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ABSTRACT
With the exponential growth of video data, there is a pressing need
for e�cient video analysis technology. Modern query frameworks
aim to accelerate queries by reducing the frequency of calls to ex-
pensive deep neural networks, which often overlook the overhead
associated with video decoding and retrieval. Furthermore, video
storage frameworks optimize video retrieval through video parti-
tion or caching, often relying on prior information about the query
workload. To further accelerate queries, this study introduces a
novel tile-based video management framework, called TVM, which
leverages the semantic information embedded in videos, without
being dependent on speci�c query workloads. By constructing a
tile-based semantic index for newly ingested videos, TVM e�ec-
tively reduces the size of decoded and processed video data. To
achieve this, TVM introduces an optimal index construction algo-
rithm that utilizes cost function and pseudo-labels. Additionally,
the framework proposes a query-driven tile parallel decoding algo-
rithm and resource caching algorithms, which further expedite the
retrieval of video frames. Experimental results demonstrate that
TVM can signi�cantly enhance the throughput of various query
tasks, achieving a notable speedup of more than 5.6⇥.
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1 INTRODUCTION
With the widespread use of video capture devices, the amount of
video data has been increasing rapidly. Meanwhile, the emergence
of deep learning and computer vision has facilitated the develop-
ment of applications for video analysis [24, 35, 50, 51, 56]. As a
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Figure 1: Optimal layout minimizes retrieval cost.

result, e�cient video data analysis has gained signi�cant attention
from both industry and academia. To address the challenges posed
by the massive video data and analysis demands, recent studies
focus on e�cient query processing [7, 24–26] and storage manage-
ment [16, 18, 54], respectively. To accelerate the querying process,
these works [7, 24–26] primarily concentrate on minimizing the
number of invocations to computationally expensive object detec-
tion neural networks (NN). They achieve this through techniques
such as model specialization and model cascading. However, these
methods often assume that all video frames have already been de-
coded and stored inmemory, thereby ignoring the overhead of video
decoding. On the other hand, the storage frameworks [16, 18, 54]
partition or cache videos based on the access frequency of video
data in the query workloads, aiming to enhance data retrieval speed.

We introduce TVM, a tile-based video management framework,
designed to e�ciently accelerate various downstream queries. TVM
leverages the inherent semantic information in videos to minimize
the scale of data retrieved and processed, without being reliant
on speci�c workloads. Speci�cally, we adopt a tile-based encoding
and decoding scheme [16] and extract semantic information during
video ingestion to construct an index that guides video encoding
while accelerating the queries. Since TVM optimizes queries from
a di�erent perspective, it can be integrated with existing query
and storage frameworks. However, the establishment of such a
framework presents two main challenges.

C1. The construction of the semantic index is challenging. The
extraction of embedded semantics from videos often necessitates
the utilization of deep neural networks (DNNs), such as object detec-
tion DNNs. However, these DNNs are computationally expensive
and contradict the optimization goals of query frameworks [7, 24–
26]. Additionally, even after extracting the semantic information,
the design of an optimal semantic index structure remains a crucial
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Figure 2: Pipelines of TVM. (A) Semantic index establishment.
(B) Semantic index based query acceleration.

consideration. In TVM, the fundamental structure used to organize
the semantic index and video data is the tile layout. Figure 1 shows
the layouts with various levels of granularity based on the object
position. The �ne-grained layout consists of a large number of tiles,
which leads to higher costs due to the initialization and destruction
of decoders. On the other hand, the coarse-grained layout has a tile
that encompasses a large number of pixels, resulting in slower de-
coding speeds. Therefore, �nding the optimal layout that minimizes
the overall costs becomes a signi�cant challenge. C2. E�ectively
harnessing the semantic index and the structural features of tiles
for query acceleration presents a complex challenge. Leveraging
semantic indexing to �lter out irrelevant pixels and reduce the size
of decoding and inference operations can signi�cantly enhance the
performance of diverse queries. However, due to the varied nature
of queries, their respective work�ows for accessing tiles can di�er
signi�cantly. In light of this, the design of query-driven acceleration
algorithms becomes valuable and challenging.

To address C1, TVM employs lightweight algorithms to quickly
extract semantic information from the video frames and generates
an optimal layout by considering a cost function that accounts for
various factors in tile-based video retrieval. Speci�cally, as depicted
in Figure 2, the semantic index comprises a hierarchical tile layout
and embedding vectors [27] corresponding to each tile within dif-
ferent tile sequences. This index is updated whenever new video
segments are ingested, thereby guiding video encoding processes
(Section 3). When a query is executed, TVM utilize the semantic in-
dex to identify the tiles that are related to the query and selectively
decode and process those speci�c tiles (Section 4.1).

To tackle C2, we introduce a query-driven tile parallel decoding
algorithm (Section 4.2) and several resource caching algorithms
(Section 4.3). These components are speci�cally designed to lever-
age the access work�ow of the queries, ensuring that the decoding
process is tailored to the query’s requirements.

In summary, our work makes the following contributions:

(1) We propose TVM, a novel tile-based video management
framework that o�ers joint optimization of decoding and
detection processes for diverse queries.

(2) We design a tile-based semantic index that e�ciently accel-
erates queries without depending on query workloads.

(3) We develop a series of techniques to leverage the properties
of tiles, thereby further enhancing the decoding process.

We evaluate the performance of TVM on various large-scale
datasets using multiple query methods [7, 24, 26]. The experimental
results demonstrate that TVM can signi�cantly accelerate down-
stream query methods by more than 5.6⇥.

2 BACKGROUND
2.1 Video Encoding and Decoding
To reduce video storage overhead, video encoding methods [14, 44,
48] transform video frames from the pixel domain into a compressed
bitstream. These methods divide the video into Groups of Pictures
(GOPs), with each GOP starting with a keyframe (I-frame). The
keyframes can be decoded independently, making them temporal
random access points in video decoding. However, decoding other
frames within the GOP requires dependence on previously decoded
frames, typically forward-predicted frames (P-frames). Therefore,
decoding a P-frame necessitates sequential decoding from the near-
est keyframe. As keyframes require more bits for encoding, larger
GOPs with larger keyframe intervals generally consume less bitrate
but increase the delay for video random access.

The HEVC [48] decoder supports partitioning all frames in a
GOP into non-overlapping tile sequences arranged in # rows and
" columns. Each tile sequence is encoded individually, allowing for
parallel decoding. Additionally, the use of tiles introduces spatial
random access points for video decoding. The tiles belonging to
the keyframes can be decoded independently, denoted as keytiles,
while the decoding of other tiles needs to rely on the previously
decoded tiles in the tile sequence. We describe the tile layout ! in
the form of a matrix, which indicates how the tiles are divided.

! =

2666664

)1,1 . . . )1,"
...

. . .
...

)# ,1 . . . )# ,"

3777775
, (1)

where )8, 9 = (G 9 ,~8 ,F 9 ,⌘8 ) represents the o�set and size of the
tile at the 8-th row 9-th column. Speci�cally, G1 = ~1 = 0, while
G 9 =

Õ9�1
;=1 F; and ~8 =

Õ8�1
;=1 ⌘; for 9 > 1 and 8 > 1, respectively.

The change of layout occurs only between di�erent GOPs, meaning
the layout remains the same for all frameswithin a GOP. By utilizing
homomorphic stitching [16, 19], all tile sequences can be packaged
into a single container, enabling replay without re-encoding.

Certain methods [16, 18, 54] optimize the encoding format to ac-
celerate video decoding. For instance, VSS [18] and TASM [16] cache
or partition video based on the frequency of access to video data in
the query workloads. Speci�cally, VSS caches copies with di�erent
coding formats for video segments to minimize the time required
for video transcoding. TASM stores videos as non-overlapping tiles
and adjusts the tile layout based on historical queries to enhance
future sub-frame selection, which retrieves previously identi�ed
objects. VStore [54] proposes a backward derivation of con�gura-
tion, modifying the �delity and coding knobs for the video copies.
These methods can leverage the query workloads to continually
update their con�guration. However, it is di�cult for these meth-
ods to e�ectively utilize the semantic information within the video
content before any query is executed. For example, TASM [16] only
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provides a �ne-grained initial tile layout around Regions of Interest
(ROIs) when new video segments are ingested.

2.2 Analytic Query Processing
Video analytic queries aim to extract semantic information, such
as object labels and locations from video frames. These queries
typically involve decoding video frames into the pixel domain to
analyze their content. Although some methods [6, 32, 33, 45] can
extract semantic information from the encoded video stream with-
out decoding, their accuracy is signi�cantly lower compared to
mainstream algorithms that operate in the pixel domain. Other
studies [4, 5, 34, 46, 58] rely on hand-crafted features for extracting
semantic information from videos, whose ability to deal with com-
plex problems is limited by prior knowledge. Deep learning tech-
niques have greatly advanced object detection, and object detection
DNNs [12, 20, 23, 31, 41, 42, 49, 53, 57] have emerged as the domi-
nant visual content analyzers for video analytic queries. Commonly
studied query types include: Select query returns frames that sat-
isfy a given query condition; Limit query imposes constraints on
the quantity of returned records, e.g., selecting �ve frames with cars;
Aggregation query returns statistical information for a speci�c
query object; Track query retrieves tracks that meet the speci�ed
query condition, e.g., selecting car tracks that turn right.

Numerous methods [1, 2, 7, 11, 15, 24–27, 37] have been proposed
to optimize the performance of various queries, with most of them
focusing solely on the querying stage. These methods typically
employ faster algorithms to generate prior information for guiding
the selective processing of video frames by expensive DNNs. This
approach eliminates the requirement for blind enumeration of all
frames, resulting in a signi�cant acceleration of the queries. For
example, BlazeIt [24] trains specialized NNs to score each frame as
a prediction of the DNN processing result, signi�cantly speeding up
the execution of aggregation queries and limit queries. SUPG [26]
uses proxy scores to perform approximate select queries while guar-
anteeing statistical accuracy. TASTI [27] employs a pre-trained
lightweight NN to embed video frames into a low-dimensional
vector space, addressing the limitations of model specialization
methods [24–26] that require separate NNs for di�erent queries.
MIRIS [7] eliminates redundant video information while avoiding
uncertainty through NN-guided recursive interval sampling. These
methods often assume that the video has already been decoded and
cached in memory. However, with the decreasing cost of surveil-
lance equipment, the number of cameras and their resolutions have
signi�cantly increased, which makes the assumption often unten-
able in reality. For instance, a single camera capturing 720p video
at 30 frames per second (fps) generates over 20GB of video streams
per day [54]. Storing all frames in the pixel domain and keeping
them in memory would require terabytes (TB) of storage.

3 SEMANTIC INDEX ESTABLISHMENT
The semantic index comprises a tile layout, where each tile se-
quence that contains ROIs corresponds to a sub-layout and a set of
embedding vectors corresponding to the tiles within it. As shown
in the pipeline A in Figure 2, TVM generates the semantic index
for each newly ingested GOP. The pipeline of indexing contains
5 steps from A1 to A5. A1, a lightweight background subtraction

algorithm [3, 10, 13, 21, 36, 47, 55, 59, 60] is employed to generate
ROIs, which are a series of bounding boxes without labels, provid-
ing approximate location and size information of the objects. These
algorithms are computationally inexpensive and can be executed
on smart cameras. A2, to �lter out irrelevant pixels, an initial tile
layout is generated speci�cally around the ROIs. A3 & A4, the op-
timal layout, which strikes a balance between decoding cost and
decoder instantiation overhead, is determined by semantic-based
layout adjustment algorithms (Section 3.3). A5, the input frames
are partitioned into the tile sequences based on the optimal layout,
and each tile in the ROI-contained tile sequence will be embedded
into a low-dimensional vector to extract the semantic information
(Section 3.2). Meanwhile, to exclude irrelevant pixels from being
input to the DNN, the initial layout and the optimal layout are
combined to form a hierarchical layout (Section 3.4). Ultimately,
the tile sequences are encoded as independent video streams (Sec-
tion 3.5). It is worth mentioning that TVM organizes the index with
the hierarchical schema, but uses the optimal layout of the outer
layer to govern the encoding and decoding of tiles, while using the
sub-layout of the inner layer to optimize DNN inferring, separately.

3.1 Preliminary De�nitions
In this section, we �rst introduce the symbols used in our discussion.
To avoid controversy, we use tile region to represent the position
and size information of the tile, while using tile for the divided sub-
frame in the following sections. )8, 9 denotes the 8-th row and 9-th
column tile region in the layout. For the convenience of expression,
it is also used to represent the tile sequence corresponding to the
tile region. The GOP size is denoted as 6, which is equal to the
length of the tile sequences. Additionally, ) C8, 9 speci�es a tile in
the C-th frame among the whole video. The tile layout based on
ROIs, consisting of # rows and " columns, is represented as ↵.
Speci�cally, compared to the trivial tile layout !, ↵ additionally
records whether each tile contains an ROI.

↵ =

2666664

)1,1, A1,1 . . . )1," , A1,"
...

. . .
...

)# ,1, A# ,1 . . . )# ," , A# ,"

3777775
, (2)

where A8, 9 is a Boolean variable indicates if )8, 9 contains any ROI.
TVM collects all ROIs within a GOP and utilizes them to generate

the initial tile layout. Due to the limitations of the HEVC [48] codec,
which does not support hierarchical layouts, a grid with dimensions
# ⇥" is generated to ensure that each ROI falls within a unique
grid. The initial layout is created tightly around the boundaries
of the ROIs, aiming to assign di�erent ROIs to di�erent grids and
achieve a �ne-grained layout [16].

Figure 1 illustrates di�erent layouts with varying granularity,
and they have di�erent retrieval costs. The retrieval cost of a tile is
denoted as⇠ (#?8G ) = K ⇥#?8G +B, which is positively correlated
with the number of pixels #?8G . Assuming the GOP contains = dif-
ferent object labels that are scattered among tiles$ = {>1,>2, ...,>=},
the cost of each class is de�ned as �↵ (>; ), which represents the
time required to retrieve all tiles containing objects with label >; .

�↵ (>; ) =
’

⇠ (⌘8 ⇥F 9 ), if )8, 9 ◆ >;

= K ⇥ # C>C0;
?8G +< ⇥ B,

(3)
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where # C>C0;
?8G and< denote the total pixels and the number of tile

regions containing >; , respectively. Without loss of generality, the
cost function �↵ ($) is de�ned as the weighted average sampling
time across all classes.

�↵ ($) =
=’
;=1

W; · �↵ (>; ),
=’
;=1

W; = 1, (4)

where W; represents the weight associated with class >; , which
can be derived from the query workloads. Thus, ↵0 is a better
layout than ↵, if �↵0 ($) < �↵ ($). It should be noted that the
�ne-grained layout contains many tile regions, leading to high
decoder initialization and release overhead. Intuitively, the< in
Equation (3) will increase. On the other hand, the coarse-grained
layout consists of only one tile region but contains a large number
of pixels, i.e., the # C>C0;

?8G will be huge, leading to high retrieval cost.
The objective of TVM is to �nd an optimal layout that minimizes
the cost function �↵ ($), thereby reducing the retrieval overhead
considering both the instantiation and decoding overheads.

3.2 Embedding Generation
It has been extensively studied that the feature vectors produced
by the hidden layer of image classi�cation NNs trained on large-
scale datasets, e.g., ImageNet [17], can e�ectively represent the
semantic information of an image [27]. These NNs e�ciently non-
linearly transform images and map them into low-dimensional
feature spaces (R=), often referred to as embedding NNs. We fol-
low TASTI [27] to �ne-tune the embedding NN, which allows it
to capture semantic similarities and di�erences more comprehen-
sively. TVM employs the embedded NN in two stages. First, the
embedding NN is harnessed to generate per-sequence embeddings.
These embeddings are pivotal for clustering tile regions, a pro-
cess that subsequently facilitates the creation of pseudo-labels (Fig-
ure 2-A3). Additionally, TVM creates per-tile embedding for each
ROI-contained tile when indexing (Figure 2-A5). From the gen-
erated embedding vectors, a subset is selected as representative
embeddings that have the maximum Euclidean distance between
them, indicating signi�cant semantic di�erences. TVM maintains
a record of the closest-: representative embeddings to each em-
bedding, along with their respective distances. In Section 4.1, we
will describe how the cached information is utilized to calculate
the proxy score during the propagation process [27].

3.3 Optimal Layout
To determine the optimal layout using the cost function �↵ ($), it
is necessary to de�ne the retrieval cost ⇠ (#?8G ). Since the video
query frameworks [7, 25, 26] often reduce computing overhead
through sampling, which involves random access to video frames,
the retrieval cost⇠ (#?8G ) should be modeled as the cost of random
access. Another key challenge is that the label set $ is not known
until the object detection DNN is called. However, it can be observed
that the speci�c meaning of the labels in Equation (4) is not crucial.
Therefore, an approximation of the label set $ can be obtained by
constructing pseudo-labels.

Tile random access. Frame random access refers to fetching
frames in an order di�erent from their encoded sequence. As illus-
trated in Figure 3a, when the video decoder searches for a speci�c

IP
PPP

P
I P

!!"#$!"
!%""&!%""&!'(') !*"+",%"

Decoder

!%""&!%""& !'(')

!%""&
!!"#$!"
!*"+",%"

(a) Tile random access (b) Random access costs

Figure 3: The decoder performs random access decoding.

frame, it locates the nearest I-frame preceding the target frame and
then decodes frames sequentially until the desired one is reached.
The frames between the I-frame and the target frame are the depen-
dent frames. The process of randomly accessing tiles is consistent
with the frame random access. Speci�cally, The overhead associated
with accessing the C-th tile in a tile sequence includes decoder ini-
tialization cost ⇠8=8C , dependent tiles decoding cost (C � 1) ⇥⇠B44: ,
target tile decoding cost ⇠342>34 , and decoder release cost ⇠A4;40B4 .
The experiment demonstrates that any tile within the tile sequence
is equally likely to be retrieved (Section 5.4). Therefore, on average,
the decoder needs to decode C = 6/2 tiles. The average sampling
cost for a tile is modeled as the retrieval cost ⇠ (#?8G ).

⇠ (#?8G ) = ⇠8=8C + (
6

2
� 1) ⇥⇠B44: +⇠342>34 +⇠A4;40B4 ,

⇠8=8C = :8=8C ⇥ #pix + 18=8C ,

⇠B44: = :B44: ⇥ #pix + 1B44: ,

⇠342>34 = :342>34 ⇥ #pix + 1342>34 ,

⇠A4;40B4 = :A4;40B4 ⇥ #pix + 1A4;40B4 ,

(5)

where the linear coe�cients are dependent on the decoder and
hardware con�guration, and determined during initialization, the
K and B equals the linear combination of them. Speci�cally, ⇠8=8C
includes the time required for the decoder to allocate memory space
and preserve the CUDA context for GPU decoders, while ⇠A4;40B4
includes the time to restore the CUDA context and release the
memory. The di�erence between ⇠B44: and ⇠342>34 is that ⇠B44:
only includes the time to decode the bitstream into frames with
raw color formats, e.g., YUV or NV12 color formats, while ⇠342>34
additionally contains the time to convert the image into RGB color
format and further package it into the required data format, e.g.,
array or tensor. As depicted in Figure 3b, ⇠8=8C and ⇠A4;40B4 are
signi�cant for the tile decoding and therefore cannot be neglected.

Pseudo-label Generation. Lines 1-8 in Algorithm 1 outline
the process of constructing pseudo-labels based on semantic in-
formation. Speci�cally, for each ROI-contained tile sequence )8, 9 ,
the tile that contains the largest ROI area is called a representa-
tive tile and is converted into the embedding 48, 9 . Consequently,  
embedding vectors are created, where  represents the number of
ROI-contained tile regions in a layout. By computing the cosine
similarity between embeddings, the tile regions can be clustered
at a speci�ed similarity threshold \sim. To organize the clusters,
the union-�nd data structure % is utilized, where each element % [8]
in it corresponds to a parent node of the 8-th tile region. Once the
clustering is performed, the tile regions with the same parent are
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Algorithm 1: Index Construction
Input: Layout ↵, embeddings ⇢ = [48,9 |if A8,9 ], threshold \sim
Output: Optimal layout ↵⇤

1 %  [1, 2, ..., |⇢ | ] // Union-find structure, �parents� list

// Cluster representative tiles with similar semantics

2 foreach 4 [8 ] 2 ⇢ do
3 foreach 4 [ 9 ] 2 ⇢ � 4 [8 ] do
4 if CosSimilarity(4 [8 ], 4 [ 9 ] ) > \sim then
5 ?8  FindParent(8, % ),
6 ? 9  FindParent( 9, % ),
7 % [?8 ]  ? 9 ; // Cluster in the same sub-tree

8 $̂  ToPseudoLabels(% )
// Choose the layout with minimum cost

9 ↵⇤, 2⇤  ↵, �↵ ($̂ )

10 foreach ↵0 2 Spanning(↵) do // Up to 2# +"�2 layouts
11 2  �↵0 ($̂ )

12 if 2 < 2⇤ then
13 ↵⇤, 2⇤  ↵0, 2

14 Return ↵⇤

considered to have the same pseudo-label, and therefore the % can
be converted into $̂ to approximate the real label set $ .

Weight Generation. In the case of unknown workload, TVM
simply set W1 = W2 = . . . = W= = 1

= , where = = |$̂ |. TVM will
accumulate proxy scores corresponding to representative embed-
dings after each query is executed, and calculate weights when
new video is ingested. Speci�cally, for the 9-th query, the 8-th rep-
resentative embedding is initially converted into proxy score B 98 ,
which serves as a metric for assessing the relevance of the current
tile to the query (Section 4.1). For each representative embedding,
TVM maintains a variable that accumulates the normalized proxy
score E8 =

Õ
9 (B

9
8 /
Õ
8 B

9
8 ). Therefore, after establishing the pseudo-

label, we obtain the closest-: representative embeddings for the
embedding 4; corresponding to the parent node ?; and calculate
the weight as Equation (6).

W; =
4 Ê;Õ=
8=1 4

Ê8
, Ê; =

:’
80=1

E80 ·
V � 380

U
, (6)

where 380 is the distance between 4; and the 80-th closest representa-
tive embedding, V =

Õ:
80=1 380 and U =

Õ:
80=1 (V � 380 ). Equation (6)

assigns a larger weight to the content that is frequently queried,
leading to a layout with lower �↵ (>̂; ) during index construction.

Index Construction. The key process of building the semantic
index is to obtain the optimal tile layout. As shown in Figure 4,
a row or column in the layout that does not contain any ROIs is
referred to as non-ROI. In an ROI-based �ne-grained layout, it is
evident that rows or columns containing ROIs cannot be further
divided, and subdividing the non-ROI rows or columns does not im-
pact performance. Furthermore, resizing rows or columns without
merging them leads to performance degradation. This is because
the only possible adjustment is to expand the rows or columns
containing ROIs while compressing the non-ROI ones, which in-
troduces more irrelevant pixels into the tiles that need to be re-
trieved without reducing the number of tiles. Similarly, merging an

4×4 Source Layout 2×2 Spanning Layout

spanningROI-contained
tiles

$!

$!
$!

irrelevant
pixels$"

$"
Non-ROI column

Non-ROI row

Figure 4: Spanning layout generation.

ROI-contained row/column with a non-ROI row/column adversely
a�ects performance. Therefore, the optimized layout must be one
of the spanning layouts, which involves merging adjacent rows and
columns in the initial �ne-grained layout. Moreover, both ends of
the merged rows/columns must be ROI-contained rows/columns.

Algorithm 1 presents the overall procedure for constructing the
optimal layout. By utilizing the pseudo-label $̂ and the cost func-
tion �↵0 ($̂), the cost of all spanning layouts generated from the
initial layout can be computed. Speci�cally, the pseudo-label of a
tile region after merging is the union of the pseudo-labels of the
tile regions before merging. For example, merging two tile regions
with pseudo-labels {>1} and {>2} respectively, will generate a new
one with the pseudo-labels of {>1,>2}. Ultimately, the layout ↵⇤
with the lowest cost 2⇤ is selected as the output optimal layout.
Take Figure 4 as an example, TVM �rst creates an embedding for
each ROI-contained tile region, i.e.,)2,1,)4,3 and)4,4. Using the em-
beddings ⇢ = [42,1, 44,3, 44,4], TVM cluster the tile regions resulting
in % = [1, 1, 3], which means )4,3 has similar semantic with )2,1
but di�erent with )4,4, leading to pseudo-labels $̂ = {>1,>2}. Next,
TVM generates a 2 ⇥ 2 spanning layout ↵0 by removing 2 vertical
and 2 horizontal dividers from the initial layout. Through the cost
function �↵0 ($̂), TVM calculates and records the cost of the layout,
and evaluates the next spanning layout.

E�cient Index Construction Procedure. For a given layout
with # rows and " columns, it can be generated by cutting a
rectangle with # � 1 horizontal and" � 1 vertical dividers. Gen-
erating a spanning layout involves removing some of the dividers,
resulting in up to 2#�1 possible combinations of rows and 2"�1
possible combinations of columns. Therefore, the time complexity
of traversing all spanning layouts is approximately O(2#+"

).
It is worth noting that if the rows (columns) of the layout are

determined, searching for the best combination of columns (rows)
becomes an interval dynamic programming (DP) problem. Given
a layout ↵ with �xed rows, the optimal solution for the �rst 8
columns is independent of the subsequent columns. Given an an-
chor 9 < 8 , keep the optimal solution of the �rst 9 columns and
merge columns from 9 + 1 up to 8 to form a candidate solution.
The optimal solution must belong to the set of candidate solutions.
Therefore, the goal is to �nd the optimal anchor 9 , which can be
expressed using the following DP recurrence relation:

3? [8] = min
1 9<8

(�↵[:,1:8 ] ($̂),3? [ 9] + �↵[:, 9+1:8 ] ($̂)), (7)

where 3? [8] and 3? [ 9] are the minimum cost of the �rst 8 and
9 columns, respectively, and �↵[:, 9+1:8 ] ($̂) represents the cost of
the merged column. The optimal column layout can be obtained
through a double loop, resulting in a complexity of O("2

) for the
column dimension, and the total complexity is O(2# · "2

). By
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executing the DP algorithm on the larger dimension, the overall
complexity can be controlled at O(2min(# ," )

·max (# ,")
2
).

However, in cases where both # and " are large, a greedy al-
gorithm is proposed to reduce the time complexity to O( 3

) and
still yield an optimal layout in most scenarios. Speci�cally, the
algorithm selects a pair of ROI-contained tile regions, )81, 91 and
)82, 92 , from the current layout, and merges all the rows and columns
between the tiles to generate the spanning layout. Subsequently, it
chooses the least cost layout among all spanning layouts. The tile
regions are recursively merged until merging any pairs no longer
reduces the cost. Considering the existence of non-ROI rows and
columns, we have the range max ( #�12 , "�12 )    # · " . In
most cases, the ROI-contained tile regions are sparsely distributed,
making the greedy algorithm an e�ective approach to accelerate
the adjustment. In summary, TVM employs di�erent strategies de-
pending on the complexity of the layout. In most cases, it utilizes
the DP algorithm. When both # and" are large, TVM resorts to
the greedy algorithm, enabling a more e�cient indexing process.

3.4 Hierarchical Layout
Only the decoder aspect is taken into consideration during the
search process for the optimal layout, without accounting for the
object detection DNNs utilized by the query. The reason behind
this is that di�erent query tasks may employ di�erent DNNs, and
optimizing the tile layout for a speci�c DNN would render it un-
suitable for others. To enhance the inference performance of DNNs,
a hierarchical layout is generated by combining the initial layout
with the optimal layout. The tile regions present in the initial layout
form sub-layouts within the tile regions of the optimal layout. For
instance, as shown in Figure 2,)1,2 corresponds to a 2⇥2 sub-layout,
where only 2 sub-tiles contain the ROIs. Again, the optimal layout
is employed for video encoding and decoding purposes, while the
sub-layout is utilized to optimize DNN inference (Section 4.1).

3.5 Tile-based Video Storage
The incoming video frames are divided based on the speci�ed opti-
mal layout, and the tile sequences are encoded into video bitstreams.
Furthermore, all tile sequences belonging to the same GOP are or-
ganized in a common folder. When processing a given input video
stream, users have the option to determine the bitrate, which refers
to the number of bits consumed to encode the frames within one
second. TVM ensures that storing the tile sequences does not re-
quire additional space by allocating the bitrate for each tile based on
the proportion of pixels it contains compared to the original untiled
video frame. The Constant Bit Rate (CBR) strategy is employed to
control the encoding process.

4 SEMANTIC INDEX BASED ACCELERATION
As shown in the pipeline B in Figure 2, the semantic index can be
used to accelerate the query processing and combined with the
existing works. The pipeline contains 5 steps from B1 to B5. B1,
TVM derives proxy score [24, 26, 27] from the embeddings in the
semantic index using a user-de�ned scoring function. The process
of generating the proxy score is referred to as Propagation [27]. B2,
the query frameworks [7, 24–26] selectively sample the tiles based
on the proxy score. B3, given a ternary coordinate (C, 8, 9) from

the query frameworks, the ) C8, 9 is retrieved from the tile sequence
)8, 9 belonging to the bC/6c-th GOP. B4, the sub-layout associated
with )8, 9 is also retrieved from the semantic index. A similar layout
adjustment algorithm is then employed to search for the optimal
sub-layout for DNN inference. B5, by cropping the tiles based on
the sub-layout, sub-tiles can be generated, e�ectively reducing the
number of irrelevant pixels that are fed into the DNN. This process
contributes to further accelerating the inference stage. The index
o�ers a query-independent acceleration for TVM, enabling the
reduction of pixel scale for processing (Section 4.1). Further, by
analyzing the sampling work�ows of di�erent queries, we provide
query-driven acceleration methods in Section 4.2 and Section 4.3.

4.1 Query-independent Acceleration
As mentioned in Section 2.2, several methods [24–26] utilize proxy
scores as a means to approximate the outputs of resource-intensive
DNNs. We adopt the approach introduced in TASTI [27] to generate
proxy scores for each tile. Speci�cally, all tiles associated with rep-
resentative embeddings are detected by the object detection DNNs.
The user or query frameworks provide a scoring function that speci-
�es how to quantify the output of object detection DNNs into proxy
scores. For instance, a scoring function for a vehicle aggregation
query would take records from the DNNs as input and produce
the count of vehicles as output. Furthermore, the proxy scores are
propagated from the tiles corresponding to the representative em-
beddings to all ROI-contained tiles. To generate the proxy score
B from an embedding, the distances to its closest-: representative
embeddings 38 are normalized to weight the proxy scores B8 of the
corresponding representative embeddings, B =

Õ:
8=0 B8 ·

V�38
U , where

V =
Õ:
8=1 38 and U =

Õ:
8=1 (V � 38 ) are the normalization parame-

ters, converting distance38 into weight. Moreover, non-score-based
query frameworks [2, 7, 30, 37] can also bene�t from acceleration
using embeddings by de�ning a default scoring function that out-
puts the number of query objects. If the query framework samples
a frame, all zero-scored tiles within the frame can be pruned and
the rest of the tiles are considered to contain the query target.

By using the optimal layout and embeddings, TVM e�ectively
excludes irrelevant pixels from the decoding process. However,
since the optimal decoding layout may introduce more irrelevant
pixels compared to the initial layout, this can have a negative impact
on DNN inference. To address this issue, a hierarchical layout is
introduced in Section 3.4. This approach divides a tile with the
sub-layout, which records the sub-tile regions that are irrelevant.
Speci�cally, when a tile is decoded, its corresponding sub-layout
is retrieved. Similarly, like the optimal layouts for decoding, there
are also optimal sub-layouts for a speci�ed DNN that minimize the
inference time. Modern object detection DNNs [12, 23, 31, 41, 49]
often allow users to adjust the size of the input image as a trade-o�
between accuracy and throughput. Considering that some models
will limit the minimum and maximum size of the input image, the
inference cost⇠== (#?8G ) can be modeled with a piecewise function,

⇠== (#?8G ) = max (min (:== ⇥ #?8G + 1==, 2" ), 2<), (8)

where :== and 1== are linear coe�cients that depend on the hard-
ware and DNN architecture, 2< and 2" are costs when inference on
frames with the lower and higher size bounds, respectively. These
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Figure 5: Row-wise parallel strategy e�ectively avoids decod-
ing waste for limit query.

coe�cients are �tted by inferring various sizes of all-zero tensors.
To avoid sub-layout adjustments becoming a bottleneck, it is as-
sumed that di�erent sub-tile regions have the same pseudo-label.
Therefore, the cost function �==

↵
of the sub-layout↵ is simpli�ed

as the sum of the costs of all sub-tile regions containing the ROIs.

�==↵ =
’

⇠== (⌘8 ⇥F 9 ) if A8, 9 . (9)

TVM omits the semantic clustering step in the layout adjustment
algorithms (Section 3.3) and instead executes the same spanning
layout searching algorithm, depending on the cost function �==

↵
, to

obtain the optimal sub-layout. Subsequently, as shown in Figure 2,
the ROI-contained sub-areas are cropped from the decoded tiles,
generating sub-tiles. These sub-tiles are then input into the DNN
sequentially, and the results are summarized.

4.2 Query-driven Parallel Tile Decoding
Di�erent queries employ various frame sampling strategies, re-
sulting in di�erent work�ows. For example, BlazeIt [24] performs
uniform random sampling for aggregation queries. When conduct-
ing limit queries, video frames are sorted based on the proxy scores,
and sampling is performed from lower-ranked tiles. SUPG [26] em-
ploys non-uniform random sampling weighted by the proxy scores.
MIRIS [7] employs built-in GNN and RNN to determine whether
to perform supplementary sampling. When deploying these frame-
works on tile sequences, aggregation queries, select queries, and
track queries have no dependencies among di�erent tiles within
a frame. This means that the sampling of the next tile does not
rely on the processing result of the current tile and the sampling
work�ow can be generated in advance (known).

However, there is a dependency between tiles in limit queries,
which makes the work�ow unknown. As shown in the Figure 5, to
conduct limit queries on a tile-based schema, all tiles must be sorted
and organized in a 2-D grid. Each column of elements represents
tiles [)0,)1, ...] belonging to the same video frame 58 , and the frame
order is determined by the sum of the proxy scores of all tiles
within the frame. The red arrow in Figure 5a illustrates an intuitive
serial sampling sequence where sampling is �rst performed by
column until the retrieved tiles meet the query condition, and then
sampling continues from the �rst tile in the next column. Consider
a limit query, Select 4 frames with at least 2 cars. ) 0 of 50 contains 2
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Repeated instantiation

State reset Repeated decoding

Figure 6: Retrieval tiles from rank 1 to 5, displaying the uti-
lized decoders, accessed tiles, and potential ine�ciencies.

cars, therefore meeting the query condition. Subsequently, as the
retrieval work�ow progresses to the next frame 51, both )0 and
)1 contain 1 car each. The work�ow then shifts to the subsequent
frames in a similar manner. The column-wise parallel strategy
directly follows the sampling priority in the serial sampling scheme
to enable parallel decoding. Speci�cally, 18 in Figure 5 represents
the 8-th batch of retrieved tiles. In this approach, many tiles are
decoded but not inferred, e.g., the )1, )2, and )3 in 50, leading to
unnecessary decoding. To address this issue, the row-wise parallel
strategy, shown in Figure 5b, is employed. In this strategy, the grid
is treated as a 2-D queue. When a frame meets the query condition,
the entire column corresponding to that frame is popped out from
the queue. Each time, the �rst ⌫ tiles in the �rst row of the queue
are popped for decoding. Through row-wise parallelism, tiles that
do not require inference are not decoded.

Considering that di�erent query tasks follow distinct retrieval
work�ows, TVM adopts a query-driven parallel decoding schema.
For queries without tile dependencies, TVM conducts parallel de-
coding with a batch size of ⌫ according to the known work�ows.
Furthermore, for limit queries, TVM employs the row-wise parallel
strategy, as it e�ectively avoids decoding unnecessary tiles.

4.3 Query-driven Resource Caching
The retrieval work�ow of certain queries, e.g., the track queries, in-
volves sequential access to video data at speci�c sampling intervals,
and the sampling between intervals exhibits a strong positional
dependence. Treating this type of work�ow as pure random access
without optimization will consume much time to initialize and re-
lease the decoder, as well as repeated frame decoding. Speci�cally,
three types of ine�ciencies can be identi�ed: Repeated instan-
tiation of decoders. When the same tile sequence is accessed
repeatedly, the decoder is constantly created and destroyed. As
depicted in Figure 6, in the case of sequential retrieval of tiles ) 1

2,2,
) 5
1,1, )

5
2,2, )

3
2,2 and )

2
2,2 within the tile sequence, decoder 1 must be

instantiated three times. State reset. When the target tile is a suc-
cessor to the decoded tile in the same tile sequence, the default
implementation still returns the most recent keytile. For instance,
assuming that decoder 1 is not destroyed, when decoding the tile
) 3
2,2, the decoding process starts from ) 0

2,2, discarding the progress
made on ) 1

2,2. Repeated decoding. Similar to the state reset issue,
the default implementation returns to the most recent keytile when
decoding a target tile that is a predecessor of an already decoded tile,
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Table 1: Video Datasets

Dataset Resolution Duration Query objects

night-street 1920 ⇥ 1080 27 hours car, person
amsterdam 1280 ⇥ 720 33 hours car, person, bicycle
archie 3840 ⇥ 2160 33 hours car, person, bicycle
canal 1920 ⇥ 1080 18 hours boat

even though the target tile has been previously decoded. For exam-
ple, When decoding ) 2

2,2, it initiates decoding from ) 0
2,2, despite the

fact that ) 2
2,2 has already been decoded. To address these problems,

several caching optimization strategies can be implemented:
Codec caching. To mitigate the repeated instantiation issue,

decoders that have already been created are cached, and a least
recently used (LRU) algorithm is employed to manage the cache.
When new access occurs, the cache is checked for a decoder associ-
ated with the same physical �le. If the decoder is found, it is fetched
and used for decoding; otherwise, a new one is created. Once the
tile is decoded, the decoder is cached as an object. When the cache
is full, the LRU decoder is removed from the cache and destroyed.
State caching. By caching the decoding states of used decoders,
the problem of state reset can be addressed. During tile access, if
the decoder is accessible in the cache, the current decoding position
is evaluated. When the target tile is a successor to the currently
decoded tile, decoding can continue from the current position with-
out returning to the most recent keytile. Tile caching. In addition
to codec caching, caching the decoded tile can be bene�cial. During
the access, the dependent tiles (predecessors of the target tile) are
also decoded into their original color space, e.g., YUV or NV12. The
raw-format tiles can be cached and quickly converted to widely
used RGB color format and suitable data formats (e.g., tensor) when
accessed. TVM uses the LRU algorithm for tile caching.

5 EVALUATION
We implemented a prototype of TVM in Python. In our implemen-
tation, TVM utilizes FFmpeg [9] with the HEVC [48] codec for
tile encoding. To evaluate TVM, we employ the HEVC decoder
implemented by the Video Processing Framework [39], which is a
Python wrapper of Nvidia Video Codec [38]. The experiments are
conducted on a single node running Ubuntu 20.04, equipped with
an Intel i9-9900KF processor and an Nvidia RTX2080Ti GPU.

We evaluate TVM on videos of various resolutions and content,
as detailed in Table 1. These datasets are commonly used in video
analytics evaluations [15, 24–27, 37] and range in resolution from
720p (HD) to 2160p (4K). Following the approach of TASTI [27],
we employ ResNet-18 [20] to generate 128-dimensional embed-
ding vectors. Additionally, we utilize YOLOv5 [23] as the object
detection DNN. We use Frame to represent our baseline method,
TASTI [27], which builds frame-based semantic embedding on the
untiled videos. To validate the superiority of our semantic index, we
also conducted a comparative analysis of another tile-based video
storage manager, TASM [16].Moreover, we introduced a variant
denoted as TASM+, which incorporates the identical tile parallel
decoding algorithm proposed by TVM. All sequences employ a
GOP size of 30 to ensure low latency for random access.

To demonstrate the e�ectiveness of TVM, we use BlazeIt [24]
for aggregation and limit queries, SUPG [26] for approximate select
queries, and MIRIS [7] for track queries. The objects to be queried
are shown in Table 1. For aggregation queries, we evaluate TVM
by counting the number of objects with a 0.01 error tolerance and a
success probability of 95%. In limit queries, we select 1,000 frames
containing the target object. When evaluating TVM on SUPG, we
set a detection DNN budget of 10,000 and a recall target of 90%. For
track queries, we employ MIRIS to generate the retrieval work�ows
and test the decoding and detection overhead o�ine. The ground
truth of the tracks is obtained using the YOLOv5 [23] frame-by-
frame and DeepSORT [52] tracking algorithm.

We present four types of costs. Propagation/Scoring involves
calculating the proxy score for each frame. Propagation utilizes
the embedding to generate the proxy scores. Since it is indepen-
dent for each frame, we use numba [29] to speed up the process
in parallel. In contrast, scoring directly employs the lightweight
specialized NNs [24–26] for online score generation. In our experi-
ments, we use TRN10 [24] as the specialized NN. Decode includes
the entire cost of retrieving data, including random access during
the query process and sequential access during the scoring process
(TASM and TASM+). Detection represents the time-consuming use
of the object detection DNN to extract objects from the retrieved
video frames. It is noteworthy that the decoding and detection
costs brought about by the propagation process for the tiles corre-
sponding to the representative embeddings (Section 4.1) are also
calculated for a fair comparison. Other encompasses time over-
head apart from propagation, decoding, and detection, e.g., the time
required for post-processing the results obtained from the DNN.

5.1 Query Acceleration
Figure 7 presents a comparison of the time consumption spent by
di�erent methods at each stage. Our method outperforms the base-
line methods across all datasets, achieving a notable speedup of
5.6⇥ compared with the frame-based method. Due to space con-
straints, the query performance for more di�erent query objects is
shown in Table 2. In the following analysis, we will examine the
experimental results based on di�erent types of queries.

Aggregation query. According to Figure 7a, TVM achieves a
maximum speedup of more than 5.6⇥ on the archie dataset com-
pared with the frame-based method, saving about 82% of both
decoding and detection time. When querying on the night-street
and canal dataset, TVM saves 27% and 64% of the decoding time,
and 40% and 69% of the detection time, respectively. For the am-
sterdam dataset, although TVM shows a slight advantage in the
decoding stage, it maintains a high speedup ratio in the detection
stage, resulting in a 54% overhead reduction. This indicates that
even though TVM’s support for low-resolution videos may not be
as strong as for high-resolution ones, it still provides signi�cant
acceleration for queries. In contrast, TASM [16] uses the specialized
NNs online to score each tile, leading to high decoding and scoring
overhead. Meanwhile, TASM+ reduces the decoding overhead by
32% on average through parallel decoding, proving the e�ectiveness
and transferability of our approach.

Limit query. TVM outperforms the baseline methods, achiev-
ing an average speedup of up to 1.7⇥ across di�erent datasets, as
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Figure 7: Time consumption of queries against car and boat objects for di�erent methods.

Table 2: Time consumption (s) of queries (Q.) against person and bicycle objects for di�erent methods (M.).

M.
Q. night-street person amsterdam person amsterdam bicycle archie person archie bicycle

agg. limit select track agg. limit select track agg. limit select track agg. limit select track agg. limit select track
Frame 1029 184 400 297 4574 198 424 724 888 196 421 442 3298 663 1410 2269 1739 663 1405 2521
TASM 1075 552 692 456 3513 857 1014 565 1155 1121 1001 540 5887 3844 3988 2480 4633 3983 4039 2302
TASM+ 816 411 529 348 3041 664 792 447 939 880 776 410 4443 2868 3013 1535 3518 3012 3048 1536
Ours 494 103 212 134 2357 119 251 442 467 118 257 231 1845 391 569 1391 1107 396 593 1032

illustrated in Figure 7b. Speci�cally, on the archie dataset, TVM
can save more than 41% and 42% of the time during the decoding
and detection stages, respectively. Similar results can be observed
on the night-street and canal datasets. For the amsterdam dataset,
although the speedup of TVM in the decoding stage is relatively
small (8%), it still achieves a time overhead reduction of more than
58% in the detection process. Since TASM’s high scoring cost, it
accounts for a high proportion of the overhead of limit queries.

Select query. When evaluating TVM on SUPG queries [26],
the use of tiles in TVM with smaller resolutions can signi�cantly
accelerate the sampling stage. As depicted in Figure 7c, on high-
de�nition videos such as the night-street, archie, and canal datasets,
TVM achieves an average speedup of 2⇥. Particularly on the archie
dataset, TVM can save more than 55% and 56% of the time during
the decoding and detection stages, respectively. Similarly, TASM is
constrained by online scoring, resulting in high overhead.

Track query. As shown in the Figure 7d, TVM demonstrates
superior performance compared to the baseline method by achiev-
ing a 1.7⇥ average speedup. Speci�cally, our method can save more
than 37%, 5%, 26%, and 49% of decoding time on the four datasets,
respectively. Moreover, the proportions of time saved in the detec-
tion stage are 47%, 55%, 39%, and 51%, respectively. Since MIRIS [7]
does not use proxy score �ltering, TASM [16] no longer requires
high scoring overhead. However, without the guidance of the proxy
score, TASM is compelled to retrieve all tiles containing ROIs in the
speci�ed frames, even if some of these tiles might not be pertinent

night-street amsterdam canal archie
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1

�

(a) The di�erence in space occupied by tile sequences compared to source videos.
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Figure 8: Storage overhead and visual quality.

to the query object. For example, in the canal dataset, numerous
tiles containing ROIs are not indicative of boat presence; rather,
they are attributed to false detections stemming from water wave
movements. Coupled with TASM’s use of �ne-grained layouts, it
ultimately leads to higher decoding and detection consumption.

5.2 Storage Overhead and Visual Quality
As highlighted in Section 3.5, TVM employs the area of tile region
to regulate bitrate allocation. Figure 8a illustrates that our method
allows for precise control of the storage overhead, maintaining a
relative error (X) of no more than 1% across all datasets. To assess
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the visual quality of tile sequences, we separately encode untiled
videos and tile sequences using the same bitrate. Subsequently, we
decode and concatenate the tiles and calculate Peak Signal-to-Noise
Ratio (PSNR) with the original frames. As depicted in Figure 8b, the
tile sequences exhibit a visual quality that is very close to the untiled
videos across all datasets. Generally, when the PSNR exceeds 30dB,
the di�erences between images are barely discernible.

5.3 Layout Fidelity
A high-�delity tile layout aims to minimize the loss of objects,
ensuring that the downstream queries are error bounded. TVM
addresses the challenge by consolidating the ROIs generated by the
background subtraction algorithm. These ROIs are merged if their
normalized mutual distance falls within a threshold \ . Speci�cally,
the normalized distance is a ratio of the center distance of two
ROIs to the minimum of their diagonal lengths. Figure 9 illustrates
the impact of various widely used background subtraction algo-
rithms, i.e., ViBe [3], FrameDi�erence, TwoPoints and GMM [59],
and thresholds on layout �delity. In this context, recall signi�es the
proportion of retained objects, precision denotes the area ratio of
objects’ bounding boxes within the tile, and fps is the throughput
of generating ROIs. The results indicate that the ViBe algorithm [3]
achieves the highest precision and considerable throughput, while
almost losing no objects. Thus, we have adopted the ViBe algorithm
with a threshold value of \ = 2 as the default con�guration.

5.4 Cost Function and Random Access
During the system initialization of TVM, the decoder-based and
hardware-based coe�cients of the cost function are determined.
This process involves resizing a preset short video (consisting of
only 150 frames) to various resolutions ranging from 130 ⇥ 130
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Figure 12: Layout comparison of di�erent granularities.

to 1920 ⇥ 1080 and encoding them into HEVC [48] video streams.
Subsequently, each video stream is decoded to measure the cor-
responding time cost, and the number of pixels (#?8G ). Finally, a
least square method is used to �t the coe�cients, which are then
saved as metadata of the system. As depicted in Figure 10a, the
linear functions can e�ectively model the overhead of the decoder.
To demonstrate the accuracy of Equation (5), an evaluation is con-
ducted to predict the time of random access on the tiled canal
dataset. A series of tiles are selected from the pre-processed dataset,
and the predicted ⇠8=8C , ⇠B44: , ⇠342>34 and ⇠A4;40B4 are compared
with the actual processing times. As illustrated in Figure 10b, the
total error per sample is represented by the blue line, and the av-
erage error over 50 samples is shown as the red dashed line. The
error of a single sampling does not exceed 10%, while the average
error is only 0.28%. In order to validate the average decoding tiles in
Equation (5), we conducted four queries using the archie dataset. As
shown in Figure 11, the sampling distribution for aggregate, limit,
and select queries closely adheres to uniform sampling. Due to the
non-fully random access nature of track query, its sampling pattern
exhibits a certain degree of periodicity. Nevertheless, across all
query types, the average count of sampled tiles remains remarkably
close to the assumed value of 6/2 which con�rms the plausibility
of the hypothesis. The results indicate that Equation (5) reasonably
describes the cost of large-scale random access and can be relied
upon for accurate predictions.

5.5 E�ectiveness of Layout Adjustment
To fairly verify the e�ectiveness of the layout adjustment algorithm,
we conducted a comparative analysis with the �ne-grained and
coarse-grained layouts proposed by TASM [16] using an identical
sub-frame selection query. This query aims to minimize the time
required to retrieve pixels containing the car objects, that are pre-
viously identi�ed. TASM [16] points out that �ne-grained layout
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Figure 13: The variation trend of query consumption under
di�erent workloads.

outperforms coarse-grained layout. However, both of them may
not be optimal. In the experiment conducted on the archie dataset,
the YOLOv5 [23] object detection DNN is called frame by frame to
generate the two baseline layouts as well as the adjusted layouts.
Instead of using semantic embeddings in the clustering stage, the
real object labels are used, and the same layout spanning algorithms
are applied to �nd the least-cost layout.

Figure 12a and Figure 12b show that the adjusted layout gener-
ated by TVM represents an intermediate granularity between the
baseline layouts, with the total area and the number of tiles falling
between them. Figure 12c demonstrates that the adjusted layout out-
performs both baseline layouts. Compared to the �ne-grained and
coarse-grained layouts, our approach can save approximately 18%
and 32% of decoding time, respectively, indicating the e�ectiveness
of our layout adjustment algorithm. Additionally, the performance
of the sub-optimal layout generated by the greedy algorithm only
drops by less than 3% compared to the optimal layout. The executing
e�ciency of the proposed layout adjustment algorithms is evalu-
ated in Figure 12d. Both the dynamic programming (DP) algorithm
and the greedy algorithm signi�cantly improve the throughput of
the layout adjustment algorithm. It is important to note that the
layout adjustment algorithm is executed only once per GOP during
video ingestion and does not require generating embeddings during
sub-layout adjustment, making it computationally e�cient.

Finally, we conduct experiments to show the performance of
TVM under di�erent workloads. By adjusting the weights in Equa-
tion (4), TVM optimizes the layout to decrease the retrieval cost of
frequently queried objects, a�ecting subsequent query performance.
We show the average performance of four queries on di�erent work-
loads in Figure 13. As the query frequency of car in the workload
increases, the e�ciency of querying car becomes higher, while
the e�ciency of querying person decreases. Meanwhile, we also
show the query performance under unknownworkload for intuitive
comparison. When comparing its performance to the known work-
loads, the variance does not exceed ±3%. This makes it acceptable
to make layout adjustments based on the assumption of uniform
distribution for workloads.

5.6 E�ectiveness of Query-driven Acceleration
Since the Video Processing Framework[39] utilizes GPU for achiev-
ing high parallel decoding within a frame or tile, our optimization
considerations are focused on parallelization between frames or
tiles. In Figure 14, we present the decoding consumption for the
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Figure 14: Compare the decoding time of a limit query for
di�erent numbers of threads and parallel methods.
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Figure 15: Compared the decoding time (s) of a track query
when the caching algorithms are gradually added.

limit query on the archie dataset. To account for scenarios where
videos are stored in segments, we also exhibit the decoding perfor-
mance on segmented untiled videos. On the left side of Figure 14,
we present three frame-based solutions, where Seg means splitting
along each GOP. On the right side, we present �ve methods based
on tiles, with Column indicating the use of the column-wise paral-
lel decoding method (Section 4.2). When comparing 1(Frame) and
8(seg), we observed that the root cause of acceleration achieved by
TVM is tiling. Furthermore, the decoding time decreases by 33.8%
when increasing the threads from 1 to 8, but stabilizes as the thread
count further increases. Therefore, the default implementation of
TVM uses 8 threads. Consequently, our method avoids about 36%
of computational waste compared with the Column schema, as
it involves decoding tiles that are not required, highlighting the
e�ectiveness of our row-wise parallel decoding method.

Figure 15 illustrates the impact of gradually incorporating cache
algorithms when executing the track query, where w/o cache rep-
resents the scenario where all cache algorithms are disabled. The
experimental results demonstrate that adding the codec caching
technology reduces the decoding overhead by 3%. Subsequently,
the inclusion of the state caching and tile caching algorithms fur-
ther saves 3% and 8%, respectively. Generally, the proposed caching
algorithms e�ectively avoid computational waste and save more
than 14% of decoding time in total. Notably, the tile caching strategy
plays a predominant role in achieving these savings. This is because
the cached decoders are preemptive resources facing contention in
a multi-threaded environment. In this case, the acceleration e�ect
of parallel decoding is weakened. As the state caching algorithm is
built upon the codec caching algorithm, it is also in�uenced by con-
tention issues. In contrast, since multiple threads do not access the
same tile simultaneously, the tile caching strategy avoids con�ict
problems. Moreover, with the assistance of tile caching, multiple
tiles can be retrieved without the involvement of the decoder, which
e�ectively mitigates decoder contention.
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5.7 E�ectiveness of Hierarchical Layout
We conducted track queries on the archie dataset with di�erent
con�gurations to demonstrate the e�ectiveness of the hierarchical
layout. Ours(w/o sub) denotes the scenario where the sub-layout
is discarded, and the full tile is inputted into the object detection
DNN. Fixed refers to a con�guration where both random access
cost �↵ and inferring overhead �==

↵
are considered during tile stor-

age. The default DNN used in this experiment is YoloV5m (medium
capacity). Additionally, Ours(trans.) and Fixed(trans.) represent the
usage of YoloV5s (small capacity), a lighter but less accurate DNN,
for querying on the layout generated for YoloV5m. By employing
the sub-layout, TVM achieves an additional 9% reduction in the in-
ference time of the object detection DNN. The Fixed schema, which
considers both types of overhead, demonstrates optimal overall per-
formance on the pre-determined DNN. However, it does not adapt
well to the transfer of DNN models. In contrast, Ours(trans) adjusts
the sub-layout before inference, resulting in improved performance
in this scenario. This shows that TVM can switch between di�erent
DNNs more �exibly. It is worth noting that, given a video stream,
e.g., a HEVC [48] steam, di�erent decoder implementations [9, 39]
yield identical decoding results. However, the processing results
of DNNs may vary signi�cantly. Therefore, the adaptability of the
framework to the DNNs is far more crucial than that to the decoders.

5.8 Index Establishment E�ciency
TVM constructs the index during the data ingestion process, en-
compassing four primary stages: ROI extraction, layout generation,
layout adjustment, and semantic embedding generation. Since the
background subtraction algorithms can be executed on the smart
camera, we show the throughput with (w/o) ROI generation in
Figure 17. It indicates that TVM e�ectively achieves real-time index
construction across all datasets. Apart from video resolution, the in-
tricacy of content stands as another pivotal determinant in�uencing
the indexing process. Videos characterized by intricate content tend
to yield a greater number of smaller ROIs, consequently demanding

more time for TVM to ingest them. For instance, the water wave
movements in the canal dataset often lead to many ROIs.

6 RELATEDWORK
Early works in visual similarity search [4, 5, 34, 46, 58] leverage
hand-crafted features to extract semantic content, contributing valu-
able insights to the management of video data before the advent of
deep learning techniques. Query frameworks often aim to mini-
mize the calls to computationally expensive DNNs. NoScope [25],
BlazeIt [24] and SUPG [26] use lightweight specialized NNs, while
MIRIS [7] and ExSample [37] use NN-guided and Thompson sam-
pling, respectively. FiGO [15] segments videos into chunks and
selects the most suitable model for each chunk. VIVA [43] uses re-
lational hints to optimize complex video analytic queries. OTIF [8]
e�ciently extracts all tracks at the pre-processing stage. TVM can
contribute to these frameworks by enabling faster retrieval of video
frames. TASTI [27] generates frame-based semantic embedding, and
the Frame scheme in our experiments is an implementation of it. Op-
tasia [35], Scanner [40], LightDB [19], and VideoEdge [22] leverage
query parallelism or distributed computing, which can be combined
with TVM to achieve higher e�ciency. Storage frameworks opti-
mize storage and retrieval performance. VStore [54] accelerates
the entire query process by creating multiple copies of the video
with di�erent encoding con�gurations. VSS [18] employs caching
techniques to store frequently retrieved regions in various formats.
Smol [28] optimizes the resolution of visual data and architecture
or NNs to achieve trade-o�s between accuracy and throughput.
These frameworks accelerate video retrieval by caching copies in
di�erent formats, which can be integrated with TVM. TASM [16]
manages and retrieves videos in tiles, which focuses on optimiz-
ing the sub-frame selection. Our layout adjustment algorithms
can further enhance its performance. Consequently, some meth-
ods [6, 32, 33, 45] analyze video in the compressed domain, which
can be used to generate the ROI required by TVM.

7 CONCLUSION
In this work, we present TVM, a novel tile-based video management
framework that optimizes the decoding and detection processes
in video analytic queries. Speci�cally, TVM constructs a tile-based
semantic index, which signi�cantly accelerates various queries by
reducing the decoding and processing of irrelevant pixels. Mean-
while, we propose a query-driven tile parallel decoding algorithm
and resource caching algorithms to e�ectively avoid unnecessary
computation and minimize repeated calculations, respectively. To
demonstrate the e�ectiveness of TVM, we evaluate it on various
large-scale datasets and query methods, resulting in a speedup of
more than 5.6⇥ compared to the frame-based methods.
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