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ABSTRACT

Synthetic data generation methods, and in particular, private syn-
thetic data generation methods, are gaining popularity as a means
to make copies of sensitive databases that can be shared widely
for research and data analysis. Some of the fundamental opera-
tions in data analysis include analyzing aggregated statistics, e.g.,
count, sum, or median, on a subset of data satisfying some condi-
tions. When synthetic data is generated, users may be interested
in knowing if their aggregated queries generating such statistics
can be reliably answered on the synthetic data, for instance, to
decide if the synthetic data is suitable for specific tasks. However,
the standard data generation systems do not provide “per-query”
quality guarantees on the synthetic data, and the users have no way
of knowing how much the aggregated statistics on the synthetic
data can be trusted. To address this problem, we present a novel
framework named DP-PQD (differentially-private per-query decider)
to detect if the query answers on the private and synthetic datasets
are within a user-specified threshold of each other while guaran-
teeing differential privacy. We give a suite of private algorithms
for per-query deciders for count, sum, and median queries, analyze
their properties, and evaluate them experimentally.
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1 INTRODUCTION

For more than a decade, we have witnessed an abundance of data
containing private and sensitive information and a growing interest
in using this data for decision making and data analytics. Formal
policies like the GDPR [19] and CCPA [5] require that the privacy of
the individuals whose data is being used be maintained. Differential
privacy (DP) [10] is the gold standard in offering mathematically
rigorous bounds on privacy leakage while offering utility through
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multiple data releases, even in the presence of side information.
Intuitively, DP guarantees that the output has a similar distribution
whether an individual’s data is used. It has been widely adopted by
many organizations [2, 11] and leading companies [7, 15, 39].

Private data can be queried directly using designated DP mech-
anisms. However, the accuracy of the results depends heavily on
the privacy budget, especially when multiple queries need to be
answered. Furthermore, the results may be inconsistent with each
other. A prominent alternative is using differentially-private syn-
thetic data generators (SDGs) to produce a synthetic copy of the pri-
vate data, which can be used repeatedly to answer multiple queries
without spending additional privacy budget. Previous works have
employed techniques from game theory [18, 21, 41], probabilistic
graphical models [4, 24, 29, 31, 43], and deep learning [20, 37]. On
the other hand, to generate new instances of datasets resembling
properties of the given dataset, SDGs not satisfying DP have also
become very popular alternatives in applications where it is appro-
priate to do so. Examples include SDGs using generative modeling
[35] and deep learning techniques [34, 42]. Synthetic data offers
advantages such as: (1) consistency in answering a large number
of statistical queries, (2) preservation of desired correlations within
data, and (3) concise representation of the private data that circum-
vents expending more privacy budget to answer queries.

While SDGs (DP or not) embody a promising approach for in-
creasing the usability of private data, there may exist discrepancies
between query results over the private and synthetic datasets. This
work in particular focuses on analyzing aggregated statistics, e.g.,
count, sum, or median, on a subset of data satisfying some condi-
tions, which form some of the most fundamental operations in data
analysis. When synthetic data produced by a SDG is used in data
analysis, users may be interested in knowing if their aggregated
queries generating such statistics can be reliably answered on said
data. However, the standard data generation systems do not provide
“per-query” quality guarantees on the synthetic data, and the users
have no way of knowing how much the aggregated statistics on the
synthetic data can be trusted. We illustrate with an example below.

Example 1.1. Let the private database 𝐷 be a simplified ver-
sion of the Adult database [9] with attributes: age, education,
capital-gain, marital-status, occupation, relationship,
and sex. Let 𝐷𝑠 denote the synthetic copy of 𝐷 from PrivBayes [43],
which is a DP SDG. Also consider the following query 𝑞, where (<a>,
<b>) is one of (0, 200), (200, 400), (400, 600), (600, 800) or (800, 1000):
SELECT COUNT(*) FROM 𝐷𝑠

WHERE capital-gain ≥ <a> AND capital-gain < <b>.
Figure 1 shows the output for the aforementioned values of <a> and

<b>. Bars with height 0 are not shown here. Note that the corresponding
counts from𝐷 are private and we include them here only for reference.
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Figure 1: Histogram for attribute 𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛 in 𝐷 (in

white, private and not visible to the user) and 𝐷𝑠

(in navy blue, visible to the user) for bins given by

(0, 200), (200, 400), (400, 600), (600, 800) and (800, 1000).

Suppose the user wants to know if the gap between 𝑞(𝐷) and 𝑞(𝐷𝑠 )
is less than 𝜏 = 200. How can the user find out if their distance
bound for query 𝑞 is met without access to either the private
data or the SDG that was used to produce the synthetic data? In
Figure 1, we see that when (<a>, <b>) = (400, 600), the (true) answer
is ‘Yes’, whereas when (<a>, <b>) = (0, 200), the (true) answer is ‘No’.
In fact, the distance is 114.36 times 200.

In this paper, we aim to build a “Differentially-Private Per-Query
Decider”, which gives a ‘Yes’ (distance bound is satisfied) answer if
|𝑞(𝐷) − 𝑞(𝐷𝑠 ) | is smaller than a given distance bound 𝜏 > 0, and a
‘No’ (distance bound is unmet) answer otherwise, while satisfying
DP with a given privacy budget 𝜖 > 0. However, there are several
challenges that one needs to address. First, we assume that we do
not have access to the mechanism behind the SDG producing 𝐷𝑠 .
All the per-query decider can see is the synthetic data 𝐷𝑠 generated
by the SDG. This SDG may be one of the SDGs satisfying DP while
outputting 𝐷𝑠 using a separate privacy budget [4, 18, 20, 21, 24,
29, 31, 37, 41, 43], or a SDG that does not use DP [34, 35, 42]. The
per-query decider should work with 𝐷𝑠 generated by any SDG.
Second, not only can the per-query decider not output the true
‘Yes’ or ‘No’ answers since 𝑞(𝐷) is private, but also it cannot give a
deterministic answer because DP mechanisms must be randomized
algorithms. Third, the per-query decider should have good accuracy
– answering a random ‘Yes’/‘No’ answer is trivially private but is
not useful to the user. Finally, we aim to build a framework of per-
query decider that can handle different types of standard aggregates,
namely COUNT, MEDIAN, and SUM, which have different sensitivities
on the input (private) data and will need different techniques.

Our Contributions

In this work, we propose a novel framework called Differentially-
Private Per-Query Decider (DP-PQD) to decide if the distance between
𝑞(𝐷) and 𝑞(𝐷𝑠 ) is less than a user-provided distance bound of 𝜏 > 0
for a given query 𝑞 and privacy budget 𝜖 > 0. We investigate the
problem for COUNT, SUM, and MEDIAN queries under this framework
(with optional predicates selecting a subset of the data), which are
three fundamental aggregate operators used in data analysis. We
make the following contributions.

(1) The DP-PQD framework (Section 3): We formally de-
fine the differentially-private per-query decider and introduce the

notion of effectiveness of an algorithm to capture the range of in-
put distance thresholds for which a per-query decider algorithm is
expected to perform well.

(2) COUNT queries (Section 4): For COUNT queries, we present
and analyze two approaches, one based on the Laplace Mechanism
(LM) [13] that uses a DP noisy estimate of 𝑞(𝐷) to compare with
𝑞(𝐷𝑠 ), and the other is direct approach for answering ‘Yes’ or ‘No’
based on the Exponential Mechanism (EM) [32] using a carefully
designed score function.

(3) SUM queries (Section 5): For SUM queries, we present and
analyze three approaches. Two of them based on the Laplace Mech-
anism (LM) [13] and the recent Race-to-the-TopMechanism (R2T)
[8] use a DP noisy estimate of 𝑞(𝐷) to compare with 𝑞(𝐷𝑠 ). The
third direct approach exploits the Sparse Vector Technique (SVT)
[26] originally designed to detect when the first of a sequence of
queries exceeds a given threshold to implement a per-query decider.

(4) MEDIAN queries (Section 6): For MEDIAN queries, we present
and analyze two approaches: one uses a DP noisy estimate of the
median query using EM, and the other is a new histogram-based
DP mechanism that directly solves the problem using the LM.

(5) Experimental evaluation (Section 7): We have imple-
mented the DP-PQD framework with all the above algorithms to
evaluate our proposed solutions. We analyze the accuracy for 22
COUNT queries (with a range of tuple selectivity), 19 SUM queries
(with a range of tuple selectivity and varying downward local sen-
sitivities), and 19 MEDIAN queries (with different data distribution
around the true median). One of the interesting observations is that
the error of a DP per-query decider is not always monotonic in the
privacy budget 𝜖 , and we explain why this happens.

2 PRELIMINARIES

In this section, we review some background concepts and present
notations used in the rest of the paper.

2.1 Data and Queries

We are given a private database instance 𝐷 that comprises a single
relation with attributes 𝐴1, . . . , 𝐴𝑑 . The domain of attribute 𝐴𝑖 is
given by 𝑑𝑜𝑚(𝐴𝑖 ), which is categorical or integral.

In this paper, we consider three aggregate operators: COUNT, SUM,
and MEDIAN, i.e., the corresponding aggregate queries in SQL with
an optional WHERE clause take the following form:

• SELECT COUNT(*) FROM 𝐷 WHERE 𝜑 ,
• SELECT SUM(𝐴𝑖) FROM 𝐷 WHERE 𝜑 , and
• SELECT MEDIAN(𝐴𝑖) FROM 𝐷 WHERE 𝜑 .

In these queries, first the predicate 𝜑 (if the WHERE clause exists) is
applied over all tuples in 𝐷 , and then the aggregate is computed on
tuples that satisfy 𝜑 . These queries output single real output value
and belong to the class of scalar queries.

Example 2.1. Recall the private database 𝐷 and its synthetic copy
𝐷𝑠 from Example 1.1. Consider the following queries:

• 𝑞1: SELECT COUNT(*) FROM 𝐷𝑠 WHERE 𝑎𝑔𝑒 > 30 AND
𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 LIKE ’Masters’.
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• 𝑞2: SELECT SUM(𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛) FROM 𝐷𝑠 WHERE 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
LIKE ’12th’.

• 𝑞3: SELECT MEDIAN(𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛) FROM 𝐷𝑠 .
Query𝑞1 asks for the number of people with age above 30 andMaster’s
degree, 𝑞2 asks for the total capital-gain of people with 12-th grade
education, and 𝑞3 asks for the median of capital-gain over all people.

2.2 Differential Privacy

We use Differential Privacy (DP) [10] as the measure of privacy. We
say that two databases 𝐷 and 𝐷′ are neighbors if they differ by a
single tuple. This is denoted by 𝐷 ≈ 𝐷′.

Definition 2.2 (Differential Privacy [14]). A randomized
mechanismM is said to satisfy 𝜖-DP if ∀𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (M) and ∀𝐷,𝐷′
pair of neighboring databases, i.e., 𝐷 ≈ 𝐷′,

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷′) ∈ 𝑆]

Smaller 𝜖 gives stronger privacy guarantee.

Definition 2.3 (Global Sensitivity). For a scalar query 𝑞, its
global sensitivity is given by Δ𝑞 = max

𝐷≈𝐷 ′
|𝑞(𝐷) − 𝑞(𝐷′) |.

Definition 2.4 (Downward Local Sensitivity). For a scalar
query 𝑞, its downward local sensitivity on database 𝐷 is given by

𝐷𝑆𝑞,𝐷 = max
𝐷 ′≈𝐷,𝐷 ′⊆𝐷

|𝑞(𝐷) − 𝑞(𝐷′) |

Example 2.5. Consider the private database 𝐷 and sum query 𝑞2
from Example 2.1.Suppose 𝑑𝑜𝑚(𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛) is {0, 1, . . . , 99999}, so
Δ𝑞2 = 99999 since the maximum change in the sum over all pairs
of neighboring databases is the maximum value in the domain. On
the other hand, given a database 𝐷 , 𝐷𝑆𝑞,𝐷 equals the largest value
in 𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛 from tuples in 𝐷 with 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 equal to 12-th.

Properties like composition [10] and post-processing [12] give a
modular way to build complex DP mechanisms:

Proposition 2.6. [10, 12] give the following:
(1) (Sequential composition) IfM𝑖 satisfies 𝜖𝑖 -DP, then the

sequential application ofM1,M2, · · · , satisfies
∑
𝑖 𝜖𝑖 -DP.

(2) (Parallel composition) If eachM𝑖 accesses disjoint sets of
tuples, then they together satisfy max𝑖 𝜖𝑖 -DP.

(3) (Post-processing) Any function applied to the output of an
𝜖-DP mechanismM also satisfies 𝜖-DP.

Laplace mechanism (LM). The Laplace mechanism [13] is a com-
mon building block in DP mechanisms and is used to get a noisy
estimate for scalar queries with numeric answers. The noise injected
is calibrated to the global sensitivity of the query.

Definition 2.7 (Laplace Mechanism). Given a database 𝐷 ,
scalar query 𝑞 (with output in R), and privacy budget 𝜖 , the Laplace
mechanismM𝐿 returns 𝑞(𝐷) + 𝜈𝑞 , where 𝜈𝑞 ∼ 𝐿𝑎𝑝 (Δ𝑞/𝜖).

Its accuracy is given by the following theorem [14].

Theorem 2.8 (Accuracy of Laplace Mechanism [14]). Given a
database 𝐷 and scalar query 𝑞 (with output in R). Let 𝑦 be the output
from running the Laplace MechanismM𝐿 on 𝐷 and 𝑞 with privacy
budget 𝜖 . Then, ∀𝛿 ∈ (0, 1],

𝑃𝑟

[
|𝑞(𝐷) − 𝑦 | ≥ Δ𝑞

𝜖
ln

1
𝛿

]
≤ 𝛿

Example 2.9. Consider the private database 𝐷 and query 𝑞1 from
Example 2.1.Δ𝑞1 equals 1 because the count can change by at most one
on neighboring databases. Say the output of 𝑞1 on 𝐷 is 𝑛1, a private
quantity, and we want a DP estimate, �̃�1, for it.M𝐿 returns 𝑛1 plus
noise sampled from 𝐿𝑎𝑝 (1/𝜖). Also, 𝑃𝑟

[
|𝑛1 − �̃�1 | ≥ 1

𝜖 ln 1
𝛿

]
≤ 𝛿 .

Exponential mechanism (EM). For categorical outputs, the Expo-
nential mechanism [32] is used with an appropriate score function
that gives the utility of each element in the output space with re-
spect to the given private database 𝐷 . The likelihood of an element
being returned as the output depends on its score.

Definition 2.10 (Exponential Mechanism). Given a database
𝐷 , range of outputs R, real-valued score function 𝑢 (𝐷, 𝑒) that gives
the utility of 𝑒 ∈ R with respect to 𝐷 , and privacy budget 𝜖 , the Ex-

ponential mechanismM𝐸 returns 𝑒 ∈ R with probability 𝑐 · 𝑒
𝜖𝑢 (𝐷,𝑒 )

2Δ𝑢 ,
where 𝑐 is a positive constant and Δ𝑢 is the global sensitivity of 𝑢.

Example 2.11. Recall the private database 𝐷 and query 𝑞3 from
Example 2.1. We find a DP estimate for the median [6] by applying
M𝐸 with 𝑢 (𝐷, 𝑒) = −|𝑟𝑎𝑛𝑘 (𝑒) − 𝑛/2|, for 𝑒 ∈ 𝑑𝑜𝑚(𝑐𝑎𝑝𝑖𝑡𝑎𝑙-𝑔𝑎𝑖𝑛).
Δ𝑢 is 1, and therefore,M𝐸 returns 𝑒 with probability ∝ 𝑒𝜖𝑢 (𝐷,𝑒 )/2.

2.3 Synthetic Data Generators

We treat the synthetic data generator (SDG) used to produce 𝐷𝑠 as a
black box. Our frameworkDP-PQD can be used in conjunction with
any synthetic data generator: a standard SDG (not satisfying DP)
like [34, 35, 42] that typically takes𝐷 and some optional constraints
as inputs, or an SDG satisfying DP (SDG𝐷𝑃 ) that takes 𝐷 and a
privacy budget as input. An SDG𝐷𝑃 may or may not take a set of
queries as input. For example, PrivBayes [43] does not take queries
as input but works such as [18, 21, 24, 27, 29, 31, 41] do. For an
SDG𝐷𝑃 , we assume that it has a privacy budget separate from the
privacy budget 𝜖 for the per-query decider DP-PQD. DP-PQD takes
as input the synthetic data 𝐷𝑠 generated from any SDG, the private
database 𝐷 and a privacy budget 𝜖 , does not need to run the SDG
again, and does not assume anything about how the SDG works.

3 THE DP-PQD FRAMEWORK

In this section, we present the DP-PQD (Differentially-Private Per-
Query Decider) framework that intends to solve the following prob-
lem; the workflow of DP-PQD is given in Figure 2.

Definition 3.1 (Differentially-Private Per-Query Decider).
Given a private database𝐷 , synthetic database𝐷𝑠 for𝐷 from a black-
box SDG, query 𝑞 (COUNT, SUM or MEDIAN), distance bound 𝜏 > 0 ∈ R,
and privacy budget 𝜖 > 0, return whether |𝑞(𝐷) − 𝑞(𝐷𝑠 ) | < 𝜏 while
satisfying 𝜖-DP. We call such a mechanism a differentially-private
per-query decider, or simply a per-query decider, and denote it by
A(𝐷, 𝐷𝑠 , 𝑞, 𝜏, 𝜖), orA(𝐷) when𝐷𝑠 , 𝑞, 𝜏 , and 𝜖 are clear from context.

To simplify notation, we will write 𝑜 to denote the outcome ofA(𝐷)
when A, 𝐷, 𝐷𝑠 , 𝑞, 𝜏, 𝜖 are clear from context. Here,

𝑜 = 1 ≡ “Distance bound satisfied”

𝑜 = 0 ≡ “Distance bound unmet”

In this paper, we investigate the following approaches forA(𝐷):
(1) spend 𝜖 to obtain a noisy DP estimate for 𝑞(𝐷), and compare it
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Figure 2: Workflow of DP-PQD

with 𝑞(𝐷𝑠 ) to check if the distance bound of 𝜏 is met (by instantiat-
ing Algorithm 1 with a suitable DP mechanism DPNoisy(·)), and
(2) design specialized algorithms to solve the problem without first
estimating 𝑞(𝐷). A summary of our solutions is given in Table 4.

For convenience, we denote the desired interval for 𝑞(𝐷) as
I := (𝑙, 𝑟 ) (known to the user), and the absolute difference in query
values of 𝑞(𝐷) and 𝑞(𝐷𝑠 ) as 𝑑𝑞 (hidden from the user), i.e.,

I := (𝑙, 𝑟 ) = (𝑞(𝐷𝑠 ) − 𝜏, 𝑞(𝐷𝑠 ) + 𝜏) (1)
𝑑𝑞 := |𝑞(𝐷) − 𝑞(𝐷𝑠 ) | (2)

Since 𝑞(𝐷𝑠 ) is known to the user, but 𝑞(𝐷) is not, we envision
the user choosing 𝜏 as a percentage value of 𝑞(𝐷𝑠 ) in practical
applications. Here, I = (𝑙, 𝑟 ) = (𝑞(𝐷𝑠 ) · (1 − 𝜏), 𝑞(𝐷𝑠 ) · (1 + 𝜏)).
The 𝜏 value depends on how much error in 𝑞(𝐷𝑠 ) can be tolerated
by the application using 𝑞(𝐷𝑠 ). For example, 𝜏 larger than 10% of
𝑞(𝐷𝑠 ) may introduce too much error in the downstream analysis.
To present our techniques in Sections 4, 5, and 6 for a given query,
we use 𝜏 as a constant, whereas in the experiments in Section 7
when we vary the queries, we use and vary 𝜏 as a percentage of
𝑞(𝐷𝑠 ) since the same value of 𝜏 may not bemeaningful to all queries.

A satisfies 𝜖-DP and like any randomized mechanism, incurs
error in deciding if the distance bound is met (i.e. if 𝑑𝑞 < 𝜏). We
quantify error as the expectation of the event that A returns the
wrong outcome on 𝐷 defined as follows:

Definition 3.2 (Error). Let A be a per-query decider for the
given private database 𝐷 , synthetic database 𝐷𝑠 , query 𝑞, distance
bound 𝜏 , and privacy budget 𝜖 . Then the error of A is given by:

𝑒𝑟𝑟A (𝑞, 𝐷, 𝐷𝑠 , 𝜏, 𝜖) = 𝑃𝑟 [𝑜 = 1 ∧ 𝑑𝑞 ≥ 𝜏] + 𝑃𝑟 [𝑜 = 0 ∧ 𝑑𝑞 < 𝜏]
where the probability is over the randomness in A.

In Definition 3.2, the first term corresponds to the false positive
rate and the second term corresponds to the false negative rate.
Intuitively, we expect larger error when 𝑑𝑞 and 𝜏 are closer because
the chance of the random noise injected by A causing the wrong
outcome becomes higher.

Example 3.3. Consider 𝐷, 𝐷𝑠 , 𝑞 from Example 1.1 where (0, 200)
is used as the range. Given that 𝜏 = 200. Here, 𝑑𝑞 (hidden from the
user) equals 22, 872 and is greater than 𝜏 , so the correct outcome ofA
is 𝑜 = 0. Hence, a solution A makes a mistake if 𝑜 = 1 and the error
equals the probability that A returns 𝑜 = 1.

Next, we introduce a notion we call the effectiveness of a per-
query deciderA. The idea is to derive a lower bound for 𝜏 such that
A returns the correct outcome with probability at least 1 − 𝛿 (for
0 < 𝛿 < 1) in two cases: (1)𝑞(𝐷) = 𝑞(𝐷𝑠 ), and (2)𝑞(𝐷) ≤ 𝑞(𝐷𝑠 )−2𝜏
or 𝑞(𝐷) ≥ 𝑞(𝐷𝑠 ) + 2𝜏 . The first condition ensures that A has
high accuracy when the two query outputs match, and the second
condition ensures that A has high accuracy also for very different

Table 1: Table of Notations

Notation Description
𝐷,𝐷𝑠 Private database and its synthetic copy
𝑞 COUNT, SUM, or MEDIAN query
Δ𝑞 Global sensitivity of query 𝑞

𝐷𝑆𝑞,𝐷 Downward local sensitivity of 𝑞 on 𝐷 (Sec. 5)
𝜏 Given upper bound on |𝑞 (𝐷 ) − 𝑞 (𝐷𝑠 ) |
𝜖 Privacy budget

I = (𝑙, 𝑟 ) (𝑞 (𝐷𝑠 ) − 𝜏, 𝑞 (𝐷𝑠 ) + 𝜏 )
A(𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝜖 ) 𝜖-DP per-query decider

𝑜 ∈ {0, 1} A’s outcome on the given problem
𝜏
A,𝛿
𝑚𝑖𝑛

Effectiveness threshold of A for 0 < 𝛿 ≪ 1
𝐺𝑆𝑞 Upper limit on Δ𝑞 for SUM query 𝑞 (Sec. 5)

query outputs. In the absence of the first case, an A that always
returns 𝑜 = 0 meets the condition, and in the absence of the second
case, an A that always returns 𝑜 = 1 meets the condition, but
neither is a useful solution. We denote the lower bound by 𝜏A,𝛿

𝑚𝑖𝑛
and call it the effectiveness threshold of A at 𝛿 .

Definition 3.4 (Effectiveness). Let A be a per-query decider
for a given private database 𝐷 , a synthetic database 𝐷𝑠 , a query 𝑞, a
distance bound 𝜏 , and a privacy budget 𝜖 . A is called effective at
error probability 0 < 𝛿 < 1 if the following two conditions hold:

(1) if 𝑞(𝐷) = 𝑞(𝐷𝑠 ), 𝑃𝑟 [𝑜 = 1] ≥ 1 − 𝛿 , and
(2) if 𝑞(𝐷) ∉ (𝑞(𝐷𝑠 ) − 2𝜏, 𝑞(𝐷𝑠 ) + 2𝜏), 𝑃𝑟 [𝑜 = 0] ≥ 1 − 𝛿 .
The smallest value of 𝜏 that achieves the above is called the effec-

tiveness threshold of A at 𝛿 and is denoted by 𝜏A,𝛿
𝑚𝑖𝑛

.

We give an upper bound on the effectiveness thresholds of each
solution for COUNT and SUM queries (Section 4 and 5). We use effec-
tiveness as proxy for error for queries with high sensitivities, like
SUM queries. For MEDIAN queries, 𝑞(𝐷) shows up in the rank space
in the analysis. This is an interesting direction for future work.
Table 1 summarizes the notations used throughout the paper.

4 SOLUTIONS FOR COUNT QUERY
We propose two approaches for COUNT query 𝑞: (1) 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 (that
instantiates Algorithm 1 with the Laplace Mechanism (LM)) in Sec-
tion 4.1, and (2) 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 (that directly solves the problem using the
Exponential Mechanism (EM)) in Section 4.2, and analyze their er-
rors. We also derive upper bounds for their respective effectiveness
thresholds. We give an error comparison in Section 4.2.

4.1 Laplace Mechanism-Based Approach

In our first algorithm, 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 , we use the LM (Definition 2.7) to ob-
tain a DP estimate for𝑞(𝐷) and check if the noisy answer is less than
𝜏 away from 𝑞(𝐷𝑠 ). This is achieved by running GenericDecider
(Algorithm 1) with the LM that adds noise from 𝐿𝑎𝑝 ( 1𝜖 ) as DPNoisy
(since Δ𝑞 = 1 for COUNT queries). Since we post-process a DP esti-
mate (Proposition 2.6), the following holds:

Observation 4.1. 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 satisfies 𝜖-DP.

We denote the noise injected by the LM (Definition 2.7) as 𝜈𝑞 and
analyze 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s error next. We will frequently use the following
properties of the Laplace distribution (with mean 0) [14]. For a
Laplace random variable 𝜈𝑞 ∼ 𝐿𝑎𝑝 ( 1𝜖 ) and for 𝑡 ≥ 0,
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Algorithm 1: Basic approach using DP estimate of 𝑞(𝐷)
Input :𝑞 - count/sum/median query, 𝐷 - private

database, 𝐷𝑠 - synthetic database, 𝜏 - distance
bound, 𝜖 - privacy budget, DPNoisy - any 𝜖-DP
mechanism to get a noisy estimate for 𝑞(𝐷), 𝜙 -
any additional parameter(s) that DPNoisy takes.
/* If DPNoisy = LM (Defn. 2.7), then 𝜙 = ∅
If DPNoisy = EM (Defn. 2.10), then 𝜙 = {R, 𝑢}
If DPNoisy = R2T (Sec. 5.2), then 𝜙 = {𝐺𝑆𝑞, 𝛽} */

Output :𝑜 = 1 if the desired distance bound from 𝑞(𝐷𝑠 )
is satisfied for 𝑞(𝐷), else 𝑜 = 0.

1 Function GenericDecider(𝑞, 𝐷, 𝐷𝑠 , 𝜏, 𝜖, DPNoisy, 𝜙):
2 if −𝜏 < DPNoisy(𝐷,𝑞, 𝜖, 𝜙) − 𝑞(𝐷𝑠 ) < 𝜏 then
3 return 𝑜 = 1 (“Distance bound satisfied”);
4 return 𝑜 = 0 (“Distance bound unmet”);

𝑃𝑟

[
𝜈𝑞 ≥ 𝑡 ·

1
𝜖

]
=

1
2
𝑒−𝑡 (3)

𝑃𝑟

[
𝜈𝑞 ≤ −𝑡 ·

1
𝜖

]
=

1
2
𝑒−𝑡 (4)

𝑃𝑟

[
|𝜈𝑞 | ≥ 𝑡 ·

1
𝜖

]
= 𝑒−𝑡 (5)

We next employ these equations to bound the error of 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 .
We give the full proof of Proposition 4.2 in the full version [36].

Proposition 4.2. Given a private database 𝐷 , synthetic database
𝐷𝑠 , COUNT query 𝑞, distance bound 𝜏 , and privacy budget 𝜖 . Interval
I = (𝑙, 𝑟 ) = (𝑞(𝐷𝑠 )−𝜏, 𝑞(𝐷𝑠 )+𝜏) (1). 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 satisfies the following:

(1) If 𝑞(𝐷) ≤ 𝑙 but 𝑜 = 1, then 𝑒𝑟𝑟 (·) ≤ 1
2𝑒
−(𝑙−𝑞 (𝐷 ) )𝜖 −

1
2𝑒
−(𝑟−𝑞 (𝐷 ) )𝜖 .

(2) If 𝑞(𝐷) ≥ 𝑟 but 𝑜 = 1, then 𝑒𝑟𝑟 (·) ≤ 1
2𝑒
−(𝑞 (𝐷 )−𝑟 )𝜖 −

1
2𝑒
−(𝑞 (𝐷 )−𝑙 )𝜖 .

(3) If 𝑙 < 𝑞(𝐷) < 𝑟 but 𝑜 = 0, then 𝑒𝑟𝑟 (·) = 1
2𝑒
−(𝑞 (𝐷 )−𝑙 )𝜖 +

1
2𝑒
−(𝑟−𝑞 (𝐷 ) )𝜖 .

We now give an upper bound for the effectiveness threshold.

Proposition 4.3. Given a private database 𝐷 , synthetic database
𝐷𝑠 , COUNT query 𝑞, privacy budget 𝜖 , and error probability 0 < 𝛿 < 1,
the effectiveness threshold of the per-query decider 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 at 𝛿
(Definition 3.4) has the following upper bound: 𝜏𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ,𝛿

𝑚𝑖𝑛
≤ 1

𝜖 ln 1
2𝛿 .

We give the full proof of Proposition 4.3 in the full version [36].

4.2 A Direct Solution Using the EM

In our second algorithm, 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 , instead of plugging in a DP
estimate for 𝑞(𝐷) to reach a decision about the distance bound,
directly returns whether 𝑜 = 1 (“Distance bound satisfied”) or not.

4.2.1 A straightforward EM-based per-query decider. We begin
by describing a straightforward approach we call 𝐸𝑀𝑛𝑎𝑖𝑣𝑒

𝑐𝑜𝑢𝑛𝑡 that
directly instantiates the EM (Definition 2.10) with the output range
R = {0, 1} and the score function 𝑢 (𝐷, 𝐷𝑠 , 𝑞, 𝜏, 𝑜) given by:

If 𝑞 (𝐷 ) ∈ I
{

𝑢 (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 0) = 0
𝑢 (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 1) = 1

𝑙 𝑟

𝜏 𝜏 𝜏 𝜏
0

1

Figure 3: Score function 𝑢′ for output 𝑜 = 0 (in cyan) and 𝑜 = 1
(in pink). Recall that 𝑟 − 𝑙 = 2 · 𝜏 .

If 𝑞 (𝐷 ) ∉ I
{

𝑢 (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 0) = 1
𝑢 (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 1) = 0

where I = (𝑙, 𝑟 ) = (𝑞(𝐷𝑠 ) −𝜏, 𝑞(𝐷𝑠 ) +𝜏) (from (1)). Intuitively, 𝑢 (·)
gives a non-zero score only to the correct outcome.

We give the full proof of Proposition 4.4 in the full version [36].

Proposition 4.4. The global sensitivity of 𝑢 is Δ𝑢 = 1.

The problem with 𝐸𝑀𝑛𝑎𝑖𝑣𝑒
𝑐𝑜𝑢𝑛𝑡 is that it suffers from high error as

sensitivity 1 is too high. For instance, when 𝑞(𝐷) ∈ I but 𝑜 = 0,
𝑃𝑟 [𝑜 = 0] = 𝑐 · 𝑒𝜖×0/2 and 𝑃𝑟 [𝑜 = 1] = 𝑐 · 𝑒𝜖×1/2 (Definition 2.10),
where 𝑐 is a positive constant. Since there are only two outcomes

𝑃𝑟 [𝑜 = 0] = 1
1 + 𝑒𝜖/2

(6)

𝑃𝑟 [𝑜 = 1] = 𝑒𝜖/2

1 + 𝑒𝜖/2
(7)

When 𝑞(𝐷) ∈ I, 𝑜 = 0 is the wrong outcome and the error is given
by (6). Similarly for 𝑞(𝐷) ∉ I, error equals 1/(1 + 𝑒𝜖/2).

In contrast, 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 shows that lower error may be achieved. For
example, when 𝑞(𝐷) = 𝑞(𝐷𝑠 ) but 𝑜 = 0 (case (3) in Proposition 4.2),
𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s error, 𝑒−𝜏𝜖 , is smaller than 𝐸𝑀𝑛𝑎𝑖𝑣𝑒

𝑐𝑜𝑢𝑛𝑡 ’s error for values of
𝜖 and 𝜏 such as 0.1 and 8, respectively.We improve upon 𝐸𝑀𝑛𝑎𝑖𝑣𝑒

𝑐𝑜𝑢𝑛𝑡 by
engineering a new score function with a smaller global sensitivity.

4.2.2 An improved EM-based per-query decider. To use the EM
more reliably, we propose a new score function 𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜):

If 𝑞 (𝐷 ) ∉ (𝑙 − 𝜏, 𝑟 + 𝜏 )
{

𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 0) = 1
𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 1) = 0 (8)

If 𝑞 (𝐷 ) ∈ (𝑙 − 𝜏, 𝑞 (𝐷𝑠 ) ]
{

𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 0) = 1 − 𝑞 (𝐷 )−(𝑙−𝜏 )
2𝜏

𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 1) = 𝑞 (𝐷 )−(𝑙−𝜏 )
2𝜏

(9)

If 𝑞 (𝐷 ) ∈ (𝑞 (𝐷𝑠 ), 𝑟 + 𝜏 )
{

𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 0) = 𝑞 (𝐷 )−𝑞 (𝐷𝑠 )
2𝜏

𝑢′ (𝐷,𝐷𝑠 , 𝑞, 𝜏, 𝑜 = 1) = 1 − 𝑞 (𝐷 )−𝑞 (𝐷𝑠 )
2𝜏

(10)

We illustrate 𝑢′ in Figure 3. Note that 𝑢′ outputs a value in the
range [0, 1] by definition, and not just in the set {0, 1}. It allows for
a more gradual transition between scores of 0 and 1.

We give the full proof of Proposition 4.5 in the full version [36].

Proposition 4.5. The global sensitivity of 𝑢′ is 1/2𝜏 .

We refer to the algorithm that directly instantiates the EM (Defi-
nition 2.10) with R = {0, 1} and score function𝑢′ as 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 . Since
we post-process a DP estimate (Proposition 2.6), the following holds:

Observation 4.6. 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 satisfies 𝜖-DP.

We now give an upper bound for the effectiveness threshold
(proof in the full version [36]).

Proposition 4.7. Given a private database 𝐷 , synthetic database
𝐷𝑠 , COUNT query 𝑞, privacy budget 𝜖 , and error probability 0 < 𝛿 < 1,
the effectiveness threshold of the per-query decider 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 at 𝛿 (Def-
inition 3.4) has the following upper bound: 𝜏𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ,𝛿

𝑚𝑖𝑛
≤ 1

𝜖 ln 1−𝛿
𝛿

.
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Figure 4: Error from 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 (dashed) and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 (solid) as

𝑞(𝐷) is varied along the X axis, where 𝐷 is the Adult dataset.

The selection predicate is 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 LIKE ‘Unmarried’ AND
𝑠𝑒𝑥 LIKE ‘Male’, 𝑞(𝐷𝑠 ) = 749, 𝜖 = 0.1 and 𝜏 = 10, 30. The verti-
cal lines mark the positions of 𝑙, 𝑞(𝐷𝑠 ), and 𝑟 , respectively.

Comparison of 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 . Figure 4 depicts the error
(along the Y axis) for fixed 𝐷𝑠 , 𝑞, and 𝜖 but varying 𝑞(𝐷) values
(along the X axis) when 𝜏 = 10 (on the left) and 𝜏 = 30 (on the right).
We plot the error profile for 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 following Proposition 4.2.
Note that it gives upper bounds when 𝑞(𝐷) ≤ 𝑙 or 𝑞(𝐷) ≥ 𝑟 . We
plot the error profile for 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 based on Definition 2.10 for the
EM with score function 𝑢′ ((8) to (10)). For 𝜏 = 10 and 𝑞(𝐷) ∈ I,
𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error is smaller. At 𝑞(𝐷) = 𝑞(𝐷𝑠 ), 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s error 𝑒−𝜖𝜏
is larger than 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error 1

1+𝑒𝜖𝜏 (𝜖𝜏 > 0).

5 SOLUTIONS FOR SUM QUERY

We now discuss our solutions for SUM query on attribute 𝐴𝑖 : (1)
𝐿𝑀𝑠𝑢𝑚 (that instantiates Algorithm 1 with the Laplace Mechanism
(LM)) in Section 5.1, (2) 𝑅2𝑇𝑠𝑢𝑚 (that instantiates Algorithm 1 with
the Race-to-the-Top (R2T) mechanism [8]) in Section 5.2, and (3)
𝑆𝑉𝑇𝑠𝑢𝑚 (that directly solves the problem using the Sparse Vector
Technique (SVT) [26]) in Section 5.3. We derive upper bounds for
their effectiveness thresholds and then compare them.

Consider the SUM query 𝑞 : SELECT SUM(𝐴𝑖) FROM 𝐷 WHERE 𝜑 ,
where 𝜑 denotes the predicate in the WHERE clause and is empty.
Its global sensitivity Δ𝑞 equals max𝑑𝑜𝑚(𝐴𝑖 ) and is unbounded if
the domain is unbounded. As done in previous work [3, 8, 23, 40], we
assume a bound of𝐺𝑆𝑞 on Δ𝑞 and use it in the per-query deciders.
Thus, we use 𝐺𝑆𝑞 as the global sensitivity in the analysis.

5.1 Laplace Mechanism-based Approach

Our algorithm 𝐿𝑀𝑠𝑢𝑚 works similarly to 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 . The only differ-
ence is that the scale of the Laplace distribution for noise 𝜈𝑞 is now
𝐺𝑆𝑞/𝜖 instead of 1/𝜖 . 𝐿𝑀𝑠𝑢𝑚 works by running GenericDecider
(Algorithm 1) with the LM (Definition 2.7) as DPNoisy. Since we
post-process a DP estimate (Proposition 2.6):

Observation 5.1. 𝐿𝑀𝑠𝑢𝑚 satisfies 𝜖-DP.

𝐿𝑀𝑠𝑢𝑚 suffers from the drawback that𝐺𝑆𝑞 is often large in prac-
tice, resulting in high variance in 𝜈𝑞 . For example, 𝐴𝑖 can represent
incomes, distances, etc. and may contain large numbers. This can
cause 𝐿𝑀𝑠𝑢𝑚 to make mistakes with higher probability. We derive
an upper bound for the effectiveness threshold below.

Proposition 5.2. Given a private database 𝐷 , synthetic database
𝐷𝑠 , SUM query 𝑞 with global sensitivity 𝐺𝑆𝑞 , privacy budget 𝜖 , and
error probability 0 < 𝛿 < 1, the effectiveness threshold of the per-
query decider 𝐿𝑀𝑠𝑢𝑚 at 𝛿 (Definition 3.4) has the following upper
bound: 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿

𝑚𝑖𝑛
≤ 𝐺𝑆𝑞

𝜖 ln 1
2𝛿 .

Proof Sketch. The proof is the same as that of Proposition 4.3
(full proof given in the full version [36]). Since 𝜈𝑞 ∼ 𝐿𝑎𝑝 (𝐺𝑆𝑞/𝜖),
bounds (3)-(5) now use 𝐺𝑆𝑞

𝜖 than 1
𝜖 . □

We now give an example to illustrate how 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

is computed.
We will refer to this example again in Sections 5.2 and 5.3.

Example 5.3. Let 𝐷 be the database derived from IPUMS-CPS
[17] with attributes 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑖𝑛𝑐𝑜𝑚𝑒-𝑡𝑜𝑡𝑎𝑙 , and 𝐷𝑠

be its synthetic copy from an SDG. Consider the query 𝑞: SELECT
SUM(𝑖𝑛𝑐𝑜𝑚𝑒-𝑡𝑜𝑡𝑎𝑙) FROM 𝐷𝑠 WHERE 𝑎𝑔𝑒 ≤ 18. Suppose 𝐺𝑆𝑞 =

2𝑀,𝐷𝑆𝑞,𝐷 = 9𝐾 and 𝜖 = 0.1. For 𝛿 = 0.05, we get 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

=
𝐺𝑆𝑞
𝜖 ln 1

2𝛿 = 4.605 × 107.

Observe that 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

is proportional to 𝐺𝑆𝑞 , so it is large in
part due to𝐺𝑆𝑞 being large. If𝐺𝑆𝑞 was 2, then 𝜏𝐿𝑀𝑠𝑢𝑚,0.05

𝑚𝑖𝑛
= 46.052.

Thus, 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

highly depends on 𝑑𝑜𝑚(𝐴𝑖 ) for sum, as expected.

5.2 R2T-based Approach

Our next algorithm, 𝑅2𝑇𝑠𝑢𝑚 , uses a state-of-the-art DP mechanism
for sum queries called Race-to-the-Top (R2T) [8] to obtain a DP
estimate for 𝑞(𝐷). R2T constructs log(𝐺𝑆𝑞) number of queries (de-
scribed below) with global sensitivities bounded by 2, 4, 8, . . . ,𝐺𝑆𝑞 .
Then it computes a noisy estimate for each query using the LM
(Definition 2.7) and returns the max of the largest noisy estimate
and 0 (for non-negative integer-valued domain).

In 𝑅2𝑇𝑠𝑢𝑚 , the 𝑗-th query (for 𝑗 = 1 to log(𝐺𝑆𝑞)) works by run-
ning the original SUM query 𝑞 on a truncated database constructed
by removing tuples in 𝐷 with 𝐴𝑖 value greater than 𝑡 𝑗 = 2𝑗 . The
output is denoted by 𝑞(𝐷, 𝑡 𝑗 ). In the full version [36], we show that
this choice of truncation function for constructing queries satisfies
the required properties as stated in [8].

R2T [8] computes the noisy estimates for the constructed queries
as follows (for a given parameter 0 < 𝛽 < 1, which corresponds to
the confidence bound as equation (13) below will show):

�̃� (𝐷, 𝑡 𝑗 ) = 𝑞 (𝐷, 𝑡 𝑗 ) + 𝐿𝑎𝑝
(

𝑡 𝑗

𝜖/log(𝐺𝑆𝑞 )

)
−

𝑡 𝑗

𝜖/log(𝐺𝑆𝑞 )
ln

log(𝐺𝑆𝑞 )
𝛽

(11)

where 𝑡 𝑗 = 2𝑗 , 𝑗 = 1 to log(𝐺𝑆𝑞). The final estimate for 𝑞(𝐷) is:
�̃� (𝐷 ) = max{max

𝑗
�̃� (𝐷, 𝑡 𝑗 ), 𝑞 (𝐷, 0) } (12)

In our setting, the downward local sensitivity 𝐷𝑆𝑞,𝐷 (Defini-
tion 2.4) is the largest 𝐴𝑖 value from tuples in 𝐷 that satisfy the
WHERE condition 𝜑 in 𝑞, because removing the matching tuple
gives the worst-case change for 𝐷 ≈ 𝐷′, 𝐷′ ⊆ 𝐷 . The following
result from [8] holds (discussed further in the full version [36])

𝑃𝑟

[
𝑞 (𝐷 ) ≥ �̃� (𝐷 ) ≥ 𝑞 (𝐷 ) − 4 log(𝐺𝑆𝑞 ) ln

( log(𝐺𝑆𝑞 )
𝛽

)
𝐷𝑆𝑞,𝐷

𝜖

]
≥ 1 − 𝛽 (13)

In other words, the probability that the noisy estimate 𝑞(𝐷) for
𝑞(𝐷) in 𝑅2𝑇𝑠𝑢𝑚 lies in the range [𝑞(𝐷) − 4 log(𝐺𝑆𝑞) ln

( log(𝐺𝑆𝑞 )
𝛽

)
·

𝐷𝑆𝑞,𝐷
𝜖 , 𝑞(𝐷)] is at least 1 − 𝛽 .
To summarize, 𝑅2𝑇𝑠𝑢𝑚 works by running GenericDecider (Al-

gorithm 1) with R2T [8] (and the aforementioned truncation func-
tion) as DPNoisy, with parameters 𝐺𝑆𝑞 and 0 < 𝛽 < 1 for confi-
dence bound in (13). Since we post-process a DP estimate (Proposi-
tion 2.6), the following holds:

Observation 5.4. 𝑅2𝑇𝑠𝑢𝑚 satisfies 𝜖-DP.
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We give an upper bound on the effectiveness threshold of𝑅2𝑇𝑠𝑢𝑚
using (13) (proof in the full version [36]).

Proposition 5.5. Given a private database 𝐷 , synthetic data-
base 𝐷𝑠 , SUM query 𝑞 with global sensitivity 𝐺𝑆𝑞and downward lo-
cal sensitivity 𝐷𝑆𝑞,𝐷 , privacy budget 𝜖 , and error probability 0 <

𝛿 < 1, the effectiveness threshold of the per-query decider 𝑅2𝑇𝑠𝑢𝑚
at 𝛿 (Definition 3.4) has the following upper bound: 𝜏𝑅2𝑇𝑠𝑢𝑚,𝛿

𝑚𝑖𝑛
≤

4 log(𝐺𝑆𝑞) ln
( log(𝐺𝑆𝑞 )

𝛿

)
𝐷𝑆𝑞,𝐷

𝜖 .

We now illustrate how to compute 𝜏𝑅2𝑇𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

for Example 5.3.

Example 5.6. Recall the setting in Example 5.3. As a result,

𝜏
𝑅2𝑇𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

= 4 log(𝐺𝑆𝑞) ln
( log(𝐺𝑆𝑞)

𝛿

)
𝐷𝑆𝑞,𝐷

𝜖
= 4.549 × 107

which is less than 𝜏𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

= 4.605 × 107.

Observe that𝜏𝑅2𝑇𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

is proportional to log (𝐺𝑆𝑞) log log (𝐺𝑆𝑞)·
𝐷𝑆𝑞,𝐷 , so it is large in part due to 𝐺𝑆𝑞 being large. In Example 5.6,
𝜏
𝑅2𝑇𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

< 𝜏
𝐿𝑀𝑠𝑢𝑚,𝛿
𝑚𝑖𝑛

due to the large gap in𝐺𝑆𝑞 and 𝐷𝑆𝑞,𝐷 . In our
experiments (Section 7), we empirically show how the errors for
SUM queries vary in datasets with larger and smaller 𝐺𝑆𝑞 values.

5.3 SVT-based Approach

The Sparse Vector Technique (SVT) [14, 26] is a DP mechanism to
report whether the output of a query 𝑞 on 𝐷 exceeds its specified
threshold. It compares noisy versions of𝑞(𝐷) and the threshold, and
gives a yes (⊤ = noisy query answer exceeded noisy threshold) or
no (⊥ = noisy query answer did not exceed noisy threshold) answer.
An advantage of using SVT is that it consumes privacy budget
only if output = ⊤. The SVT algorithm is applied on a sequence of
queries, each with its own threshold, resulting in an output given
by {⊤,⊥}𝑙 , where 𝑙 is the number of queries answered. The balance
on the privacy budget degrades with the number of queries with
output = ⊤ until the privacy budget runs out [26] and SVT stops.

We denote the per-query decider for SUM query 𝑞 that runs SVT
on a sequence of sum queries (described below) as 𝑆𝑉𝑇𝑠𝑢𝑚 (Algo-
rithm 2). Given privacy budget 𝜖 , 𝑆𝑉𝑇𝑠𝑢𝑚 begins by sampling a
noise term 𝜌 distributed as 𝐿𝑎𝑝 ( 1

𝜖/2 ) (line 4) and uses it to get the
noisy thresholds for all queries. The remaining 𝜖/2 privacy bud-
get is used towards the first ⊤ in the output, after which 𝑆𝑉𝑇𝑠𝑢𝑚
stops. We modify the queries from 𝑅2𝑇𝑠𝑢𝑚 (Section 5.2): 𝑞 𝑗 (𝐷)
= 𝑞(𝐷, 𝑡 𝑗 )/𝑡 𝑗 , for 𝑡 𝑗 = 2𝑗 , 𝑗 = 1 to log(𝐺𝑆𝑞). We divide by 𝑡 𝑗 so that
∀𝑗,Δ𝑞 𝑗 = 1 in the worst-case (i.e. the max over the sensitivities of
the input queries now does not exceed 1), allowing the noise scales
to be proportional to 1 than𝐺𝑆𝑞 . The relevant threshold values are 𝑙
and 𝑟 , which must also be divided by 𝑡 𝑗 . First, SVT is run on queries
𝑞 𝑗 (𝐷) with threshold𝑇𝑗 = 𝑟/𝑡 𝑗 (loop in line 5), adding independent
Laplace noise distributed as 𝐿𝑎𝑝 ( 1

𝜖/2 ) to each 𝑞 𝑗 (𝐷). If any noisy
𝑞 𝑗 (𝐷) value results in ⊤, then 𝑜 = 0 is returned (line 9). If not, only
𝜖/2 privacy budget has been consumed by 𝜌 and SVT is run on
queries 𝑞 𝑗 (𝐷) with threshold𝑇𝑗 = (𝑙 + 1)/𝑡 𝑗 (loop in line 10), again
adding independent Laplace noise distributed as 𝐿𝑎𝑝 ( 1

𝜖/2 ) to each
𝑞 𝑗 (𝐷). If any noisy 𝑞 𝑗 (𝐷) value results in ⊤, then 𝑜 = 1 is returned
(line 14). Otherwise, 𝑜 = 0 is returned at the end (line 15).

Definition 5.7. In the context of SVT [26], the sequence of queries
used is called monotonic if, in going from 𝐷 to a neighboring database
𝐷′, all query answers that are different change in the same direction,
i.e., they all increase or they all decrease.

Observe that 𝑞 𝑗 (𝐷)s are monotonic because ∀𝑗, 𝑞(𝐷, 𝑡 𝑗 ) ≥ 𝑞(𝐷′,
𝑡 𝑗 ) or ∀𝑗, 𝑞(𝐷, 𝑡 𝑗 ) ≤ 𝑞(𝐷′, 𝑡 𝑗 ). This helps save a factor of 2 in the
noise scale for 𝜈 𝑗 (discussed further in the full version [36]). Unlike
the previous per-query deciders that post-process a DP estimate,
here we need to show that 𝑆𝑉𝑇𝑠𝑢𝑚 preserves DP.

Algorithm 2: Per-query decider 𝑆𝑉𝑇𝑠𝑢𝑚 for SUM
Input :𝑞 - SUM query, 𝐷 - private database, 𝐷𝑠 -

synthetic database, 𝜏 - distance bound, 𝜖 -
privacy budget

Output :𝑜 = 1 if the desired distance bound from 𝑞(𝐷𝑠 )
is satisfied for 𝑞(𝐷), else 𝑜 = 0.

1 Function 𝑆𝑉𝑇𝑠𝑢𝑚(𝑞, 𝐷, 𝐷𝑠 , 𝜏, 𝜖):
2 𝐴𝑖 ← aggregate attribute in 𝑞;
3 𝑙 ← 𝑞(𝐷𝑠 ) − 𝜏, 𝑟 ← 𝑞(𝐷𝑠 ) + 𝜏 ;
4 𝜌 ← 𝐿𝑎𝑝 ( 1

𝜖/2 );
5 for 𝑗 ∈ {1, 2, 3, . . . , ⌈log(𝐺𝑆𝑞)⌉} do
6 𝑡 𝑗 ← 2𝑗 , 𝑞(𝐷, 𝑡 𝑗 ) ← SELECT SUM(𝐴𝑖) FROM 𝐷

WHERE 𝜑 AND 𝐴𝑖 ≤ 𝑡 𝑗 ;
7 𝑞 𝑗 (𝐷) ← 𝑞(𝐷, 𝑡 𝑗 )/𝑡 𝑗 , 𝜈 𝑗 ← 𝐿𝑎𝑝 ( 1

𝜖/2 );
8 if 𝑞 𝑗 (𝐷) + 𝜈 𝑗 ≥ 𝑟/𝑡 𝑗 + 𝜌 then

9 return 𝑜 = 0 (“Distance bound unmet”);

10 for 𝑗 ∈ {1, 2, 3, . . . , ⌈log(𝐺𝑆𝑞)⌉} do
11 𝑡 𝑗 ← 2𝑗 , 𝑞(𝐷, 𝑡 𝑗 ) ← SELECT SUM(𝐴𝑖) FROM 𝐷

WHERE 𝜑 AND 𝐴𝑖 ≤ 𝑡 𝑗 ;
12 𝑞 𝑗 (𝐷) ← 𝑞(𝐷, 𝑡 𝑗 )/𝑡 𝑗 , 𝜈 𝑗 ← 𝐿𝑎𝑝 ( 1

𝜖/2 );
13 if 𝑞 𝑗 (𝐷) + 𝜈 𝑗 ≥ (𝑙 + 1)/𝑡 𝑗 + 𝜌 then

14 return 𝑜 = 1 (“Distance bound satisfied”);

15 return 𝑜 = 0 (“Distance bound unmet”);

Theorem 5.8. 𝑆𝑉𝑇𝑠𝑢𝑚 is 𝜖-DP.

Proof Sketch. Let ⊤1 and ⊤2 denote the ‘yes’ answers from
SVT, i.e., when the noisy query answer exceeds the noisy threshold
in lines 9 and 14, respectively. Let ⊥1 and ⊥2, respectively, denote
when these checks fail. Since the algorithm stops as soon as a ⊤1
or ⊤2 is returned in lines 9 or 14, the output string 𝑎 is either of the
form ⊥1, . . . ,⊥1,⊤1 or ⊥1, . . . ,⊥1,⊥2, . . . ,⊥2,⊤2. For both forms,
we show in the full version that 𝑃𝑟 [𝑆𝑉𝑇𝑠𝑢𝑚 (𝑞, 𝐷, 𝐷𝑠 , 𝜏, 𝜖) = 𝑎] ≤
𝑒𝜖𝑃𝑟 [𝑆𝑉𝑇𝑠𝑢𝑚 (𝑞, 𝐷′, 𝐷𝑠 , 𝜏, 𝜖) = 𝑎] for 𝐷 ≈ 𝐷′ holds adapting ideas
from [26]. Intuitively, 𝑆𝑉𝑇𝑠𝑢𝑚 is equivalent to running SVT once,
with the first half mapped to 𝑜 = 0 and the remaining half mapped
to 𝑜 = 1. A complete proof is given in the full version [36]. □

𝑆𝑉𝑇𝑠𝑢𝑚 incurs high error if 𝑞(𝐷) and 𝑟 (or 𝑙) are close because
in the later iterations where 𝑡 𝑗 values are large, the check is easily
influenced by noise. Note that ∀𝑡𝑘 ≥ 𝐷𝑆𝑞,𝐷 , 𝑞(𝐷, 𝑡𝑘 ) = 𝑞(𝐷), where
𝐷𝑆𝑞,𝐷 is the downward local sensitivity (Definition 2.4). We present
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an optimization in Algorithm 4 in the full version [36] aimed at
improving the accuracy of 𝑆𝑉𝑇𝑠𝑢𝑚 by obtaining a private bound
for 𝐷𝑆𝑞,𝐷 to be used as the largest truncation threshold. In the rest
of the paper, by 𝑆𝑉𝑇𝑠𝑢𝑚 we will refer to the improved algorithm
using the bound from Algorithm 4. We analyze the error of 𝑆𝑉𝑇𝑠𝑢𝑚
in the full version [36].

Comparison of 𝐿𝑀𝑠𝑢𝑚 , 𝑅2𝑇𝑠𝑢𝑚 and 𝑆𝑉𝑇𝑠𝑢𝑚 . As demonstrated
by Examples 5.3 and 5.6, when the difference between 𝐷𝑆𝑞,𝐷 and
𝐺𝑆𝑞 is large, the effectiveness threshold for 𝑅2𝑇𝑠𝑢𝑚 is likely to be
smaller than that of 𝐿𝑀𝑠𝑢𝑚 . We show that 𝑆𝑉𝑇𝑠𝑢𝑚 can achieve
smaller error than 𝑅2𝑇𝑠𝑢𝑚 in the experiments (Section 7).

6 SOLUTIONS FOR MEDIAN QUERY

We present two solutions and analyze their errors for MEDIAN query
𝑞 on attribute 𝐴𝑖 : SELECT MEDIAN(𝐴𝑖) FROM 𝐷 WHERE 𝜑 . (1)
𝐸𝑀𝑚𝑒𝑑 (that instantiates Algorithm 1 with the Exponential Mecha-
nism (EM)) in Section 6.1, and (2) 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 (that directly solves the
problem using a noisy histogram) in Section 6.2. The true output of
the median query 𝑞(𝐷) is the ⌈𝑛′2 ⌉-th element in the sorted list of
𝐴𝑖 values among tuples that satisfy the WHERE clause, where 𝑛′ is
the (private) number of tuples in 𝐷 satisfying 𝜑 .

6.1 Exponential Mechanism-based approach

Let 𝑟𝑎𝑛𝑘𝜑 (𝐷, 𝑒) be the output of the query: SELECT COUNT(*) FROM
𝐷 WHERE 𝜑 AND 𝐴𝑖 < 𝑒 . Our approach 𝐸𝑀𝑚𝑒𝑑 uses the algorithm
from [6] that computes a noisy estimate for 𝑞(𝐷). 𝐸𝑀𝑚𝑒𝑑 runs
GenericDecider with the EM as DPNoisy, with additional parame-
ters R = 𝑑𝑜𝑚(𝐴𝑖 ) and score function𝑢 (𝐷, 𝑒) = −|𝑟𝑎𝑛𝑘𝜑 (𝐷, 𝑒)− 𝑛′

2 |,
∀𝑒 ∈ R. The sensitivity of the score function equals 1 because rank
of any 𝑒 either stays the same or changes in the same direction as
𝑛′ between databases 𝐷 ≈ 𝐷′. Since we post-process a DP estimate
(Proposition 2.6), the following observation holds:

Observation 6.1. 𝐸𝑀𝑚𝑒𝑑 satisfies 𝜖-DP.

We analyze the error of 𝐸𝑀𝑚𝑒𝑑 in the full version [36].

6.2 Histogram-Based Algorithm

We next propose a histogram-based approach called 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 (Al-
gorithm 3), which uses the intuition that if at least half the values
in 𝐴𝑖 (from tuples satisfying 𝜑) either are less than or equal to 𝑙 ,
or are greater than or equal to 𝑟 , then 𝑞(𝐷) ∉ I. These bounds
𝑙 = 𝑞(𝐷𝑠 ) − 𝜏 and 𝑟 = 𝑞(𝐷𝑠 ) + 𝜏 are compared with a DP estimate,
say𝑚, for ⌈𝑛′2 ⌉ obtained using the LM (line 3, where 𝑛′ is the num-
ber of tuples in 𝐷 satisfying 𝜑). If neither count exceeds𝑚, then
𝑜 = 1 (line 13). Otherwise, 𝑜 = 0 (lines 8 and 10).

We next show that 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 is 𝜖-DP.

Proposition 6.2. 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 satisfies 𝜖-DP.

Proof Sketch. We spend 𝜖/2 to obtain an estimate for 𝑛′, and
the remaining 𝜖/2 on 𝑞1 (𝐷) and 𝑞2 (𝐷) (lines 5-6) that use disjoint
sets of tuples (𝜏 > 0). Hence 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 satisfies 𝜖-DP by sequential
and parallel composition, and post-processing (Proposition 2.6). □

Comparison of 𝐸𝑀𝑚𝑒𝑑 and 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 . Suppose 𝑞 is a query that
computes the median on attribute 𝑎𝑔𝑒, 𝑞(𝐷) = 37, 𝜖 = 0.1, 𝜏 = 5,

Algorithm 3: Per-query decider 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 for MEDIAN
Input :𝑞 - MEDIAN query, 𝐷 - private database, 𝐷𝑠 -

synthetic database, 𝜏 - distance bound, 𝜖 -
privacy budget for error analysis

Output :Whether the distance bound is met for 𝑞

1 Function 𝐻𝑖𝑠𝑡𝑚𝑒𝑑(𝑞, 𝐷, 𝐷𝑠 , 𝜏, 𝜖):
2 𝑛′ ← number of tuples in 𝐷 that satisfy 𝜑 in 𝑞;
3 𝜈𝑞 ← 𝐿𝑎𝑝 ( 1

𝜖/2 ), �̃� ← 𝑛′ + 𝜈𝑞 ;
4 𝐴𝑖 ← attribute for median used in 𝑞;
5 𝑞1 (𝐷) ← SELECT COUNT(*) FROM 𝐷 WHERE 𝜑 AND

𝐴𝑖 ≤ 𝑞(𝐷𝑠 ) − 𝜏 ;
6 𝑞2 (𝐷) ← SELECT COUNT(*) FROM 𝐷 WHERE 𝜑 AND

𝐴𝑖 ≥ 𝑞(𝐷𝑠 ) + 𝜏 ;
7 𝜈𝑞1 , 𝜈𝑞2 ← 𝐿𝑎𝑝 ( 1

𝜖/2 );
8 if 𝑞1 (𝐷) + 𝜈𝑞1 ≥ ⌈�̃�/2⌉ then
9 return 𝑜 = 0 (“Distance bound unmet”);

10 else if 𝑞2 (𝐷) + 𝜈𝑞2 ≥ ⌈�̃�/2⌉ then
11 return 𝑜 = 0 (“Distance bound unmet”);
12 else

13 return 𝑜 = 1 (“Distance bound satisfied”);

and I = (28, 38) (as defined in (1)). 𝐸𝑀𝑚𝑒𝑑 returns 𝑒 = 38 with
probability equal to 0.9995. 38 ∉ I but 𝑞(𝐷) ∈ I. 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 can be
the better choice (discussed further in the full version [36]).

Extending the framework to other aggregates. Our solutions
can be used to support some other aggregates, e.g., average can be
expressed as the output of a SUM query divided by the output of
a COUNT query, each consuming some 𝜖 . The solutions for MEDIAN
can be generalized to work for other quantiles. For example, to
compute the first quartile, we change the score function in 𝐸𝑀𝑚𝑒𝑑

to use 𝑛′/4 instead of 𝑛′/2, and change ⌈�̃�/2⌉ to ⌈�̃�/4⌉ and ⌈3�̃�/4⌉
in lines 8 and 10 (Algorithm 3), respectively. However, supporting
more complex aggregates needs careful analysis to establish bounds.

7 EXPERIMENTS

In this section, we analyze the accuracy and efficiency of our pro-
posed per-query deciders for COUNT, SUM and MEDIAN queries with
the following questions:

(1) How is the accuracy of each proposed solution affected
when 𝜏 and 𝜖 are varied separately?

(2) For each proposed solution, what type of queries benefit
most in terms of accuracy?

(3) How does the performance of the specialized solutions
compare with that of the solutions bases on Algorithm 1?

We have implemented the per-query deciders in Python 3.8.8
using Pandas [33] and NumPy [22] libraries. All experiments were
run on Apple M1 CPU@3.2 GHz with 16 GB of RAM.

7.1 Experimental Setup

We describe the datasets, queries, error measures, and parameters.
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Dataset. We consider two datasets as the private database 𝐷 .
(1) The first dataset is derived from the IPUMS-CPS sur-

vey data [17], an individual-level population database, for
the years 2011-2019 with 1, 340, 703 tuples and 10 attributes:
𝑟𝑒𝑙𝑎𝑡𝑒 , 𝑎𝑔𝑒 , 𝑠𝑒𝑥 , 𝑟𝑎𝑐𝑒 , 𝑚𝑎𝑟𝑠𝑡 , 𝑐𝑖𝑡𝑖𝑧𝑒𝑛, 𝑤𝑜𝑟𝑘𝑙𝑦, 𝑐𝑙𝑎𝑠𝑠𝑤𝑘𝑟 , 𝑒𝑑𝑢𝑐 and
𝑖𝑛𝑐𝑡𝑜𝑡 . The only numerical attributes are 𝑎𝑔𝑒 and 𝑖𝑛𝑐𝑡𝑜𝑡 with
domains {0, 1, . . . , 80, 85} and {0, 1, . . . , 999999999}, respectively.
We only include tuples with 𝑖𝑛𝑐𝑡𝑜𝑡 value less than or equal to
500K. The domain sizes of the categorical attributes vary from
3 to 36. (2) The second dataset is derived from the NYC Yel-

low Taxi Trip data [1] for January 2022 with 2, 177, 719 tu-
ples and 10 attributes: 𝑣𝑒𝑛𝑑𝑜𝑟𝐼𝐷 , 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑐𝑜𝑢𝑛𝑡 , 𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ,
𝑟𝑎𝑡𝑒𝐶𝑜𝑑𝑒𝐼𝐷 , 𝑠𝑡𝑜𝑟𝑒_𝑎𝑛𝑑_𝑓 𝑤𝑑_𝑓 𝑙𝑎𝑔, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑡𝑦𝑝𝑒 , 𝑓 𝑎𝑟𝑒_𝑎𝑚𝑜𝑢𝑛𝑡 ,
𝑡𝑖𝑝_𝑎𝑚𝑜𝑢𝑛𝑡 , 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 and 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒 (with some
pre-processing as discussed in [36]). The domain sizes of the cate-
gorical attributes vary from 2 to 6.

We generate a synthetic database 𝐷𝑠 for 𝐷 using PrivBayes
[43], a Bayesian network based DP-SDG. Nodes and edges in the
network represent attributes in 𝐷 and conditional independence
relations between attributes in 𝐷 . PrivBayes first learns a differ-
entially private Bayesian network N̂ and then uses it to derive a
factored form of the joint tuple probabilities based on the noisy con-
ditional probabilities. Note that N̂ can make incorrect conditional
independence assumptions between attributes in 𝐷 .
Queries. We refer to the Summary File 1 (SF-1) [38] released by
the U.S. Census Bureau to construct queries for the IPUMS-CPS
dataset. We analyze 12 COUNT, 9 SUM (on 𝑖𝑛𝑐𝑡𝑜𝑡 ) and 9 MEDIAN (on
𝑎𝑔𝑒) queries. For the second dataset, we analyze 10 COUNT, 10 SUM
(on 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 ), and 10 MEDIAN (on 𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) queries. Due
to space constraints, here we present results on 4 representative
queries of each aggregate on the IPUMS-CPS data, and 2 SUM queries
on the NYC Taxi Trip data with 𝐷𝑆𝑞,𝐷 much smaller than 𝐺𝑆𝑞
(Table 2), while the full list of queries and results for the other
queries on both datasets are shown in the full version [36].
Error measure. We measure the error of per-query deciders as
follows. We run each of our per-query deciders 100 times to decide
whether 𝑞(𝐷) lies in (𝑞(𝐷𝑠 ) · (1 − 𝜏), 𝑞(𝐷𝑠 ) · (1 + 𝜏)), where 𝜏 is a
percentage of the query answer on the synthetic data, 𝑞(𝐷𝑠 ). We
measure error as the fraction of times the algorithm makes an error
in determining whether 𝑞(𝐷) lies in (𝑞(𝐷𝑠 ) · (1−𝜏), 𝑞(𝐷𝑠 ) · (1+𝜏)).
Parameter settings. We set 𝛽 = 0.05 in 𝑅2𝑇𝑠𝑢𝑚 (Section 5.2) and
𝜃 = 0.95 in Algorithm 4 (Section 5.3). Default 𝜖 = 0.25 and 𝜏 =

3.2% of 𝑞(𝐷𝑠 ). In our experiments, we vary 𝜏 = 0.2%, 0.8%, 3.2%,
12.8%, 51.2%, and vary 𝜖 = 0.0625, 0.125, 0.25, 0.5, 1.

7.2 Accuracy and Performance Analysis

7.2.1 Accuracy analysis. We present our analysis of the impact
on accuracy as 𝜖 and 𝜏 are varied individually. We also investigate
which queries benefit the most for each per-query decider. In the
following discussion, we use I = (𝑞(𝐷𝑠 ) · (1 − 𝜏), 𝑞(𝐷𝑠 ) · (1 + 𝜏)),
where 𝜏 is a percentage of 𝑞(𝐷𝑠 ).
COUNT queries. We present our analysis for 4 queries: 𝑞1, 𝑞3, 𝑞5
and 𝑞12 (Figures 5-6). Consider the setting where 𝜏 varies. 𝑞1 (𝐷)
equals 𝑞1 (𝐷𝑠 ) and error from both 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 decreases
when 𝜏 increases, as expected. 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 gives smaller error. For
𝜏 ≤ 3.2%, 𝑞3 (𝐷) ∉ I. At 𝜏 = 3.2%, 𝑞3 (𝐷) is closest to one of I’s

Table 2: Queries used in experiments. Blocks 1, 2, 3 are for

the IPUMS-CPS data, block 4 is for the NYC Taxi Trip data.

Query WHERE clause 𝑞 (𝐷 ), 𝑞 (𝐷𝑠 )
𝑞1 : 𝑠𝑒𝑥 LIKE ‘Female’ AND 𝑟𝑎𝑐𝑒 LIKE ‘White-

American Indian-Asian’ AND 𝑤𝑜𝑟𝑘𝑙𝑦 LIKE ‘Yes’
34
34

𝑞3 : 𝑠𝑒𝑥 LIKE ‘Male’ AND 𝑒𝑑𝑢𝑐 LIKE ‘Doctorate
degree’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE ‘Separated’

87
91

𝑞5 : 𝑠𝑒𝑥 LIKE ‘Female’ AND 𝑒𝑑𝑢𝑐 LIKE ‘Grades 5
or 6’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE ‘Never married/single’

1560
1606

1. COUNT

𝑞12 : 𝑟𝑎𝑐𝑒 LIKE ‘White’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE ‘Married,
spouse present’ AND 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 LIKE ‘Born in U.S’

471994
470483

𝑞13 : 𝑠𝑒𝑥 LIKE ‘Female’ AND 𝑟𝑎𝑐𝑒 LIKE
‘White-Black’ AND 𝑤𝑜𝑟𝑘𝑙𝑦 LIKE ‘No’

6915340
6942866

𝑞16 : 𝑟𝑎𝑐𝑒 LIKE ‘White’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE ‘Divorced’
AND 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 LIKE ‘Not a citizen’

123543040
128497757

𝑞20 : 𝑠𝑒𝑥 LIKE ‘Female’ AND 𝑒𝑑𝑢𝑐 LIKE ‘High
school diploma or equivalent’ AND 𝑚𝑎𝑟𝑠𝑡

LIKE ‘Never married/single’

685635093
690711885

2. SUM
on

𝑖𝑛𝑐𝑡𝑜𝑡

𝑞21 : 𝑟𝑎𝑐𝑒 LIKE ‘White’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE ‘Married,
spouse present’ AND 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 LIKE ‘Born in U.S’

23542765109
23434676868

𝑞22 : 𝑤𝑜𝑟𝑘𝑙𝑦 LIKE ‘Yes’ AND 𝑐𝑙𝑎𝑠𝑠𝑤𝑘𝑟 LIKE
‘Wage/salary, private’ AND 𝑒𝑑𝑢𝑐 LIKE

‘Bachelor’s degree’

41
41

𝑞23 : 𝑠𝑒𝑥 LIKE ‘Male’ AND 𝑟𝑎𝑐𝑒 LIKE ‘White-
Black’ AND 𝑟𝑒𝑙𝑎𝑡𝑒 LIKE ‘Spouse’

40
40

𝑞28 : 𝑟𝑎𝑐𝑒 LIKE ‘Asian only’ AND 𝑚𝑎𝑟𝑠𝑡 LIKE
‘Separated’ AND 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 LIKE ‘Born in U.S’

39
39

3. MEDIAN
on
𝑎𝑔𝑒

𝑞29 : 𝑠𝑒𝑥 LIKE ‘Male’ AND 𝑟𝑎𝑐𝑒 LIKE ‘White’
AND 𝑐𝑙𝑎𝑠𝑠𝑤𝑘𝑟 LIKE ‘Wage/salary, private’

40
40

𝑞45 : 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑐𝑜𝑢𝑛𝑡 < 2 AND 𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 8
AND 𝑡𝑖𝑝_𝑎𝑚𝑜𝑢𝑛𝑡 ≤ 2

218047
2136854. SUM on

𝑡𝑜𝑡𝑎𝑙_
𝑎𝑚𝑜𝑢𝑛𝑡

𝑞50 : 𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1 AND 𝑓 𝑎𝑟𝑒_𝑎𝑚𝑜𝑢𝑛𝑡 ≤ 6
AND 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒 = 2

5680776
5624898

endpoints, so we see the error from 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 increase (before it
goes to 0) because there is a higher probability of 𝑞3 (𝐷)’s noisy
estimate being in I. Similarly for 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 on 𝑞3, where error starts
decreasing for 𝜏 > 3.2%. 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error on 𝑞3 for 𝜏 ≤ 3.2% ranges
from 0.39 to 0.45. For 𝜏 ≤ 0.8%, 𝑞5 (𝐷) ∉ I. At 𝜏 = 3.2%, 𝑞5 (𝐷) ∈
I and is closest to one of I’s endpoints, so 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s error has
the same trend as that for 𝑞3. In 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 for 𝑞5 and 𝜏 = 0.2%,
𝑐 · exp(𝜖𝑢′ (·)𝜏) (Definition 2.10) for 𝑜 = 0 and 𝑜 = 1 are closest, so
𝑃𝑟 [𝑜 = 1] = 0.27 (after normalization). 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error increases at
𝜏 = 3.2% (before it goes to 0) because 𝑞5 (𝐷) is close to an endpoint
ofI. 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 give 0 error for𝑞12 because the resulting
𝜏 values are such that 𝑞(𝐷) stays far from I’s endpoints.

When 𝜖 is varied instead, the errors from both 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 and
𝐸𝑀𝑐𝑜𝑢𝑛𝑡 have a decreasing trend except for 𝑞3 and 𝑞12. As 𝜖 in-
creases, the DP computations become less noisy. 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s error
on 𝑞3 increases initially because probability of 𝑞3 (𝐷)’s noisy esti-
mate being in I increases despite the noise scale decreasing (before
error goes to 0). Similarly for 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 on 𝑞3. 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error on 𝑞12
increases for 𝜖 > 0.5 because 𝑐 · exp(𝜖𝑢′ (·)𝜏) (Definition 2.10) for
𝑜 = 0 and 𝑜 = 1 is greater than 𝑐 · exp(7527 · 𝑢′ (·)), represented as
infinity in Python. Either outcome is equally likely to be returned.
SUM queries. We present our analysis for 4 queries: 𝑞13, 𝑞16, 𝑞20 and
𝑞21 (Figures 7-8). 𝐷𝑆𝑞,𝐷 values are: 127764, 278011, 403353, 500000.
Consider the setting where 𝜏 varies. 𝑞13 (𝐷) ∉ I (as defined in (1))
at 𝜏 = 0.2% and the probability of 𝐿𝑀𝑠𝑢𝑚 ’s noisy estimate being
outside I is high, so the error is low. 𝐿𝑀𝑠𝑢𝑚 ’s error shoots up
at 𝜏 = 0.8% because 𝑞13 (𝐷) is now in I, but the probability that
𝑞13 (𝐷)’s noisy estimate is outside I is high. Error decreases as 𝜏
increases further. Similarly for 𝑞16 and 𝑞20. 𝐿𝑀𝑠𝑢𝑚 incurs an error
of 0 for 𝑞21 in all cases because 𝑞21 (𝐷) is large and for the chosen 𝜏
values, it is far from I’s endpoints in comparison to the noise scale.
𝑅2𝑇𝑠𝑢𝑚 gives error close to 1 whenever 𝑞13 (𝐷) ∈ I because the
noise in its estimate for𝑞13 (𝐷) is large and this estimate falls outside
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Figure 5: IPUMS-CPS data: Error for COUNT queries from 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 (in blue) and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 (in orange) as 𝜏 varies. The dotted line

marks the smallest 𝜏 value considered such that the query answer on the private data belongs in the interval I.
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Figure 6: IPUMS-CPS data: Error for COUNT queries from 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 (in blue) and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 (in orange) as 𝜖 varies.
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Figure 7: IPUMS-CPS data: Error for SUM queries from 𝐿𝑀𝑠𝑢𝑚 (in blue), 𝑅2𝑇𝑠𝑢𝑚 (in purple) and 𝑆𝑉𝑇𝑠𝑢𝑚 (in brown) as 𝜏 varies. The

dotted line marks the smallest 𝜏 value considered such that the query answer on the private data belongs in the interval I.
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Figure 8: IPUMS-CPS data: Error for SUM queries from 𝐿𝑀𝑠𝑢𝑚 (in blue), 𝑅2𝑇𝑠𝑢𝑚 (in purple) and 𝑆𝑉𝑇𝑠𝑢𝑚 (in brown) as 𝜖 varies.

I. Similarly for 𝑞16. 𝑅2𝑇𝑠𝑢𝑚 ’s error on 𝑞20 is high when 𝑞20 (𝐷) ∈ I
but 𝜏 is small compared to the noise in 𝑅2𝑇𝑠𝑢𝑚 ’s estimate for𝑞20 (𝐷).
As 𝜏 increases, the error decreases. 𝑅2𝑇𝑠𝑢𝑚 ’s error on 𝑞21 follows
the same trend as that of 𝑞20, except the error stays low because

𝑞21 (𝐷𝑠 ) is large and consequently 𝜏 values are large. 𝑆𝑉𝑇𝑠𝑢𝑚 ’s error
on 𝑞13 is low at 𝜏 = 0.2% because 𝑞13 (𝐷) < 𝑙 and the chance of
any noisy truncated sum query exceeding its noisy threshold is
low (lines 8 and 13 in Algorithm 2). For larger 𝜏 , 𝑞13 (𝐷) ∈ I and
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Figure 9: IPUMS-CPS data: Error for MEDIAN queries from 𝐸𝑀𝑚𝑒𝑑 (in orange) and 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 (in green) as 𝜏 varies. The dotted line

marks the smallest 𝜏 value considered such that the query answer on the private data belongs in the interval I.
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Figure 10: IPUMS-CPS data: Error for MEDIAN queries from 𝐸𝑀𝑚𝑒𝑑 (in orange) and 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 (in green) as 𝜖 varies.
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Figure 11: NYC Taxi data: Error for SUM queries from 𝐿𝑀𝑠𝑢𝑚 (in blue), 𝑅2𝑇𝑠𝑢𝑚 (in purple) and 𝑆𝑉𝑇𝑠𝑢𝑚 (in brown) as 𝜖 and 𝜏 vary

separately. The dotted line marks the smallest 𝜏 value considered such that the query answer on the private data belongs in I.

moves away from I’s endpoints, which increases the chance of the
threshold in line 8 not being exceeded and in line 13 being exceeded.
Similarly for 𝑞16, 𝑞20 and 𝑞21, where the last two have large outputs
on 𝐷𝑠 and so error decreases sooner.

When 𝜖 is varied, 𝐿𝑀𝑠𝑢𝑚 ’s error on the 4 queries shows a de-
creasing trend because the noise scale decreases as 𝜖 increases.
𝑞13 (𝐷), 𝑞20 (𝐷) and 𝑞21 (𝐷) are in the associated I at (default) 𝜏 =
3.2%. For the first two, increasing 𝜖 does not change 𝑅2𝑇𝑠𝑢𝑚 ’s er-
ror because the noise is 𝑂 (log (𝐺𝑆𝑞) log log (𝐺𝑆𝑞) · 𝐷𝑆𝑞,𝐷 ) (from
(13)), keeping 𝑞(𝐷) outside I with high probability. Since 𝑞21 (𝐷𝑠 )
is the largest, 𝑅2𝑇𝑠𝑢𝑚 ’s error decreases because the noise in 𝑞(𝐷)
decreases as 𝜖 increases, whileI’s width stays the same. For queries
with answers on 𝐷 in I, 𝑆𝑉𝑇𝑠𝑢𝑚 ’s error does not change much
as 𝜖 increases. 𝑞13 (𝐷) and 𝑞20 (𝐷) are close to the left-endpoints
of the respective intervals, and so 𝑆𝑉𝑇𝑠𝑢𝑚 ’s error is high (line 13
in Algorithm 2). In contrast, 𝑆𝑉𝑇𝑠𝑢𝑚 ’s error on 𝑞16 decreases as 𝜖
increases because the noise scale decreases and 𝑞16 (𝐷) < 𝑙 .

Next, we analyze the impact of larger gaps in 𝐷𝑆𝑞,𝐷 and𝐺𝑆𝑞 , for
small 𝐺𝑆𝑞 of 377 (Figure 11). When 𝜏 varies, 𝐿𝑀𝑠𝑢𝑚 and 𝑅2𝑇𝑠𝑢𝑚
give highest error for 𝑞45 at 𝜏 = 3.2% as 𝑞45 (𝐷) ∈ I (closer to 𝑟 ),
but the noise in their estimates for 𝑞45 (𝐷) is large while interval
width is small, causing the estimates to not be in I. At 𝜏 = 0.8%,
𝑞50 (𝐷) ∉ I (closer to 𝑟 ). 𝐿𝑀𝑠𝑢𝑚 and 𝑅2𝑇𝑠𝑢𝑚 give low error as I’s
width is large and their estimates for 𝑞50 (𝐷) are in I with high
probability. 𝑆𝑉𝑇𝑠𝑢𝑚 gives low error for both queries, except for 𝑞50
at 𝜏 = 0.8% as the truncation threshold from Algorithm 4 is often
smaller than 𝐷𝑆𝑞,𝐷 , causing the check in line 8 to incorrectly fail.

At default 𝜏 = 3.2%, 𝑞45 (𝐷) and 𝑞50 (𝐷) are in their associated
intervals (closer to 𝑟 ). For 𝑞45, the interval is small, so all 3 solutions
give error at least 0.35 when 𝜖 is small, with 𝑅2𝑇𝑠𝑢𝑚 giving the
highest error due to large noise in its estimate. For 𝑞50, the interval
width is larger, so all 3 solutions give 0 error.
MEDIAN queries. We present our analysis for 4 queries: 𝑞22, 𝑞23, 𝑞28
and 𝑞29 (Figures 9-10). Consider the setting where 𝜏 varies. Let
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us first look at 𝐸𝑀𝑚𝑒𝑑 . For 𝑞22 and 𝑞29, the support, i.e., tuples
in 𝐷 that satisfy the predicates in the WHERE clause, is large. As a
result, the probability distribution used to sample the noisy estimate
for the median is more concentrated around the correct value. The
opposite is true for 𝑞23 and 𝑞28. We see error decrease as 𝜏 increases.
𝐻𝑖𝑠𝑡𝑚𝑒𝑑 ’s error has a decreasing trend in all cases because the noisy
bin counts are far from the query’s noisy estimate for ⌈𝑛′/2⌉.

When 𝜖 increases, the variance of the probability distribution
used to sample the noisy estimate in 𝐸𝑀𝑚𝑒𝑑 decreases. 𝐸𝑀𝑚𝑒𝑑 ’s
error has a decreasing trend except for 𝑞29 because the scores are
negatives numbers with large magnitudes because the support is
large (Definition 2.10). As discussed above for 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 , the noisy
bin counts are far from the query’s noisy estimate for majority. As
𝜖 increases, the error decreases because the noise scale decreases.

7.2.2 Performance analysis. We compare average runtimes of per-
query deciders for COUNT, SUM and MEDIAN queries in Table 3. The
reported average is per query and per 1 run (out of the 100 trials).

7.2.3 Discussion. We now summarize our findings. The exper-
iments suggest the following comparative trends (Table 4). For
COUNT, when 𝑞(𝐷) = 𝑞(𝐷𝑠 ), 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 ’s error is less than 𝐿𝑀𝑐𝑜𝑢𝑛𝑡 ’s
error for different 𝜖 and 𝜏 values. When 𝑞(𝐷) ∈ I and 𝑞(𝐷) ∉ I,
𝐿𝑀𝑐𝑜𝑢𝑛𝑡 is superior. For SUM, when 𝑞(𝐷) ∈ I and 𝜏 varies, 𝐿𝑀𝑠𝑢𝑚

was the best choice followed by 𝑆𝑉𝑇𝑠𝑢𝑚 . Note that 𝐷𝑆𝑞,𝐷 plays an
important role here. When 𝑞(𝐷) ∉ I, 𝑅2𝑇𝑠𝑢𝑚 and 𝑆𝑉𝑇𝑠𝑢𝑚 were the
better choices. For MEDIAN, 𝐻𝑖𝑠𝑡𝑚𝑒𝑑 generally gives smaller error
than 𝐸𝑀𝑚𝑒𝑑 no matter the relationship between 𝑞(𝐷) and I.

There is not a clear pattern for when the error is high except
for the condition when 𝑞(𝐷) is close to one of the endpoints of the
interval, or when the downward local sensitivity is not far from the
global sensitivity for the given SUM query.

Typically, we expect error of DP algorithms to decrease with
higher 𝜖 . But, we see the reverse in some experiments (see 𝐿𝑀𝑐𝑜𝑢𝑛𝑡

for𝑞3, 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 for𝑞12, 𝑆𝑉𝑇𝑠𝑢𝑚 and𝑅2𝑇𝑠𝑢𝑚 for queries with answer
on 𝐷 in the interval, and 𝐸𝑀𝑚𝑒𝑑 for 𝑞29). This is because the error
function for the per-query deciders is not monotonic in 𝜖 . This may
suggest that there exist smarter ways to design algorithms that only
use a portion of the overall budget available to get better accuracy.
𝐿𝑀𝑐𝑜𝑢𝑛𝑡 and 𝐸𝑀𝑐𝑜𝑢𝑛𝑡 were not effective for queries at smaller

𝜏 , except when 𝑞(𝐷𝑠 ) and 𝜏 are large, in which case we do not
know if either approach is effective. They were effective for the
same settings. Similarly for 𝐿𝑀𝑠𝑢𝑚 . 𝑅2𝑇𝑠𝑢𝑚 and 𝑆𝑉𝑇𝑠𝑢𝑚 were not
effective for queries with large answer on 𝐷 at small 𝜏 . In general,
the accuracy can be improved with a larger privacy budget 𝜖 , or a
larger distance bound 𝜏 , which may not always be feasible.

8 RELATEDWORK

We have used several existing DP mechanisms for count, sum, and
median from the literature [6, 8, 14, 26] for DP-PQD. To the best of
our knowledge, most existing works on SDGs do not give per-query
error bounds to the user. AIM [30] is a novel differentially private
SDG that generates 𝐷𝑠 while minimizing average error over all the
input marginal queries, and only gives probabilistic upper-bounds
on the error for marginal queries in the downward closure of the
input workload. It follows the select-measure-generate paradigm
[25, 27, 28]. However, it differs from our model wherein we are

Table 3: IPUMS-CPS data: Average runtimes.

𝐿𝑀𝑐𝑜𝑢𝑛𝑡 𝐸𝑀𝑐𝑜𝑢𝑛𝑡

𝑇𝑖𝑚𝑒 (𝑠 ) 0.312 0.321
𝐿𝑀𝑠𝑢𝑚 𝑅2𝑇𝑠𝑢𝑚 𝑆𝑉𝑇𝑠𝑢𝑚

𝑇𝑖𝑚𝑒 (𝑠 ) 0.450 4.022 9.131
𝐸𝑀𝑚𝑒𝑑 𝐻𝑖𝑠𝑡𝑚𝑒𝑑

𝑇𝑖𝑚𝑒 (𝑠 ) 0.533 1.043

Table 4: Summary of proposed solutions and our recommen-

dations based on theoretical and empirical results. Those

marked by (plug-in) are based on Algorithm 1, whereas the

rest solve the problem without plugging-in an estimate for

𝑞(𝐷). Some theoretical upper bounds remain open problems.

Query Solution 𝜏
A,𝛿
𝑚𝑖𝑛

(upper bound) Conclusions

𝐿𝑀𝑐𝑜𝑢𝑛𝑡

(plug-in)
1
𝜖 ln 1

2𝛿
COUNT

𝐸𝑀𝑐𝑜𝑢𝑛𝑡

(direct)
1
𝜖 ln 1−𝛿

𝛿

𝐿𝑀𝑐𝑜𝑢𝑛𝑡 is the better choice,
for 𝛿 < 1

2 unless 𝑞 (𝐷 ) = 𝑞 (𝐷𝑠 ) .

𝐿𝑀𝑠𝑢𝑚

(plug-in)
𝐺𝑆𝑞
𝜖 ln 1

2𝛿

𝑅2𝑇𝑠𝑢𝑚
(plug-in)

4 log(𝐺𝑆𝑞 ) ·

ln
(
log(𝐺𝑆𝑞 )

𝛿

)
𝐷𝑆𝑞,𝐷

𝜖
SUM

𝑆𝑉𝑇𝑠𝑢𝑚
(direct) –

If approx. 𝐷𝑆𝑞,𝐷 value is known
to the user, and 𝐷𝑆𝑞,𝐷 is much
smaller than𝐺𝑆𝑞 , then choose

𝑆𝑉𝑇𝑠𝑢𝑚 or 𝑅2𝑇𝑠𝑢𝑚 . Otherwise,
choose 𝐿𝑀𝑠𝑢𝑚 unless 𝜖 is small.

𝐸𝑀𝑚𝑒𝑑
(plug-in) –

MEDIAN
𝐻𝑖𝑠𝑡𝑚𝑒𝑑
(direct) –

𝐻𝑖𝑠𝑡𝑚𝑒𝑑 empirically gives
smaller error than 𝐸𝑀𝑚𝑒𝑑 .

given 𝐷𝑠 from some black-box SDG and the goal is to decide if
the distance between the given (count, sum, or median) query 𝑞’s
output on 𝐷 and 𝐷𝑠 is less than the user-provided threshold 𝜏 . We
do not make assumptions about the SDG and do not require that
the given query should be well approximated by the SDG (or 𝐷𝑠 ).

We also found that the parametric bootstrap approach [16] does
not work well because the underlying assumption about the differ-
ence between bootstrap estimates and 𝑞(𝐷𝑠 ) being representative
of the difference between 𝑞(𝐷𝑠 ) and 𝑞(𝐷) does not hold when the
SDG (e.g. PrivBayes [43]) uses techniques like post-processing.

9 CONCLUSIONS AND FUTUREWORK

Wehave presented the problem ofmeasuring the per-query distance
between the output on private data and synthetic data, and detailed
our error analysis for COUNT, MEDIAN and SUM queries. Our proposed
solutions fall in two classes: (1) use a DP algorithm to answer the
query and check if the noisy answer is close to the answer on the
synthetic data, and (2) design specialized algorithm. In addition to
analyzing the error, we also introduce the notion of effectiveness of
a per-query decider and derive upper bounds on the effectiveness
thresholds of solutions for COUNT and SUM queries (except 𝑆𝑉𝑇𝑠𝑢𝑚).
Deriving such bounds for MEDIAN query is future work. We find that
some mechanisms work better for smaller 𝜏 . Extending our work
to other useful queries involving other aggregate functions, joins,
subqueries, and group-by is future work. Designing baselines and
benchmarks for the problem in this work is future work, and may
be of interest to the synthetic data and data privacy communities.
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