
ScienceBenchmark: A Complex Real-World Benchmark for
Evaluating Natural Language to SQL Systems

Yi Zhang
Zurich University of Applied Sciences

Switzerland

Jan Deriu
Zurich University of Applied Sciences

Switzerland

George
Katsogiannis-Meimarakis

Athena Research Center
Greece

Catherine Kosten
Zurich University of Applied Sciences

Switzerland

Georgia Koutrika
Athena Research Center

Greece

Kurt Stockinger
Zurich University of Applied Sciences

Switzerland

ABSTRACT
Natural Language to SQL systems (NL-to-SQL) have recently shown
improved accuracy (exceeding 80%) for natural language to SQL
query translation due to the emergence of transformer-based lan-
guage models, and the popularity of the Spider benchmark. How-
ever, Spider mainly contains simple databases with few tables,
columns, and entries, which do not reflect a realistic setting. More-
over, complex real-world databases with domain-specific content
have little to no training data available in the form of NL/SQL-pairs
leading to poor performance of existing NL-to-SQL systems.

In this paper, we introduce ScienceBenchmark, a new complex
NL-to-SQL benchmark for three real-world, highly domain-specific
databases. For this new benchmark, SQL experts and domain ex-
perts created high-quality NL/SQL-pairs for each domain. To gar-
ner more data, we extended the small amount of human-generated
data with synthetic data generated using GPT-3. We show that our
benchmark is highly challenging, as the top performing systems on
Spider achieve a very low performance on our benchmark. Thus,
the challenge is many-fold: creating NL-to-SQL systems for highly
complex domains with a small amount of hand-made training data
augmented with synthetic data. To our knowledge, ScienceBench-
mark is the first NL-to-SQL benchmark designed with complex
real-world scientific databases, containing challenging training and
test data carefully validated by domain experts.

PVLDB Reference Format:
Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten,
Georgia Koutrika, and Kurt Stockinger. ScienceBenchmark: A Complex
Real-World Benchmark for Evaluating Natural Language to SQL Systems.
PVLDB, 17(4): 685-698, 2023.
doi:10.14778/3636218.3636225

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://sciencebenchmark.cloudlab.zhaw.ch/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636225

1 INTRODUCTION
Enabling users to query structured data using natural language
is considered the key to data democratization. Natural Language
Interfaces for Databases (or NL-to-SQL systems) emerged in the
1970s [1, 4]. Early systems relied on the database schema to build a
SQL query from a natural language (NL) query (e.g., SODA [5], Pre-
cis [40]) or focused on understanding the structure of the natural
language query to map it to SQL (e.g., ATHENA [37], NaLIR [24]).
As early as 1995, the lack of benchmarks was apparent: “No stan-
dard benchmarks have yet been developed [...], any appraisal of
the current state of the field must be impressionistic” [4]. This sit-
uation changed recently, when the first large-scale benchmarks,
WikiSQL [53] and Spider [51], emerged. These allowed for training
and evaluating neural machine translation (NMT) approaches (e.g.,
[44, 48, 53]). These approaches formulate the NL-to-SQL problem
as a language translation problem, and train neural networks with
large amounts of NL/SQL-pairs.

While the first deep learning approaches [48, 53] only worked
for single tables and failed to generate complex SQL queries span-
ning multiple tables (e.g., including nested queries and complex
clauses), recent systems [7, 8, 38, 44] work on complete databases
and achieve high performance scores on the Spider benchmark
[51]. The top NL-to-SQL systems reach accuracies up to 85% on
Spider. However, the majority of databases present in Spider were
created specifically for this benchmark and are not representative
of the difficulties that arise when creating an NL interface for a real-
world database. Among the current best-performing, open-source,
systems on Spider, T5-Large [32] (with Picard [38] for constrained
decoding), SmBoP [36] and RESDSQL with NatSQL [25], are already
achieving over 70% performance. Applying a system trained on the
Spider dataset to a new domain such as astrophysics or cancer
research, yields poor results, making the adoption of such systems
to real-life applications extremely far-fetched.

The problem is that, while WikiSQL and Spider provide a com-
mon training and evaluation tool that has been a game changer for
the development of NL-to-SQL systems, they have serious limita-
tions. EachWikiSQL question is directed to a single table and not to
a relational database. The low complexity of the WikiSQL queries
makes its value for real-life applications practically limited. Spider
contains 200 relational databases from 138 different domains along
with over 10,000 natural language questions and over 5,000 complex

685

https://doi.org/10.14778/3636218.3636225
https://sciencebenchmark.cloudlab.zhaw.ch/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636225
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Seed Question
Find all Starburst galaxies.

Seed SQL
SELECT specobjid

FROM specobj AS s

WHERE s.subclass = 'STARBURST'

Generated Questions (1)

● Find the center object which has nearest

neighbor with neighbor mode 2

● Find the center id of nearest neighbor

object with neighbor mode smaller than 2

Seed AST
Select T(4) C(32)

Filter(2) T(4) C(49) V(0)

Generated AST (1)
Select T(0) C(1)

Filter(2) T(0) C(7) V(3)

1 Seeding Phase 2 3 4 Discriminative PhaseSQL Query Generation
Phase

SQL-to-NL Translation
Phase

Extracted AST Template
Select T(*) C(*)

Filter(2) T(*) C(*) V(*)

Generated SQL (1)

SELECT T1. objid

 FROM neighbors AS T1

WHERE T1.neighbormode = 2

Generated AST (2)
Select T(4) C(45)

Filter(2) T(4) C(37) V(0)

Generated SQL (2)

SELECT T1. z

 FROM specobj AS T1

WHERE T1.survey = "eboss"

Generated Questions (2)

● Find redshift of spectroscopic objects with

survey equal to 'eboss'

● What is the redshift of objects with survey

not equal to ‘eboss’

Validated Question (1)

✓ Find the center object of nearest neighbor

with neighbor mode 2

⨯ Find the center id of nearest neighbor object with

neighbor mode smaller than 2

Validated Question (2)

✓ Find redshift of spectroscopic objects with

survey equal to 'eboss'

⨯ What is the redshift of objects with survey not

equal to ‘eboss’

T(0): neighbors
 C(7) - neighbormode
 C(1) - objid
 C(5) - neighbortype
V(0): 2
V(3): 3

T(4): specobj
 C(32): specobjid
 C(44): ancillary_target1
 C(48): class
V(0): ‘QSO’
V(1): …
V(2): …
V(3):18014398509481984

T(4): specobj
 C(37): survey
 C(45): z
 C(48): class
V(0)
V(1)

Figure 1: End-to-end architecture for automatic training data generation consisting of four different phases, namely (1) Seeding
Phase, (2) SQL Generation Phase, (3) SQL-to-NL Translation Phase and (4) Discriminative Phase. The approach is used to produce
our novel benchmark dataset called ScienceBenchmark. The details of these phases are described in Section 3.3.

SQL queries, hence it targets the query complexity problem. At the
same time, it also attempts to solve the transfer learning problem
by providing a dev set with novel databases.

However, the majority of databases in the Spider benchmark are
rather simple, i.e., of low complexity, and containing only what is
considered general knowledge. Thus, we need specialized, domain-
specific benchmarks for training and evaluating NL-to-SQL systems
in scientific domains. Manually crafting such a benchmark is pro-
hibitive due to the volume of data needed and the expertise required
in scientific domains. Data augmentation, i.e. automatic benchmark
generation is the only feasible solution.

Our Approach. In this paper, we introduce ScienceBenchmark, a
complex real-world benchmark for evaluating NL-to-SQL systems.
It is the first of its kind to be developed collaboratively with SQL
experts and researchers from the fields of research policy mak-
ing, astrophysics, and cancer research. We combine the knowledge
derived from manual training data collection with an automatic
training data generation system that enables NL-to-SQL systems
that require large amounts of data for training to be bootstrapped on
complex, scientific databases where training data would otherwise
be scarce or unavailable.

The main architecture of the data augmentation system is de-
scribed in Figure 1. The system is fed a small set of manually gener-
ated NL/SQL-pairs to provide accurate and highly semantically rele-
vant information about a novel domain. SQL templates are extracted
from these seed queries, and are subsequently used to generate SQL
queries over a specific database taking into account the database
schema and contents. These SQL queries are then back-translated to
natural language using the large language model (LLM), GPT-3 [6].
For the SQL-to-NL component used in this work, we experimented
with state-of-the-art transformer-based pre-trained models that

have shown their NL generation capabilities by achieving state-
of-the-art scores in multiple related tasks. Our evaluation showed
that the GPT-3 [6] model achieves the best performance and is able
to generalize to new domains with very few samples (in our case,
these are the seed NL/SQL-pairs), which is why it was integrated in
our architecture. The resulting natural language questions are then
filtered using a critic model to select the most relevant NL question
for the corresponding SQL query. The resulting augmented dataset
of NL/SQL-pairs can be fed into any NL-to-SQL system for train-
ing. Our approach is generic and can boost the accuracy of any
NL-to-SQL system as demonstrated in our experiments in Table 5.

Contributions. The major contributions of our work are the
following:
• We contribute ScienceBenchmark - a new benchmark for eval-
uating NL-to-SQL systems against complex, scientific databases.
ScienceBenchmark contains more than 6,000 NL/SQL-pairs to
help researchers address the complex challenges of real-world
databases, overlooked by popular benchmarks.
• We have built ScienceBenchmark using a novel approach for

automatically generating training data for databases where little
to no training data exists. Unlike previous work that focused
on rather simple databases, we concentrate on complex, real-
world scientific databases, an area where popular NL-to-SQL
systems typically falter due to their lack of domain knowledge
and training data.
• We evaluated three state-of-the-art NL-to-SQL systems as well

as two LLMs on our benchmark. Although these systems achieve
top scores on the Spider leaderboard (above 82% accuracy), none
achieves a satisfactory score on our benchmark (only in the
range of 25-60% accuracy depending on the domain), showcas-
ing the difficulty of ScienceBenchmark.

686

2 THE NEED FOR A NEW BENCHMARK -
MOTIVATING EXAMPLE: ASTROPHYSICS

A NL-to-SQL system needs to address many challenges [1, 3, 18, 20].
On the one hand, a natural language questionmay be vague, contain
references that are even hard for a human to understand, and use
a different vocabulary from the one used in the DB. On the other
hand, the respective SQL query needs to adhere to a strict syntax
and to the underlying DB schema in order to be syntactically and
semantically correct. When applying an NL-to-SQL system to a
real-world scientific database, additional challenges arise that stem
from the nature and the domain of these databases. While the
Spider benchmark is the first large-scale dataset with complex
SQL queries, its databases cannot be considered complex. Their
subject-matter is very generalized, covering topics such as pets and
entertainment (concerts, orchestras, musicals etc.). The majority
of these databases were created by students specifically for Spider
and are not representative of real-world databases.

In what follows, we motivate the need for a novel design and
training of NL-to-SQL systems for complex, scientific databases.
We will focus our discussion on astrophysics, a very data-intensive
and highly complex scientific discipline with a long tradition of
using relational databases [41]. The challenges described here are
not only relevant for astrophysics but also for other scientific disci-
plines, such as cancer research, also included in our experimental
evaluation.

As our running example, we use the astrophysics database called
Sloan Digital Sky Survey (SDSS)1. This database stores information
about stars and galaxies at specific locations in the sky. Further
details on the complexity of this database are specified in Section 3.

Let us consider three different representative astrophysics queries
that serve as running examples for our paper.
• Q1: Find all Starburst galaxies.

• Q2: What is the object id, right ascension, declination and redshift
from spectroscopically observed galaxies with redshift greater
than 0.5 but less than 1?

• Q3: Find the photometric objects with object ids and spectroscopic
object id whose spectroscopic class is ’GALAXY’, with the difference
of magnitude u and magnitude r less than 2.22 and the difference
of magnitude u and magnitude r greater than 1.

Their corresponding SQL queries are as follows:
Q1: (Spider hardness: Easy)
SELECT s.specobjid
FROM specobj AS s
WHERE s.subclass = 'STARBURST'

Q2: (Spider hardness: Medium)
SELECT s.bestobjid, s.ra, s.dec, s.z
FROM specobj AS s
WHERE s.class = 'GALAXY' AND s.z > 0.5 AND s.z < 1

Q3: (Spider hardness: Extra hard)
SELECT p.objid, s.specobjid
FROM photoobj AS p
JOIN specobj AS s ON s.bestobjid = p.objid

WHERE s.class = 'GALAXY'
AND p.u - p.r < 2.22 AND p.u - p.r > 1

As shown by these queries, the major challenges for NL-to-SQL
systems for complex, scientific databases are as follows:
1https://www.sdss.org/

• Unseen domains: To understand a challenging domain like astro-
physics and write meaningful queries - in natural language and
SQL - extensive domain knowledge is required. Hence, neural
machine translation systems pre-trained on common knowl-
edge datasets, like Spider, typically fail in complex domains due
to the large disparity in subject matter.
• Complex, often cryptic, database schemas: Scientific databases
often store large amounts of data with hundreds of attributes.
Moreover, attributes may have extremely short names, such
ra or z (referring to right ascension and redshift, respectively,
in astrophysics) or store numerical measurements. Hence, ad-
ditional ontologies that describe the meaning or the scientific
interpretation of these attributes - which can be complex as-
trophysics descriptions including mathematical equations and
natural language texts - are required. Finally, learning the map-
ping of a token from a natural language question to the relevant
database attribute is non-trivial.
• Sophisticated queries: Domain-specific queries may be more
elaborate than the ones in Spider. For instance, astrophysics
analysis requires the use of functions andmathematical operators
between attributes, such as the difference in magnitude between
ultraviolet (u) and infrared filters (r), e.g., u - r < 2.22.
These observations expose the need for specialized benchmarks

designed to capture the particularities and semantics of the domain
at hand as well as the types of queries that need to be understood
by an NL-to-SQL system. These requirements, in combination with
the size that such a benchmark necessitates, prohibit its manual
construction.

Since large and complex schemas are hard (even for experts) to
understand and query, the question that naturally arises is how to
build such benchmarks? The answer is data augmentation, which
in turn brings its own challenges: How to build representative SQL
queries for a new database? How to come up with their NL descrip-
tions? How to do it with minimal, if any, human involvement?

3 SCIENCE BENCHMARK: A NEW
BENCHMARK FOR COMPLEX DATABASES

In this section, we present ScienceBenchmark, which is composed
of three domain-specific databases, namely research policy making,
astrophysics and cancer research. First, we introduce the databases,
showing their complexity and the characteristics of each domain.
Second, we describe the manual data collection, which includes SQL
experts writing queries with the involvement of domain experts
as part of multi-year research project called INODE - Intelligent
Open Data Exploration [2]. Third, we describe our automatic data
augmentation approach for generating synthetic training data using
GPT-3 [6]. Finally, we show the training and evaluation datasets of
our novel benchmark ScienceBenchmark.

3.1 Complex, Real-World Databases
Here, we introduce complex, real-world databases from three sci-
entific domains, which are all of significantly greater size and com-
plexity than the databases found in Spider [51]. Table 1 provides
an overview of the complexity of the Spider, KaggleDBQA[21],
BIRD[26] and ScienceBenchmark databases. The table shows that

687

Table 1: Complexity of the Spider, KaggleDBQA and BIRD
databases compared with the databases of our new bench-
mark dataset ScienceBenchmark. The table shows the number
of databases (DBs), tables, columns, rows per DB, average
number of rows per table and DB size. The scientific domains
of the databases contained in the ScienceBenchmark are re-
search policy making (CORDIS), astrophysics (SDSS) and can-
cer research (OncoMX).

Dataset DBs Tbls. Cols. Rows Avg.
R/T

Size
(GB)

#NL/SQL
(man.+syn.)

Spider 186 641 4,268 1.6M 2.5K 0.51 8,053 + 0
(Avg / DB) 3.5 23 8.6K 0.03 43 + 0

KaggleDBQA 8 17 179 4.7M 280K 0.4 272 + 0
(Avg / DB) 2.1 22.3 595K 0.05 34 + 0

BIRD 81 604 4,456 3.7B 608.8K 33.4 12,751 + 0
(Avg / DB) 7.5 55 4.5M 0.35 135 + 0

Science-
Benchmark

CORDIS 1 19 82 671K 35K 1 200 + 1306
SDSS 1 6 61 86M 14M 6.1 200 + 2061
OncoMX 1 25 106 65M 2.6M 12 200 + 1065

BIRD is significantly larger and more complex than KaggleDBQA
(i.e. number of tables, columns and rows). We also show that BIRD
has a larger number of cross-domain databases than ScienceBench-
mark. However, the complexity of each individual database of Sci-
enceBenchmark is much higher than BIRD in the number of tables
and size per database. In this sense, BIRD and ScienceBenchmark
are complementary.
Research Policy Making: The CORDIS database, i.e. Community
Research and Development Information Service2, serves as the Eu-
ropean Commission’s primary source of results from the projects
funded by the EU’s framework programs for research and innova-
tion. The database contains very detailed hierarchical information
about the framework of funding calls and the network of industrial
and academic institutions, all of which is coded in highly specific
enigmatic EU terminology.

An example of this is the acronym NUTS, which stands for
nomenclature of territorial units for statistics. Even the long form
does not necessarily give the casual user a clear idea of what kind of
information might be stored in such a column. Another challenging
aspect of this database is the amount of text (e.g. descriptive project
objectives averaging 1,821 characters) and the diversity of topics in
the database ranging from Information and Media to Nuclear Fission.
For ScienceBenchmark, we use version 2022-08 of the database, as
shown in Table 1, which comprises 19 tables and 82 columns and
has an average of 35,355 rows per table. The database size is 1 GB.
Astrophysics: The SDSS (Sloan Digital Sky Survey) – introduced
in Section 2 – is a database containing the most detailed three-
dimensional map of the universe ever made. The data collection
began in 2000 and continues today. The database has 10 tables that
contain disparate numbers of columns varying between 3 and 804
columns each. The tables contain various measurements and infor-
mation about the type of observed object (e.g. a star or a galaxy),

2https://cordis.europa.eu/

distances between observed objects, and various parameters (e.g.
right ascension, declination, photometric system filters (u, g, r, i
and z)) that have been measured in photometric or spectroscopic
observations.

In order to study star-forming galaxies, the sky is measured in
several color bands such as infrared or ultraviolet resulting in dif-
ferent spectra, i.e. alternative numerical measurements and thus
various interpretations of galaxies. Unlike on Earth, the location of
celestial objects is defined by their right ascension and declination.
Moreover, literally, hundreds of different attributes are collected for
each object, such as size, redshift, brightness, magnitudes of color
bands measurements, etc. This database contains many column
names and values that are labeled with abbreviations (rather than
natural language) that are familiar to astrophysicists but indeci-
pherable for non-specialists. In order to query this database with
an NL-to-SQL system, it was necessary to add natural language
labels for abbreviated columns (e.g. ra = right ascension). In addi-
tion to the lack of natural language labels for columns, much of the
information in the database is numerical and is used in complex
queries with mathematical operations. Querying numerical data
in natural language is significantly more complex than querying a
database comprised of mostly textual values.

Due to the limitation of the input tokens of the language model
used in our experiments, we use a subset of the database comprised
of 5 original tables and 1 additional table for photometrically ob-
served astronomical objects. As described in Table 1, there are 61
columns, averaging about 10 columns per table and an average of
14,462,875 rows per table. The size of the database is 6.1 GB.

Cancer research data: OncoMX3 is a database funded by the U.S.
National Institute of Health (NIH) that integrates knowledge from
several different sources about cancer biomarkers. The version
of OncoMX used in ScienceBenchmark contains information from
cancer biomarker databases (EDRN4, FDA5), gene expressions in
healthy anatomical entities (Bgee6), differential gene expressions
between healthy and cancerous samples (BioXpress7) and cancer
mutations (BioMuta8). As shown in Table 1, the database comprises
25 tables that have 2 to 14 columns each, for a total of 106 columns
and has an average of 2,636,771 rows per table. The size of the
database is 12 GB.

The complexity in this database lies in the heavily domain-
specific information it contains as well as the complex queries
that researchers use when exploring this database. For example,
those unfamiliar with cancer research will not know that “BRCA1”
or “BRCA2” refers to BReast CAncer gene 1 and BReast CAncer gene 2,
respectively. In addition to the domain-specific information, even a
seemingly simple query in natural language such as "Show biomark-
ers for breast cancer" requires a SQL query with a multi-relational
join and several filters.

3https://www.oncomx.org/
4https://edrn.nci.nih.gov/
5https://www.fda.gov/
6https://bgee.org/
7https://bioxpressbiosimilars.com/
8https://hive.biochemistry.gwu.edu/biomuta/norecord

688

3.2 Manual Data Collection
In this section, we detail the manual data collection for all three
databases. All of the data was generated and reviewed by an expert
group consisting of at least one SQL expert and one domain expert
in research policy-making, astrophysics, or cancer research. In total,
the team consisted of about 20 domain and SQL experts of various
age ranges and genders. All of the experts were members of the
multi-year research project INODE [2], including partners from
academia and industry.

Before starting data collection, the domain experts such as as-
trophysicists and cancer researchers introduced the SQL experts
to the domain-specific knowledge within the database. At the data
generation stage, the domain experts developed the natural lan-
guage questions, while the SQL experts were responsible for writing
the corresponding SQL queries.

It is important to note that the domain experts were given the
task of solving realistic science questions rather than simply gener-
ating complex questions based on the database. During the review
and validation phase, domain experts used their expertise to verify
the SQL queries together with the output of the SQL queries. For
each domain, we generated a training set of 100 NL/SQL pairs as
well as a test set of 100 NL/SQL pairs.

In contrast, for each database in the Spider dev set, there are far
fewer questions, 50 on average per database, ranging from 63 to
just 4 questions per database. We have double the amount of dev
set queries for our databases than in Spider.

3.3 Automatic NL-to-SQL Training Data
Generation

In this section, we present our automatic training data generation
approach. This approach is generalizable and can be applied to
any domain. We will use our running example for astrophysics
introduced in Section 2. A concrete example of the end-to-end
pipeline is depicted in Figure 1.

The process of automatic training data generation involves four
phases: 1) the Seeding Phase, where SQL templates are extracted
from themanuallywritten seed queries, 2) the SQLQuery Generation
Phase, where the templates are filled with the database content,
and schema are used to create a readable version of the query, 3)
the SQL-to-NL Translation Phase, where GPT-3 generates a set of
candidate questions, and 4) the Discriminative Phase (candidate
selection phase) that selects the top two NL questions per SQL
query.

3.3.1 Phase 1: Seeding Phase. The seeding phase ingests the man-
ually created SQL queries (as discussed in Section 3.2) and extracts
query templates. For this, the manually created queries are trans-
formed into an Abstract Syntax Tree (AST) representation called
SemQL [13]. The leaf nodes of the AST, i.e., tables (T), columns (C)
and values (V) are replaced with placeholders (denoted as (*) in
Figure 1). The resulting AST is used as a query template, which is
filled with database content in the next phase.

3.3.2 Phase 2: SQL Query Generation Phase. When populating
the query templates, the usage of randomly sampled tables and
columns without any constraints might lead to meaningless or
unrunnable queries. In order to ensure that the generated SQL

queries are meaningful and useful to researchers in each field, we
automatically create an enhanced schema. The enhanced schema
can also be refined manually by domain experts to offer more meta-
information about tables and columns. The manual work, if needed,
is one-shot. This enhanced schema enables the exposure of the
following information to the system.
• Non-Aggregatable Columns: These columns should not be al-
lowed to appear in an attribute with an aggregation function
like SUM, AVG, MIN, MAX because such an operation is not mean-
ingful. An example below shows a query for getting an average
of all IDs of spectroscopic objects, which is executable but not
meaningful.
SELECT AVG(s.specobjid) FROM specobj as s

• Columns with Categorical Values: Typical examples are gender or
number of languages spoken by a person. These columns usually
have a low cardinality and are more likely applied to a GROUP
BY clause.
The example below stands for How many spectroscopic objects
are there for each right ascension? This question will hardly be
asked by anyone knowing the basics of astrophysics. The SQL-
statement may return millions of rows with useless information,
because of the very high cardinality of right ascension.
SELECT COUNT(*), s.ra
FROM specobj as s GROUP BY s.ra

With this constraint, the sampling procedure ensures that more
meaningful queries are generated. The SQL-statement below
retrieves the often asked question: Find the count of spectroscopic
objects grouped by their corresponding class.
SELECT COUNT(*), s.class
FROM specobj as s GROUP BY s.class

• Columns relevant for Applying Math Operators: These columns
are chosen by our sampling algorithm to apply certain math
operators. Identifying these columns ensures that there will
be no unexpected randomness among the operands, such as
T1.length - T2.area – which is not meaningful.
• Semantically Meaningful Table and Column Names. Since com-

plex, scientific databases often contain table and column names
that are not easily interpretable for humans (e.g., ra stands for
right ascension), we introduce human-readable aliases, which
spell out the abbreviated table and column names. This facili-
tates both the automatic SQL-to-NL generation as well as the
manual creation of NL/SQL pairs since the domain experts are
aided with more meaningful names.
Let us revisit the SQL-statement query Q2 of our running exam-
ple in Section 2. It is not clear, what attribute s.z is referring to,
since there is no extra information about the column z in table
specobj. However, given the logical alias of s.z, we are able to
see that s.z stands for redshift, which can then be rewritten as
spectroscopic_object.redshift. Using the same transformation on
all tables and columns, we obtain the readable and semantically
meaningful SQL query which facilitates the development of the
corresponding NL questions.
In the next step of the second phase, query templates are filled

with the contents of the database (i.e., table names, column names,

689

and values) using the enhanced schema. To increase the diversity of
the queries in the synthetic dataset, we apply random sampling to
the AST representation of the template. The random sampling only
changes the leaf nodes in the AST, which represent the corresponding
columns, tables, and values. For instance, the projection column
specobjid from table specobj may be changed to column objid from
table neighbors, as shown by Generated AST (1) and Generated SQL
(1) in Figure 1. Another result of the random sampling is represented
by Generated AST (2) and Generated SQL (2). In this case, the table
specobj is still used, but the projection column z, as well as the filter
condition on the column survey, are new.
Algorithm for SQL Query Generation Algorithm 1 details the
step by step process of automatically generating a SQL query using
the AST templates and enhanced schema. We explain the algorithm
with the example shown in Figure 2. In particular, we analyze the
generation of the following SQL query which is also shown in
Figure 1:
SELECT T1. objid FROM neighbors AS T1
WHERE T1. neighbormode = 2

The algorithm starts with extracting leaf nodes from the AST
templates and initializes a new temporary set of empty hash-maps,
including Tables, Columns and Values (see lines 1 to 6).

Each set of Leaf nodes can be represented as a quadruple for a
given attribute (see line 7) which consists of the aggregator function
position, table position, column position and value position. An
example of such a quadruple is shown in Figure 2 (see the right
side of the Root-node indicated as Filter(2)). We will focus on
the leaf nodes surrounded by dotted-lines and green backgrounds.
For instance, Filter(2) refers to the filter with position 2, which
is equivalent to a query with an exact match filter. A(0) refers to
an attribute without an aggregation function. T(0) and C(1) refer
to the table with position 0, i.e. neighbors, column with position
7 without aggregation function, i.e. neighbor_mode. Finally, V(3)
refers to a value with position 3, i.e. the value 2.

This quadruple needs to be unpacked to extract the information
about tables, columns and values as described informally above.
Formally, the extraction of the tables, columns and values using
the enhanced schema is described in lines 8 to 20 of Algorithm
1. If a position of a certain table, column or value is not found
in the keys of the hash map, the respective sampling function
will select a new value within the constraints of the enhanced
schema, e.g., sampleTable() for table sampling (see line 9). Then
the corresponding hashmapwill add the new position-value pair. At
the end of the loop, all hash maps are filled with required position-
value pairs for tables, columns and values.

Finally, the AST is created on the fly and the corresponding SQL
is returned (see lines 21 and 22 of Algorithm 1).

3.3.3 Phase 3: SQL-to-NL Translation Phase. In the third phase of
our pipeline shown in Figure 1, we generate the natural language
questions (NLQs) that correspond to the newly generated SQL
queries. To achieve this, we use GPT-3 9 [6]. We present details on

9Note that we also experimented with DBPal [46] as an alternative but we opted for
a custom pipeline using GPT-3 since the generated natural language questions are
more fluent. However, DBPal can easily be integrated in our pipeline to further extend
ScienceBenchmark with additional training data.

Select

T = Table
C = Column
V = Value

A(0)

Root

T(4) C(32)

Pos. Table
… …
4 specobj
… …

Pos. Column
… …
32 specobj_id
… …
49 subclassPos. Value

0 STARBURST
… …

Legend:
Root = Query Root
A = Type of Attributes / with or without
Aggregate Functions (e.g. COUNT, SUM, and etc.)

Seed AST

Select T(4) C(32)

Filter(2) T(4) C(48) V(0)

Generated AST

Select T(0) C(1)

Filter(2) T(0) C(7) V(0)

Filter(2)

A = V

V(0)A(0)

T(4) C(49)

V(*)

C(*)T(*)C(*)T(*)

Pos. Column
1 obj_id
… …
7 neighbor_mode

Pos. Table
0 neighbors
… …

Pos. Value

… …

3 2

T(0) C(1) T(0) C(7)

V(3)

Extracted AST Template

Select T(*) C(*)

Filter(2) T(*) C(*) V(*)

Database
schema & data

Seed
Template
Generated

Leaf Nodes

Figure 2: Example of extracting & applying query templates
for automatically generating SQL queries as shown in Algo-
rithm 1. The top part shows the abstract syntax tree (AST) of
a specific query. The lower part shows how query templates
are applied for generating the SQL queries based on database
schema and data.

the evaluation of LLMs for generating NL questions given a SQL
statement in Section 4.1.

We fine-tuned GPT-310 on a subset of 468 samples of the Spider
training data for four epochs. This alleviates the need for prompt
engineering. Thus, the input to GPT-3 is a SQL query, and we let
GPT-3 generate 8 natural language question-candidates to increase
the linguistic diversity. Since there is no additional input required
beyond the SQL query (e.g., database schema, extra information
about the DB, DB contents), this approach easily transfers to any
new database without any manual effort or need for extra data.

For the more domain-specific databases, we conduct fine-tuning
on GPT-3 with the manually created seed NL/SQL pairs. Afterwards
we apply the fine-tuned LLMs to translate SQL to NL. As in the

10We use a fine-tuned version of GPT-3 to generate NL questions because fine-tuning
GPT-4 is not available yet https://platform.openai.com/docs/guides/fine-tuning/what-
models-can-be-fine-tuned.

690

Algorithm 1: Generating SQL queries from an AST tem-
plate and the enhanced schema
Input :An AST Template Ast
Input :An enhanced schema of the target database

EnhancedSchema
Output :A new generated SQL Sql

1 begin
2 LeafNodes← ExtractLeafNodes (Ast);
3 Tables← EmptyHashMap;
4 Columns← EmptyHashMap;
5 Values← EmptyHashMap;
6 foreach LeafNode ∈ LeafNodes do
7 AggregatorPosition, TablePosition, ColumnPosition,

ValuePosition← LeafNode ; // as quadruple

8 if ∃TablePosition : (TablePosition, TableValue) ∉ Tables
then

9 TableValue← SampleTable (Tables, EnhancedSchema);
10 Tables.update(TablePosition, TableValue);
11 end
12 if ∃ColumnPosition : (ColumnPosition,ColumnValue) ∉

Columns then
13 ColumnValue← SampleColumn (AggregatorPosition,

TableValue, Columns, EnhancedSchema);
14 Columns.𝑢𝑝𝑑𝑎𝑡𝑒 (ColumnPosition, ColumnValue) ;
15 end
16 if ∃ValuePosition : (ValuePosition,ValueValue) ∉ Values

then
17 ValueValue← SampleValue (TableValue,

ColumnValue);
18 Values.𝑢𝑝𝑑𝑎𝑡𝑒 (ValuePosition,ValueValue) ;
19 end
20 end
21 Sql← Transform (Ast , Tables, Columns, Values) ;

// Generated AST created on-the-fly

22 return Sql;
23 end

Spider dataset, to obtain a larger variety of questions and achieve
higher linguistic diversity, we generate several candidate NLQs
per query. This approach also approximates the Spider dataset
where each SQL query has multiple semantically equivalent natural
language questions.

3.3.4 Phase 4: Discriminative Phase. The last phase of our data
generation pipeline, as shown in Figure 1, selects the one or two best
NL questions from the set of candidates generated in the previous
phase.

Consider, for instance, the following two NL questions depicted
in Figure 1: "Find the center object which has nearest neighbor with
neighbor mode 2" and "Find the center id of nearest neighbor object
with neighbor mode smaller than 2". The discriminative phase aims
at deciding, which one better represents the SQL query "SELECT

T1.objid FROM neighbors AS T1 WHERE T1.neighbormode = 2".
Inspired by the centroid-based text summarization method [35],

the best NLQs are those, whose word embeddings are closest to
the centroid of all sample questions. To find these points, we select
the candidates that are closest to the centroid, i.e. the geometric

median of all embeddings. For this, we apply SentenceBERT [33], to
generate a set of sentence embeddings for all candidates: 𝑥𝑖 ∈ R𝑚
and 1 ≤ 𝑖 ≤ 𝑛. The best NLQs are computed by taking the geometric
median and selecting the closest embedding.

Consider a set 𝑋 ∈ R𝑚 which contains n embeddings of gen-
erated NL questions, 𝑥1, 𝑥2, ..., 𝑥𝑛 , where𝑚 denotes the dimension
of embedding space. By the definition of geometric median, we
can find the closest embedding 𝑦 ∈ 𝑋 with respect to the centroid
vector in the space by solving the optimization problem formalized
as 𝑓 (𝑦):

𝑓 (𝑦) = argmax
𝑦∈R𝑚

𝑛∑︁
𝑖=1

𝐶𝑜𝑠𝑆𝑖𝑚 (𝑥𝑖 , 𝑦) (1)

That is, finding the candidate NLQ whose embedding has the high-
est cosine similarity to the centroid. We perform this process 𝑘
times on the set 𝑋 \ {𝑦} until we have the top 𝑘 natural language
candidates. We choose one or two best NLQs, i.e., 𝑘 ∈ {1, 2}.

3.4 ScienceBenchmark Statistics
Table 2 gives an overview of our new benchmark dataset called
ScienceBenchmark which we constructed using the automatic data
generation pipeline shown in Figure 1. Note that for each of the
three domain-specific databases described in Section 3.1, we present
two manually created subsets (Seed and Dev) and one automati-
cally generated subset (Synth). The manually created Seed and Dev
queries were created by a team of 20 domain and SQL experts as de-
scribed in Section 3.2, while the Synth queries we produced by our
data generation pipeline described in Section 3.3. The Seed queries
are used for the automatic data generation pipeline to generate
synthetic data (Synth), while the Dev queries are used to evaluate
NL-to-SQL systems.

Table 2 also shows the query difficulty (a metric defined by
the creators of Spider [51]) distribution for each dataset. For the
CORDIS and SDSS datasets, we note that the complexity of the
queries is higher than the queries in the Spider Dev Set. For On-
coMX, the complexity of the queries is closer to that of the distri-
bution of the Spider dataset. This is due to the database featuring
recursive traversals of complex hierarchies of anatomical entities
which is outside of the scope of current NL-to-SQL systems. Note
that the complexities of the queries generated by our pipeline are
generally lower than the complexity of the manually created train-
ing data, or the complexity of the Spider dataset. The reason is
that with more complex templates the generated queries tend to be
semantically incorrect.

4 EVALUATING THE QUALITY OF
SCIENCEBENCHMARK

In this section, we evaluate the quality of our new benchmark
dataset ScienceBenchmark. The main objective is to answer the
following two research questions:

• Research question 1: How well do current methods work for
translating SQL to NL?

• Research question 2: What is the quality of the automatically
generated synthetic data, i.e. NL/SQL pairs?

691

Table 2: New benchmark dataset called ScienceBenchmark which we constructed using the automatic training data generation
pipeline shown in Figure 1. The size and complexity of the queries in the 3 databases of ScienceBenchmark are according to the
Spider [51] hardness classification scheme. The datasets Seed and Dev are manually generated by domain and SQL experts. The
datasets Synth are automatically generated. In the bottom part we also include the equivalent statistics of the Spider dataset for
comparison.

Dataset Easy Medium Hard Extra Hard Total

CORDIS Seed 4 (4%) 15 (15%) 38 (38%) 43 (43%) 100
CORDIS Synth 726 (55.59%) 494 (37.83%) 66 (5.05%) 20 (1.53%) 1306
CORDIS Dev 25 (25%) 35 (35%) 19 (19%) 21 (21%) 100

SDSS Seed 20 (20%) 54 (54%) 2 (2%) 24 (24%) 100
SDSS Synth 326 (15.82%) 1396 (67.73%) 138 (6.7%) 201 (9.75%) 2061
SDSS Dev 12 (12%) 28 (28%) 20 (20%) 40 (40%) 100

OncoMX Seed 34 (34%) 33 (33%) 19 (19%) 14 (14%) 100
OncoMX Synth 464 (43.57%) 601 (56.43%) 0 (0%) 0 (0%) 1065
OncoMX Dev 21 (21%) 32 (32%) 27 (27%) 20 (20%) 100

Spider Train 1944 (22.45%) 2831 (32.7%) 1758 (20.3%) 2126 (24.55%) 8659
Spider Dev 250 (24.22%) 440 (42.64%) 174 (16.86%) 168 (16.28%) 1032

In order to answers these questions, we first present our evalu-
ation of four different LLMs for translating SQL to NL. The best-
performing LLM will then be used to generate the synthetic data.
Afterwards, we evaluate the correctness of the synthetic data for
each of the three databases of ScienceBenchmark by performing
an expert evaluation.

4.1 Evaluation of LLMs for SQL-to-NL
Translation

This section describes the experiments we performed in order to
decide which LLM to incorporate into our automatic data genera-
tion pipeline. We evaluate the accuracy of each LLM in isolation.
The best LLM is then used in Phase 3 "SQL-to-NL Translation" of
our automatic data generation pipeline shown in Figure 1.

We analyze the performance of four different LLMs, which are
all based on large-scale transformer language models [43]. We use
these LLMs for translating the SQL queries in the Spider Dev set
to natural language. We apply various automated metrics to these
results as well as an expert evaluation.

Large LanguageModels. Wehave chosen the following four LLMs
for our SQL-to-NL translation:

• GPT-2: A fine-tuned GPT-2-large model [31] with an auto-
regressive decoder-only large pre-trained language model,
which is well suited for text generation.
• GPT-3-zero: A zero-shot GPT-3 Davinci model [6], which

is a larger version of the GPT-2 model pre-trained on even
more data.

• GPT-3: A fine-tuned GPT-3 Davinci model, which is GPT-3
fine-tuned on NL/SQL pairs.

• T5: A fine-tuned T5-base model [32], which is an encoder-
decoder-based pre-trained language model developed for
machine translation.

We fine-tuned a GPT-2-large language model on the Spider train-
ing data for 20 epochs. The GPT-3 model was fine-tuned on a subset

Table 3: Evaluation of various LLMs for generating natural
language questions given a SQL query. The goal is to vali-
date Phase 3 "SQL-to-NL Translation" of our automatic data
generation pipeline shown in Figure 1. The evaluation is per-
formed on the Spider Dev set using two different automatic
performance metrics (SacreBLEU and SententeceBERT) as
well as human experts.

Metric GPT-2 GPT-3-zero GPT-3 T5

SacreBLEU 33.85 30.36 38.55 31.79
SentenceBERT 0.840 0.870 0.888 0.864
Human Expert 0.629 0.765 0.731 0.645

of Spider for 4 epochs11. For this, we sampled three NL/SQL-pairs
from each database in the Spider training set at random, which
resulted in a training set of 468 NL/SQL-pairs. We used a simple
prompt to trigger the translation from SQL to NL. The T5-base
model was fine-tuned on the entire Spider dataset, for 10 epochs.

Metrics. Each LLM is evaluated using the SacreBLEU score [28,
30] and the SentenceBERT score [33] automatic metrics. SacreBLEU
is an instantiation of the BLEU score which measures the word
overlap between two sentences. However, word overlap metrics do
not capture semantically equivalent natural language questions.

For instance, consider the following two sentences (1) "Find all
Starburst galaxies?" and (2) "Return all the spectroscopically observed
galaxies that lie in the starburst class.". Both statements describe the
same information request, however, they have a low BLEU score.
Thus, we also use SentenceBERT, which measures the semantic
similarity of sentences.

Additionally, since automated evaluations are not perfectly reli-
able, we also ran an expert evaluation where 7 SQL experts rated
the generated questions. For each expert, we randomly sampled 25

11We decided to use only a subset of Spider to keep the costs low, since fine-tuning on
all Spider data for 20 epochs would cost 600$ (we only payed 10$). Note that 4 epochs
is the default value provided by GPT-3 for fine-tuning.

692

SQL queries from the Spider Dev set and let each of the four LLMs
generate the corresponding natural language question. Thus, each
expert annotated 100 SQL/synthetic question-pairs. In other words,
for each LLM, we have 175 expert annotations.

4.1.1 Results for Spider Datasets. The evaluation results on the
Spider Dev Set using various metrics are summarized in Table 3.
The first two lines show the scores given by the automatic metrics
SacreBLEU and SentenceBERT. The third line shows the evaluation
by human experts. This metric shows the ratio of samples that
human experts regarded as being correct.

We observe that the GPT-3 model outperforms the other mod-
els by a large margin in terms of SacreBLEU score. The average
SentenceBERT similarity is also highest for the fine-tuned version
of GPT-3. The human expert evaluation shows that both versions
of GPT-3 achieve significantly higher scores than GPT-2 and T5.
However, the difference between the two versions of GPT-3 are not
significant, i.e. 76.5% vs. 73.1%. Thus, we opt to use the fine-tuned
version of GPT-3 since it achieved the highest scores on ScareBLEU
and SentenceBERT.

4.1.2 Results for ScienceBenchmark. Wealso ran expert evaluations
for each of the three domains contained in the ScienceBenchmark.
For this, we translated 100 manually generated SQL queries (called
dev queries) to NL questions using a GPT-3 model, which was
fine-tuned on the specific database. For each database, we used
the manually created training queries and the same 468 Spider
queries used above to fine-tune GPT-3. We then performed the
expert evaluation for the domain-specific GPT-3 models.

For the CORDIS dataset, GPT-3 correctly translates SQL to NL in
82% of cases, for OncoMX 73%. For SDSS, the ratio is lower at 53%,
which is mostly due to the higher complexity of the dev queries.

Answer to Research Question 1:We have shown that LLMs
are powerful enough to generate good NL questions for a variety
of domains, be it common knowledge or highly domain-specific.

4.2 Evaluation of Synthetic Datasets (Silver
Standard) of ScienceBenchmark

We now analyze the quality of the synthetic datasets (or silver stan-
dard) for the novel domains of our ScienceBenchmark via an expert
evaluation. Note that in the previous section we only evaluated
the translation of SQL to NL for the manually written Dev Set SQL
queries. Now we evaluate the synthetic datasets of CORDIS, SDSS
and OncoMX, where both the SQL queries and the corresponding NL
questions are automatically generated using the pipeline in Figure 1.

Distantly labelled data, also known as "silver standard" data
has been used as a resource for reliably training neural networks
when manually labelled data or "gold standard" data is scarce or
unavailable. As shown in previous work on distant supervision
[34], training data does not have to be perfect and neural networks
can learn from noisy or partially incorrect training data.

Many training data generation systems such as DBPal [46] are
based on the principal that silver standard data (possibly noisy data),
is sufficient for training. Although DBPal provides an end-to-end
systems analysis to show the effectiveness of the generated data,
they do not provide any manual analysis of the quality or accuracy
of the training data itself.

Table 4: Manual evaluation of 100 randomly chosen synthetic
NL/SQL-pairs of ScienceBenchmark. The results show both
the semantic equivalence of the automatically generated NL
questions with their corresponding, automatically generated
SQL queries and the semantic meaningfulness of these auto-
matically generated SQL queries.

Dataset Semantic Semantic Equivalence
Meaningfulness of SQL of NL and SQL

CORDIS 97% 83%
SDSS 97% 76%
OncoMX 91% 75%

Because the SQL queries in our data generation pipeline are
generated using rule-based algorithms and filtered with heuris-
tics crafted by domain experts to ensure the domain relevance of
the SQL queries, we evaluate the semantic equivalence of the NL
questions generated in our pipeline i.e. we check if the NL ques-
tion matches the meaning of the SQL query. First, we randomly
sampled 100 NL/SQL-pairs from each synthetic dataset (CORDIS,
SDSS, OncoMx) proportionally in line with the Spider hardness
classification schema. Afterwards, we manually evaluated the NL
questions against the matching SQL query.

Table 4 shows the results of our manual evaluation of the syn-
thetic NL/SQL pairs. First, we analyzed the semantic meaningfulness
of the generated SQL queries (see second column of Table 4). For
instance, a query that applies an aggregation over numeric data
values is considered meaningful, while applying an aggregation
over string values is not. Our results demonstrate that we generated
meaningful queries in 91 to 97% of the cases in all three datasets.

We also analyzed the semantic equivalence of the generated NL
question and the respective generated SQL query. The results show
that in 75 to 83% of the cases we observe a semantic equivalence.

In summary, the synthetic queries are automatically generated
and can be considered silver standard data. Previous experiments
have shown that (even noisy) silver standard data outperform cu-
rated datasets (see [16]). These silver standard data can even be
false. Hence, we apply the same approach and do not filter out any
query.

Answer to Research Question 2: This analysis demonstrates
that the quality of the synthetically generated or "silver standard"
data for the three novel domains of ScienceBenchmark is high.More-
over, as we will show in Section 5.3, using the synthetic datasets for
training also significantly improves the performance of NL-to-SQL
systems evaluated on ScienceBenchmark.

5 BASELINE EXPERIMENTS: USING
SCIENCEBENCHMARK TO EVALUATE
NL-TO-SQL SYSTEMS

In this section, we perform baseline experiments to evaluate the
performance of popular NL-to-SQL systems on ScienceBenchmark.
The main research questions we want to address are as follows:

• Research question 3: How well do current NL-to-SQL systems
perform on complex, real-world scientific databases?

693

• Research question 4: How much can NL-to-SQL systems be
improved using data augmentation when little to no domain-
specific training data is available?

5.1 NL-to-SQL Systems
To test the performance of NL-to-SQL systems on ScienceBenchmark,
we selected state-of-the-art fine-tuned and few-shot systems. The
fine-tuned systems meet the following criteria: 1) Access to the
open source model and the pre-trained model weights; 2) Access
to bidirectional conversion code between SQL and intermediate
representations (IR) of the systems, if any IR is used in the model12.

Therefore, for our experiments with fine-tuned models we use
three different state-of-the-art NL-to-SQL systems: the only two
completely open source state-of-the-art NL-to-SQL systems from
the Spider leaderboard13 (T5-Large, SmBoP) and an industrial-
strength NL-to-SQL system, which has recently been extended
to handle complex, real-world datasets (ValueNet).
• T5-Large [32] (with Picard [38] for constrained decoding). T5-

Large is a languagemodel, which is pre-trained on large amounts
of text data14.
• SmBoP [36] (with GraPPa [50]). SmBoP implements a novel

autoregressive bottom-up decoder, enhanced with the GraPPa,
which is a language model specifically pre-trained for the NL-
to-SQL task.
• ValueNet [7]. ValueNet is based on the IRNet [13] architecture
and extends the SemQL grammar by adding values to the gen-
erated queries to make them executable. To handle the SDSS
astrophysics data, we extended the SemQL grammar for Val-
ueNet to incorporate mathematical operations 15.
To evaluate the difficulty of ScienceBenchmark, we also include

baseline experiments with two LLMs, GPT-3.5 from OpenAI and
for comparison a newly released open source model, LLaMA2 70B
from Meta16.

For reproducibility reasons, we provide both the source code of
our automatic training data generation approach and the datasets
of ScienceBenchmark17.

5.2 Experimental Setup
For each of the 3 databases of ScienceBenchmark, we ran four ex-
periments:
• Spider Train (Zero-Shot): Here, we train the NL-to-SQL systems

on the Spider Train Set, and run the evaluation on the Dev Set of
the respective new domain, i.e. on the evaluation set of CORDIS,
SDSS and OncoMX.

12Since the SQL-to-NatSQL [11] conversion code is not available, as announced by the
author in their code repository,https://github.com/ygan/NatSQL, all systems integrated
with NatSQL have been excluded from our experiments.
13https://yale-lily.github.io/spider
14Due to compilation issues with Picard’s decoder architecture implemented in Haskell,
we only used T5-Large without the Picard version of the code provided by Picard.
15We only incorporated the mathematical operations for ValueNet as it was straight-
forward to extend SemQL. The T5 architecture handles mathematical operations
out-of-the-box as we use the unconstrained version.
16https://ai.meta.com/llama/
17The source code, the datasets, the hyperparameters, and the model-specific ex-
periments’ hardware specifications for ScienceBenchmark can be found at: https:
//sciencebenchmark.cloudlab.zhaw.ch/

• Spider Train + Domain Train: We train the NL-to-SQL systems on
a mix of the Spider Train Set and the manually created training
data, e.g. CORDIS Train. The goal is to understand how much
impact manually generated, domain-specific training queries
have on the performance of the NL-to-SQL system.
• Spider Train + Domain Synth: We train the systems on a mix
of Spider training data and the synthetic data, which we auto-
matically generated using our training data generation pipeline.
For instance, CORDIS Synth is the automatically generated (syn-
thetic) training data for the domain research policy making.
• Spider Train + Domain Train + Synth: Here, we train the systems

on a mix of the Spider training data, manually created training
data, and synthetic data from each domain. This shows the
impact of using both synthetic and manually curated data.
The left-most column of Table 5 shows all possible settings, i.e.,

the four experiments per Dev Set (database), which is shown in
the second column. The evaluation is performed using Execution
Accuracy, which is the metric used by the Spider benchmark. In
other words, we measure in how many cases the result sets of the
predicted SQL queries correspond to the result sets of the Dev Set
SQL queries.

5.3 Experimental Results
Table 5 is divided in two parts: The left most parts show the ex-
ecution accuracy for NL-to-SQL systems with fine tuning using
ScienceBenchmark (for the experiments described in the previous
section). The right most parts of the table show results for LLMs
with prompt-engineering.

Let us first discuss the results of the NL-to-SQL systems that we
fine-tuned, i.e., ValueNet, T5-Large and SmBoP. Our results show
that ScienceBenchmark poses a challenge to current NL-to-SQL ap-
proaches. As expected, the performance of the various systems is
very low in the zero-shot setting, as the domains covered in Spider
are hardly transferable to the novel complex domains. The results
also highlight that simply augmenting the number of training sam-
ples does not enable the models to achieve high accuracy (80% and
above) on the benchmark. In fact, adding the manual and synthetic
training data of our domains, increases the scores by a large margin,
however, the absolute scores remain low. For instance, the score
increases by 23% on CORDIS when training ValueNet on all the data.
For T5-Large, data augmentation improves the zero-shot case by
45% resulting in a maximum execution accuracy of 56%. However,
with an execution accuracy of 56% the task is far from solved. This
trend is noticeable for each of the three novel domains. We also
observe that the particularities of each domain create a different de-
gree of difficulty to each system as witnessed by the different scores
each system achieves in each domain with zero-shot learning.

Let us now analyze the performance of LLMs where we use
zero-shot and few-shot prompting as shown in the right part of
Table 5. In general, we can observe that GPT-3.5 performs better
than LLaMA2, since the former has significantly more parameters
(175B vs. 70B). Moreover, we can see that GPT 3.5 performs best on
CORDIS reaching a maximum execution accuracy of 60%. However,
for SDSS, the dataset with the most numerical values and mathe-
matical operators, the highest execution accuracy reaches only 33%.

694

https://github.com/ygan/NatSQL
https://yale-lily.github.io/spider
https://sciencebenchmark.cloudlab.zhaw.ch/
https://sciencebenchmark.cloudlab.zhaw.ch/

Table 5: Putting ScienceBenchmark into practice: Evaluation of NL-to-SQL systems without and with data augmentation (left
most parts of the table). Execution Accuracy is evaluated on the Dev Set of three novel datasets. The numbers in brackets refer
to the relative improvements with respect to the zero-shot baseline. The right most parts of the table show results for LLMs
with prompt-engineering.

Dataset Fine-Tuning with NL-to-SQL Systems Zero & Few-shot-Prompting with LLMs

Train Set Dev Set ValueNet T5-Large w/o Picard SmBoP+GraPPa Prompting* GPT-3.5 (175B) LLaMA2 (70B)

Spider Train (Zero-Shot) CORDIS 0.12 0.16 0.16 Zero-shot 0.57 0.06
Spider Train + Seed CORDIS CORDIS 0.20 (+0.08) 0.20 (+0.04) 0.20 (+0.04) One-shot 0.60 0.22
Spider Train + Synth CORDIS CORDIS 0.31 (+0.19) 0.30 (+0.14) 0.23 (+0.07) - - -
Spider Train + Seed CORDIS + Synth CORDIS CORDIS 0.35 (+0.23) 0.29 (+0.13) 0.21 (+0.05) Five-shot 0.57 0.18

Spider Train (Zero-Shot) SDSS 0.08 0.05 0.06 Zero-shot 0.29 0
Spider Train + Seed SDSS SDSS 0.11 (+0.03) 0.06 (+0.01) 0.10 (+0.04) One-shot 0.32 0.06
Spider Train + Synth SDSS SDSS 0.18 (+0.10) 0.12 (+0.07) 0.13 (+0.07) - - -
Spider Train + Seed SDSS + Synth SDSS SDSS 0.21 (+0.13) 0.15 (+0.10) 0.15 (+0.09) Five-shot 0.33 0.03

Spider Train (Zero-Shot) OncoMx 0.13 0.11 0.19 Zero-shot 0.50 0.11
Spider Train + Seed OncoMx OncoMx 0.44 (+0.31) 0.35 (+0.24) 0.32 (+0.13) One-shot 0.51 0.21
Spider Train + Synth OncoMx OncoMx 0.23 (+0.10) 0.27 (+0.14) 0.20 (+0.01) - - -
Spider Train + Seed OncoMx + Synth OncoMx OncoMx 0.49 (+0.36) 0.56 (+0.45) 0.35 (+0.16) Five-shot 0.55 0.32

Again, the particularities of each domain play a significant role in
determining the performance of each model.

In summary, these results demonstrate that ScienceBenchmark
is a highly challenging dataset and thus confirms that translating
NL-to-SQL is far from being solved.

Answer to Research Question 3: The results show that the cur-
rent state-of-the-art approaches, which work exceptionally well on
Spider, do not perform well on real-world databases. Thus, we pose
this dataset as a challenge, which requires more than an increase
in training data size. It requires novel approaches that are able to
handle all the new complexities introduced by these domains.

Answer to Research Question 4: The results also show that for
each domain and NL-to-SQL system, the combination of seed and
synthetic queries yields an improvement over the zero-shot baseline
of up to 45%. The magnitude of the improvements varies depending
on the NL-to-SQL system and domain.

5.4 Discussion of the Experiments
Our experiments show that our automated data augmentation
pipeline creates training data which is well suited for bootstrapping
novel domains. The magnitude of the improvement depends on the
NL-to-SQL systems themselves. However, for all highly domain-
specific databases, the performance of the systems trained with
synthetic data improved. This is useful when adapting an NL-to-
SQL system trained on Spider data for a novel and more complex
domain for a database with more tables, columns and rows.

The results highlight the necessity to work on real-world ap-
plications. In the zero-shot setting all the state-of-the-art systems
achieved poor performance. For instance, in the SDSS domain none
of the systems achieved an accuracy of even 10%. Even with the
fine-tuning data, the performance of the systems are far from the
70% achieved in the Spider setting. Thus, the results show the need
of a more complex and real-world oriented benchmark.

Furthermore, our results reveal that the usage of the synthetic
data is useful to increase the performance of fine-tuned models. In
most cases using the large set of synthetic data alone yields better
results than using the small manual dataset for training. The mix
of both the synthetic and the manual data yield the best results.

Thus, ScienceBenchmark is highly challenging as it requires
to adapt most systems to domain-specific knowledge and to
handle complex, real-world scientific databases – which are
in stark contrast to the relatively simple databases of the
Spider benchmark.

6 RELATEDWORK
In this section, we review the related work regarding data augmen-
tation and NL-to-SQL benchmarks.

6.1 Data Augmentation
Due to the need of deep learning models for high volumes of train-
ing examples, combined with sparsity of training data and the cost
of manually creating it, a lot of research has been done in the area
of data augmentation.

Previous work on data augmentation for NL-to-SQL systems
mainly focuses on generating SQL queries that run over a single
table rather than over multiple tables of a complete relational data-
base. One such example is DBPal [46], a template-based approach
for generating NL/SQL-pairs, which uses manually-crafted tem-
plates of NL/SQL-pairs, which can be filled with the names of tables
and columns in order to create training instances. Additionally, the
authors propose NL augmentations such as paraphrasing, random
deletions and synonym substitutions. However this approach might
create "robotic" NLQs whose quality might be reduced by the pro-
posed augmentations, since designing rules that can consistently
work across all possible questions is notoriously hard.

Another approach [12] creates SQL queries by using simple SQL
templates and sampling column names and values from a given table
and then applies Recurrent Neural Networks (RNNs) to generate
the equivalent NLQ. Some key differences to our work are that:
(i) we can generate augmented data without completely relying
on manually created NL/SQL-pairs or templates and that (ii) our
NLQ augmentation step is much more robust and can generate
completely new and realistic NL utterances.

Another approach [27] uses Metamorphic Rules (MRs) to create
equivalent alterations of NLQs and database schemas from given

695

NL/SQL/DB-triplets. Even though this work mainly focuses on pro-
viding a more robust evaluation framework for NL-to-SQL systems,
it also proposes a methodology for data augmentation that takes
advantage of the MRs used for the evaluation. More specifically,
the authors present a set of MRs that can be used to create an al-
teration of either the NLQ or the database schema, while keeping
them semantically equivalent to the original. However, the pro-
posed NLQ transformations are relatively simple (i.e., synonym
substitution and prefix insertion/deletion/substitution) compared
to our approach for generating novel and fluent NLQs. Additionally,
compared to our work, this approach is not capable of augmenting
the SQL part of the training examples and requires a hand-crafted
set of NL/SQL-pairs in order to work for a new database.

The more recent work presented in [47] is one of the few pro-
posed architectures that can generate examples that cover multiple
tables of a relational database. This work generates SQL queries
by creating templates using an abstract syntax tree grammar and
filling them with attributes from the database. The NLQs are then
generated using a hierarchical, RNN-based neural model, that recur-
sively generates explanations for all parts of the queries and then
concatenates them. Our work differs from the previous because we
consider much more complex and robust SQL-to-NL models that
can create NLQs with much higher variety and fluency, since they
are generated by taking the entire SQL query into account.

Finally, our work differs from all previous work in the sense that
instead of simply increasing the performance on a generic dataset
like Spider [52], we focus on adapting an NL-to-SQL system on
new, unseen and complex databases, with little to no manual effort.

6.2 NL-to-SQL Benchmarks
Progress in NL-to-SQL systems was systematically impeded by the
lack of a common, large-scale benchmark dataset. The introduction
of WikiSQL [53] and Spider [51], has drastically changed the land-
scape, allowing for the introduction of deep learning techniques
to tackle the problem, as well as providing a common benchmark
for comparing different approaches. These two benchmark datasets
remain the main point of reference for NL-to-SQL systems despite
much criticism (e.g., WikiSQL has low complexity and multiple
errors [17] and Spider databases are not realistic [14]).

NL-to-SQL benchmarks can be classified into: domain-specific
and cross-domain datasets. Domain-specific datasets focus on a
single database from a specific domain, such as: movies and televi-
sion series (IMDb [49]), restaurant and shop reviews (Yelp [49] and
Restaurants [29, 42]), academic research (Scholar [19] and Academic
[23]), financial data (Advising [9] and FIBEN [39]), medical data
(MIMICSQL [45]), and questions and answers from Stack Exchange
(SEDE [15]).

In contrast, cross-domain datasets contain multiple databases,
taken from different domains. Spider-DK [10] and Spider-Syn [10],
are extensions of Spider which explore system capabilities at cross-
domain generalization and synonym robustness. KaggleDBQA [22]
is another cross-domain dataset, although of much smaller size, that
has been extracted from Kaggle and features databases taken from
the Web. Another cross-domain dataset is OTTA [8], which uses
an inverse annotation procedure, whereby automatically generated

queries, which are visually displayed are annotated with natural
language questions by non-SQL experts.

Themain difference of our novel benchmark ScienceBench-
mark, compared to all aforementioned datasets, is twofold: (i) it
contains scientific domains that use domain-specific vocabulary,
and (ii) it was developed by scientists and domain-experts over the
course of a multi-year research project including partners from
both academia and industry. Hence, the deep interactions between
scientists and domain experts ensured high quality examples that
reflect queries posed by actual users of these complex, scientific
databases.

7 CONCLUSIONS
In this work, we introduce the novel benchmark ScienceBench-
mark for evaluating NL-to-SQL systems as well as LLMs against
complex, real-world scientific databases. We also show the end-to-
end pipeline for automatically generating large synthetic training
datasets for highly domain-specific databases, which are more com-
plex both in terms of the subject matter and in terms of the number
of tables, columns and rows than the databases used in the Spider
benchmark.

Our experimental results show that ScienceBenchmark
poses a significant challenge to currentNL-to-SQL approaches
as well as LLMs. While these systems work exceptionally well
on the Spider dataset which has relatively simple databases, they
do not perform well on complex, real-world scientific databases.
Thus, we argue that ScienceBenchmark can serve as a new base-
line benchmark for evaluating NL-to-SQL systems as well
as LLMs and thus sets the stage for novel research efforts
to handle the complexities introduced by these real-world
challenges.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No 863410.We also thank Jonathan Fürst and FarhadNooralahzadeh
for their contributions in evaluating large language models.

REFERENCES
[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A Comparative

Survey of Recent Natural Language Interfaces for Databases. The VLDB Journal
28, 5 (oct 2019), 793–819. https://doi.org/10.1007/s00778-019-00567-8

[2] Sihem Amer-Yahia, Georgia Koutrika, Martin Braschler, Diego Calvanese, Davide
Lanti, Hendrik Lücke-Tieke, Alessandro Mosca, Tarcisio Mendes de Farias, Dim-
itris Papadopoulos, Yogendra Patil, et al. 2022. INODE: building an end-to-end
data exploration system in practice. ACM SIGMOD Record 50, 4 (2022), 23–29.

[3] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. 1995. Natural language
interfaces to databases – an introduction. Natural Language Engineering 1, 1
(1995), 29–81. https://doi.org/10.1017/S135132490000005X

[4] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natural
language interfaces to databases - an introduction. Nat. Lang. Eng. 1, 1 (1995),
29–81. https://doi.org/10.1017/S135132490000005X

[5] Lukas Blunschi, Claudio Jossen, Donald Kossman, Magdalini Mori, and Kurt
Stockinger. 2012. Soda: Generating sql for business users. arXiv preprint
arXiv:1207.0134 (2012).

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Ursin Brunner and Kurt Stockinger. 2021. Valuenet: A natural language-to-sql
system that learns from database information. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2177–2182.

696

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1017/S135132490000005X
https://doi.org/10.1017/S135132490000005X

[8] Jan Deriu, Katsiaryna Mlynchyk, Philippe Schläpfer, Alvaro Rodrigo, Dirk von
Grünigen, Nicolas Kaiser, Kurt Stockinger, Eneko Agirre, and Mark Cieliebak.
2020. A Methodology for Creating Question Answering Corpora Using Inverse
Data Annotation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Online,
897–911. https://doi.org/10.18653/v1/2020.acl-main.84

[9] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improv-
ing Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Melbourne, Australia, 351–360.
https://doi.org/10.18653/v1/P18-1033

[10] Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward,
Jinxia Xie, and Pengsheng Huang. 2021. Towards Robustness of Text-to-SQL
Models against Synonym Substitution. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, Online, 2505–2515. https://doi.org/10.18653/v1/
2021.acl-long.195

[11] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John
Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL Easier to Infer from
Natural Language Specifications. In Findings of the Association for Computational
Linguistics: EMNLP 2021. Association for Computational Linguistics, Punta Cana,
Dominican Republic, 2030–2042. https://doi.org/10.18653/v1/2021.findings-
emnlp.174

[12] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao,
Peng Chen, and Ming Zhou. 2018. Question Generation from SQL Queries
Improves Neural Semantic Parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Brussels, Belgium, 1597–1607. https://doi.org/10.18653/v1/D18-1188

[13] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Florence, Italy, 4524–4535. https://doi.org/10.18653/v1/P19-1444

[14] Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-SQL in the Wild: A
Naturally-Occurring Dataset Based on Stack Exchange Data. https://doi.org/10.
48550/ARXIV.2106.05006

[15] Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-SQL in the Wild:
A Naturally-Occurring Dataset Based on Stack Exchange Data. In Proceedings
of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog
2021). Association for Computational Linguistics, Online, 77–87. https://doi.org/
10.18653/v1/2021.nlp4prog-1.9

[16] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022. Unnatural
instructions: Tuning language models with (almost) no human labor. arXiv
preprint arXiv:2212.09689 (2022).

[17] Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. 2019. A
Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualiza-
tion. https://doi.org/10.48550/ARXIV.1902.01069

[18] Radu Cristian Alexandru Iacob, Florin Brad, Elena-Simona Apostol, Ciprian-
Octavian Truică, Ionel Alexandru Hosu, and Traian Rebedea. 2020. Neural Ap-
proaches for Natural Language Interfaces to Databases: A Survey. In Proceedings
of the 28th International Conference on Computational Linguistics. International
Committee on Computational Linguistics, Barcelona, Spain (Online), 381–395.
https://doi.org/10.18653/v1/2020.coling-main.34

[19] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feedback.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers, Regina Barzilay and Min-Yen Kan (Eds.). Association for Computational
Linguistics, 963–973.

[20] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A survey on
deep learning approaches for text-to-SQL. The VLDB Journal (2023). https:
//doi.org/10.1007/s00778-022-00776-8

[21] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. Kag-
gleDBQA: Realistic Evaluation of Text-to-SQL Parsers. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Association for Computational Linguistics, Online, 2261–2273.
https://doi.org/10.18653/v1/2021.acl-long.176

[22] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. Kag-
gleDBQA: Realistic Evaluation of Text-to-SQL Parsers. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Association for Computational Linguistics, Online, 2261–2273.
https://doi.org/10.18653/v1/2021.acl-long.176

[23] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. PVLDB 8, 1 (Sept. 2014), 73–84.

[24] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: an interactive natural language in-
terface for querying relational databases. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 709–712.

[25] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. RESDSQL: Decou-
pling Schema Linking and Skeleton Parsing for Text-to-SQL. In Thirty-Seventh
AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.).
AAAI Press, 13067–13075. https://doi.org/10.1609/aaai.v37i11.26535

[26] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Chenhao Ma, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023. Can LLM Already
Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded
Text-to-SQLs. arXiv:2305.03111 [cs.CL]

[27] Pingchuan Ma and Shuai Wang. 2021. MT-Teql: Evaluating and Augmenting
Neural NLIDB on Real-World Linguistic and Schema Variations. Proc. VLDB
Endow. 15, 3 (nov 2021), 569–582. https://doi.org/10.14778/3494124.3494139

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https:
//doi.org/10.3115/1073083.1073135

[29] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a The-
ory of Natural Language Interfaces to Databases. In Proceedings of the 8th
International Conference on Intelligent User Interfaces (Miami, Florida, USA)
(IUI ’03). Association for Computing Machinery, New York, NY, USA, 149–157.
https://doi.org/10.1145/604045.604070

[30] Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings
of the Third Conference on Machine Translation: Research Papers. Association
for Computational Linguistics, Brussels, Belgium, 186–191. https://doi.org/10.
18653/v1/W18-6319

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. "LanguageModels are UnsupervisedMultitask Learners". (2019).

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[33] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[34] Roland Roller and Mark Stevenson. 2015. Making the most of limited training
data using distant supervision. In Proceedings of BioNLP 15. Association for
Computational Linguistics, Beijing, China, 12–20. https://doi.org/10.18653/v1/
W15-3802

[35] Gaetano Rossiello, Pierpaolo Basile, and Giovanni Semeraro. 2017. Centroid-
based Text Summarization through Compositionality of Word Embeddings. In
Proceedings of the MultiLing 2017Workshop on Summarization and Summary Eval-
uation Across Source Types and Genres. Association for Computational Linguistics,
Valencia, Spain, 12–21. https://doi.org/10.18653/v1/W17-1003

[36] Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-up
Semantic Parsing. In Proceedings of the 5th Workshop on Structured Prediction
for NLP (SPNLP 2021). Association for Computational Linguistics, Online, 12–21.
https://doi.org/10.18653/v1/2021.spnlp-1.2

[37] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Özcan. 2016. ATHENA: an ontology-driven
system for natural language querying over relational data stores. Proceedings of
the VLDB Endowment 9, 12 (2016), 1209–1220.

[38] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. arXiv:2109.05093 [cs.CL]

[39] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: Natural Language Querying for Complex Nested
SQL Queries. Proc. VLDB Endow. 13, 11 (2020), 2747–2759.

[40] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. 2008. Précis: from un-
structured keywords as queries to structured databases as answers. The VLDB
Journal 17, 1 (2008), 117–149.

[41] Alexander S Szalay, Jim Gray, Ani R Thakar, Peter Z Kunszt, Tanu Malik, Jordan
Raddick, Christopher Stoughton, and Jan vandenBerg. 2002. The SDSS skyserver:
public access to the sloan digital sky server data. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 570–581.

[42] Lappoon R. Tang and Raymond J. Mooney. 2000. Automated Construction of
Database Interfaces: Intergrating Statistical and Relational Learning for Seman-
tic Parsing. In 2000 Joint SIGDAT Conference on Empirical Methods in Natural

697

https://doi.org/10.18653/v1/2020.acl-main.84
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/D18-1188
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.48550/ARXIV.2106.05006
https://doi.org/10.48550/ARXIV.2106.05006
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.48550/ARXIV.1902.01069
https://doi.org/10.18653/v1/2020.coling-main.34
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.1609/aaai.v37i11.26535
https://arxiv.org/abs/2305.03111
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/604045.604070
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/W15-3802
https://doi.org/10.18653/v1/W15-3802
https://doi.org/10.18653/v1/W17-1003
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://arxiv.org/abs/2109.05093

Language Processing and Very Large Corpora. Association for Computational Lin-
guistics, Hong Kong, China, 133–141. https://doi.org/10.3115/1117794.1117811

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[44] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. arXiv:1911.04942 [cs.CL]

[45] Ping Wang, Tian Shi, and Chandan K Reddy. 2020. Text-to-SQL Generation for
Question Answering on Electronic Medical Records. In Proceedings of The Web
Conference 2020. 350–361.

[46] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,
Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Stef-
fen Eger, Ugur Cetintemel, and Carsten Binnig. 2020. DBPal: A Fully Plug-
gable NL2SQL Training Pipeline. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2347–2361.
https://doi.org/10.1145/3318464.3380589

[47] KunWu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang,
and HaifengWang. 2021. Data Augmentation with Hierarchical SQL-to-Question
Generation for Cross-domain Text-to-SQL Parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Online and Punta Cana, Dominican Republic,
8974–8983. https://doi.org/10.18653/v1/2021.emnlp-main.707

[48] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Struc-
tured Queries From Natural Language Without Reinforcement Learning.
arXiv:1711.04436 [cs.CL]

[49] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
Query Synthesis from Natural Language. PACMPL, Article 63 (2017), 26 pages.

[50] Tao Yu, Chien-ShengWu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang,
Dragomir Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa: Grammar-
Augmented Pre-Training for Table Semantic Parsing. In International Conference
on Learning Representations. https://arxiv.org/abs/2009.13845

[51] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Brussels, Belgium, 3911–3921. https://doi.org/10.
18653/v1/D18-1425

[52] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]

[53] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generat-
ing Structured Queries from Natural Language using Reinforcement Learning.
arXiv:1709.00103 [cs.CL]

698

https://doi.org/10.3115/1117794.1117811
https://arxiv.org/abs/1911.04942
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.18653/v1/2021.emnlp-main.707
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103

	Abstract
	1 Introduction
	2 The Need for a New Benchmark - Motivating Example: Astrophysics
	3 Science Benchmark: A New Benchmark for Complex Databases
	3.1 Complex, Real-World Databases
	3.2 Manual Data Collection
	3.3 Automatic NL-to-SQL Training Data Generation
	3.4 ScienceBenchmark Statistics

	4 Evaluating the Quality of ScienceBenchmark
	4.1 Evaluation of blackLLMs for SQL-to-NL Translation
	4.2 Evaluation of Synthetic Datasets (Silver Standard) of ScienceBenchmark

	5 Baseline Experiments: Using ScienceBenchmark to Evaluate NL-to-SQL Systems
	5.1 NL-to-SQL Systems
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Discussion of the Experiments

	6 Related Work
	6.1 Data Augmentation
	6.2 NL-to-SQL Benchmarks

	7 Conclusions
	Acknowledgments
	References

