Moreover, we can see that GPT 3.5 performs best on
CORDIS reaching a maximum execution accuracy of 60%. However,
for SDSS, the dataset with the most numerical values and mathe-
matical operators, the highest execution accuracy reaches only 33%.


https://github.com/ygan/NatSQL
https://yale-lily.github.io/spider
https://sciencebenchmark.cloudlab.zhaw.ch/
https://sciencebenchmark.cloudlab.zhaw.ch/

Table 5: Putting ScienceBenchmark into practice: Evaluation of NL-to-SQL systems without and with data augmentation (left
most parts of the table). Execution Accuracy is evaluated on the Dev Set of three novel datasets. The numbers in brackets refer
to the relative improvements with respect to the zero-shot baseline. The right most parts of the table show results for LLMs

with prompt-engineering.

Dataset Fine-Tuning with NL-to-SQL Systems Zero & Few-shot-Prompting with LLMs
Train Set Dev Set  ValueNet T5-Large w/o Picard SmBoP+GraPPa H Prompting” GPT-3.5 (175B) LLaMAZ2 (70B)
Spider Train (Zero-Shot) CORDIS 0.12 0.16 0.16 Zero-shot 0.57 0.06
Spider Train + Seed CORDIS CORDIS  0.20 (+0.08)  0.20 (+0.04) 0.20 (+0.04) One-shot 0.60 0.22
Spider Train + Synth CORDIS CORDIS  0.31(+0.19)  0.30 (+0.14) 0.23 (+0.07) - - -
Spider Train + Seed CORDIS + Synth CORDIS ~ CORDIS  0.35 (+0.23)  0.29 (+0.13) 0.21 (+0.05) Five-shot 0.57 0.18
Spider Train (Zero-Shot) SDSS 0.08 0.05 0.06 Zero-shot 0.29 0
Spider Train + Seed SDSS SDSS 0.11 (+0.03) ~ 0.06 (+0.01) 0.10 (+0.04) One-shot 0.32 0.06
Spider Train + Synth SDSS SDSS 0.18 (+0.10)  0.12 (+0.07) 0.13 (+0.07) - - -
Spider Train + Seed SDSS + Synth SDSS SDSS 0.21 (+0.13)  0.15 (+0.10) 0.15 (+0.09) Five-shot 0.33 0.03
Spider Train (Zero-Shot) OncoMx  0.13 0.11 0.19 Zero-shot 0.50 0.11
Spider Train + Seed OncoMx OncoMx  0.44 (+0.31)  0.35 (+0.24) 0.32 (+0.13) One-shot 0.51 0.21
Spider Train + Synth OncoMx OncoMx  0.23 (+0.10)  0.27 (+0.14) 0.20 (+0.01) - - -
Spider Train + Seed OncoMx + Synth OncoMx  OncoMx  0.49 (+0.36)  0.56 (+0.45) 0.35 (+0.16) Five-shot 0.55 0.32

Again, the particularities of each domain play a significant role in
determining the performance of each model.

In summary, these results demonstrate that ScienceBenchmark
is a highly challenging dataset and thus confirms that translating
NL-to-SQL is far from being solved.

Answer to Research Question 3: The results show that the cur-
rent state-of-the-art approaches, which work exceptionally well on
Spider, do not perform well on real-world databases. Thus, we pose
this dataset as a challenge, which requires more than an increase
in training data size. It requires novel approaches that are able to
handle all the new complexities introduced by these domains.

Answer to Research Question 4: The results also show that for
each domain and NL-to-SQL system, the combination of seed and
synthetic queries yields an improvement over the zero-shot baseline
of up to 45%. The magnitude of the improvements varies depending
on the NL-to-SQL system and domain.

5.4 Discussion of the Experiments

Our experiments show that our automated data augmentation
pipeline creates training data which is well suited for bootstrapping
novel domains. The magnitude of the improvement depends on the
NL-to-SQL systems themselves. However, for all highly domain-
specific databases, the performance of the systems trained with
synthetic data improved. This is useful when adapting an NL-to-
SQL system trained on Spider data for a novel and more complex
domain for a database with more tables, columns and rows.

The results highlight the necessity to work on real-world ap-
plications. In the zero-shot setting all the state-of-the-art systems
achieved poor performance. For instance, in the SDSS domain none
of the systems achieved an accuracy of even 10%. Even with the
fine-tuning data, the performance of the systems are far from the
70% achieved in the Spider setting. Thus, the results show the need
of a more complex and real-world oriented benchmark.

Furthermore, our results reveal that the usage of the synthetic
data is useful to increase the performance of fine-tuned models. In
most cases using the large set of synthetic data alone yields better
results than using the small manual dataset for training. The mix
of both the synthetic and the manual data yield the best results.
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Thus, ScienceBenchmark is highly challenging as it requires
to adapt most systems to domain-specific knowledge and to
handle complex, real-world scientific databases — which are
in stark contrast to the relatively simple databases of the
Spider benchmark.

6 RELATED WORK

In this section, we review the related work regarding data augmen-
tation and NL-to-SQL benchmarks.

6.1 Data Augmentation

Due to the need of deep learning models for high volumes of train-
ing examples, combined with sparsity of training data and the cost
of manually creating it, a lot of research has been done in the area
of data augmentation.

Previous work on data augmentation for NL-to-SQL systems
mainly focuses on generating SQL queries that run over a single
table rather than over multiple tables of a complete relational data-
base. One such example is DBPal [46], a template-based approach
for generating NL/SQL-pairs, which uses manually-crafted tem-
plates of NL/SQL-pairs, which can be filled with the names of tables
and columns in order to create training instances. Additionally, the
authors propose NL augmentations such as paraphrasing, random
deletions and synonym substitutions. However this approach might
create "robotic" NLQs whose quality might be reduced by the pro-
posed augmentations, since designing rules that can consistently
work across all possible questions is notoriously hard.

Another approach [12] creates SQL queries by using simple SQL
templates and sampling column names and values from a given table
and then applies Recurrent Neural Networks (RNNs) to generate
the equivalent NLQ. Some key differences to our work are that:
(i) we can generate augmented data without completely relying
on manually created NL/SQL-pairs or templates and that (ii) our
NLQ augmentation step is much more robust and can generate
completely new and realistic NL utterances.

Another approach [27] uses Metamorphic Rules (MRs) to create
equivalent alterations of NLQs and database schemas from given



NL/SQL/DB-triplets. Even though this work mainly focuses on pro-
viding a more robust evaluation framework for NL-to-SQL systems,
it also proposes a methodology for data augmentation that takes
advantage of the MRs used for the evaluation. More specifically,
the authors present a set of MRs that can be used to create an al-
teration of either the NLQ or the database schema, while keeping
them semantically equivalent to the original. However, the pro-
posed NLQ transformations are relatively simple (i.e., synonym
substitution and prefix insertion/deletion/substitution) compared
to our approach for generating novel and fluent NLQs. Additionally,
compared to our work, this approach is not capable of augmenting
the SQL part of the training examples and requires a hand-crafted
set of NL/SQL-pairs in order to work for a new database.

The more recent work presented in [47] is one of the few pro-
posed architectures that can generate examples that cover multiple
tables of a relational database. This work generates SQL queries
by creating templates using an abstract syntax tree grammar and
filling them with attributes from the database. The NLQs are then
generated using a hierarchical, RNN-based neural model, that recur-
sively generates explanations for all parts of the queries and then
concatenates them. Our work differs from the previous because we
consider much more complex and robust SQL-to-NL models that
can create NLQs with much higher variety and fluency, since they
are generated by taking the entire SQL query into account.

Finally, our work differs from all previous work in the sense that
instead of simply increasing the performance on a generic dataset
like Spider [52], we focus on adapting an NL-to-SQL system on
new, unseen and complex databases, with little to no manual effort.

6.2 NL-to-SQL Benchmarks

Progress in NL-to-SQL systems was systematically impeded by the
lack of a common, large-scale benchmark dataset. The introduction
of WikiSQL [53] and Spider [51], has drastically changed the land-
scape, allowing for the introduction of deep learning techniques
to tackle the problem, as well as providing a common benchmark
for comparing different approaches. These two benchmark datasets
remain the main point of reference for NL-to-SQL systems despite
much criticism (e.g., WikiSQL has low complexity and multiple
errors [17] and Spider databases are not realistic [14]).

NL-to-SQL benchmarks can be classified into: domain-specific
and cross-domain datasets. Domain-specific datasets focus on a
single database from a specific domain, such as: movies and televi-
sion series (IMDDb [49]), restaurant and shop reviews (Yelp [49] and
Restaurants [29, 42]), academic research (Scholar [19] and Academic
[23]), financial data (Advising [9] and FIBEN [39]), medical data
(MIMICSQL [45]), and questions and answers from Stack Exchange
(SEDE [15]).

In contrast, cross-domain datasets contain multiple databases,
taken from different domains. Spider-DK [10] and Spider-Syn [10],
are extensions of Spider which explore system capabilities at cross-
domain generalization and synonym robustness. KaggleDBQA [22]
is another cross-domain dataset, although of much smaller size, that
has been extracted from Kaggle and features databases taken from
the Web. Another cross-domain dataset is OTTA [8], which uses
an inverse annotation procedure, whereby automatically generated
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queries, which are visually displayed are annotated with natural
language questions by non-SQL experts.

The main difference of our novel benchmark ScienceBench-
mark, compared to all aforementioned datasets, is twofold: (i) it
contains scientific domains that use domain-specific vocabulary,
and (ii) it was developed by scientists and domain-experts over the
course of a multi-year research project including partners from
both academia and industry. Hence, the deep interactions between
scientists and domain experts ensured high quality examples that
reflect queries posed by actual users of these complex, scientific
databases.

7 CONCLUSIONS

In this work, we introduce the novel benchmark ScienceBench-
mark for evaluating NL-to-SQL systems as well as LLMs against
complex, real-world scientific databases. We also show the end-to-
end pipeline for automatically generating large synthetic training
datasets for highly domain-specific databases, which are more com-
plex both in terms of the subject matter and in terms of the number
of tables, columns and rows than the databases used in the Spider
benchmark.

Our experimental results show that ScienceBenchmark
poses a significant challenge to current NL-to-SQL approaches
as well as LLMs. While these systems work exceptionally well
on the Spider dataset which has relatively simple databases, they
do not perform well on complex, real-world scientific databases.
Thus, we argue that ScienceBenchmark can serve as a new base-
line benchmark for evaluating NL-to-SQL systems as well
as LLMs and thus sets the stage for novel research efforts
to handle the complexities introduced by these real-world
challenges.
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