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ABSTRACT

Top-k aggregation queries are widely used in data analytics for
summarizing and identifying important groups from large amounts
of data. These queries are usually processed by first computing ex-
act aggregates for all groups and then selecting the groups with the
top-k aggregate values. However, such an approach can be ineffi-
cient for high-cardinality large datasets where intermediate results
may not fit within the local cache of multi-core processors leading
to excessive data movement. To address this problem, we have de-
veloped Zippy, a new cache-conscious aggregation framework that
leverages the skew in the data distribution to minimize data move-
ments. This is achieved by designing cache-resident data structures
and an adaptive multi-pass algorithm that quickly identifies candi-
date groups during processing, and performs exact aggregations for
these groups. The non-candidate groups are pruned cheaply using
efficient hashing and partitioning techniques without performing
exact aggregations. We develop techniques to improve robustness
over adversarial data distributions and have optimized the frame-
work to reuse computations incrementally for rolling (or paginated)
top-k aggregate queries. Our extensive evaluation using both real-
world and synthetic datasets demonstrate that Zippy can achieve
a median speed-up of more than 3× for monotonic aggregation
functions across typical ranges of k values (e.g., 1 to 100) and 1.4×
for non-monotonic functions when compared with state-of-the-art
cache-conscious aggregation techniques.
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1 INTRODUCTION

Business Intelligence (BI) tools such as Power BI [2] and Tableau [3]
make it easy for users to analyze large amounts of data. In these
tools, top-k aggregation queries are used to aggregate data in large
multi-coremain-memory databases and present themost significant
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Figure 1: A BI dashboard depicting top-k aggregate queries.

results to users. These queries are a common feature in BI analytics,
with most dashboards and reports often visualizing one or more
top-k aggregate results as depicted in Figure 1.

The standard approach for processing top-k aggregation queries
is to first compute the exact aggregates for all groups, followed by the
selection of groups with top-k aggregate values. When the number
of groups in the dataset is small, aggregation can be very fast;
however, when the cardinality of groups surpasses the CPU’s local
cache size (L1 and L2), the performance drops noticeably due to a
significant amount of data movement, i.e., the cache-line transfers
between local cache and L3/main-memory. There has been work
on cache-conscious aggregation algorithms [11, 25, 35] to minimize
data movement in multi-core settings. However, such algorithms
are not optimized for top-k and computing exact aggregates for
every grouping key consumes a substantial proportion of the overall
computation for high cardinality large datasets.

In this work, we investigate top-k optimized aggregation tech-
niques that can efficiently compute the exact values for top-k ag-
gregates without fully aggregating all groups in the dataset. Our
motivation for such optimizations comes from the observation that
real-world data distributions typically follow a skewed distribu-
tion [26] where a few groups have much higher aggregate values
than the rest of the groups. For example, Figure 2 shows the CDF
of standard aggregate (i.e., sum, count, max, min, avg) for groups
from a real-world dataset used in Power BI [2], consisting of ap-
proximately 200 million tuples and 30 million groups. We see that
top 1% of the groups have at least 4 orders of magnitude higher
aggregate values than the rest of the groups. Furthermore, the value
of k used in BI is generally small (e.g., 1 to 20). Fully aggregating
10s of millions of groups with skewed distribution of aggregate
values only to return a few groups is not only time-consuming, but
also performs potentially unnecessary computations.

644

https://doi.org/10.14778/3636218.3636222
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636222


10−2 100 102 104 106 108 1010

Aggregate Value (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 G

ro
up

 B
y 

ke
ys

COUNT
SUM
MIN
MAX
AVG

Figure 2: CDF of group-by aggregate values over a high cardinality

customer dataset consisting of 200 M tuples and 30 M unique groups.

While previous research has addressed top-k optimization in
relational databases and information retrieval [10, 18], there has
been limited work on cache-conscious optimizations specifically
targeting top-k aggregates in main-memory settings, which present
unique challenges and trade-offs as discussed in subsequent sec-
tions. Some databases and distributed systems, such as Microsoft
SQL Server and Apache Arrow DataFusion [1], support top-k push-
down during parallel aggregation and sorting across cores. These
optimizations aim to minimize the transfer of all groups from in-
dividual cores when only the top-k results are required. However,
they still require fully aggregating each grouping key at every core
before any keys can be pruned. Additionally, these optimizations
assume that each core contains disjoint groups, which introduces
significant data movement overhead when partitioning the data to
ensure the same groups are located on the same node.
Our approach. In this work, we develop Zippy, a new cache-
conscious aggregation technique that can efficiently identify top-k
aggregates. Our primary focus is on monotonic aggregation func-
tions such as sum, count, min, and max, which are commonly used
in business intelligence applications to summarize large datasets.
These functions exhibit the property that the aggregate value for
a given group increases or decreases as more tuples belonging to
the group are aggregated. Leveraging the monotonicity property
allows us to design efficient algorithms. However, achieving a bal-
ance between minimizing data movement and early pruning of
irrelevant groups while ensuring the accuracy of the final top-k
results poses a significant challenge.

We observe that for high-cardinality large datasets, a cache-
efficient algorithm that performs multiple passes by partitioning
and re-partitioning the data [25] tends to outperform approaches
that make only one or two passes [11, 35], due to reduced cache
line transfers. However, partitioning dominates the overall cost in
such scenarios and our goal in this work is to reduce this cost. We
adopt a strategy of early partition pruning, removing partitions
that are less likely to contain top-k results. However, determining
which partitions to prune early is challenging.

In order to prune partitions early, we sample a subset of the
data and analyze it to select an initial set of promising groups,
referred to as candidate groups. We also employ these samples to
validate whether the data distribution exhibits sufficient skewness
suitable for top-k optimization. In cases where the distribution
in not skewed, we revert to the standard approach of computing
exact aggregates for all groups. Notably, even in large datasets
comprising 100s of millions of tuples, the cost of sampling a smaller
subset remains negligible.
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Figure 3: Speed-up of top-k optimized aggregation over state-of-the-

art cache-conscious aggregation algorithm [25] for different values

of k over a real data distribution depicted in Figure 2.

After identifying the initial candidate groups, we focus on opti-
mizing multi-pass aggregation such that we simultaneously prune
irrelevant partitions and compute exact aggregate values efficiently.
We leverage two cache-resident structures to achieve this. The first
structure employs optimized hash tables to store candidate groups
likely to be in the top-k, enabling efficient and early computation of
exact aggregates for these groups. The second structure computes
coarse-grained statistics for groups less likely to be in the top-k
and utilizes the software-write combining technique [6, 25, 34] to
efficiently partition and evict these groups to the main memory
when the cache is full. After each pass on the data, we analyze
the intermediate results to compute bounds, and prune partitions
that are guaranteed to not contain the top-k groups. This pruning
process significantly speeds up subsequent passes.

To further reduce partitioning overhead, we minimize physical
partitioning and maintain statistics for each partition hash that
allow us to compute bounds on aggregates for all groups belonging
to the same partition. As a result, many groups can be pruned
without the need for physical partitioning. Physical partitions are
only created when there is a lower likelihood of pruning.

In summary, our approach combines the above ideas to develop
a multi-pass aggregation algorithm specifically tailored for high-
cardinality large datasets. The performance of top-k aggregate
queries is significantly improved compared to state-of-the-art cache-
conscious aggregation techniques [25], as illustrated in Figure 3.
Furthermore, we extend our technique to accommodate rolling or
paginated top-k queries, allowing users to incrementally increase
the value of k. Our contributions can be summarized as follows:
• We address the problem of improving cache efficiency in top-k ag-

gregation for high-cardinality large datasets, which has received
limited attention in multi-core main memory settings (Section 2).

• We analyze the trade-offs involved in key sub-routines such
as hashing and partitioning when processing top-k aggregate
queries, identifying optimization opportunities (Section 3).

• We propose a multi-pass aggregation algorithm Zippy that ef-
ficiently finds top-k aggregates while maximizing throughput
(Section 4).

• We extend Zippy to support rolling top-k queries, allowing users
to query top-k using moving windows (Section 5).

• We perform an extensive evaluation of Zippy on real-world and
synthetic datasets. Our results show that Zippy yields a median
speed-up for more than 3× for a practical range of k values (e.g.,
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1 to 100) for monotonic aggregation functions and 1.4× for non-
monotonic functions when compared with state-of-the-art cache-
conscious aggregation techniques (Section 7).

2 PROBLEM SETUP AND ASSUMPTIONS

We consider an ad hoc OLAP data analytic setting over a multi-core
main-memory system. Given a table 𝑅, consisting of dimension
attribute X and measure attribute Y, we want to maximize the
throughput of top-k aggregate queries with the following template:

SELECT X, AGG (Y) AS A
FROM R
GROUP BY X
ORDER BY A
LIMIT k

Our primary focus is on monotonic aggregation functions such
as COUNT(*), MAX(Y), MIN(Y), and SUM(Y) with Y ≥ 0 where the
aggregate value for a given group either increases or decreases as
the tuples belonging to the group are aggregated. Such monotonic
aggregation functions are widely used in BI. The challenge lies in
developing cache-resident structures and a cache-conscious algorithm
that effectively utilizes the monotonicity property to reduce cache-
line transfers. Although we mainly focus on queries with a single
GROUP BY attribute for ease of exposition, our techniques can be
extended to support multiple GROUP BY attributes, aggregation
over expressions of multiple attributes, selection predicates, as well
as PK-FK joins, as described in Section 7.

Rolling Top-k. We also consider rolling top-k queries where the
results are retrieved in smaller, discrete pages rather than all at
once. For instance, users may see the first 10 results, then the next
10, and so on. Such queries improve performance as well as user
experience when dealing with a large number of results.

2.1 Assumptions

We assume the availability of statistics such as the size of the dataset,
the number of distinct values of columns, the minimum value,
and the maximum value of a column. In some cases we may have
access to a sample of the dataset; however, we include the sampling
overhead as part of the query processing time in this work.

High Cardinality Large Datasets. Let N be the size of the table, M
be the number of unique groups, and C be the number of groups
(consisting of key-aggregate pairs) that can be accommodated in the
local cache (L1 and L2). We target a setting where the input dataset
is large and has high cardinality, i.e., N >>M >> C. The real-world
datasets typically have a skew in grouping column values, as well
as a skew in aggregate column values. Finally, we assume that the
value of k is significantly lower (e.g., < 100) than the number of
unique groups, as is typical in BI.

No indexing or data partitioning support on grouping attributes.
Considering an ad hoc exploration setting, we do not assume that
the input data is already partitioned (e.g., hash or range partitioned)
on the grouping attribute nor do we assume the ordering of tuples
in R on X. Similarly, we do not assume that the availability of an
index for retrieving random samples from R corresponds to different
values of X, as is typical in main-memory databases used in BI.

3 OVERVIEW OF EXISTING TECHNIQUES

AND OPPORTUNITIES

We first give an overview of existing multi-core aggregation al-
gorithms and then discuss the opportunities for improvement for
top-k optimizations. Multi-core aggregations can be broadly clas-
sified into two classes: few-pass algorithms which make a fixed
number of passes on the data and the multi-pass algorithms which
recursively partition (with local aggregation wherever possible) the
data until the partition fits into the local cache.

To illustrate our discussion, we consider a real-world distribution
referred to as RealD1 in the experimental section (Section 7). This
distribution consists of 𝑁 = 200 million tuples, with a cardinality
(𝑀) of 30million. We assume a computational setup consisting of 24
cores, each with combined L1 and L2 caches capable of accommo-
dating approximately 1 million groups of key-aggregate pairs and
a cache line size (𝐵𝑖 ) of 64 bytes. We further assume that input data
are segmented into uniform-sized blocks that are equally distributed
among the cores. For RealD1, each core processes approximately
𝑁𝑖 = 8 million tuples, consisting of approximately 2 million unique
groups (𝑀𝑖 ), and the local cache can hold approximately𝐶𝑖 = 50, 000
groups. In our analysis, we will explore trade-offs among various
algorithms by examining cache-line transfers within the context of
a single core (with similar behavior across other cores).

3.1 Few-Pass Multi-Core Aggregation

We begin by providing an overview of aggregation algorithms
developed by Cieslewicz and Ross [11] and Ye et al. [35] for large
multi-core main-memory settings.
ATOMIC. This approach employs a shared hash table protected
by atomic instructions, with all cores working together. However,
contention due to concurrent updates to aggregate values by mul-
tiple threads results in multiple compare-and-swap attempts. To
address these contention issues, the following strategies have been
developed aimed at reducing work sharing among cores.
INDEPENDENT. In the first pass, each thread creates a private
hash table based on its part of the input. In the second pass, these
hash tables consisting of partial aggregates are merged. However,
this approach incurs substantial data movement overhead when
the private hash table size exceeds the cache capacity. Theoretically,
after the local cache is full, there is cache line transfer happening
with a probability of (1 −𝐶𝑖/𝑀𝑖 ) which can be significantly large
for high cardinality datasets. For instance, for RealD1, after reading
a few 100K of tuples, there is .98 probability of a cache line transfer
on reading every additional tuple, resulting in orders of millions of
cache line transfers after reading 8 million tuples.
HYBRID. Each thread aggregates its part of the input into a pri-
vate hash table sized according to its local cache. Once this table
reaches its capacity, older entries are evicted (similar to an LRU
cache) and inserted into a global shared hash table. Similarly to
the INDEPENDENT approach, this method becomes less efficient
when a significant portion of the output cannot fit into the private
hash tables. While this approach improves upon INDEPENDENT,
for high cardinality datasets, the number of cache-line transfers is
roughly in the same order.
PLAT. This approach involves performing aggregation in private
hash tables whenever possible and overflowing additional data to
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Figure 4: Illustrating Multi-Pass Aggregation [25] (Green boxes

depict aggregated tuples).

partitions for later merging. However, even with data moved to
partitions, the number of groups may still be large and may not fit
in the local cache during the aggregation in the second pass.

3.2 Multi-Pass Multi-Core Aggregation

The aforementioned algorithms involve a fixed number of passes,
which leads to high data movements over large datasets with a high
cardinality of groups. To address this, Mueller et al. [25] extend
PLAT to multiple passes targeting high-cardinality large dataset
settings. Figure 4 illustrates this algorithm. Each core reads an in-
put chunk and employs radix partitioning to create child partitions
where each child partition has fewer distinct groups. During par-
titioning, each new partition is allocated to a cache line. Once a
cache line reaches its capacity, the contents are efficiently moved
to memory using non-temporal store instructions [6, 34]. This re-
cursive partitioning continues until a partition has a small number
of distinct groups to fit into the local cache. At this point, either
hashing or a sorting-based aggregation is initiated. The higher
the cardinality, the more passes are performed on the data. The
framework also leverages the locality of groups in the partition to
aggregate and sort the data earlier to further minimize cache-line
transfers.

Analysis: Given a cache line size of 𝐵𝑖 , each pass generates𝐶𝑖/𝐵𝑖
new partitions. The number of passes required can be expressed as
𝑙𝑜𝑔𝐶𝑖/𝐵𝑖

𝑁𝑖/𝐵𝑖 , where each pass accounts for 2 × 𝑁𝑖/𝐵𝑖 cache line
transfers, considering both reading and writing operations. For our
running example, this approach leads to a reduction in the number
of cache line transfers to approximately a few hundred thousands,
significantly improving over the algorithms discussed previously.
However, partitioning dominates the overall cost (𝑙𝑜𝑔(𝐶𝑖/𝐵𝑖 )𝑁𝑖/𝐵𝑖
passes) in this algorithm. In our work, we build on this algorithm
to support top k optimizations, effectively minimizing the number
of partitions created during the process.

3.3 Opportunities for Top-k Optimization

We compare aggregation algorithms as well as examine the trade-
offs in sub-routines involved in aggregation. This guides the design
of optimizations for top-k aggregation, detailed in the following
section. We first describe the implementation of hash tables and
partitioning.
Hash table.We use a single-level hash table with linear probing
and fix the hash table to the size of the L2 cache and consider it
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Figure 5: Understanding relative performance of operations rele-

vant to top-k aggregate optimization.

full at a very low fill rate of 50%. As a hash function, we use 64-bit
MurmurHash2, which is fast and has low CPU overhead.
Partitioning.Weuse radix partitioning using the software-managed
buffering technique as described in [6, 34]. Essentially, we buffer
one partition per cache line for each core and write it to the memory
once full using non-temporal store instruction This technique has
minimum overhead in terms of TLB misses during partitioning.

We perform a microbenchmark on three large, high-cardinality
real-world data over a test-up described in Section 6. The dataset
size ranges between 100-400 million with cardinality between 20-60
million. The on-chip cache across all cores can efficiently aggre-
gate between 1-2 million groups after which performance degrades
drastically. We compare the performance of the following three
algorithms with different passes on the data: INDEPENDENT (1-
Pass), PLAT (2-Pass) and 3-Pass Agg (multi-pass aggregation with
three passes). We also consider the following operations which
make the building blocks of our algorithm as we will see in the next
section.
• RSAgg: Randomly sample 1% of the dataset and perform aggrega-
tion over sampled data using INDEPENDENT.

• LP: Compute the hash for each tuple and update the following
statistics: sum, count, min, and max for each hash. We call this
operation logical partitioning and set the number of partitions
such that they fit within the local cache.

• LCacheAgg: Ignoring partitioning time in 3-Pass Agg, we mea-
sure only the time in aggregating the physical partitions once
they fit within the local cache.

• 50PFilterAgg: Applies physical partitioning and aggregation
only over 50% of partitions after pass 1 in 3-Pass Agg. The se-
lected 50% of the partitions contain the top-k results and are
identified using a pre-processing step. The computation time of
this pre-processing step is ignored. In other words, this opera-
tion measures the cost of partitioning and aggregating the most
relevant partitions.

• 75PFilterAgg: Similar to 50PFilterAgg with the difference
that 75% of the partitions are pruned.

• 90PFilterAgg: Similar to 50PFilterAgg with the difference
that 90% of the partitions are pruned.
Figure 5 depicts the reduction factor in throughput for each of

the above operations relative to the average throughput for the
scan operation on the same datasets. We draw two conclusions.
First, operations such as scan, sampling, logical partitioning, and
their combined costs are significantly faster than physically parti-
tioning the data. Second, if we can efficiently identify a small set
of partitions that are likely to contain the top-k results, we can
achieve substantial cost savings compared to processing all parti-
tions. Based on these observations, we discuss an optimized top-k
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aggregation algorithm next to improve performance on skewed
data distributions.

4 TOP-K AWARE AGGREGATION

We begin by giving an high-level overview of the framework and
then discuss the key techniques integral to the framework.

4.1 Overview of the Framework

We first introduce cache-optimized data structures to minimize
cache-line transfers. Then, we discuss a multi-pass algorithm for
efficient pruning of partitions that do not contain the top-k groups.
4.1.1 Cache-Resident Structures

We create two cache-resident structures: Fine-grained Aggregates
(FA) and Coarse-grained Aggregates (CA) such that the total size
of the two structures is close to the local cache size of the core.

Fine-grained Aggregates. This is used for computing the exact
aggregates for candidate groups in a single pass of the data. The
candidate groups are those groups that are likely (but not guar-
anteed) to be in top-k. We discuss shortly how we identify such
groups. To compute exact aggregates, we use a single-level hash
table with linear probing with a sufficiently large size to minimize
collisions. The single-level hash table improves performance by
eliminating branching and chaining.

Coarse-grained Aggregates. The CA refers to the partitioning of
the data corresponding to non-candidate groups. With each parti-
tion, we compute the following small-space statistics: sum, count,
max, min, and approximate distinct count (measured using small-
space FM algorithm [15]) aggregated over all the tuples falling
in the partition. As explained later, these statistics help to decide
whether partitions can be safely pruned from further processing
during aggregation. A partition can be logical or physical. In logi-
cal partitioning, we only maintain the statistics using the hash of
the partition as a key without any physical movement of tuples.
The logical partitions are stored similarly to FA as a single-level
hash table. During physical partitioning, besides creating the hash
table of statistics, we also move the input tuples to co-located mem-
ory locations using radix partitioning. We buffer one partition per
cache line and write it to the memory once full using non-temporal
store instruction [6, 34]. For the same cache size, we can create
more logical partitions than physical partitions, which minimizes
cache-line transfers. We discuss in Section 4.3 how we pick the
right partitioning approach for a given input partition to achieve
maximum efficiency.

We find that an equal-sized allocation of space to FA and CA
results in close to maximum efficiency (see Section 6). If 𝐶 is the
size of the local cache of a given core, we set the sizes of FA and
CA (denoted by 𝐶𝑓 and 𝐶𝑐 , respectively) for each core to C/2 by
default.

Algorithm 1 Top-k aggregation overall framework

1 Input: Input data (split into blocks of fixed size tuples), K, Input size: N,
2cardinality of grouping keys: M, FA cache size: CF, grouping column (s): X,
3Aggregation func: A, Aggregate column: Y, Total cache size: C, Maximum
4number of logical partitions cache can hold: Q
5System constants: segment size s (Section 4.2), locality constant: αo,
6confidence levels: α, β
7Output: Top K groups (key-aggregate pairs for each group): top-k groups
8Procedure TopKAggregation:
9 top-k groups = {} // maintains top K groups
10 partitions = data // partitions point to input data blocks in first pass
11 isOptimizable, FAgroups, topkBound =
12 validateAndIdentifyFAgroups(partitions)
13 // step 1 in Sec 4.1.2, Algorithm 2
14 if not isOptimizable: // if true, run baseline
15 exact-aggregates-all-groups = Perform Multi-pass Aggregation
16 // (Section 3.2)
17 top-k groups = Priority-queue-based top-k selection over
18 exact-aggregates-all-groups
19 return top-k groups
20 exactAggregates = {} // exact aggregates in FA groups
21 While Size(top-k groups) < K:
22 for each unprocessed partition P-i in partitions: // runs in parallel
23 partialAggregates-i, childPartitions-i
24 = AggregateAndPartition(P-i, FAgroups)
25 // step 2 (Sec 4.1.2) Algorithm 3
26 top-k groups, topkBound, exactAggregates, partitions
27 = MergeAndPrune(exactAggregates (from previous pass),
28 (partialAggregates-i, childPartitions-i) for all i)
29 // step 3 in Sec 4.1.2, Algorithm 4
30 Return top-k groups

4.1.2 Overview of Algorithmic Steps

Algorithm 1 outlines the multi-pass algorithm consisting of three
key steps described in Algorithms 2 to 4.

Step 1: Validating skew and identifying FA groups. The first step is
to validate if the top-k optimization will improve the performance
for a given input distribution and the desired number of top-k
groups. For non-skewed distributions or queries with large values
of k, the scope for top-k optimization is limited. On the other hand,
if top-k optimization is applicable, we identify the candidate groups
for FA. Algorithm 2 outlines the working of this step. Each core
(core and workers are used interchangeably ) scans an input chunk
of the data to randomly select tuples and aggregates them on the
fly to compute partial sample aggregates (lines 8-14). The partial
sample aggregates across cores are merged to compute sample
aggregates for the entire input (line 15). We validate the skew in
sample aggregates using a confidence interval-based approach and
if validated we select FA candidate groups (lines 17-33). We provide
details in Section 4.2 on how we decide the sample size, perform
validation as well as selection of FA groups.

Step 2: Exact Aggregation and Partitioning. After identifying the
FA groups, we adaptively perform aggregation and partitioning
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of the data using multi-passes over the input data (Algorithm 3).
Figure 6 illustrates this step. In particular, each core reads an input
partition and decides whether to perform exact aggregation or
further repartition it (lines 5-24). If we can cheaply compute the
exact aggregates with minimal cache-line transfers (e.g., when there
are few distinct groups or there is enough locality in the occurrences
of groups), we perform exact aggregation for the partition. If we
are not able to do so, we only perform exact aggregation for groups
belonging to FA groups (lines 26-27). We create partitions for the
rest of the groups (lines 28-37). An important question to consider is
whether to create logical or physical partitions (lines 15-24) that we
discuss in Section 4.3. Note that for physical partitions, we create as
many buffers as the number of cache lines and move the partitions
to the main memory once full, following the software-managed
buffer strategy discussed in Section 4.1.2 (lines 34-37). However,
in many cases, logical partitioning leads to pruning without any
physical partitioning.

Algorithm 2 Validating skew and selecting FA groups

1 Input: partitions, and other relevant inputs listed in Algorithm 1
2Output: IsOptimizable: Is Input amenable to Top-K Optimization,
3 FAgroups: Grouping keys of FA groups
4Procedure ValidateAndIdentifyFAgroups:
5 // computing aggregates over a sample of data
6 sampleSize = Compute sample size (Section 4.2)
7 sampling probability, p = sampleSize / N
8 for each partition-i in partitions (in parallel):
9 partialSampleAggregates-i = {}
10 // stores standard aggregates for each group in the sample
11 For each tuple in the partition-i:
12 selected = select the tuple with probability p
13 if selected:
14 update partialSampleAggregates by aggregating this tuple
15 sampleAggregates = merge (partialSampleAggregates-i for all i)
16 // checking skew in sample aggregates using CI
17 sampleAggregatesBounds = compute CI bounds for each group
18 in sampleAggregates // Section 4.2
19 Lk = Kth highest lower bound in sampleAggregatesBounds
20 tempGroups = { }
21 For each group in sampleAggregatesBounds:
22 If the lower bound of the group >= Lk, add the group to tempGroups
23 If size of tempGroups > CF:
24 isOptimizable = False // number of candidate groups much larger
25 // than we can efficiently aggregate in FA
26 Return isOptimizable, {}
27 // otherwise we can optimize. If candidate groups smaller than FA,
28 // we can fill leftover space in FA with heavy hitters
29 FAgroups = tempGroups
30 While the size of FAgroups < CF:
31 g = select the group (not already in FAgroups) with the
32 highest sample count aggregate in sampleAggregates
33 Add g to FAgroups
34 Return isOptimizable, FAgroups

Step 3: Merging intermediate results across cores and validating
top-k results. After each pass on the data, we perform the merging
of partial aggregates of FA groups and aggregates for newly created
(child) partitions across all cores (Algorithm 4). After merging, we
know the exact aggregates for FA groups. We use the partition
aggregates to establish the upper bound on the aggregate values

for non-candidate groups (lines 9-11). In particular, the partition-
level sum provides an upper bound for sum and average aggregates,
while the maximum value sets an upper bound for max and min
aggregates. Using the exact aggregates and minimum values in the
partition, we compute the threshold 𝑡𝑜𝑝𝐾𝐵𝑜𝑢𝑛𝑑 on the smallest
possible value of 𝑘𝑡ℎ aggregate for pruning partitions (line 12). We
eliminate any partitionswith upper bounds on aggregate values that
are less than 𝑡𝑜𝑝𝐾𝐵𝑜𝑢𝑛𝑑 from further processing during subsequent
passes (lines 17-18).

The partition-level statistics while taking less space can effec-
tively prune partitions in scenarios where skewed distributions
feature a long tail of groups with significantly smaller values. More-
over, segregating FA groups helps reduce the number of tuples
sent to partitions in CA, leading to improved pruning. While more
sophisticated sketches could provide better bounds, the associated
space and computation overhead in using them can often be sub-
stantial leading to excessive cache-line transfers.

In the following sub-sections, we discuss in more detail the
sampling process including validation and selection of FA groups
for step 1. This is followed by a discussion on how we choose
between aggregation and partitioning approaches for step 2.

4.2 Sampling-based Candidates Selection

In our setting, the direct sampling of specific grouping keys is chal-
lenging as we do not assume the availability of indexes on grouping
columns. Instead, we employ a uniform random sampling strategy
that collects samples to mirror the proportionality of groups that
have a certain minimum proportion of tuples in the input dataset.
This minimum proportion of tuples is defined using a configurable
parameter called tolerance level Δ. We assume that groups with
proportions below Δ are less likely to be candidate groups and can
be disregarded for sampling efficiency.

Let the dataset comprise 𝑁 tuples, with 𝑛𝑖 representing the num-
ber of tuples for the 𝑖𝑡ℎ grouping key. We define the population
ratio of the 𝑖𝑡ℎ group as 𝑟𝑖 = 𝑛𝑖

𝑁
. In our sampled dataset of size 𝑠 ,

the number of tuples corresponding to the 𝑖𝑡ℎ grouping key is 𝑛′
𝑖
.

The population ratio in this sampled dataset is expressed as 𝑟 ′
𝑖
=

𝑛′
𝑖

𝑠 .
Using an analysis similar to [14], we determine that a sample size

𝑠 =
𝑍 2
𝛼/2
4Δ2 is adequate to ensure that the deviation in the population

ratio |𝑟𝑖 − 𝑟 ′𝑖 | remains within a specified tolerance level Δ, with a
confidence level of 1−𝛼 . Formally, 𝑃 ( |𝑟𝑖−𝑟 ′𝑖 | < Δ, 1 ≤ 𝑖 ≤ 𝑘) > 1−𝛼

when 𝑠 ≥
𝑍 2
𝛼/2
4Δ2 .

While Δ can be adjusted according to skewness in the input
data, for simplicity, we set its default value to max(𝐶, 0.01% ×
estimated average group size), where 𝐶 represents the maximum
number of groups in the local cache. Consequently, the required
sample size is indirectly influenced by both the cardinality of the
groups and the size of the input data via Δ.

4.2.1 Validating top-k skewness and selecting FA groups. We vali-
date top-k skewness and select FA groups by calculating confidence
intervals for each group in our sample. For sum and count, we apply
Hoeffding’s inequality, using the formula 𝜖 = (𝑏−𝑎) 1

2𝑛′
𝑖
(ln 2

1−𝛽 )
1/2,

where 𝑎 and 𝑏 are the minimum and maximum values, and 𝑛′
𝑖
is

the count of tuples per group. For max and min values, we estimate
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Algorithm 3 Computing partial aggregates and child partitions for an
input partition per worker thread

1 Input: a specific partition to be aggregated or repartitioned at a
2 given worker thread: partition-i, FAgroups,size of partition: Cp
3Output: partialAggregates-i, childPartitions-i
4Procedure AggregateAndPartition:
5 // first decide between exact aggregation, logical/physical partitioning
6 if the size of distinct groups in partition-i < CF: // few distinct groups
7 exactAggregation = true
8 else: // check for locality of groups
9 For each segment of size s in the partition-i:
10 calculate ds (number of distinct groups) and cs (cardinality)
11 for segment s
12 Locality of groups, l = Σs ds/cs/t, where t is the number of segments
13 if l < αo:
14 exactAggregation = true // there is sufficient locality
15 if not exactAggregation:
16 If logical partitioning was performed on partition-i in previous pass:
17 partitioning = physical //logical did not prune previously
18 else:
19 Set Tc to the lowest aggregated count among FAgroups:
20 Estimated number of elements per logical partition, E = Cp/Q
21 if E < Tc:
22 partitioning = logical
23 else:
24 partitioning = physical
25 for each tuple in the partition-i:
26 if exactAggregation or tuple.group in FAgroups:
27 update the partialAggregates-i by aggregating this tuple
28 else:
29 compute the partition hash for this tuple
30 If partition hash is not present in childPartitions:
31 Create a new partition in childPartitions-i
32 Update partitionAggregates corresponding to the partition hash
33 if partitioning == physical:
34 move the tuple to the corresponding partition in childPartitions-i
35 if cache-line size of the corresponding partition is full:
36 store the partition tuples to memory using non-temporal
37 instruction // (Section 4.1.1)
38 Return partialAggregates-i, childPartitions-i

the intervals using the 𝛽/2th and (100 − 𝛽/2)th percentiles of the
sample values.

Let 𝐿𝑘 denote the 𝑘th highest lower bound on aggregate values
among all groups in the samples, and𝐶𝑠 be the cache space occupied
by groups with estimated lower bounds greater than 𝐿𝑘 . If𝐶𝑠 > 𝐶𝑓 ,
we consider that the skew in distribution is not significant enough
to efficiently identify a small set of candidate groups using the
cache-friendly approach, falling back to the standard aggregation
procedure (lines 17-25 in Algorithm 2).

However, if 𝐶𝑠 ≤ 𝐶𝑓 , we proceed with our optimization and ad-
ditionally include at most ℎ heavy hitters (with size𝐶ℎ) in FA, such
that the combined size of selected groups based on the confidence
intervals and heavy hitters is close to 𝐶𝑓 (i.e., 𝐶𝑠 +𝐶ℎ ≈ 𝐶𝑓 ) (lines
30-33 in Algorithm 2). Using heavy-hitters to fill the remaining
space in FA, we reduce the number of tuples per partition in CA.
This improves the pruning process and minimizes the need for
physical partitioning.
Advantages of sampling over a sketch-based approach. An
alternative to sampling is a count-min sketch-based augmented
with a priority queue [12]. A count-min sketch maintains a 2D table

Algorithm 4 Merging intermediate results, and pruning and ranking of
partitions

1 Input: exactAggregates (from previous pass), and <partialAggregates,
2childPartitions> computed for all partitions in current pass
3Output: FAaggregates, CAPartitions, topKBound
4Procedure MergeAndPrune:
5 exactAggregates = Merge partialAggregates across all partitions with
6 matching grouping keys and append them to old exactAggregates
7 childPartitionAggregates = Merge childPartitionAggregates across
8 all partitions with matching childPartition hash
9 For each childPartition:
10 compute upper bound (UB) for groups using childPartitionAggregates
11 (Section 4.1.2 step 3)
12 topKBound = Find kth highest value among exactAggregates
13 and upper bounds of childPartitions
14 top-k groups = Add all groups with exact aggregates value > topkBound
15 if Size(top-k groups) >= K:
16 Return top-k groups, +infinity, {}, {} // we are done
17 partitions = Remove any partition in childPartitions with
18 UB less than topKBounds. // unpruned partitions for next pass
19 If the number of partitions > worker threads:
20 partitions = Rank partitions using partition aggregates
21 // (Section 4.4)
22 Return top-k groups, topKBound, exactAggregates, partitions

of counters with d rows andw columns, and every tuple in the dataset
is hashed a few times to update this table. Compared to the sampling
method, we find that sketch-based technique reduces throughput
by 8-10× (Section 7). With sampling, a tuple is aggregated only
when it’s selected in the sample. Furthermore, we can validate the
skew in aggregate values of the samples without additional passes.
While sketch-based approaches offer error guarantees, these are
not critical for our setting since the algorithm will later validate
and precisely aggregate any groups that will fall into top-k.

4.3 Deciding between Exact-Aggregation and

Partitioning

Given an input partition, we first assess whether we can perform
an exact aggregation by examining the distinctness of groups and
locality of grouping keys. If exact aggregation is ruled out, we
choose between logical partitioning and physical partitioning.
4.3.1 Exact Aggregation. Exact aggregation is used in two scenar-
ios (lines 6-14 in Algorithm 3): (1) when the number of distinct
groups can fit within the local cache, (2) when there is a high lo-
cality among the groups within a partition. We measure locality
using a method similar to the one in [25] that considers distinct
elements for segments of contiguous tuples within the partition. If
𝑐𝑠 represents the cardinality and 𝑑𝑠 the number of distinct groups

for a segment 𝑠 , the locality of the groups is calculated as 𝑙 =
Σ𝑠

𝑑𝑠
𝑐𝑠

𝑡 ,
where 𝑡 is the number of segments in the partition. If 𝑙 < 𝛼𝑜 , a pre-
determined constant, we determine that there is sufficient locality
to perform exact aggregation efficiently for partition. The values of
𝑠 and 𝛼𝑜 are tuned once for a specific machine and are determined
through benchmarking using synthetic datasets, as described in
Appendix A.
4.3.2 Logical vs. physical partitioning. If the estimated number of
distinct groups in a partition is significant and there is insufficient
locality, we apply partitioning. Logical partitioning is preferred
when partition-level statistics can prune child partitions. However,
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if it is unlikely that the top-𝑘 groups can be identified using FA,
logical partitioning may not result in significant pruning. In such
cases, physical partitioning is preferred as it allows for early ag-
gregation of groups with skewed frequencies, leading to improved
bounds in subsequent passes.

We make this decision using the cardinality of partitions con-
sidering that a partition with more tuples is more likely to contain
a group in the final results compared to those with fewer tuples.
Moreover, a partition with more tuples is expected to have looser
bounds than partitions with fewer tuples and hence less likely to
be pruned. Let𝑄 be the maximum number of logical partitions that
CA can hold, and 𝑇𝑐 be the lowest frequency of any group among
the current candidate groups. If 𝐶𝑝 is the cardinality of the input
partition, we estimate the average number of elements per logical
partition as 𝐶𝑝/𝑄 (assuming uniform distribution). If 𝐶𝑝/𝑄 < 𝑇𝑐 ,
we choose the logical partitioning. Otherwise, we perform physi-
cal partitioning, anticipating that one of the child partitions may
contain a grouping key that will be present in the final result. Note
that if we select logical partitioning but not all child logical parti-
tions are pruned after the pass, we automatically perform physical
partitioning on unpruned partitions during the next pass.

4.4 Parallelization

The top-k optimized aggregation framework is designed for high
parallelizability, with both FA and CA following a shared-nothing
approach. In particular, the first step involves sampling where each
core samples a tuple and performs local aggregation independently
and in parallel (Algorithm 2 lines 8-14). This step is followed by the
synchronization step where partial sample aggregates are merged
and the distribution is validated, and the FA groups are identified
(Algorithm 2 lines 15-21)). In subsequent passes, each core operates
independently either computing exact aggregates for the FA groups
or constructing logical or physical partitions in CA (Algorithm 3).
After each pass, there is a synchronization where exact aggregates
and statistics are merged across cores, and partitions that can be
pruned are identified (Algorithm 4). This intermediate synchroniza-
tion step is parallelizable itself. The pruning of partitions during
synchronization reduces the need for physical partitioning and
decreases processing time for each core in subsequent passes.

When the number of input or intermediate partitions exceeds
the number of worker threads, we rank the unpruned partitions
using estimated aggregated values for each grouping key within
a partition (lines 19-21 in Algorithm 4). This ranking determines
the order of processing by worker threads. If 𝑑 represents the esti-
mated number of distinct values of groups in a partition, and 𝑝𝑠𝑢𝑚,
𝑝𝑐𝑜𝑢𝑛𝑡 , 𝑝𝑚𝑖𝑛, and 𝑝𝑚𝑎𝑥 represent the partition-level statistics, we
estimate sum and average of a grouping key simply as 𝑝𝑠𝑢𝑚/𝑑 and
𝑝𝑠𝑢𝑚/𝑐𝑜𝑢𝑛𝑡 , and max and min as 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 respectively.

5 ROLLING TOP-K

In a rolling top-k setting, the top-k aggregate query is issued re-
peatedly with an increasing window of k values. To avoid running
the algorithm from scratch when more results are requested, we
introduce the following changes to support top-k in a rolling mode.

During the first pass, we collect samples to validate the applicabil-
ity of top-k optimization and to identify FA groups (Section 4). We
compute confidence intervals for each grouping key in the sample.
Both the sample size and confidence intervals are independent of

the value of k and hence can be reused during subsequent iterations.
Only skew validation and identification of new FA groups are per-
formed for increasing k values. If the number of FA groups exceeds
the FA cache size limit in any iteration, we resort to the standard ap-
proach of computing exact aggregates for all groups in the dataset.
We augment the exact aggregation and partitioning process to reuse
computations across queries. Intermediate results, including exact
aggregates and partition statistics, are independent of the value of
k and are stored in main memory allowing for their reuse. During
the processing of subsequent queries, we perform look-ups using
partition hash to determine if the intermediate results have already
been computed during previous query processing. The third step
of our algorithm, which involves merging intermediate results and
validating the top-k step, remains unchanged.

6 EXPERIMENTS

Set up.We run the experiments on Windows Server 2022 with two
sockets AMD EPYC 7352 24-core processors (48 logical processors),
running at base speed of 2.30 GHz. The size of L1 cache is 3 MB, L2
cache is 24 MB, and L3 cache is 256 MB, and the total RAM capacity
is 256 GB which is more than the size of datasets.

Table 1: Summary of Datasets

Name Dataset size # Grouping Columns # Groups
RealD1 200 M 1 30 M
RealD2 300 M 2 37 M
RealD3 400 M 3 55 M
Synthetic Distributions [16] 200 M 1 30 M

Datasets and queries.We evaluate the standard aggregation func-
tions: SUM, COUNT, MAX, MIN, AVG on three different <group-by,
aggregate> queries over high cardinality large customer dataset of
Power BI (Table 2). We also consider six synthetic distributions [16]
with varying skew in Section 6.5. Prior research on cache-conscious
aggregation algorithms focuses only on synthetic datasets with
varying degrees of skew in the distribution of grouping keys. Since
the top-k aggregates depend on distributions of values, therefore
we additionally consider a variation of synthetic distributions with
a skew in aggregation column values. Unless specified, we set the
default value of 𝑘 to 50, 𝑠 to 100k, 𝛼 and 𝛽 to .95, Δ to .0001 and 𝛼0
to .20. We individually test the sensitivity of Zippy to changes in
these parameter values in Section 6.4.
Baseline and evaluation metric. We use throughput (tuples pro-
cessed/sec) as the evaluation metric. In our targeted scenario, where
the number of unique groups exceeds the cache size, the multi-pass
partitioning-based aggregation [25] (referred as baseline in figures)
outperforms other aggregation approaches evaluated in Section 3.
The few-pass approaches are efficient until a certain number of
groups (approximately 2 million groups) but are penalized by a
high number of cache misses beyond this limit. We augment [25]
with a priority queue to select top-k groups.

We also consider an additional baseline referred as sampling-
based top-k optimization. In this approach, we pick C/2 groups
(the default size of FA) that are heavy hitters in the sample (of the
same size as selected by Zippy for analysis in the first step of the
algorithm). We first make a pass on the data to fully aggregate the
selected heavy hitters.We then performmulti-pass aggregation [25]
and prune partitions using a bounding and pruning technique as
used in Zippy. This baseline resembles [27] in terms of how we
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Figure 7: End to end evaluation of Zippy over real-data distributions

Table 2: The breakdown of time spent as well as the percentage of groups pruned per pass during top-k aggregate processing.

Aggregate Sampling Pass 1 Pass 2 Pass 3+ Top-k Selection (after
aggregation)

Throughput
(108tuples/sec)

% time % time % of top-k % groups pruned % time % of top-k % groups pruned % time % of top-k % groups pruned % time
SUM 10.9% 65.6% 84% 99.7% 23.4% 16% 0.3% 0% 0% 0% 0% 3.59

COUNT 9.2% 71.1% 92% 99.9% 19.7% 8% 0.01% 0% 0% 0% 0% 6.12
MAX 8.5% 49.2% 78% 99.5% 42.1% 22% 0.5% 0% 0% 0% 0% 2.38
MIN 9.3% 53.1% 73% 99.4% 37.5% 27% .6% 0% 0% 0% 0% 1.95
AVG 8.5% 44.5% 38% 98.6% 25% 40% 1.2% 21.8% 22% 0.1% 0% .49

Baseline [25] 5.4% 29.2% 0% 0% 23.4% 0% 0% 34.3% 24% 99.9% 7.7% .42

select the candidate groups, but with further optimizations such as
multi-pass aggregation and early-pruning.

6.1 Evaluation over Real Data Distributions

Figure 7a depicts the speed-up of Zippy over different standard ag-
gregation functions across three real-world distributions. Overall,
Zippy presents substantial improvement over the baseline (multi-
pass aggregation algorithm) for all monotonic aggregation func-
tions and moderate improvements for AVG. Among monotonic
aggregations, we see 14.6× improvement for the COUNT, 6.2× for
SUM, 5.6× for MAX, and 5.1× for MIN on average for k = 50. Zippy
also consistently performs better than the sampling-based top-k op-
timization. For COUNT, the top-k results are only dependent on the
frequency of groups, therefore candidate groups can be captured
more effectively during the sampling phase. The sampling-based
top-k optimization baseline performs close to Zippy for Zippy since
it uses the heavy-hitters as candidates and optimized for COUNT.
Among other aggregates, the performance of Zippy is worst for
MIN because the bounds used for pruning partitions is much more
conservative compared to other aggregation functions (Section 4).
Additionally, as the number of groups increases (RealD3 > RealD2
> RealD1), we observe that distributions also become more skewed,
leading to larger improvements in performance.

Table 2 presents a breakdown of the time spent in different passes
and the progress made in identifying top-k aggregations by Zippy
averaged across the three distributions. We see that for monotonic
aggregation functions, approximately 80% of top-k aggregates are
identified, and around 99% of the groups are filtered in pass 1 aver-
aged across all distributions. The exact aggregation of FA groups
helps prune many partitions containing groups from the tail of
the distributions. Overall, we find that Zippy takes no more than
2 passes for the queries. In contrast, the baseline approach [25]
performs exact aggregation for a significantly more number of the
groups, requiring three or more passes for most queries.

We next investigate the impact of varying the value of k, the
cardinality of groups, and the size of the dataset:
Varying value of k. We vary the value of k from 1 to 1000 as
depicted in Figure 7b. We observe that Zippy leads to orders of
magnitude speed-up for all monotonic aggregation functions and
significant speed-up for AVG for smaller values of k (e.g., < 20)

which are common in BI dashboards and reporting. Furthermore,
even for higher values of k (e.g., 100), Zippy leads to a speed-up
which is multiple times that of baseline, emphasizing the signifi-
cance of top-k optimizations.
Varying cardinality. We used sampling to scale up and down
the cardinality of groups in RealD3 without significantly altering
the distribution of values. Specifically, we sorted the groups in
decreasing order of their frequency. For down-scaling, we binned
them into the desired number of cardinality of groups (depicted on
the x-axis), creating a common key for all groups in the same group.
For up-scaling, we binned the groups into 1000 bins, and from each
bin, we sampled a grouping key and replaced half of its tuples
with a new key, until we created the desired cardinality. Overall,
as depicted in Figure 8a we found that as the number of groups
increases, the speed-up also increases for our approach. This is due
to higher number of cache-line transfers and exact aggregation
computations incurred in the baseline approaches.
Varying dataset size. We vary the dataset size without changing
the cardinality. To downsize, we randomly sample a tuple and
remove it when the corresponding grouping-key has more than
one tuple in the dataset. When increasing the size of the dataset,
we duplicate a tuple and update the original value of each measure
column with a new value, where new value = original value ±
standard deviation of the aggregate. Figure 8b depicts the results.
The increase in the size of the dataset also leads to an increase in
the speed-up for our approach. This is due to the increased data
movement and aggregation impact on the baseline approach, as
also observed when varying cardinality above.
Overhead of memory consumption. We evaluate the overhead
in committed memory usage of Zippy w.r.t. to baseline for each
of the queries. Although Zippy uses additional data structures for
maintaining statistics and bounds, the overhead is minimal (< 10%)
compared to the memory already used by the system for operations
such as sorting, partitioning, and aggregation which are common
in all approaches.

6.2 Rolling K

We evaluate the improvement of rolling-k optimizations compared
to a setup (non-rolling) where we run the top-k optimized algo-
rithm from scratch for each increased window of k without reusing
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Figure 8: Evaluating Zippy over varying cardinality, datasize, DOP, and rolling window queries
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Figure 9: Sensitivity of Zippy to parameters used for sampling and validation

intermediate computations from prior iterations. Figure 8e shows
the results where we vary k from 20 to 100 while using a rolling
window size of 20. In the first iteration, we find the top-20 results,
then the next 20 in the next iteration, and so on until we find the
top-100 results.

As depicted in Figure 8e, as the number of rolling window in-
creases, the speed-up compared to non-rolling optimization in-
creases at a faster rate, peaking at an average speed-up of 7× across
aggregates in the last window computation. This speed-up is due
to the reuse of intermediate computations (confidence intervals
of groups in sample, exact aggregates of some of the candidate
groups, statistics on some of the partitions) from previous iter-
ations. The sampling overhead is only incurred during the first
iteration. Furthermore, in the optimized version, the exact aggre-
gates from previous steps improve the pruning of partitions. In
terms of memory overhead, we find that compared to non-rolling
optimization, there is little (< 5%) additional memory overhead
when we measure over the last rolling window (the overhead is
maximum over the last window). The available main memory avail-
able is significantly more than the input data size, so the major
difference is what resides inside the local cache vs. outside cache.

6.3 Parallelization

Figure 8c illustrates the improvement in speed-up on varying De-
gree of Parallelism (DOP) wrt to the throughput when using a
single DOP as we increase the DOP from 1 to 64. As expected, we
see that as the DOP increases, the speed-up improves significantly.
Furthermore, the speed-up is higher for monotonic aggregation
functions which benefit more due to pruning of smaller-size parti-
tions compared to the AVG. Figure 8d evaluates the speed-up with
respect to baseline [25] as we increase the DOP. We find that both
the baseline and our approach scale similarly as we increase the
number of cores, suggesting that the majority of our improvements
come from efficient use of cache and early pruning of partitions.

6.4 Sensitivity of Design Decisions

6.4.1 Sampling strategy. As shown in Figure 9a , we varied the
minimum tuple proportion (Δ) from .00001 to .1 of the average
group cardinality in the dataset. We observe that setting Δ more
than .00005 (our default value is .0001 ) significantly boosts speed;
after this range, further gains are marginal. This indicates that a
small sample of the overall dataset is enough to identify the top-k
grouping aggregates in skewed distributions.

6.4.2 Impact of confidence levels during sampling (𝛼) and FA groups
selection (𝛽). Figure 9b and Figure 9c depict the sensitivity of the
algorithm when varying confidence levels from .70 to .99 for both
sampling as well as identifying FA groups. We observe maximum
speed-up when the confidence level is between .80 and .90 after
which it flattens followed by degradation in performance. Although
we use a more conservative default confidence level of .95, these re-
sults indicate that for skewed real distributions even a more relaxed
confidence level is sufficient. Furthermore, setting confidence to a
high value (e.g., .99) adds to the overhead of additional sampling and
FA groups selection with significant improvement in performance.

6.4.3 FA vs. CA Cache Sizing. Figure 10a depicts the impact of
varying cache size of FA from 0.20 to 0.80 of the total available cache
size. We noticed that as the size of the FA increases, the speed up
improves; however, after .60, the performance starts degrading. This
is because small-sized FA leads to more passes on the data, while
large FA leads to excessive data movement between cache and main
memory during partitioning. Thus, based on these observations, in
our automated approach, we set the FA cache size to 0.50.

6.4.4 Partitioning. We measured the effects of our adaptive parti-
tioning approach, where we switch between logical and physical
partitioning based on statistics and the likelihood of the partitions
getting pruned after the next pass (Section 4.3). Note that for logical
partitioning, if not all child partitions are pruned in pass i, we first
create physical partitions in pass i+1 followed by logical partition-
ing (as described in Section 4.3). As depicted in Figure 10b, using
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Figure 10: Impact of cache-size and partitioning strategy

only one of the two approaches may be sub-optimal. Between logi-
cal and physical partitioning, logical partitioning seems to perform
better because of the long tail of rare groups. We observe that many
partitions can be pruned in one or two passes of the datasets with-
out performing physical partitioning. However, logical partitioning
incurs the overhead of an additional scan on the partition as long
as there is at least one child partition not pruned. Our adaptive
approach can identify such cases early and physically partition
them to minimize the number of full partition scans required.

6.4.5 Sampling vs Sketching. Table 3 reports the reduction in throu-
ghput in candidate selection as well as the overall throughput when
using a sketch-based approach over our sampling approach. We
consider two variants of Count Min Sketch: HCMS-1 (with d=2, w=
100) with a low storage footprint but less accuracy and HCMS-2
(with d=10, w= 2000) with a higher storage footprint but high accu-
racy. We report the reduction in throughput in candidate selection
(first value) as well as the overall end-to-end throughput (second
value) when using HCMS over the sampling approach. HCMS-1
although has high throughput in candidate selections leads to a
reduction in the overall throughput due to missing more candi-
date groups, therefore requiring more work in later passes. On the
contrary, HCMS-2 while more expensive leads to higher overall
throughput due to less work in later passes. Nonetheless, both vari-
ants are at least 8× less efficient in candidate selection than the
sampling-based approach.

Table 3: Sampling vs sketching. Table shows the absolute through-

put results for sampling and throughput wrt to sampling results for

sketch-based approaches.

Name Sampling (throughput) HCMS-1 (2, 100) HCMS-1 (10, 2000)
Cand. Selection End to End Cand. Selection End to End Cand. Selection End-to-End

RealD1 .029 × 108 .234 × 108 .21× .82× .13× .89×
RealD2 .032 × 108 .41 × 108 .19× .92× .09× .93×
RealD3 .053 × 108 .61 × 108 .16× .91× .05× .90×

6.5 Impact of Varying Degrees of Skew

Varying groupingkey distributions anduniformly distributed

values. We consider multiple synthetic distributions over 200 mil-
lion tuples and approximately 30 million unique groups generated
using a process described in [11, 16]. The distributions we consider
are: (1) uniform, (2) sorted, (3) heavy hitter, (4) zipf, (5) self-similar,
and (6) moving cluster, all capturing variations in the values of
group-by attributes. The values of aggregate columns are uniformly
distributed between 0 and 10. For heavy hitter, 10% of the values
of accounts for 50% of the tuples, while the other tuples uniformly
pick the groups from the rest of the group-by keys. The self-similar
distribution uses 80-20 proportion and the zipf distribution uses an
exponent of 0.5. For moving clusters, the groups are chosen uni-
formly from a sliding window of size 1024. Finally, the sequential
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Figure 11: Evaluating Zippy over synthetic distributions

distribution consists of input records in segments, each consisting
of a numerically repeated sequence of group-by values, where a
sequence consists of group-by keys from 1 to 30 millions.

Figure 11a depicts the performance of Zippy with respect to
the best-performing baseline for each of the above distributions.
We observe that distributions exhibiting skew in groups such as
zipf, heavy-hitter, and self-similar have significant speed-up in
performance, similar to what we observe over the real datasets.
For other distributions, the aggregate values of groups are similar,
hence the validation fails for these distributions and we fall back to
baseline approaches. As such, we incur a small overhead involved
with sampling and validation, which is less than 10% of the time
taken by the baseline algorithms.
Impact of skewness in values. Since the top-k aggregates depend
on aggregate values, we also consider an adapted variations of
the above distributions where we generate the values of tuples
using a zipf distribution with an exponent of 0.5. Figure 11b depicts
the result. On adding skew to the values, the performance over
distributions where groups are also skewed improves even further.
This is because we can prune other non-candidate partitions much
earlier due to high pruning threshold. However, there is only limited
improvement in the performance of distributions where there is
not much skew in the distribution of groups. For large cardinality
datasets, the number of groups with skewed values is fewer and
they are less likely to be identified in the sampling phases. Thus,
the validation fails and we fall back to the baseline approaches.

7 LIMITATIONS AND EXTENSIONS

Settings where our technique excels vs. where it falls short.

As we observed in our empirical evaluation, our technique works
better for high-cardinality large datasets with skew in groups and
aggregate values. However, for datasets with uniform distributions
of aggregate values or those with low-cardinality groups falling
in the top-k range, the benefits of our technique may be limited.
Nonetheless, as we saw earlier, the initial validation step can iden-
tify such cases and fall back to baseline approaches with a small
overhead of sampling and analysis. For capturing extremely rare
groups which may fall in top-k, we believe the top-k optimization
may benefit from doing apriori processing on the dataset. For ex-
ample, adding indexes on the groups can help perform stratified
sampling to have more coverage of rare groups. Similarly, with
indexes on measure columns, we may be able to identify tuples
with extreme values and add the corresponding groups in the first
aggregation pass to process them earlier. We plan to explore these
extensions as future work.
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Extensibility with other operators. In this work, our focus lies
exclusively on top-𝑘 and aggregation operations. This approach
aligns with prior research on cache-conscious aggregation algo-
rithms [11, 25, 35]. Below we briefly discuss how our technique can
interoperate with other relational operators. Multiple group-by at-
tributes. In our setting, the groups for multiple group-by attributes
can be combined as a single key before feeding them to our tech-
nique without any changes.
Aggregate over an expression involving multiple columns. The ex-
pression within the aggregate function can be pushed down below
the aggregation operation as a scalar expression. This is typically
the case during query processing in existing relational engines.
Group-by aggregates with filters. If the filter is selective such that
the cardinality or the size of the dataset reduces significantly, we
may not want to apply top-k optimizations. This can be decided
during query optimization. When there is not a significant amount
of filtering, we can augment the first pass of our proposed algorithm,
where we collect samples for analysis, to also apply filtering.
Group-by aggregates over PK-FK Joins.The top-k optimization can
be pushed down below the join on the fact table, and only the top-k
groups need to be joined with the dimension table.
Group-by aggregates over non PK-FK Joins. For non PK-FK joins, our
technique requires that the join between two tables is performed
first andmaterialized. For settings where the join results are ordered
on grouping key, a full-aggregation-based approach that avoids
materialization may be more efficient than our approach.
Sum over expressions with negative values. The sum over expressions
with negative values is non-monotonic. An workaround is ignore
the negative values when computing the partition-level statistics
leading to to looser bounds. However, this approach can helpful
when there are very few negative values and the distributions are
highly skewed as we observed for average in Section 6.

8 RELATEDWORK

Differences with external memory model. Both external and
cache-conscious aggregation algorithms focus on reducing data
movement in large datasets through partitioning and recursive
processing. Yet, cache-conscious environments require novel algo-
rithms due to distinct challenges: smaller local cache (L1 and L2)
sizes and eviction units (cache-line sizes), higher computational
overheads, and enhanced parallelization possibilities via efficient
L3 cache sharing and reduced core-to-core data movement. Con-
sequently, data structures like priority queues, which have large
storage needs and branching, are less preferred. Furthermore, spe-
cific partitioning methods, such as radix partitioning and software-
managed buffering [6, 34] impact the design of algorithms.
Cache-conscious query processing. There has been significant
work on cache-conscious query processing for main memory data-
bases [8, 13, 22, 29], including those that focus on sorting [9, 31], ag-
gregation [11, 25, 27, 32, 35], partitioning [28], and joins [4, 5, 7, 33].
In Section 2, we discuss the related work on aggregation algorithms
for modern multi-core CPUs. Furthermore, our algorithm func-
tions at a higher level, utilizing optimized partitioning and hashing
techniques from prior work for efficient top-k aggregation.
Top-k query processing. There has been limited prior work on
cache-conscious top-k aggregate optimization. The usual approach
is to first compute the aggregates for all groups and then select

the groups with top-k highest aggregates. This is inefficient over
high cardinality and large datasets, incurring unnecessary data
movement overhead. Shanbag et al. [31] propose optimizations
for finding top-k values given a list of values on GPUs. Similarly,
there has been many work on top-k values given a list of values
(i.e., no aggregation) in disk-based systems and in IR, as well as
top-k query processing for different relational operators, the de-
tailed overview of which can be found in [10, 18]. However, the
optimizations cannot be easily leveraged to reduce aggregation
cost—the main bottleneck in our setting. Li et al. [21] proposed a
rank-aware aggregate operator for disk-based systems using a prior-
ity queue. However, for datasets with high cardinality, maintaining
intermediate aggregate results in a priority queue may result in
large cache-line transfers. Additionally, in our set-up, we do not
assume we can access tuples of any group via an index.
Sketches, heavy-hitters and approximate query processing. In
this work, we leverage light-weight sketches for distinct count [15]
and maintain coarse-grained aggregates such as sum, max, min,
and count for each partition (i.e., a set of groups). There has been
a large body of work on sketches including those for identifying
frequent items and heavy hitters such as [19, 23, 24, 30] which could
be leveraged within our framework as long as they have minimal
storage overhead (i.e., should fit within the local cache of CPUs).
Prior work on approximate query processing queries [17, 20] can
be used for identifying candidate groups during the first phase of
our algorithm. However, many techniques assume that a groups
are indexed which may not be always feasible. Nonetheless, when
such access indexes are available, we can leverage faster sampling
approaches to improve the pruning effectiveness of our algorithm.

9 CONCLUSION

In this work, we have introduced a novel cache-conscious top-k
aggregation framework designed to efficiently identify the top-k
aggregates in large and high cardinality datasets. Our approach de-
viates from the traditional method of aggregating all data and then
selecting the top-k aggregates, which incurs substantial overhead
in terms of cache-line transfers. Instead, we exploit the skewness
in data distribution and the small number of desired aggregates to
quick top-k groups without performing complete aggregation for
all groups. Through extensive evaluation, we have demonstrated
that our approach yields significant performance improvements
compared to conventional cache-conscious aggregation methods
and is robust to adversarial distributions.

APPENDIX A: TUNING 𝑠 AND 𝛼0
The parameter 𝑠 (segment size) decides how frequently we need to
check for locality within a partition, and 𝛼0 determines the cutoff
point after which we switch from exact aggregation to partition-
ing. To determine the optimal values of 𝑠 and 𝛼0, we performed
benchmarking on synthetic datasets with varying degrees of skew
as described in Section 6.5. We varied 𝑠 from 100 to 5million and 𝛼0
from 0.05 to 0.95 and measured the throughput. Our results showed
that the maximum throughput of the algorithm is achieved for a
wide range of 𝑠 values between 10, 000 and 1 million and 𝛼0 values
between 0.10 and 0.25. Based on these results, we set the default
values of 𝑠 and 𝛼0 to 100𝑘 and 0.20 respectively.
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