
Expanding Reverse Nearest Neighbors
Wentao Li

The Hong Kong University of Science

and Technology (Guangzhou)

wentaoli@hkust-gz.edu.cn

Maolin Cai

Chongqing University

caimaolin@cqu.edu.cn

Min Gao

Chongqing University

gaomin@cqu.edu.cn

Dong Wen

The University of New South Wales

dong.wen@unsw.edu.au

Lu Qin

AAII, FEIT, University of Technology

Sydney

lu.qin@uts.edu.au

Wei Wang
∗

The Hong Kong University of Science

and Technology (Guangzhou)

The Hong Kong University of Science

and Technology

weiwcs@ust.hk

ABSTRACT
In a graph, the reverse nearest neighbors (RNN) of vertex 𝑓 re-

fer to the set of vertices that consider 𝑓 as their nearest neighbor.

When 𝑓 represents a facility like a subway station, its RNN com-

prises potential users who prefer the nearest facility. In practice,

there may be underutilized facilities with small RNN sizes, and

relocating these facilities to expand their service can be costly or

infeasible. A more cost-effective approach involves selectively up-

grading some edges (e.g., reducing their weights) to expand the

RNN sizes of underutilized facilities. This motivates our research

on the Expanding Reverse Nearest Neighbors (ERNN) problem,

which aims to maximize the RNN size of a target facility by upgrad-

ing a limited number of edges. Solving the ERNN problem allows

underutilized facilities to serve more users and alleviate the burden

on other facilities. Despite numerous potential applications, ERNN
is hard to solve: It can be proven to be NP-hard and APX-hard, and

it exhibits non-monotonic and non-submodular properties. To over-

come these challenges, we propose novel greedy algorithms that

improve efficiency by minimizing the number of edges that need

to be processed and the cost of processing each edge. Experimental

results demonstrate that the proposed algorithms achieve orders

of magnitude speedup compared to the standard greedy algorithm

while greatly expanding the RNN.

PVLDB Reference Format:
Wentao Li, Maolin Cai, Min Gao, Dong Wen, Lu Qin, and Wei Wang.

Expanding Reverse Nearest Neighbors. PVLDB, 17(4): 630 - 642, 2023.

doi:10.14778/3636218.3636220

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/wentaoli-92/ERNN.

∗
Wei Wang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.

doi:10.14778/3636218.3636220

1 INTRODUCTION
Graphs are widely used to represent entities and their relation-

ships [9]. This paper focuses on road networks [27], which are a

type of weighted graph. In a road network [20], entities located at

specific positions are represented as vertices, while the roads be-

tween entities are represented as edges, with the travel time along

the roads represented as edge weights. In applications such as deci-

sion support [1], the entities (i.e., the vertices) in the road network

are usually divided into two categories: users 𝐶 and facilities 𝐹 .
For many applications, each user vertex 𝑐 ∈ 𝐶 typically favors se-

lecting the nearest facility vertex to access the desired services [24].

For a facility vertex 𝑓 ∈ 𝐹 , when we collect all user vertices that

consider 𝑓 as their nearest facility, we obtain facility 𝑓 ’s (bichro-
matic) reverse nearest neighbors (RNN) [36]. In this context, the

RNN for facility 𝑓 includes all potential users who consider 𝑓 as

their preferred option for accessing services [11, 28]. The concept

of RNN has many applications in different fields. For instance, in

the business domain, analyzing the RNN of facilities like restau-

rants can help identify potential customers for targeted marketing

campaigns [5]. Similarly, in transportation planning, carefully ex-

amining the RNN of transportation hubs can assist in determining

suitable locations for establishing new stations [19].

Motivation. The size of facility 𝑓 ’s RNN quantifies, to some extent,

the degree to which it is utilized, as its RNN includes users that

tend to select that facility. Indeed, the concept of RNN was initially

used to quantify the scope of influence of a facility (i.e., its degree

of usage) [11]. However, it is observed that not all facilities are fully

utilized, often due to factors such as remote locations, resulting in

small RNN sizes for these underutilized facilities [6, 19, 34]. This
leads to resource wastage, as underutilized facilities fail to provide

services to their full potential, resulting in additional burdens on

other facilities. One way to improve the functionality of underuti-

lized facilities is to relocate them to new locations. Yet, relocating

facilities like fire stations is costly and may even be infeasible.

An alternative and cost-effective approach to enhance facility

utilization involves selecting a limited number (i.e., a budget) of
roads for upgrades to decrease their weights [25]. The road upgrade

can be achieved by constructing express lanes or widening existing

roads [3], which will effectively reduce the edge weights associated

with these roads. While there has been extensive research on up-

grading roads to minimize network diameter or delay [3, 22], no

630

https://doi.org/10.14778/3636218.3636220
https://github.com/wentaoli-92/ERNN
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636220
https://www.acm.org/publications/policies/artifact-review-and-badging-current

studies have explored the specific goal of improving facility uti-

lization. This motivates us to investigate the Expanding Reverse
Nearest Neighbors (ERNN) problem in the road network: given

a graph 𝐺 , a target facility 𝑓 , and a budget 𝑏, our objective is to

maximize the size of the RNN of the target facility 𝑓 by selecting

(up to) 𝑏 edges to reduce their weights for upgrading.

Some applications of the ERNN problem are listed below.

• Public Transportation Planning. Due to environmental and eco-

nomic considerations, public transportation facilities such as the

subway are increasingly used in daily life [18]. However, some

subway stations have small RNN sizes, resulting in underutiliza-

tion. Choosing new locations for these stations or constructing

new ones would incur high costs and may even be infeasible [33].

To facilitate users’ travel, a viable solution is to solve the ERNN
problem and upgrade certain roads, thereby expanding the RNN
of these stations. This method improves the utilization of the

underutilized stations and relieves the burden on other stations.

• Emergency Response Planning. Emergency response facilities

such as hospitals or fire departments are crucial for ensuring the

safety of people’s lives and properties [16]. However, there exist

facilities whose RNN sizes are small, and they cannot be fully

utilized during emergency events, resulting in wasted resources.

To enhance the utilization of such facilities, one approach is to

solve the ERNN problem and select certain edges (i.e., roads) for

upgrades, thereby increasing the RNN size of the facility. This

approach not only avoids the immense cost of relocating these

underutilized facilities or constructing new facilities but also

enables timely emergency response by reducing the travel time

through the upgraded roads.

Challenges. Although the ERNN problem offers many attractive

applications, solving it is challenging. Specifically, given a budget 𝑏,

it is necessary to examine all edge combinations in the graph𝐺 that

contain no more than 𝑏 edges. For each edge combination, we need

to determine the increase in the size of the target facility’s RNN
when upgrading the edges, thereby finding the edge combination

that yields the maximum RNN size for the target facility vertex. For

large-scale graphs, thoroughly checking all possible edge combina-

tions is very time-consuming. In fact, we can prove that ERNN is

NP-hard (see Theorem 3.5), indicating that finding an exact solution

is intractable. One may consider using approximation algorithms to

find solutions with an acceptable approximation ratio. However, we

can prove that ERNN is APX-hard (see Theorem 3.6), which means

seeking solutions with guaranteed approximation values in poly-

nomial time is challenging. Furthermore, the ERNN problem lacks

monotonicity and submodularity (see Theorem 3.7), undoubtedly

posing great difficulties in solving the problem.

Our Solution. Given the challenges of the ERNN problem, we

employ greedy algorithms to solve it practically. For a given budget

𝑏, the basic idea of the greedy algorithm is to select, in each round,

the edge that brings the maximum RNN size for upgrading until

the budget is exhausted (i.e., performing 𝑏 rounds). By iteratively

selecting the optimal edge in each round, the greedy algorithm elim-

inates the need to consider numerous edge combinations, thereby

improving efficiency. However, directly applying a standard greedy

algorithm to solve ERNN is still time-consuming due to the follow-

ing reasons: (1) Each round requires considering a large number

of edges to select the one that leads to the maximum RNN size. (2)

For each considered edge, the updated size of the target facility’s

RNN needs to be calculated when the edge weight decreases.

To accelerate the solving of ERNN, we propose new techniques

to fix the two shortcomings of the standard greedy algorithm.

• Distance-Based Edge Inspection. The standard greedy algorithm

considers all edges in each round to find the edge that yields

the maximum RNN size for the target facility. To improve the

speed of the greedy algorithm, it becomes crucial to reduce the

number of edges to be considered. To achieve this, we propose a

distance-based edge inspection technique. This technique sorts

the edges according to the shortest distance (from their end-

points) to the target facility and utilizes the distance to calculate

an upper bound on the RNN size after upgrading the edge. We

observe that as the distance increases, the upper bound gradually

decreases. Therefore, when checking the edges in ascending or-

der of distance, if at some point the upper bound of an edge is not

greater than the already computed RNN size, subsequent edges

(with the same or larger distances) do not need to be checked,

thereby reducing the number of edges to be considered. Building

upon this technique, we further propose two powerful pruning

strategies to discard more invalid and dominated edges.

• Incremental RNN Computation. For each edge that needs to be

examined, we need to calculate the updated RNN resulting from

upgrading that edge. It is costly to recalculate the RNN of the

target facility from scratch. Instead, we observe that the RNN
of the target facility only undergoes a small change when the

weight of an edge changes. Therefore, we propose an incremental

RNN computation technique to avoid recomputing the RNN.

By integrating the two techniques mentioned above, we obtain

our optimized greedy algorithms for solving the ERNN problem.

Contributions. The main contributions of the paper are as follows:

• New Problem Formulation (Section 3).We propose a new problem

called ERNN, which involves selecting a limited number of edges

from a graph for upgrading in order to maximize the RNN size

of a target facility vertex. By analyzing the NP-hardness and

APX-hardness of the ERNN problem, we uncover the challenges

in solving it. Furthermore, we demonstrate that the problem

lacks monotonicity and submodularity, which inspires us to use

greedy algorithms for the practical solving of the problem.

• NewAlgorithmDesign (Section 4).We introduce a standard greedy

algorithm for solving the ERNN problem and analyze its limita-

tions to identify opportunities for enhancing its performance. (1)

To tackle the challenge of examining a large number of edges,

we propose a distance-based edge inspection technique that uti-

lizes upper bounds to enable early termination of edge checks.

Additionally, we seamlessly incorporate two pruning strategies

to further reduce the number of edges requiring inspection. (2)

To mitigate the computational overhead associated with recal-

culating the RNN for the target facility when an edge weight

decreases, we propose an incremental RNN computation tech-

nique that avoids computing the RNN from scratch.

• Extensive Experimental Analysis (Section 5). We conducted exten-

sive experiments on real-world road networks. The experimental

results show that the optimized greedy algorithms can be three

631

<latexit sha1_base64="Ms20c/4usskFRCcUMyZBlUggKws=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA+t7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+qenlfq9RreRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHqrY2H</latexit>c1

<latexit sha1_base64="AyjukvUy9ipUjIhy4gEGn8etzZY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7lm/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3qX1Yu7eqVRz+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/sMY2I</latexit>c2<latexit sha1_base64="kJPiW2Pwjc2fEUN4fwSrbfiNVCo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpnvXP++WKW3XnIH+Jl5MK5Gj0y5+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmJVQYkjJUtachc/TmR0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyX9I6q3qX1Yu7WqVey+MowhEcwyl4cAV1uIUGNIHBEJ7gBV4d4Tw7b877orXg5DOH8AvOxzfttY2J</latexit>c3

<latexit sha1_base64="T7lehCiv3CjdbR1egSxFdiU50ss=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHli/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPvOY2K</latexit>c4

<latexit sha1_base64="0BvH2J7PFee9H/bHQS4fDuK0xrI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVrd1fVuqXeRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHwvY2L</latexit>c5

<latexit sha1_base64="Pfy5GTz01GErxIpVmQjfeeh17Is=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEq8eCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt1fVuqXeRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHyQY2M</latexit>c6

<latexit sha1_base64="huV3eRvfxSv7fhKpQFVvUeMcMiw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA+vX+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasOZnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+6enV/Walf5nEU4QRO4Rw8uIE63EEDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wf1SY2O</latexit>c8

<latexit sha1_base64="WTPZ/7Mggh99r9qjGndAW8qdlAA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lErceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2Lqnddvbq/rNQv8ziKcAKncA4e1KAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzxY2N</latexit>c7

<latexit sha1_base64="f0jtgzY5boOkcthD9/GeYVmN+m0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKz1vAi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6YL2bXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndZvbg/r9TO8ziKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QP2zY2P</latexit>c9

<latexit sha1_base64="SusT0Nx7y8DVwy3WuVq1UVuENiA=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakPpYFNy4r2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeuDC4Zx7ufeeMBHcWM/7RoW19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkp3QmKY4JI1LbeCdRLNSBwK1g7HtzO//cS04Uo+2EnCgpgMJY84JdZJLdrPfG/aL1e8qjcHXiV+TiqQo9Evf/UGiqYxk5YKYkzX9xIbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3zmlAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ugkyLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQyYXgL7+8SloXVf+qenlfq9RreRxFOIFTOAcfrqEOd9CAJlB4hGd4hTek0At6Rx+L1gLKZ47hD9DnDx6Bjs0=</latexit>c10

7

6

2

6

9

6

5
7

8 4

3

3

4

2

3

3

4

6

6

9

<latexit sha1_base64="pj86S1aDmM2PumlHR2fVX4R1bnk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK92H/vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuqxd3tUq9lsdRhCM4hlPw4ArqcAsNaAKDITzBC7w60nl23pz3RWvByWcO4Recj2/yR42M</latexit>

f3

<latexit sha1_base64="vZaFh5y0MAlBPUA4+tz0GcFewF4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7sN+rV+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuqxd39UqjnsdRhBM4hXPw4AoacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/ww42L</latexit>

f2

<latexit sha1_base64="YT26TqXNsHIllu6y7bK4j4Bm53Y=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPvP42K</latexit>

f1

Figure 1: The Example Graph𝐺

orders of magnitude faster than the standard greedy algorithm

and can solve the ERNN problem on graphs with over 1 million

edges in less than one minute, demonstrating the effectiveness of

our algorithms. Additionally, we compared our algorithms with

an exact algorithm and found that the updated RNN size caused

by our algorithms is comparable, indicating that our approaches

can effectively solve the ERNN problem. These results indicate

that the proposed algorithms can efficiently and effectively solve

the ERNN problem.

Due to space limitations, some proofs are omitted and can be

found in the technical report [13].

2 PRELIMINARY
We introduce some notations in Section 2.1, and then we explain

how to compute RNN in Section 2.2.

2.1 Notations
Given a road network 𝐺 (𝑉 , 𝐸,𝑊), which consists of a vertex set 𝑉

and an edge set 𝐸. For every vertex 𝑣 ∈ 𝑉 of𝐺 , the neighbors of 𝑣 ,
denoted 𝑁𝐺 (𝑣), are the set of vertices adjacent to 𝑣 , i.e., 𝑁𝐺 (𝑣) =
{𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, a weight function
𝑊 assigns aweight𝑤 (𝑒) to 𝑒 , and𝑢 and 𝑣 are referred to as the end-
points of 𝑒 . A path in the graph𝐺 from 𝑠 = 𝑣0 to 𝑡 = 𝑣𝑙 is a sequence

of edges, denoted as 𝑝𝐺 (𝑠, 𝑡) = {(𝑣0, 𝑣1), (𝑣1, 𝑣2), · · · , (𝑣𝑙−1, 𝑣𝑙)},
where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 ∈ [0, 𝑙 − 1]. The length of a path 𝑝𝐺 (𝑠, 𝑡)
is defined as 𝑙𝑒𝑛𝐺 (𝑝𝐺 (𝑠, 𝑡)) = Σ𝑒∈𝑝𝐺 (𝑠,𝑡)𝑤 (𝑒). Given two vertices

𝑠 and 𝑡 in 𝐺 , the path 𝑝𝐺 (𝑠, 𝑡) with the minimum length between

them is defined as the shortest path, and its length is defined as

the shortest distance 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) = 𝑙𝑒𝑛𝐺 (𝑝𝐺 (𝑠, 𝑡)).
Example 2.1. Fig. 1 shows the graph 𝐺 , which consists of 13

vertices and 20 edges. For the vertex 𝑓1 ∈ 𝑉 , its neighbors are
𝑁𝐺 (𝑓1) = {𝑐2, 𝑐3, 𝑐9}. For the edge 𝑒 = (𝑓1, 𝑐2) ∈ 𝐸, its weight
is 𝑤 (𝑒) = 5. For 𝑓1 and 𝑓3, a path between them is 𝑝𝐺 (𝑓1, 𝑓3) =
{(𝑓1, 𝑐2), (𝑐2, 𝑓3)}, and the length of this path is 11. Among all paths

between 𝑓1 and 𝑓3, the length of 𝑝𝐺 (𝑓1, 𝑓3) is the shortest, so it is

also the shortest path between 𝑓1 and 𝑓3, and the shortest distance

between 𝑓1 and 𝑓3 is 𝑑𝑖𝑠𝑡𝐺 (𝑓1, 𝑓3) = 11.

The vertices 𝑉 of the road network 𝐺 can be divided into two

disjoint sets, namely users𝐶 and facilities 𝐹 . For a user vertex 𝑐 ∈ 𝐶 ,
we define the nearest neighbor of 𝑐 , denoted by NN𝐺 (𝑐), as the
facility vertex in 𝐹 that is closest to 𝑐 , i.e., NN𝐺 (𝑐) = 𝑓 , when

𝑑𝑖𝑠𝑡𝐺 (𝑐, 𝑓) ≤ 𝑑𝑖𝑠𝑡𝐺 (𝑐, 𝑝), for ∀𝑝 ∈ 𝐹 . Conversely, for a facility ver-

tex 𝑓 ∈ 𝐹 , we define the reverse nearest neighbors of 𝑓 , denoted
by RNN𝐺 (𝑓), as the collection of user vertices in𝐶 that consider 𝑓

as their nearest neighbor, i.e., RNN𝐺 (𝑓) = {𝑐 ∈ 𝐶 |NN𝐺 (𝑐) = 𝑓 }.

Example 2.2. Consider the graph𝐺 in Fig. 1, where the 13 vertices

of𝐺 are divided into two categories: users 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐10} and
facilities 𝐹 = {𝑓1, 𝑓2, 𝑓3}. For the user 𝑐1 ∈ 𝐶 , the distances to all

three facilities in 𝐹 are as follows: 𝑑𝑖𝑠𝑡𝐺 (𝑐1, 𝑓1) = 14, 𝑑𝑖𝑠𝑡𝐺 (𝑐1, 𝑓2) =
3, 𝑑𝑖𝑠𝑡 (𝑐1, 𝑓3) = 6, thus NN𝐺 (𝑐1) = 𝑓2. Similarly, we can see that

NN𝐺 (𝑐9) = 𝑓1. By collecting all vertices in 𝐶 that have 𝑓1 as their

nearest neighbor, we find that RNN𝐺 (𝑓1) = {𝑐3, 𝑐9, 𝑐10}. Similarly,

we have RNN𝐺 (𝑓2) = {𝑐1, 𝑐2, 𝑐4, 𝑐8} and RNN𝐺 (𝑓3) = {𝑐5, 𝑐6, 𝑐7}.
Remark. We assume that the graph is an undirected connected

graph, and other more general extensions will be explored in future

work. For simplicity, we assume that the nearest neighbor of each

𝑐 ∈ 𝐶 is unique.When the context is clear, wewill omit the subscript

notation 𝐺 , so 𝑁𝐺 (𝑣), 𝑃𝐺 (𝑠, 𝑡), 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡),NN𝐺 (𝑐), and RNN𝐺 (𝑓)
will be simplified to 𝑁 (𝑣), 𝑃 (𝑠, 𝑡), 𝑑𝑖𝑠𝑡 (𝑠, 𝑡),NN(𝑐), and RNN(𝑓).

2.2 RNN Computation
This paper aims to expand the RNN of the target facility vertex by

selecting certain edges to upgrade. For this purpose, it is necessary

to compute the RNN of the facility vertex before and after the

edge upgrades. In this section, we will introduce the process of

computing RNN. Then, we will formally define the problem under

study in Section 3, and discuss how the computed RNN can be used

to select edges to solve the proposed problem in Section 4.

To calculate the RNN of a facility vertex 𝑓 , one approach is as

follows: (1) For each user vertex 𝑐 ∈ 𝐶 in the graph, execute Dijk-

stra’s algorithm to visit the vertices in order of ascending distance.

When encountering the first facility vertex, that facility becomes

the nearest neighborNN(𝑐) of 𝑐 ; (2) Traverse all user vertices 𝑐 ∈ 𝐶 ,
and if NN(𝑐) = 𝑓 , add 𝑐 to the RNN(𝑓) of 𝑓 . Although this ap-

proach can correctly compute the RNN of 𝑓 , it requires executing

Dijkstra’s algorithm for all user vertices 𝐶 to obtain their nearest

neighbors. Thus, the time cost is𝑂 (|𝐶 | (|𝑉 | log |𝑉 | + |𝐸 |)). Given the

large number of user vertices |𝐶 | in 𝐺 , this approach is too costly.

To accelerate the computation, we adopt the method proposed by

Yiu et al. [36]. The basic idea of Yiu’s algorithm is to have each vertex

store its own nearest neighbor and propagate this information to

its neighbors. This way, only one execution of Dijkstra’s algorithm

is needed to calculate the nearest neighbors of all vertices. The

specific procedure of Yiu’s algorithm is shown in Algorithm 1.

Algorithm. Given a graph𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊) and a facility vertex
𝑓 ∈ 𝐹 , we aim to compute the RNN of 𝑓 . We first initialize each

node 𝑣 ∈ 𝑉 (Line 1): (1) 𝑣 is marked as unprocessed, (2) 𝑣 ’s near-

est neighbor is marked as unknown, and (3) the distance 𝑑𝑖𝑠𝑡 (𝑣)
from 𝑣 to its nearest neighbor is set to infinity. Next, we create a

queue 𝑄 that is sorted based on the vertex’s recorded distance to

its (temporary) nearest neighbor (Line 2). Then, for each facility

vertex 𝑝 ∈ 𝐹 , we assign its nearest neighbor NN(𝑝) to be itself, and
the distance to its nearest neighbor 𝑑𝑖𝑠𝑡 (𝑝) is set to 0. We push the

triplet {𝑝, 𝑑𝑖𝑠𝑡 (𝑝),NN(𝑝)} to 𝑄 (Line 3-4).

Next, we extract the triplet {𝑢,𝑑𝑖𝑠𝑡 (𝑢),NN(𝑢)} from 𝑄 (Line 6)

until the queue 𝑄 becomes empty (Line 5). For vertex 𝑢, if it has

already been processed, no further processing is performed (Line 7).

Otherwise, we mark the vertex 𝑢 as processed (Line 8). For each

unprocessed neighbor 𝑣 ∈ 𝑁 (𝑢) of𝑢, we check if𝑑𝑖𝑠𝑡 (𝑢)+𝑤 (𝑢, 𝑣) is
less than the current distance 𝑑𝑖𝑠𝑡 (𝑣) (Line 9-10). If the condition is

true, it means that the distance from node 𝑣 to 𝑢’s nearest neighbor

632

Algorithm 1: Yiu’s Algorithm
Input: graph𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊) , facility 𝑓 ∈ 𝐹
Output: RNN𝐺 (𝑓)

1 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑣) ← 0,NN(𝑣) ← −1, 𝑑𝑖𝑠𝑡 (𝑣) ← ∞, for ∀𝑣 ∈ 𝑉 ;

2 𝑄 ← ∅;
3 NN(𝑝) = 𝑝,𝑑𝑖𝑠𝑡 (𝑝) ← 0, for ∀𝑝 ∈ 𝐹 ;
4 push {𝑝,𝑑𝑖𝑠𝑡 (𝑝),NN(𝑝) } into𝑄 , for ∀𝑝 ∈ 𝐹 ;
5 while Q is not empty do
6 pop {𝑢,𝑑𝑖𝑠𝑡 (𝑢),NN(𝑢) } from𝑄 ;

7 if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑢) = 1 then continue;

8 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑢) ← 1;

9 for each 𝑣 ∈ 𝑁 (𝑢) and 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑣) ≠ 1 do
10 if 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤 (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑣) then
11 NN(𝑣) ← NN(𝑢), 𝑑𝑖𝑠𝑡 (𝑣) ← 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤 (𝑢, 𝑣) ;
12 push {𝑣,𝑑𝑖𝑠𝑡 (𝑣),NN(𝑣) } into𝑄 ;

13 for each 𝑣 ∈ 𝐶 do
14 if NN(𝑐) = 𝑓 then add 𝑐 into RNN(𝑓) ;
15 return RNN(𝑓) ;

NN(𝑢) is smaller than the distance to its current nearest neighbor,

so we update 𝑣 ’s nearest neighborNN(𝑣) toNN(𝑢) and set𝑑𝑖𝑠𝑡 (𝑢)+
𝑤 (𝑢, 𝑣) as the new shortest distance to its nearest neighbor (Line 11).

Then, we push the triplet {𝑣, 𝑑𝑖𝑠𝑡 (𝑣),NN(𝑣)} to 𝑄 (Line 12). Once

the nearest neighbors for all vertices are found, we iterate over user

vertices 𝑐 ∈ 𝐶 . If NN(𝑐) = 𝑓 , we add 𝑐 to the RNN of 𝑓 (Line 13-14).

Example 2.3. Consider graph 𝐺 in Fig. 1. First, we set the near-

est neighbors of 𝐹 = {𝑓1, 𝑓2, 𝑓3} to themselves and push these

three vertices into the queue 𝑄 . Then, we dequeue {𝑓1, 𝑑𝑖𝑠𝑡 (𝑓2) =
0,NN(𝑓1) = 𝑓1}, mark 𝑓1 as processed, and process the unprocessed

neighbors of 𝑓1 one by one, namely {𝑐2, 𝑐3, 𝑐3}. For 𝑐2, its nearest
neighbor is temporarily set as NN(𝑐2) = NN(𝑓1) = 𝑓1, and its dis-

tance to nearest neighbor as 𝑑𝑖𝑠𝑡 (𝑐2) = 𝑑𝑖𝑠𝑡 (𝑓1) +𝑤 (𝑓1, 𝑐2) = 5. We

also push {𝑐2, 𝑑𝑖𝑠𝑡 (𝑐2) = 5,NN(𝑐2) = 𝑓1} into𝑄 . Similarly, we push

{𝑐3, 𝑑𝑖𝑠𝑡 (𝑐3) = 7,NN(𝑐3) = 𝑓1} and {𝑐9, 𝑑𝑖𝑠𝑡 (𝑐9) = 3,NN(𝑐9) = 𝑓1}
into the queue 𝑄 . Next, we dequeue {𝑓2, 𝑑𝑖𝑠𝑡 (𝑓2) = 0,NN(𝑓2) =
𝑓2}, mark 𝑓2 as processed, and push the unprocessed neighbors

{𝑐1, 𝑐2, 𝑐3} into the queue. Note that although 𝑐2 and 𝑐3 were pushed
into the queue by 𝑓1, they have not been marked as processed yet, so

{𝑐2, 𝑑𝑖𝑠𝑡 (𝑐2) = 4,NN(𝑐2) = 𝑓2} and {𝑐3, 𝑑𝑖𝑠𝑡 (𝑐3) = 8,NN(𝑐3) = 𝑓2}
are also pushed into 𝑄 , creating different copies. Similarly, we

dequeue {𝑓3, 𝑑𝑖𝑠𝑡 (𝑓3) = 0,NN(𝑓3) = 𝑓2}, mark 𝑓3 as processed,

and push the unprocessed neighbors {𝑐1, 𝑐1, 𝑐5, 𝑐7} into the queue.

Next, the item with the minimum distance in 𝑄 , i.e., {𝑐9, 𝑑𝑖𝑠𝑡 (𝑐9) =
3,NN(𝑐9) = 𝑓1}, is dequeued, setting 𝑐9 as processed. At this point,
NN(𝑐9) = 𝑓1 becomes the true nearest neighbor of 𝑐9. 𝑐9 pushes the

unprocessed neighbors 𝑐6 and 𝑐10 into the queue 𝑄 . This process

continues until 𝑄 becomes empty, and then it stops.

Remark. In the regular Dijkstra’s algorithm [7], each vertex ap-

pears once in 𝑄 and decrease-key operations are needed to de-

termine the correct position of a vertex in 𝑄 . In Algorithm 1, we

instead allow a vertex to appear multiple times in 𝑄 (Line 12), thus

avoiding decrease-key operations for efficiency.

Analysis. We show the correctness and time cost of Algorithm 1.

Lemma 2.4. Algorithm 1 correctly computes the RNN for each
facility vertex 𝑓 ∈ 𝐹 .

Lemma 2.5. The time cost of Algorithm 1 is 𝑂 (|𝑉 | + |𝐸 | log |𝐸 |).

3 THE ERNN PROBLEM
We first provide a formal definition of the studied problem in Sec-

tion 3.1, followed by an analysis of its challenges in Section 3.2.

3.1 Problem Definition
The RNN of a facility 𝑓 ∈ 𝐹 contains potential users seeking ser-

vices from that facility. Therefore, the RNN size of vertex 𝑓 reflects

the degree of utilization of that facility to some extent [11]. Con-

sidering the existence of underutilized facilities with small RNN
sizes, it is important to explore ways to expand the RNN of such

facilities in order to improve their utilization. However, relocating

an underutilized facility, such as a fire station or a subway station,

to a new location can be costly or even infeasible in practice.

Alternatively, we focus on maximizing the size of the RNN for

a target facility 𝑓 by upgrading a limited number of roads (i.e.,

edges) to reduce their weights. Reducing the weights (such as travel

time) of somemodifiable edges𝑀 can be achieved by constructing

expressways or widening road surfaces [25], making this approach

feasible in practice. Formally, we present the following problem.

Definition 3.1 (Expanding Reverse Nearest Neighbors (ERNN)).
Input A graph 𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊), modifiable edges𝑀 ⊆ 𝐸,

a budget 𝑏 and a target facility 𝑓 ∈ 𝐹 .
Output A set of (up to) 𝑏 edges 𝐴 ⊆ 𝑀 whose weights can

be reduced to some specific values, resulting in the

modified graph 𝐺 ′, such that the maximum size of

RNN𝐺 ′ (𝑓) is reached1.
In Definition 3.1, we allow that the weights of the modifiable

edges𝑀 can be reduced to arbitrary values pre-determined by the

user. To simplify the discussion, we adopt an approach similar to

that of [23] and assume that the weights of all modifiable edges

can only be reduced to zero. This leads to the following simplified

version of the ERNN problem, which we aim to solve in this paper.

Definition 3.2 (Simplified Version of the ERNN Problem).
Input A graph 𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊), modifiable edges𝑀 ⊆ 𝐸,

a budget 𝑏 and a target facility 𝑓 ∈ 𝐹 .
Output A set of (up to) 𝑏 edges𝐴 ⊆ 𝑀 whose weights can only

be reduced to zero, resulting in the modified graph 𝐺 ′,
such that the maximum size of RNN𝐺 ′ (𝑓) is reached.

One might question if the generality of Definition 3.1 is com-

promised by the stipulation in Definition 3.2 that edge weights can

only be reduced to zero. Yet, we show that this generality remains

intact under Definition 3.2, as we show that any instance of the

ERNN problem defined in Definition 3.1 can be transformed into

the simplified form of the ERNN problem specified in Definition 3.2.

Lemma 3.3. Any instance of ERNN defined in Definition 3.1 can
be transformed into the form of ERNN defined in Definition 3.2.

Example 3.4. Consider the graph𝐺 in Fig 1. For the ERNN prob-

lem, the inputs are (1) the graph 𝐺 , (2) the modifiable edges𝑀 = 𝐸,

(3) the budget 𝑏 = 2, and (4) the target facility 𝑓1. The output is a se-

lection of 2 edges from𝑀 , denoted as𝐴 = {(𝑓1, 𝑐3), (𝑐6, 𝑐9)}. Specif-
ically, for graph 𝐺 , we have RNN𝐺 (𝑓1) = {𝑐3, 𝑐9, 𝑐10}. When the

1
This objective is consistent with maximizing the increase in the size of RNN for 𝑓 in

𝐺 ′ . We do not differentiate between these two objectives.

633

<latexit sha1_base64="2Q+8qxooN5nStZuVAVoO4+ZnTr8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKexKfBwDXjxGMA9IljA7O5uMmZ1ZZnqFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ej25nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhjfBBMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrYuqf1W9vK9V6rU8jiKcwCmcgw/XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8Aa1hjys=</latexit>· · ·

<latexit sha1_base64="7YMHD2vlVqEECIMgM5KseNt2kS8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg+57/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+qenlfq9RreRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEDHI2X</latexit>s1

<latexit sha1_base64="/G4aZeHG9qwUSrsV2+ekeCqj6SE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7nW/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3qX1Yu7eqVRz+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8EoI2Y</latexit>s2

<latexit sha1_base64="xEsFPdX72XpCzVEPErTKrn3JWhw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ9r3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MbPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMGKI2Z</latexit>u1

<latexit sha1_base64="M4CT4z1vapY8dKM5ABQ/CjzN+B0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7tN+rV+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuqxd39UqjnsdRhBM4hXPw4AoacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx8HrI2a</latexit>u2

<latexit sha1_base64="yYk1xWwRm3/vCXBnDIafLcrVf5Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK92n/vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuqxd3tUq9lsdRhCM4hlPw4ArqcAsNaAKDITzBC7w60nl23pz3RWvByWcO4Recj28JMI2b</latexit>u3

<latexit sha1_base64="2Q+8qxooN5nStZuVAVoO4+ZnTr8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKexKfBwDXjxGMA9IljA7O5uMmZ1ZZnqFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ej25nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhjfBBMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrYuqf1W9vK9V6rU8jiKcwCmcgw/XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8Aa1hjys=</latexit>· · · <latexit sha1_base64="2Q+8qxooN5nStZuVAVoO4+ZnTr8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKexKfBwDXjxGMA9IljA7O5uMmZ1ZZnqFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYSq4Qc/7dgpr6xubW8Xt0s7u3v5B+fCoZVSmKWtSJZTuhMQwwSVrIkfBOqlmJAkFa4ej25nffmLacCUfcJyyICEDyWNOCVqp1aORQtMvV7yqN4e7SvycVCBHo1/+6kWKZgmTSAUxput7KQYTopFTwaalXmZYSuiIDFjXUkkSZoLJ/Nqpe2aVyI2VtiXRnau/JyYkMWachLYzITg0y95M/M/rZhjfBBMu0wyZpItFcSZcVO7sdTfimlEUY0sI1dze6tIh0YSiDahkQ/CXX14lrYuqf1W9vK9V6rU8jiKcwCmcgw/XUIc7aEATKDzCM7zCm6OcF+fd+Vi0Fpx85hj+wPn8Aa1hjys=</latexit>· · ·
<latexit sha1_base64="wWNy3tGiWT5/baNUcfGLv21H2d4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAiwcPEc0DkiXMTnqTIbOzy8ysEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13V5AIro3rfjuFldW19Y3iZmlre2d3r7x/0NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6Gbqt55QaR7LRzNO0I/oQPKQM2qs9KB7d71yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjtZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvsnpxf16pnedxFOEIjuEUPLiCGtxCHRrAYADP8ApvjnBenHfnY95acPKZQ/gD5/MHLAiNsg==</latexit>sL

<latexit sha1_base64="7iwiGAFJmOrRHXYc7MgFisea5d4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi+AlonlAsoTZSW8yZHZ2mZkVwpJP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHtLeXa9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE177GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7rF7cn1dq53kcRTiCYzgFD66gBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBLZCNsw==</latexit>uK

<latexit sha1_base64="TrFWTMuQFvR9Zfto9BAEdAXf1WI=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclJKU+tgIBTeCmwr2AU0Ik8mkHTqZhJmJUEIXbvwVNy4UcetHuPNvnLRZaOuBC2fOuZe59/gJo1JZ1rexsrq2vrFZ2ipv7+zu7ZsHh10ZpwKTDo5ZLPo+koRRTjqKKkb6iSAo8hnp+ePr3O89ECFpzO/VJCFuhIachhQjpSXPrHSunCz17BpMvUYNOjiIlcwft87UM6tW3ZoBLhO7IFVQoO2ZX04Q4zQiXGGGpBzYVqLcDAlFMSPTspNKkiA8RkMy0JSjiEg3mx0xhSdaCWAYC11cwZn6eyJDkZSTyNedEVIjuejl4n/eIFXhpZtRnqSKcDz/KEwZVDHME4EBFQQrNtEEYUH1rhCPkEBY6dzKOgR78eRl0m3U7fP62V2z2moWcZRABRyDU2CDC9ACN6ANOgCDR/AMXsGb8WS8GO/Gx7x1xShmjsAfGJ8/KsCWfg==</latexit>

U = {u1, u2, · · · , uK}<latexit sha1_base64="T5cQRYjY35CdW+GrdWpclko8fKc=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgopSk1MdGKLhx4aKifUATwmQybYdOMmFmIpTQhRt/xY0LRdz6Ee78GydtFtp64MKZc+5l7j1+zKhUlvVtFFZW19Y3ipulre2d3T1z/6AjeSIwaWPOuOj5SBJGI9JWVDHSiwVBoc9I1x9fZX73gQhJeXSvJjFxQzSM6IBipLTkmeW7SyeVnl2F0qtXoYMDrmT2uHGmnlmxatYMcJnYOamAHC3P/HICjpOQRAozJGXftmLlpkgoihmZlpxEkhjhMRqSvqYRCol009kRU3islQAOuNAVKThTf0+kKJRyEvq6M0RqJBe9TPzP6ydqcOGmNIoTRSI8/2iQMKg4zBKBARUEKzbRBGFB9a4Qj5BAWOncSjoEe/HkZdKp1+yz2ulto9Js5HEUQRkcgRNgg3PQBNegBdoAg0fwDF7Bm/FkvBjvxse8tWDkM4fgD4zPHx+clnc=</latexit>

S = {s1, s2, · · · , sL}

2

2

2

2

1

1

1

1

1

1

4

4

4

<latexit sha1_base64="5myCwdkPYMi3rI3T2wFeBdBnyGc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmmG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6peNmuVei2PowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yfuM5g==</latexit>

f

<latexit sha1_base64="YT26TqXNsHIllu6y7bK4j4Bm53Y=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPvP42K</latexit>

f1

<latexit sha1_base64="vZaFh5y0MAlBPUA4+tz0GcFewF4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7sN+rV+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuqxd39UqjnsdRhBM4hXPw4AoacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/ww42L</latexit>

f2

<latexit sha1_base64="pj86S1aDmM2PumlHR2fVX4R1bnk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK92H/vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuqxd3tUq9lsdRhCM4hlPw4ArqcAsNaAKDITzBC7w60nl23pz3RWvByWcO4Recj2/yR42M</latexit>

f3

<latexit sha1_base64="dWoHxyjZ4wtf2CcTzv6tnV/IBAA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi+AlonlAsoTZSW8yZHZ2mZkVwpJP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHsLeXa9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE177GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7rF7cn1dq53kcRTiCYzgFD66gBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBFraNpA==</latexit>

fK

Figure 2: The Proof of NP-hardness

weights of the edges in 𝐴 are reduced to 0, graph𝐺 transforms into

a new graph𝐺 ′. In this case, RNN𝐺 ′ (𝑓1) = {𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐8, 𝑐9, 𝑐10},
whose size is the largest for 𝑓1 after upgrading 2 edges.

Remark. Because of Lemma 3.3, we focus on how to design algo-

rithms to handle the ERNN problem defined in Definition 3.2. To

this end, we provide further discussion of Definition 3.2.

Modifiable edges. In practice, the weights of the edges are related

to the traffic flow or the length of the road. While it is possible

to reduce the weight of some roads (edges) by widening them or

building highways, not all roads (edges) can be improved in this

way. Therefore, in Definition 3.2, we restrict that only the weights

of edges in the modifiable edges𝑀 can be reduced.

Weight estimation. In Definition 3.2, we assume that the weights

of the edges in the graph 𝐺 are known. Many existing works [29,

35] have been proposed to estimate the edge weights in 𝐺 , e.g.,

estimating the weights based on trajectories. Thus, the problem of

how to obtain the weights of edges is orthogonal to our work.

Reduced weight. In Definition 3.2, we specify that the weights of

edges can only be reduced to zero. On the other hand, in practice,

the choice of the reduced weight after an edge is upgraded can

be decided by the user based on experience or budget [25]. For

example, [25] and [6] consider reducing the weight of an edge to a

fixed fraction of its original value, while [23] reduces the weight to

zero. Yet, according to Lemma 3.3, reducing the weights to 0 can be

used to handle cases where the user specifies that the weights be

reduced to arbitrary values. Thus, the generality of Definition 3.2

allows it to be indifferent to how the user sets the reduced weights.

Cost of edge upgrade. In this paper, we assume that all edges have

the same upgrade cost, so we focus on selecting 𝑏 edges to upgrade.

However, the cost of upgrading an edge may depend on the reduced

weight and other factors. How to incorporate the cost into the

ERNN problem definition is a direction we will explore further.

3.2 Problem Hardness
We prove the NP-hardness and APX-hardness of the ERNN prob-

lem in Theorems 3.5 and 3.6, respectively. Then, in Theorem 3.7,

we demonstrate that the ERNN problem lacks monotonicity and

submodularity. These analyses indicate the challenges involved in

solving ERNN, thus motivating us to employ a greedy algorithm to

tackle the problem practically.

Theorem 3.5. The ERNN problem is NP-hard.

Proof. In order to prove the NP-hardness of ERNN, we first in-
troduce an NP-hard problem called Maximum Set Cover (MC) [10].

Input A universal set 𝑈 containing 𝐾 elements, denoted as

𝑈 = {𝑢1, 𝑢2, · · · , 𝑢𝐾 }, a set 𝑆 containing 𝐿 subsets, de-

noted as 𝑆 = {𝑠1, 𝑠2, · · · , 𝑠𝐿}, where each 𝑠𝑖 ∈ 𝑆 con-

tains some elements from𝑈 , and a budget 𝑏.

Output (Up to) 𝑏 elements from 𝑆 , denoted as 𝐴, such that the

maximum size of Σ𝑠𝑖 ∈𝐴 is reached.

Next, we prove the equivalence between the ERNN problem

and the MC problem, thereby demonstrating that ERNN is also

NP-hard. To do this, we start by constructing a graph𝐺 (see Fig. 2),

where each element 𝑠𝑖 from 𝑆 and 𝑢 𝑗 from 𝑈 in MC are mapped

to a vertex in 𝐺 . If 𝑢 𝑗 ⊆ 𝑠𝑖 , we connect the vertices 𝑢 𝑗 and 𝑠𝑖 with
an edge. Additionally, we add a facility vertex 𝑓 and connect it to

all vertices in 𝑆 . We also introduce 𝐾 facility vertices, denoted as

𝑓𝑗 , and connect each 𝑓𝑗 to the vertex 𝑢 𝑗 in 𝑈 . The edge weights

are assigned as shown in Fig. 2. Here, 𝐹 = {𝑓 , 𝑓1, 𝑓2, · · · , 𝑓𝐾 } and
𝐶 = 𝑈 ∪ 𝑆 . It can be observed that for 𝑓 ∈ 𝐹 , RNN𝐺 (𝑓) = ∅. We

consider a set of modifiable edges 𝑀 , which includes the edges

between 𝑓 and vertices in 𝑆 .

MC⇒ ERNN. Assuming MC can be solved, then selecting 𝑏 ele-

ments from 𝑆 can cover the maximum number of elements in𝑈 . For

ERNN, when selecting edges between 𝑓 and any 𝑏 vertices 𝑆 ′ in 𝑆 ,
𝑏 vertices are added to the RNN of 𝑓 in the updated graph (because

the vertices in 𝑆 ′ have a distance of 0 from 𝑓). Furthermore, since

the vertex 𝑢 𝑗 connected to vertex 𝑠𝑖 ∈ 𝑆 ′ have a distance of 1 from
𝑓 , which is less than the distance 2 to the previous nearest neighbor

𝑓𝑗 , 𝑢 𝑗 is also added to the RNN of 𝑓 . Thus, based on the solution to

MC, determining 𝑆 ′ that covers the maximum number of elements

in𝑈 allows for the maximum expansion of 𝑓 ’s RNN.
ERNN⇒MC. For ERNN, upgrading the edges between 𝑓 to any

𝑏 vertices 𝑆 ′ ⊆ 𝑆 will result in the vertices in 𝑆 ′ being added to

𝑓 ’s RNN in the updated graph. Moreover, by solving ERNN, we
can find the vertices 𝑆 ′ that maximize the number of vertices in

𝑈 connected to 𝑆 ′ (since the adjacent vertices of 𝑆 ′ in 𝑈 are also

added to 𝑓 ’s RNN). This indicates that 𝑆 ′ is the solution toMC. □

Theorem 3.6. ERNN cannot be approximated in polynomial time
within a ratio of (1 − 1

𝑒 + 𝜂), for ∀𝜂 > 0, unless P=NP.

Theorem 3.7. ERNN is non-submodular and non-monotonic.

4 PROBLEM SOLUTION
In Section 4.1, we present a standard greedy algorithm for solving

the ERNN problem, while in Sections 4.2 and 4.3, we introduce two

key techniques to enhance its performance.

4.1 A Standard Greedy Algorithm
Considering the challenges of the ERNN problem, we employ a

greedy algorithm to solve it. Let’s recall the ERNN problem: Given

a graph 𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸) and a target facility 𝑓 ∈ 𝐹 , our objective
is to upgrade (up to) 𝑏 edges 𝐴 from the modifiable edges 𝑀 in

order to obtain a new graph 𝐺 ′, such that the maximum size of the

RNN𝐺 ′ (𝑓) for the target facility is achieved.

Algorithm. The idea of a standard greedy algorithm (denoted as

Basic) is to select an edge that brings themaximumRNN size at each

round, until the budget is exhausted. Specifically, in Algorithm 2,

we provide the details of Basic. Basic is an iterative process that

runs for a total of 𝑏 rounds, where 𝑏 is the budget for the ERNN

634

Algorithm 2: Basic
Input: graph𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊) , modifiable edges𝑀 ⊆ 𝐸,

budget 𝑏, target facility 𝑓 ∈ 𝐹
Output: edges 𝐴 ⊆ 𝑀

1 while budget 𝑏 > 0 do
2 𝑜𝑝𝑡 ← 0;

// Distance-Based Edge Inspection (Sec. 4.2)

3 for each edge 𝑒 ∈ 𝑀 do
4 𝐺 ′ ← upgrade 𝑒 in𝐺 ;

// Incremental RNN Computation (Sec. 4.3)

5 compute RNN𝐺 ′ (𝑓) in𝐺 ′ using Algorithm 1;

6 if 𝑜𝑝𝑡 > |RNN𝐺 ′ (𝑓) | then
7 𝑜𝑝𝑡 ← |RNN𝐺 ′ (𝑓) | , 𝑎𝑛𝑠 ← 𝑒 ;

8 𝑀 ← 𝑀 \ 𝑎𝑛𝑠 , 𝐴← 𝐴 ∪ 𝑎𝑛𝑠 ;
9 𝐺 ← upgrade 𝑎𝑛𝑠 in𝐺 , 𝑏 ← 𝑏 − 1;

10 return edges 𝐴;

problem (Line 1, 8). In each round, we initialize a variable 𝑜𝑝𝑡 to

record the maximum (updated) RNN size (Line 2). Then, we iterate

over all edges 𝑒 ∈ 𝑀 (Line 3). For each edge, we reduce its weight

to 0 to obtain a new graph 𝐺 ′. We use Algorithm 1 to get the RNN
of the target facility 𝑓 in 𝐺 ′ (Line 5) and update 𝑎𝑛𝑠 to record

the edge 𝑒 that yields the maximum RNN size up to now, and the

corresponding size is recorded in 𝑜𝑝𝑡 (Line 6-7). After each round,

we remove the edge 𝑎𝑛𝑠 from𝑀 and add it to the result set 𝐴 (Line

8). Then, we set the weight of the edge 𝑎𝑛𝑠 to 0 to proceed with the

next iteration (Line 9). After 𝑏 rounds of iteration, the edges stored

in the result set 𝐴 form the solution to the ERNN problem.

Example 4.1. Consider graph 𝐺 in Fig. 1, where 𝑓1 ∈ 𝐹 is the

target facility, the budget is 2, and all edges are modifiable edges𝑀 .

In 𝐺 , the RNN of target facility 𝑓1 is {𝑐3, 𝑐9, 𝑐10}. For Basic, it runs
in 2 rounds. In the first round, we examine all 20 edges in 𝑀 = 𝐸.

For the edge (𝑓1, 𝑐2), after setting its weight to 0, the size of RNN
for 𝑓1 becomes 4. Similarly, when we inspect the edge (𝑓1, 𝑐3) and
set its weight to 0, the size of RNN for 𝑓1 becomes 5. In this round,

the edge (𝑓1, 𝑐3) is chosen because it yields the maximum RNN size

for 𝑓1. Next, we set the weight of the edge (𝑓1, 𝑐3) to 0 and remove

it from𝑀 to proceed to the second iteration. We iterate through the

remaining 19 edges in𝑀 and find that upgrading the edge (𝑐6, 𝑐9)
results in the maximum RNN size for 𝑓1. At this point, the greedy

algorithm outputs (𝑓1, 𝑐3) and (𝑐6, 𝑐9) as the solution for ERNN.

Opportunities. We will examine the time complexity of Algo-

rithm 2 to uncover possibilities for enhancing its efficiency.

Lemma 4.2. The time complexity of Algorithm 2 is 𝑂 (𝑏 × (|𝑀 | ×
(|𝐸 | log |𝐸 | + |𝑉 |))), where 𝑏 is the budget and |𝑀 | is the number of
modifiable edges.

Opportunity 1. In Line 3, we need to check the modifiable edges

𝑀 in each round, which introduces a factor of |𝑀 | into the time

complexity. To improve the practical performance of Algorithm 2,

reducing the number of edges to be checked in each round becomes

crucial. To achieve this, in Section 4.2, we propose a distance-based

edge inspection technique, which avoids checking all modifiable

edges. Based on this technique, we further introduce two powerful

pruning rules to remove more edges.

Opportunity 2. In Line 5, for each edge 𝑒 , we need to execute Algo-

rithm 1 to compute RNN of 𝑓 in the updated graph 𝐺 ′. However,
it is not the optimal choice to re-invoke Algorithm 1 to compute

the updated RNN of 𝑓 when there is only one edge weight change.

Therefore, we introduce an incremental RNN computation tech-

nique in Section 4.3 to improve the efficiency.

4.2 Distance-Based Edge Inspection
This section presents the distance-based edge inspection technique.

First, we check the edges based on distance so as to obtain the

upper bound for early termination of a greedy algorithm. Then, we

propose two pruning strategies to remove more edges.

4.2.1 A Distance-Based Greedy Algorithm
In Algorithm 2, to solve the ERNN problem in 𝐺 , we need to

check each edge 𝑒 in themodifiable edges𝑀 to find the optimal edge

in each round. A natural question arises: can we avoid processing

all the edges in𝑀? To answer this question, we first introduce the

concept of the shortest distance for an edge.

Definition 4.3. Given a graph 𝐺 (𝑉 = 𝐹 ∪ 𝐶, 𝐸) and a facility

𝑓 ∈ 𝐹 , assume that the shortest distance from vertex 𝑣 ∈ 𝑉 to 𝑓 is

𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑓). Then, the shortest distance of edge 𝑒 = (𝑢, 𝑣) to 𝑓 in
𝐺 is defined as 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓) = min(𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑓), 𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑓)).

Example 4.4. Consider graph 𝐺 in Fig. 1, where the distance

from 𝑐3 to 𝑓1 is 7 and the distance from 𝑐2 to 𝑓1 is 5. Therefore, the

shortest distance from (𝑐3, 𝑐2) to 𝑓1 is min(7, 5) = 5.

Then, we analyze whether upgrading a particular edge (𝑢, 𝑣) can
cause a vertex 𝑐 ∉ RNN𝐺 (𝑓), which is not in the RNN of 𝑓 in graph

𝐺 , to be included in the RNN of 𝑓 in 𝐺 ′ after the upgrading.

Lemma 4.5. Given a vertex 𝑐 whose nearest neighbor is NN𝐺 (𝑐) ≠
𝑓 , when an edge 𝑒 decreases in weight to form a new graph 𝐺 ′,
NN𝐺 ′ (𝑐) = 𝑓 only if 𝑑𝑖𝑠𝑡𝐺 (𝑐,NN𝐺 (𝑐)) > 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓).

Example 4.6. For graph 𝐺 in Fig. 1, the RNN of 𝑓1 consists of

{𝑐3, 𝑐9, 𝑐10}. For 𝑐1, since NN𝐺 (𝑐1) = 𝑓2 and 𝑑𝑖𝑠𝑡𝐺 (𝑐1, 𝑓2) = 3. For

the edge 𝑒 = (𝑐3, 𝑐2), because 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓1) = 5 > 𝑑𝑖𝑠𝑡𝐺 (𝑐1, 𝑓2) = 3,

when upgrading 𝑒 , in the new graph 𝐺 ′, NN𝐺 ′ (𝑐) = 𝑓2 ≠ 𝑓1, which

means 𝑐 will not change its nearest neighbor to 𝑓1.

Upper Bound Design. When upgrading edge 𝑒 , Lemma 4.5 is

a necessary condition for a vertex 𝑐 ∉ RNN𝐺 (𝑓) to be added

to the RNN of 𝑓 in the new graph 𝐺 ′. If we gather all vertices

Δ𝑒 that satisfy the condition in Lemma 4.5, where Δ𝑒 = {𝑐 ∉

RNN𝐺 (𝑓) |𝑑𝑖𝑠𝑡𝐺 (𝑐,NN𝐺 (𝑐)) > 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓)}, we can obtain a su-

per set ̃︄RNN𝐺 ′ (𝑓) = RNN𝐺 (𝑓) ∪ Δ(𝑒) of 𝑓 ’s RNN in 𝐺 ′ since
vertices in Δ(𝑒) may be included in the RNN of 𝑓 in 𝐺 ′.

Lemma 4.7. Suppose upgrading edge 𝑒 causes𝐺 to become𝐺 ′, then
in𝐺 ′, RNN𝐺 ′ (𝑓) ⊆̃︄RNN𝐺 ′ (𝑓) = RNN𝐺 (𝑓) ∪ Δ𝑒 , where Δ𝑒 = {𝑐 ∉
RNN𝐺 (𝑓) |𝑑𝑖𝑠𝑡𝐺 (𝑐,NN𝐺 (𝑐)) > 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓)}.

Example 4.8. Following the above example, when 𝑒 = (𝑐3, 𝑐2)
decreases in weight, we divide the vertices not in RNN𝐺 (𝑓1) into
two groups: (1) Δ𝑒 = {𝑐6, 𝑐8}, since 𝑑𝑖𝑠𝑡𝐺 (𝑐6,NN𝐺 (𝑐6) = 𝑓3) =
8 > 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓1) = 7 and 𝑑𝑖𝑠𝑡𝐺 (𝑐8,NN𝐺 (𝑐8) = 𝑓2) = 8 >

𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓1) = 7, the vertices in Δ𝑒 may be added to the RNN
of 𝑓1 in the new graph 𝐺 ′. (2) Other vertices not in Δ𝑒 such as 𝑐1,

and upgarding 𝑒 cannot cause 𝑐1 ∉ Δ𝑒 to be included in RNN𝐺 ′ (𝑓).

635

Algorithm 3: DBEI
Input: graph𝐺 (𝑉 = 𝐹 ∪𝐶, 𝐸,𝑊) , modifiable edges𝑀 ⊆ 𝐸,

budget 𝑏, target facility 𝑓 ∈ 𝐹
Output: edges 𝐴 ⊆ 𝑀

1 while budget 𝑏 > 0 do
2 𝑜𝑝𝑡 ← 0;

3 𝑑𝑖𝑠𝑡 (𝑣) ← −1, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑣) ← 0, for ∀𝑣 ∈ 𝑉 ;

4 push 𝑓 into𝑄 ;

5 while𝑄 is not empty do
6 pop 𝑢 from𝑄 ;

7 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑢) ← 1;

8 for 𝑣 ∈ 𝑁 (𝑢) and 𝑣𝑖𝑠𝑖𝑡𝑑 (𝑣) = 0 do
9 if 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤 (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑣) then
10 𝑑𝑖𝑠𝑡 (𝑣) ← 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤 (𝑢, 𝑣) ;
11 push 𝑣 into𝑄 ;

12 if 𝑒 = (𝑢, 𝑣) ∈ 𝑀 and not used then
13 𝑑𝑖𝑠𝑡 ((𝑒), 𝑓) ← 𝑑𝑖𝑠𝑡 (𝑢) ;
14 Δ𝑒 ← {𝑐 ∉ RNN𝐺 (𝑓) |𝑑𝑖𝑠𝑡𝐺 (𝑐,NN𝐺 (𝑐)) >

𝑑𝑖𝑠𝑡 ((𝑒), 𝑓) };
15 𝑢𝑏 (𝑒) ← |Δ(𝑒) ∪ RNN𝐺 (𝑓) |;
16 if 𝑢𝑏 (𝑒) ≤ 𝑜𝑝𝑡 then stop this round;

17 compute RNN𝐺 ′ (𝑓) in𝐺 ′ using Algorithm 1;

18 if 𝑜𝑝𝑡 > |RNN𝐺 ′ (𝑓) | then
19 𝑜𝑝𝑡 ← |RNN𝐺 ′ (𝑓) | , 𝑎𝑛𝑠 ← 𝑒 ;

20 𝑀 ← 𝑀 \ 𝑎𝑛𝑠 , 𝐴← 𝐴 ∪ 𝑎𝑛𝑠 ;
21 𝐺 ← upgrade 𝑎𝑛𝑠 in𝐺 , 𝑏 ← 𝑏 − 1;

22 return edges 𝐴;

The size of super set ̃︄RNN𝐺 ′ (𝑓) leads to the upper bound
|̃︄RNN𝐺 ′ (𝑓) | of the target facility 𝑓 ’s updated RNN size after up-

grading an edge. We observe a close relationship between the upper

bound and the shortest distance of an edge.

Theorem 4.9. For two edges 𝑒1 and 𝑒2 ∈ 𝑀 , if 𝑑𝑖𝑠𝑡𝐺 ((𝑒1), 𝑓) ≥
𝑑𝑖𝑠𝑡𝐺 ((𝑒2), 𝑓), then |̃︄RNN𝐺 ′1 (𝑓) | ≤ |̃︄RNN𝐺 ′2 (𝑓) |, where 𝐺 ′1 (resp.
𝐺 ′
2
) is formed by upgrading 𝑒1 (resp. 𝑒2).

Our Proposed Algorithm. Theorem 4.9 states that as the shortest

distance from the edge to the target facility 𝑓 increases, the upper

bound (on the updated RNN size of 𝑓) can only decrease. This

inspires us to examine the edges based on their distance to the

target facility. When examining an edge at a certain distance, if

the obtained upper bound is no larger than the maximum already

computed RNN size achieved by upgrading previous edges, we

can stop the process early: Subsequent edges do not need to be

considered because their upper bound on the updated RNN size is

not larger than the current edge’s upper bound.

Algorithm. By implementing the above idea, we obtain a distance-

based greedy algorithm (denoted asDBEI), as shown in Algorithm 3.

DBEI is similar to Algorithm 2, with the only difference being that

instead of sequentially scanning all edges in𝑀 , we use a modified

Dijkstra’s algorithm to access edges based on their distances to 𝑓

(Lines 3-11). Specifically, we use a queue𝑄 to visit vertices according

to their distance to 𝑓 , starting with target facility 𝑓 (Line 4). We

then pop vertex 𝑢 from 𝑄 to access its neighbor 𝑣 , thereby visiting

edges 𝑒 = (𝑢, 𝑣) ∈ 𝑀 (Line 12). After computing the upper bound

<latexit sha1_base64="Ms20c/4usskFRCcUMyZBlUggKws=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA+t7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+qenlfq9RreRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHqrY2H</latexit>c1

<latexit sha1_base64="AyjukvUy9ipUjIhy4gEGn8etzZY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7lm/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3qX1Yu7eqVRz+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/sMY2I</latexit>c2<latexit sha1_base64="kJPiW2Pwjc2fEUN4fwSrbfiNVCo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpnvXP++WKW3XnIH+Jl5MK5Gj0y5+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmJVQYkjJUtachc/TmR0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyX9I6q3qX1Yu7WqVey+MowhEcwyl4cAV1uIUGNIHBEJ7gBV4d4Tw7b877orXg5DOH8AvOxzfttY2J</latexit>c3

<latexit sha1_base64="T7lehCiv3CjdbR1egSxFdiU50ss=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHli/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPvOY2K</latexit>c4

<latexit sha1_base64="0BvH2J7PFee9H/bHQS4fDuK0xrI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVrd1fVuqXeRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHwvY2L</latexit>c5

<latexit sha1_base64="Pfy5GTz01GErxIpVmQjfeeh17Is=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEq8eCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt1fVuqXeRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHyQY2M</latexit>c6

<latexit sha1_base64="huV3eRvfxSv7fhKpQFVvUeMcMiw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA+vX+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasOZnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+6enV/Walf5nEU4QRO4Rw8uIE63EEDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wf1SY2O</latexit>c8

<latexit sha1_base64="WTPZ/7Mggh99r9qjGndAW8qdlAA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lErceCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2Lqnddvbq/rNQv8ziKcAKncA4e1KAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzxY2N</latexit>c7

<latexit sha1_base64="f0jtgzY5boOkcthD9/GeYVmN+m0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKz1vAi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6YL2bXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndZvbg/r9TO8ziKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QP2zY2P</latexit>c9

<latexit sha1_base64="SusT0Nx7y8DVwy3WuVq1UVuENiA=">AAAB7XicbVDLSgMxFL2pr1pfVZdugkVwVWakPpYFNy4r2Ae0Q8mkmTY2kwxJRihD/8GNC0Xc+j/u/BvTdhbaeuDC4Zx7ufeeMBHcWM/7RoW19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkp3QmKY4JI1LbeCdRLNSBwK1g7HtzO//cS04Uo+2EnCgpgMJY84JdZJLdrPfG/aL1e8qjcHXiV+TiqQo9Evf/UGiqYxk5YKYkzX9xIbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3zmlAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ugkyLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQyYXgL7+8SloXVf+qenlfq9RreRxFOIFTOAcfrqEOd9CAJlB4hGd4hTek0At6Rx+L1gLKZ47hD9DnDx6Bjs0=</latexit>c10

7

6

2

6,6

9,6

6,9

5,10
7,10

8 4,6

3

3

4

2

3,5

3,10

4,9

6

6

9,6

<latexit sha1_base64="pj86S1aDmM2PumlHR2fVX4R1bnk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK92H/vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuqxd3tUq9lsdRhCM4hlPw4ArqcAsNaAKDITzBC7w60nl23pz3RWvByWcO4Recj2/yR42M</latexit>

f3

<latexit sha1_base64="vZaFh5y0MAlBPUA4+tz0GcFewF4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7sN+rV+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuqxd39UqjnsdRhBM4hXPw4AoacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/ww42L</latexit>

f2

<latexit sha1_base64="YT26TqXNsHIllu6y7bK4j4Bm53Y=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fK+VqnX8jiKcAKncA4eXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPvP42K</latexit>

f1

Figure 3: The Execution Process of Algorithm 3

𝑢𝑏 (𝑒) = |̃︄RNN𝐺 ′ (𝑓) | = |Δ𝑒 ∪ RNN𝐺 (𝑓) | after upgrading edge 𝑒

according to the definition
2
(Line 14-15), if this bound is not larger

than the maximum value of the already computed RNN size 𝑜𝑝𝑡 ,

we can stop immediately without visiting other edges (Line 16).

Example 4.10. In 𝐺 of Fig. 3, we select 𝑓1 as the target facility,

and RNN𝐺 = {𝑐3, 𝑐9, 𝑐10}. For clarity, we associate colored numbers

with some edges of 𝐺 to indicate the upper bounds of upgrading

those edges. First, we push 𝑓1 to the queue 𝑄 and then pop 𝑓1 from

𝑄 . For the neighbor 𝑐2 of 𝑓1, we find that the edge 𝑒 = (𝑓1, 𝑐9)
has not been processed. The distance from 𝑒 = (𝑓1, 𝑐9) to 𝑓1 is

𝑑𝑖𝑠𝑡 ((𝑒), 𝑓1) = 0, and we compute Δ𝑒 = 7 as there are 7 vertices

outside of RNN𝐺 (𝑓1) whose distance to their nearest neighbor is

larger than 𝑑𝑖𝑠𝑡 ((𝑒), 𝑓1) = 0. Then, the upper bound 𝑢𝑏 (𝑒) of 𝑒 is
|RNN𝐺 ∪Δ𝑒 | = 10. As the upper bound of 10 is greater than 𝑜𝑝𝑡 = 0,

we execute Algorithm 1 to obtain the actual RNN size by upgrading

𝑒 , which is 5. We set 𝑜𝑝𝑡 to 5 and then push 𝑐9 into𝑄 . Next, we visit

the other neighbors (𝑐2 and 𝑐3) of 𝑓1. We find that the upper bounds

for edges between 𝑓1 and them are also 10, which is greater than

𝑜𝑝𝑡 = 5, so we execute Algorithm 1 to obtain the actual results for

edges (𝑓1, 𝑐2) and (𝑓1, 𝑐3). This process continues until we remove

𝑐3 from 𝑄 , and we visit its neighbor, 𝑐8. The edge (𝑐3, 𝑐8) has a
distance of 7 to 𝑓1, and we find that the upper bound is 5, which is

the same as 𝑜𝑝𝑡 , so we stop without visiting other edges.

Lemma 4.11. Algorithm 3 is correct.

4.2.2 Pruning Strategies
Algorithm 3 utilizes an upper bound to avoid considering all

edges. Based on Algorithm 3, we propose two pruning strategies to

eliminate more edges and accelerate its execution.

Pruning Invalid Edges. We notice that many edges in 𝑀 are

invalid. An edge 𝑒 is invalid for ERNN if it results in a non-positive

increase in the RNN size of the target facility 𝑓 after upgrading it,

i.e., |RNN𝐺 ′ (𝑓) | ≤ |RNN𝐺 (𝑓) |. We now explain the methods for

determining if an edge is invalid. That is, if both endpoints of edge

𝑒 = (𝑢, 𝑣) do not consider 𝑓 as their nearest neighbor, 𝑒 is invalid.

Lemma 4.12 (Strategy 1). For edge (𝑢, 𝑣) and target facility 𝑓 in
𝐺 , if NN𝐺 (𝑢) ≠ 𝑓 and NN𝐺 (𝑣) ≠ 𝑓 , then (𝑢, 𝑣) is invalid.

Example 4.13. Consider graph 𝐺 in Fig. 1, let 𝑓1 be the tar-

get facility. For the edge (𝑐4, 𝑐1), since NN𝐺 (𝑐4) = 𝑓2 ≠ 𝑓1 and

NN𝐺 (𝑐1) = 𝑓2 ≠ 𝑓1, the edge (𝑐4, 𝑐1) is invalid for 𝑓1.

2
To get Δ𝑒 of edge 𝑒 , we first sort the vertices in set 𝑂 = {𝑐 ∉ RNN𝐺 (𝑓) } in
non-increasing order of their distance to the nearest neighbor. Starting from the

vertex in𝑂 with the maximum distance, we stop at the first vertex 𝑠 with a distance

≤ 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓) . All the vertices before that belong to Δ𝑒 . As the subsequent edge

𝑒′ satisfies 𝑑𝑖𝑠𝑡𝐺 ((𝑒′), 𝑓) ≥ 𝑑𝑖𝑠𝑡𝐺 ((𝑒), 𝑓) , Δ𝑒′ ⊆ Δ𝑒 : we can backtrack from the

vertex 𝑠 (i.e., the first vertex in𝑂 stops 𝑒) to visit vertices with larger distances in𝑂 ,

thereby finding the last vertex with a distance ≤ 𝑑𝑖𝑠𝑡𝐺 ((𝑒′), 𝑓) for 𝑒′ to find Δ𝑒′ .

636

Algorithm 4: Dynamic Computation

Input: graph𝐺 (𝑉 , 𝐸,𝑊) , facility 𝑓 , edge 𝑒 = (𝑢, 𝑣) whose weight
drops from 𝑤 (𝑢, 𝑣) to 𝑤′ (𝑢, 𝑣) , RNN𝐺 (𝑓)

Output: RNN𝐺 ′ (𝑓)
1 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑣) ← 0, for ∀𝑣 ∈ 𝑉 ;

2 𝑄 ← ∅;
3 if 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤′ (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑣) then
4 NN(𝑣) ← NN(𝑢) , 𝑑𝑖𝑠𝑡 (𝑣) ← 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤′ (𝑢, 𝑣) ;
5 push {𝑣,𝑑𝑖𝑠𝑡 (𝑣),NN(𝑣) } into𝑄 ;

6 if 𝑑𝑖𝑠𝑡 (𝑣) + 𝑤′ (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑢) then
7 NN(𝑢) ← NN(𝑣) , 𝑑𝑖𝑠𝑡 (𝑢) ← 𝑑𝑖𝑠𝑡 (𝑣) + 𝑤′ (𝑢, 𝑣) ;
8 push {𝑢,𝑑𝑖𝑠𝑡 (𝑢),NN(𝑢) } into𝑄 ;

9 while Q is not empty do
10 Line 6-12 of Algorithm 1;

11 for each 𝑣 ∈ 𝐶 do
12 if NN(𝑐) = 𝑓 then add 𝑐 into RNN𝐺 ′ (𝑓) ;
13 return RNN𝐺 ′ (𝑓) ;

Pruning Dominated Edges. For two edges 𝑒1 and 𝑒2, we say that

𝑒1 dominates 𝑒2 (or 𝑒2 is dominated by 𝑒1) when upgrading 𝑒1
results in a non-smaller RNN size for the target facility 𝑓 than

upgrading 𝑒2. Recall that in Algorithm 3, we inspect the edges in a

non-decreasing order of distances to the target facility. Based on this

inspection order and the obtained distance from a vertex/edge to 𝑓 ,

we can define a dominance relationship between edges, enabling

us to prune the dominated edges during Algorithm 3.

Lemma 4.14 (Strategy 2). Given 𝑒1 on the shortest path3 from tar-
get facility 𝑓 to one endpoint 𝑢 of 𝑒2, if 𝑑𝑖𝑠𝑡𝐺 ((𝑒1), 𝑓) < 𝑑𝑖𝑠𝑡 (𝑢, 𝑓) =
𝑑𝑖𝑠𝑡𝐺 ((𝑒2), 𝑓) and𝑤 (𝑒1) ≥ 𝑤 (𝑒2), then 𝑒2 is dominated by 𝑒1.

Example 4.15. Consider graph𝐺 in Fig. 1. Since edge 𝑒1 = (𝑓1, 𝑐3)
lies on the shortest path from 𝑓 to the endpoint 𝑐3 of edge 𝑒2 =

(𝑐3, 𝑐4), 𝑑𝑖𝑠𝑡𝐺 ((𝑒1), 𝑓) = 0 < 𝑑𝑖𝑠𝑡𝐺 (𝑐3, 𝑓) = 𝑑𝑖𝑠𝑡𝐺 ((𝑒2), 𝑓) = 7, and

𝑤 (𝑒1) = 7 > 𝑤 (𝑒2) = 4, we conclude that 𝑒1 dominates 𝑒2.

4.3 Incremental RNN Computation
For each edge 𝑒 ∈ 𝑀 , to calculate the updated RNN size of the

target facility 𝑓 after upgrading 𝑒 , one intuitive approach is to

use Algorithm 1 to recalculate the RNN of 𝑓 on the new graph

𝐺 ′. However, when there is only a single edge weight change, the

change in the RNN of the target facility 𝑓 is limited. To improve

efficiency, an incremental algorithm is proposed for updating the

RNN. Although updating the RNN is not a new research problem,

to the best of our knowledge, how to update the RNN when edge

weights change remains unresolved.

Algorithm. Suppose the weight of edge (𝑢, 𝑣) in graph𝐺 decreases

from𝑤 (𝑢, 𝑣) to𝑤 ′ (𝑢, 𝑣) to form graph 𝐺 ′, Algorithm 4 incremen-

tally updates the results of Algorithm 1. Algorithm 4 is similar to

Algorithm 1, with the only difference being in the initialization

stage. In Algorithm 1, all facility vertices 𝐹 are pushed into the

queue𝑄 , while in Algorithm 4, the endpoints 𝑢 and 𝑣 of edge (𝑢, 𝑣)
are selectively pushed into the queue.

Specifically, if 𝑑𝑖𝑠𝑡 (𝑢) plus𝑤 ′ (𝑢, 𝑣) is less than 𝑑𝑖𝑠𝑡 (𝑣) (Line 2),
we update the nearest neighbors NN(𝑣) of vertex 𝑣 in𝐺 ′ to NN(𝑢).
3
Whether 𝑒1 is on shortest path can be achieved by recording shortest paths in Alg. 3.

Furthermore, we adjust the distance 𝑑𝑖𝑠𝑡 (𝑣) from node 𝑣 to NN(𝑣)
in 𝐺 ′ to 𝑑𝑖𝑠𝑡 (𝑢) + 𝑤 ′ (𝑢, 𝑣). Additionally, we push node 𝑣 to the

queue 𝑄 (Line 3-5). Similar operations are performed on node 𝑢

(Line 6-8). Then, we process the queue 𝑄 in a similar manner as in

Algorithm 1 until the queue becomes empty, completing the update

of nearest neighbors for all nodes (Line 9-10).

Example 4.16. Consider 𝐺 in Fig. 1, where the weight of (𝑓1, 𝑐3)
decreases from 7 to 3. For endpoint 𝑓1, since 𝑑𝑖𝑠𝑡 (𝑓1,NN(𝑓1) =

𝑓1) = 0 and 𝑑𝑖𝑠𝑡 (𝑐3,NN(𝑐3)) = 𝑓1 = 7, we have 𝑑𝑖𝑠𝑡 (𝑐3,NN(𝑐3)) <
𝑑𝑖𝑠𝑡 (𝑓1,NN(𝑓1)) +𝑤 ′ (𝑓1). Thus, we assign the nearest neighbor of

𝑓1 toNN(𝑐3) and enqueue 𝑐3. For endpoint 𝑐3, it fails in Line 6. Next,
we dequeue 𝑐3 from 𝑄 . For its neighbor 𝑐8, we have 𝑑𝑖𝑠𝑡 (𝑐3, 𝑓1) +
𝑤 ′ (𝑐3, 𝑐8) < 𝑑𝑖𝑠𝑡 (𝑐8,NN(𝑐8)) = 𝑓2. Hence, we assign the nearest

neighbor of 𝑐3 toNN(𝑐8) and push 𝑐8 into𝑄 . For the other neighbors
of 𝑐3, namely 𝑐4, 𝑓2, 𝑓1, none of them need to update their distances,

so they are not pushed into 𝑄 . Then, we dequeue 𝑐8 from 𝑄 . At

this point, none of the neighbors of 𝑐8 have their distances updated.

Therefore, 𝑄 becomes empty, and the algorithm stops.

Theorem 4.17. When the weight of edge (𝑢, 𝑣) decreases, Algo-
rithm 4 successfully updates the RNN of facility 𝑓 .

5 EXPERIMENTS
We first introduce the experimental setup, and then we will present

the experimental results.

5.1 Settings
Datasets. We conducted experiments on eight real-world road net-

works to validate the effectiveness and efficiency of our proposed

algorithms in solving the ERNN problem. These graphs were down-

loaded from the 9th DIMACS Implementation Challenge
4
. For the

sake of convenience, we preprocess the dataset and extract the

largest connected component from each graph. Table 1 provides

detailed information about the datasets, including the number of

nodes (|𝑉 |) and edges (|𝐸 |) for each graph.

Parameters. For each road network, we randomly selected 1000

vertices as facility vertices, while the remaining vertices were con-

sidered as user vertices. In Section 5.3, we test the impact of different

numbers of facility vertices on the results. Also, we set the budget

to a default value of 4 and in Section 5.3, we examine the effect of

different budgets on the results. We randomly selected one vertex

from the facility vertices as the target facility and conducted 50

independent experiments (each time selecting a random target fa-

cility). We report the results by averaging data from 50 experiments.

For simplicity, we make all edges as modifiable edges𝑀 .

Metrics. We evaluated the performance of different methods to

solve the ERNN problem in two aspects. (1) Effectiveness: For a

given method, we measured the size of the RNN of the target fa-

cility 𝑓 in the original graph 𝐺 . Then, using the algorithm, we

selected a set of edges for weight reduction, resulting in a new

graph𝐺 ′. We measured the size of the RNN of the target facility in

the new graph𝐺 ′ and calculated the gain in RNN size, represented

by |RNN𝐺 ′ (𝑓) | − |RNN𝐺 (𝑓) |, as a metric to evaluate the effective-

ness. (2) Efficiency: For each method, we recorded its running time.

If a method could not complete execution within six hours, we

terminated its execution and marked its runtime as “INF”.

4
http://www.diag.uniroma1.it//challenge9/download.shtml

637

Table 1: Description of Datasets

Name |𝑉 | |𝐸 |
NH 116,920 133,415

CT 153,011 187,318

NY 264,346 366,923

BAY 321,270 400,086

COL 435,666 528,533

AL 566,843 661,487

GA 738,879 869,890

FLA 1,070,376 1,356,399

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

INF

NH CT NY BAY COL AL GA FLA

T
im

e
C

o
n
su

m
p
ti

o
n
 (

S
ec

)

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(a) The Comparison of the Running Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

NH CT NY BAY COL AL GA FLA

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(b) The Comparison of the RNN Size Gain

Figure 4: The Comparison Among Various Methods

Algorithms. Since there has been no prior research on the ERNN
problem, we cannot find existing methods for comparison. To make

a fair comparison, we propose the following two non-trivial heuris-

tic algorithms as baselines.

• Weight: Given a budget 𝑏, we select 𝑏 edges with the highest

weights from the graph for weight reduction.

• Neighbor: Given a budget 𝑏 and a target facility 𝑓 , we select 𝑏

neighbors of 𝑓 (if there are not enough neighbors of 𝑓 , we choose

neighbors of neighbors of 𝑓 , and so on) and reduce the weights

of the edges between vertex and the selected neighbors.

In Section 4.1, we presented the standard greedy algorithm, fol-

lowed by improvements in Sections 4.2 and 4.3
5
. Specifically, we

discuss the following four greedy algorithms.

• Basic: This algorithm is described in Algorithm 2, which is a

standard greedy algorithm.

• DBEI: This is our proposed algorithm, which is described in

Algorithm 3. It uses a distance-based edge inspection technique

to achieve early stopping using upper bounds.

• DBEI+: DBEI combined with pruning strategy 1 (Lemma 4.12),

which eliminates invalid edges.

• DBEI∗: DBEI+ combined with pruning strategy 2 (Lemma 4.14),

which eliminates dominated edges.

All algorithms were implemented in C++ and compiled using

GNU GCC 8.5.0 with optimizations at the -O3 level. The experi-

ments were conducted on a machine with an Intel Xeon 2.50 GHz

CPU and 512 GB of memory, running 64-bit Red Hat Linux 8.5.0.

5.2 Comparison of Different Methods

Exp-1: Efficiency Comparison. We tested two heuristic meth-

ods (Weight and Neighbor) and four greedy methods (Basic, DBEI,
DBEI+, and DBEI∗) on all datasets, and the results are shown in

Fig. 4(a). Based on the results, we draw the following conclusions.

5
All greedy algorithms use the incremental RNN computation technique by default.

We will explore the effectiveness of this technique in Section 5.3.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5 6

T
im

e
C

o
n
su

m
p
ti

o
n
 (

S
ec

)

Weight
Neighbor

Basic

DBEI
DBEI

+

DBEI
*

Exact

(a) The Comparison of the Running Time

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6

S
iz

e
G

ai
n

Weight
Neighbor

Basic

DBEI
DBEI

+

DBEI
*

Exact

(b) The Comparison of the RNN Size Gain

Figure 5: The Comparison with the Exact Method

(1) The proposed distance-based inspection technique is effective.
The standard greedy algorithm (i.e., Basic) requires inspecting

all edges in 𝑀 , making it unable to handle datasets other than

NH and CT. On the other hand, using the distance-based edge

inspection technique, our method DBEI can complete calculations

on all datasets, and it is on average 21.54 times faster than Basic
on graphs that Basic can handle. This demonstrates that the

proposed framework achieves an order of magnitude improvement

in efficiency compared to the standard greedy algorithm.

(2) The proposed pruning strategies are highly effective. The first

pruning strategy, which analyzes whether each edge contains

the target facility, can significantly remove invalid edges. This

results in DBEI+ being on average 67.33 times faster than DBEI.
The second pruning strategy, based on dominance relationships,

can further eliminate dominated edges. This leads to DBEI∗ being
on average 7.85 times faster than DBEI+. By combining both

pruning strategies, DBEI∗ can complete calculations on all graphs,

including the largest graph FLA (with 1.34 million edges), within 1

minute. These results demonstrate the efficiency of the proposed

pruning strategies in solving the ERNN problem.

(3) Heuristic algorithms are fast. Heuristic algorithms can solve the

ERNN problem relatively quickly. However, according to the fol-

lowing experiment (Exp-2), the RNN size gain achieved by these

methods is not as good as that of greedy methods.

Exp-2: Effectiveness Comparison. We used a similar setup to

Exp-1 to compare heuristic methods (Weight and Neighbor) with
greedy methods (Basic, DBEI, DBEI+, and DBEI∗), and the results

are shown in Fig. 4(b). The results reveal the following conclusions.

(1) Greedy algorithms have almost the same gain value. Although

the greedy methods differ in efficiency, all four of these methods

share the same spirit of problem-solving. Therefore, these greedy

algorithms have almost the same gain value for the RNN size, with

subtle differences due to the introduction of pruning rules.

(2) Greedy algorithms have a larger gain than heuristics. Heuristic

algorithms (i.e., Weight and Neighbor) select edges based on some

rules, but these rules do not necessarily guarantee good solutions

to ERNN. For example, the methodWeight upgrades the maximum

weighted edges, but the gain is almost zero on all datasets, so it

is ineffective in solving ERNN. Although Neighbor can achieve

positive gain on all graphs, this method still relies on heuristic

rules and cannot achieve results as good as greedy algorithms. For

example, on GA, the RNN size gain caused by Neighbor is 5.73
times smaller than that of the greedy methods. Similar results can

be observed in other datasets. This indicates the necessity of using

greedy algorithms to solve ERNN.

638

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(a) NH

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(b) CT

10
0

10
1

10
2

10
3

10
4

10
5

INF

1 2 4 8 16

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(c) NY

10
0

10
1

10
2

10
3

10
4

10
5

INF

1 2 4 8 16

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(d) BAY

Figure 6: The Effect of the Budget on the Running Time

 0

 50

 100

 150

 200

 250

1 2 4 8 16

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(a) NH

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(b) CT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(c) NY

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(d) BAY

Figure 7: The Effect of the Budget on the RNN Size Gain

10
-1

10
0

10
1

10
2

10
3

10
4

500 1000 2000 4000 8000

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(a) NH

10
-1

10
0

10
1

10
2

10
3

10
4

500 1000 2000 4000 8000

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(b) CT

10
0

10
1

10
2

10
3

10
4

10
5

INF

500 1000 2000 4000 8000

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(c) NY

10
0

10
1

10
2

10
3

10
4

10
5

INF

500 1000 2000 4000 8000

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Basic DBEI DBEI
+

DBEI
*

(d) BAY

Figure 8: The Effect of the Facility Number on the Running Time

 0

 20

 40

 60

 80

 100

 120

 140

500 1000 2000 4000 8000

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(a) NH

 0

 20

 40

 60

 80

 100

 120

 140

 160

500 1000 2000 4000 8000

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(b) CT

 0

 50

 100

 150

 200

 250

 300

500 1000 2000 4000 8000

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(c) NY

 0

 50

 100

 150

 200

 250

 300

 350

500 1000 2000 4000 8000

S
iz

e
G

ai
n

Weight
Neighbor

Basic
DBEI

DBEI
+

DBEI
*

(d) BAY

Figure 9: The Effect of the Facility Number on the RNN Size Gain

 0

 50

 100

 150

 200

 250

NH CT NY BAY COL AL GA FLA

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

DBEI
* DBEI

*
S

Figure 10: The Effect of the Increment RNN Computation

Exp-3: Comparisonwith ExactMethod.Due to the NP-hardness
and APX-hardness of the ERNN problem, we lack a standard to

understand the performance of different algorithms. To address this,

given a budget 𝑏, we design an exact algorithm (denoted as Exact)
that enumerates all edge combinations that contain no more than

𝑏 edges, and finds the edge combination that yields the maximum

gain in RNN size. We report the running time and size gain of Exact
as a benchmark for comparison with various methods.

It is worth noting that running Exact on the eight datasets we

used is not feasible within a reasonable time. Therefore, we choose

the smallest graph NH and sample 100 vertices from it. We compare

various methods on the subgraph obtained after sampling NH and

report the performance of different algorithms in Fig. 5 as the budget

varies from 1 to 6. We draw the following conclusions.

(1) Exact has an excessively long running time. As the budget 𝑏 in-

creases, the running time of Exact becomes increasingly higher.

For example, when 𝑏 is 3, the running time of Exact is 35.43 times

that when 𝑏 is 2. When 𝑏 is 4, the running time of Exact is 1, 037.98
times that when 𝑏 is 2. Moreover, compared to our algorithmDBEI∗,
Exact is 7, 067, 526.32 times slower when 𝑏 is 6. This indicates that

the Exact algorithm is impractical for solving ERNN.
(2) Greedy algorithms yield good size gain. In terms of expanding

the RNN size of target facilities, the greedy algorithms (Basic,DBEI,
DBEI+, and DBEI∗) perform well compared to Exact. For example,

when 𝑏 is 1, the size gain produced by the greedy algorithms is the

same as Exact. Even as 𝑏 changes from 2 to 6, the greedy algorithms

still have size gain that is only 1.28, 1.22, 1.22, 1.26, and 1.26 times

smaller than Exact. These results show that the greedy algorithms

639

can achieve good size gain compared to Exact. On the other hand,

the heuristic algorithm Weight does not have any effect on im-

proving the RNN size, and as 𝑏 varies, the size gain of Neighbor is
on average 8.49 times smaller than Exact. This indicates that the
heuristic algorithms are not effective in solving ERNN.

5.3 Further Analysis of the Greedy Methods

Exp-4: Effect of Budget on Runtime. In the previous experi-

ments, we fixed the budget at 4. To analyze the effect of the budget

on the greedy algorithms, we varied the budget from 1, 2, 4, 8 to 16.

Since the results are similar on all graphs, we only report results

on NH, CT, NY, and BAY in the following. The results are in Fig. 6,

and we have the following conclusions.

(1) The runtime of all methods increases with the increase in budget.
For example, in NH, our proposed DBEI takes 2.02 times longer

when 𝑏 = 2 compared to when 𝑏 = 1, and it takes 3.54 times

longer when 𝑏 = 4 compared to when 𝑏 = 1. The runtime of other

methods shows a similar trend.

(2) Distance-based inspection is effective under different budgets.
Similar to the results of Exp-1, the proposed distance-based edge

inspection technique makes DBEI significantly reduce the time

cost, when compared with Basic. For example, in NH, when 𝑏 = 8,

the runtime of Basic is 14.73 times longer than that of DBEI, and
when 𝑏 = 16, the runtime of Basic is 10.51 times longer than

that of DBEI. This further demonstrates the effectiveness of the

distance-based edge inspection technique under various budgets.

(3) The pruning strategies are effective under different budgets. The
proposed pruning strategies show effectiveness under different

budgets. For example, in NY, when 𝑏 = 16, DBEI+ with the first

strategy is 44.86 times faster than DBEI, and DBEI∗ with both the

first and second strategies is 218.13 times faster than DBEI.

Exp-5: Effect of Budget on Size Gain. We analyze the change

in the RNN size gain of the different greedy methods when the

budget varies from 1, 2, 4, 8 to 16. We have also included heuristic

algorithms for better comparisons. The results are shown in Fig. 7.

Consistent with the findings of Exp-2, the gains of all greedy algo-

rithms are almost the same and outperform heuristics. We also find

that the gains of the greedy algorithms have the following feature.

As the budget increases, the gain of greedy algorithms also increases.
Take NH as an example. When the budget is 2, the gain of all

greedy algorithms is 1.72 times that when the budget is 1. When

the budget is 16, the greedy algorithm produces more than 7 times

as much gain as when the budget is 1. This is intuitive because a

larger budget means that we can choose more edges to upgrade,

which leads to more vertices joining the RNN of the target facility.

Exp-6: Effect of Facility Number on Runtime. In the previous

experiments, we fixed the number of facility vertices to be 1000.

To test the effect of the numbers of facility vertices, we varied this

number from 500, 1000, 2000, 4000 to 8000 and presented the results

in Fig. 8. It can be observed that under different numbers of facili-

ties, the proposed methods (DBEI, DBEI+, and DBEI∗) outperform
the standard greedy algorithm (Basic). Additionally, the pruning
strategies employed inDBEI+ andDBEI∗ allow them to outperform

the proposed DBEI under different facility numbers. Furthermore,

we discovered another interesting phenomenon.

10
-1

10
0

10
1

10
2

10
3

10
4

NH CT NY BAY COL AL GA FLA

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

DBEI
*

DBEI
I

Figure 11: The Effect of the Indexing Technique

The Runtime of methods generally decreases as the number increases.
For example, on BAY, when the number of facilities is 500, the

running time of DBEI is 2.02 times that of 1000, 2.46 times for 2000,

3.01 times for 4000, and 5.08 times for 8000. Similar trends can be

observed for other methods.

Exp-7: Effect of Facility Number on Size Gain. When the num-

ber of facilities varies from 500, 1000, 2000, 4000 to 8000, we analyze

the change in size gain for different methods. The results are shown

in Fig. 9. We observe that the greedy algorithms outperform the

heuristic algorithms for different numbers of facilities. For example,

on CT, when the number is 500, the gain of the greedy algorithms

is 4.06 times that of Neighbor, while the gain of Weight is close to
zero. Moreover, the RNN size gains of the greedy algorithms are

characterized as follows.

As the number increases, the gain of greedy methods decreases. Tak-
ing CT as an example, when the facility number is 500, the gain

of the greedy algorithms is 1.42 higher than when the number is

1000, 2.49 higher than when the number is 2000, 3.52 higher than

when the number is 4000, and 5.76 higher than when the number is

8000. One reason for this is that as the number increases, it becomes

harder for other vertices to join the RNN of the target facility for a

fixed budget, which leads to a downward trend.

Exp-8: Effect of Increment RNN Computation. In Section 4.3,

we presented Algorithm 4 for incremental RNN computation. To

test the practical effect of this technique, we removed the incremen-

tal RNN computation technique and replaced it with the recompute-

based RNN computation using Algorithm 1. As an example, when

we replaced Algorithm 4with Algorithm 1 inDBEI∗ to eliminate the

effect of incremental RNN computation, we obtained the method

DBEI∗
𝑆
. We show the difference in runtime between DBEI∗ and

DBEI∗
𝑆
in Fig. 10, and similar observations can be found in other

methods. We draw the following conclusion.

The use of incremental computation greatly reduces the runtime.
The incremental RNN computation brings 7.55 times speedup

on average. For instance, on AL, DBEI∗ is 8.6 times faster than

DBEI∗
𝑆
; on GA, DBEI∗ is 9.17 times faster than DBEI∗

𝑆
. These

results validate the importance of the proposed incremental RNN
computation technique.

Exp-9: Effect of Indexing Technique. In Section 2.2, we use an

online search method (Algorithm 1) to compute the nearest neigh-

bors of all vertices to determine the RNN of the facility vertices.

Considering that it is a common practice to use indexes to speed

up queries, we use the cutting-edge index-based method [24] to

compute the nearest neighbors of each vertex and then obtain the

RNN. We replace Algorithm 1 with this index-based method in our

method DBEI∗ to obtain a new method DBEII for solving ERNN.

640

 0

 50

 100

 150

 200

 250

 300

20% 40% 60% 80% 100%

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

(a) WU

 100

 200

 300

 400

 500

 600

 700

 800

20% 40% 60% 80% 100%

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

(b) CTR

Figure 12: The Test of Scalability

Since DBEII and DBEI∗ have the same RNN size gain, we only com-

pared the runtime of both (and we fixed the budget at 1), and the

results are in Fig. 11. From Fig. 11, the following can be observed.

Indexing techniques are not well suited to solve the ERNN problem.
On all graphs, the average running time of the index-based method

DBEII is 333.1 times slower than our method DBEI∗. Note that

while indexing can speed up query processing, solving the ERNN
problem requires recomputing RNN each time the edge weights in

the graph change. Computing and maintaining the index during

graph changes results in significant time overhead. In contrast, our

DBEI∗ method avoids the reliance on expensive indexes by using

online search and thus achieves faster computation.

Exp-10: Test of Scalability. To test the scalability of the proposed

method, we use two large-scale graphs: WU (with 6, 262, 104 ver-

tices and 7, 624, 073 edges) and CTR (with 14, 081, 816 vertices and

17, 146, 248 edges). For both graphs, we divide all vertices into five

equal parts, thus obtaining five test graphs, where the 𝑖-th test

graph includes the first 𝑖 parts of the vertices, i.e., it includes 𝑖
5
of

all vertices in the graph. We run the proposed method DBEI∗ in
these 5 test graphs and report the running time in Fig. 12. From

Fig. 12, we draw the following conclusion.

DBEI∗’s running time increases steadily with the graph size. For ex-
ample, on CTR, when comparing the running time of the test graph

with 20% vertices to the running time of the test graph with 40%,

60%, 80%, and 100% vertices, the running time increases by 2.47,

3.6, 4.98, and 7.11, respectively. These findings indicate that the

runtime performance of the proposed method steadily improves as

the graph size changes, thus ensuring its scalability. Similar results

can be observed on WU. Moreover, the runtime of DBEI∗ stays
within 15 minutes even on CTR with more than 14 million vertices,

validating the efficiency of the proposed method.

6 RELATEDWORK

RNN Computation. Previous research has mainly focused on

computing the RNN of a vertex in metric spaces [11]. Yiu et al. [36]

introduced the computation ofRNN on graphs, including the bichro-

matic RNN problem (as adopted in this paper, where vertices are

divided into users and facilities) and the monochromatic RNN prob-

lem (where the graph consists of vertices of a single type). Safer

et al. [28] used the Voronoi diagram for RNN computation, while

Efentakis et al. [8] employed hub labels to accelerate computation.

Existing research also addresses the issue of maintaining RNN.
For example, Sun et al. [30] and Li et al. [12] proposed indexing road

networks to track the updates of RNN for a query vertex. Cheema et

al. [5] introduced a filter-verification framework to handle RNN up-

dates. However, to the best of our knowledge, these studies mostly

focus on how to monitor the RNN when facilities/users change

their locations. Further research is needed on how to update the

RNN of a query vertex when the weights in the network change.

Another related topic is the Maximizing Reverse Nearest Neigh-

bor problem [6, 19, 34], which aims to determine an optimal loca-

tion for a new facility to maximize its RNN size. In contrast, the

ERNN problem we propose involves actively upgrading edges in

the graph to maximize the size of a target facility’s RNN. There-
fore, our proposed problem differs from the existing problem and

requires further investigation.

Network Upgrading. The ERNN problem studied in this paper

belongs to the network upgrading problem, which involves up-

grading network edges/vertices to optimize a specific objective.

The research on network upgrading problems has a long history.

For example, Paik et al. [25] began defining a series of network

upgrading problems in 1995 with the aim of optimizing specific

network metrics, such as shortest or longest distances. Zhang et

al. [37] focused on reducing edge weights to decrease node-to-node

distances. Similarly, Campbell et al. [3] studied how to minimize

the longest travel time by reducing the weights of certain edges.

Medya et al. [21–23] investigated methods to minimize network

latency by reducing node weights to zero. Likewise, Lin et al. [17]

studied how to minimize the total distance between sets of nodes by

reducing the weights of certain edges. Differently, the objective of

our ERNN problem is to maximize the RNN size of a target facility,

requiring the development of new solutions.

Other related problems include adding edges to a graph (which

can be seen as reducing the weights from infinity to zero) to min-

imize the graph diameter [26], maximize information propaga-

tion [4], maximize k-core [31] or k-truss [32], enhance central-

ity [2, 15], and optimize clustering [14]. Considering that adding

edges (i.e., constructing new roads) in a road network may not

always be feasible, we have not considered the case of adding edges.

However, this can be an interesting avenue for future research.

7 CONCLUSION
This paper focuses on defining and solving the ERNN problem. The

main goal of the ERNN problem is to maximize the RNN size of the

target facility, thereby enhancing its utilization. To overcome the

challenges associated with solving the ERNN problem, we devise

a distance-based edge inspection technique and introduced two

pruning rules. Furthermore, we develop a technique to dynamically

maintain the RNN. By combining these techniques, we create opti-

mized greedy algorithms that are empirically proven to be highly

effective and efficient. Future research directions involve expand-

ing the scope of the proposed ERNN problem, such as considering

different costs associated with selecting various edges.

ACKNOWLEDGMENTS
Wentao Li is supported by NSFC 62302417. Min Gao is supported by

NSFC 62176028. Dong Wen is supported by ARC DP230101445 and

ARC DE240100668. Lu Qin is supported by ARC FT200100787 and

ARC DP210101347. Wei Wang is supported by HKUST(GZ) Grant

G0101000028, CCF-HuaweiDBC202302, Guangzhou Municipal Sci-

ence and Technology Project (No. 2023A03J0003) and Guangzhou-

HKUST(GZ) Joint Funding Program (No. 2023A03J0013).

641

REFERENCES
[1] Nasser Allheeib, Kiki Adhinugraha, David Taniar, and Md Saiful Islam. 2022.

Computing reverse nearest neighbourhood on road maps. World Wide Web
(2022), 1–32.

[2] Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’angelo, Henning Mey-

erhenke, Lorenzo Severini, and Yllka Velaj. 2018. Improving the betweenness

centrality of a node by adding links. Journal of Experimental Algorithmics (JEA)
23 (2018), 1–32.

[3] Ann Melissa Campbell, Timothy J Lowe, and Li Zhang. 2006. Upgrading arcs

to minimize the maximum travel time in a network. Networks: An International
Journal 47, 2 (2006), 72–80.

[4] Vineet Chaoji, Sayan Ranu, Rajeev Rastogi, and Rushi Bhatt. 2012. Recommen-

dations to boost content spread in social networks. In Proceedings of the 21st
international conference on World Wide Web. 529–538.

[5] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Xuefei

Li. 2012. Continuous reverse k nearest neighbors queries in euclidean space and

in spatial networks. The VLDB Journal 21 (2012), 69–95.
[6] Farhana M Choudhury, J Shane Culpepper, Timos Sellis, and Xin Cao. 2016.

Maximizing bichromatic reverse spatial and textual k nearest neighbor queries.

Proceedings of the VLDB Endowment 9, 6 (2016), 456–467.
[7] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.

Numer. Math. 1 (1959), 269–271. https://doi.org/10.1007/BF01386390

[8] Alexandros Efentakis and Dieter Pfoser. 2016. ReHub: Extending hub labels

for reverse k-nearest neighbor queries on large-scale networks. Journal of
Experimental Algorithmics (JEA) 21 (2016), 1–35.

[9] Wenfei Fan. 2022. Big graphs: challenges and opportunities. Proceedings of the
VLDB Endowment 15, 12 (2022), 3782–3797.

[10] RichardMKarp. 1972. Reducibility among combinatorial problems. InComplexity
of computer computations. Springer, 85–103.

[11] Flip Korn and Suresh Muthukrishnan. 2000. Influence sets based on reverse

nearest neighbor queries. ACM Sigmod Record 29, 2 (2000), 201–212.

[12] Guohui Li, Yanhong Li, Jianjun Li, LihChyun Shu, and Fumin Yang. 2010. Contin-

uous reverse k nearest neighbor monitoring on moving objects in road networks.

Information Systems 35, 8 (2010), 860–883.
[13] Wentao Li, Maolin Cai, Min Gao, Dong Wen, Lu Qin, and Wei Wang. 2023.

Technical Report. https://www.dropbox.com/scl/fo/7jkd2bgwzvg5rv8bj2fmr/h?

rlkey=673fyrek4rlvq10q4oyuva4ql&dl=0

[14] Wentao Li, Min Gao, DongWen, Hongwei Zhou, Cai Ke, and Lu Qin. 2022. Manip-

ulating Structural Graph Clustering. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 2749–2761.

[15] Wentao Li, Min Gao, Fan Wu, Wenge Rong, Junhao Wen, and Lu Qin. 2021.

Manipulating black-box networks for centrality promotion. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 73–84.

[16] Xueping Li, Zhaoxia Zhao, Xiaoyan Zhu, and Tami Wyatt. 2011. Covering

models and optimization techniques for emergency response facility location

and planning: a review. Mathematical Methods of Operations Research 74 (2011),

281–310.

[17] Yimin Lin and Kyriakos Mouratidis. 2015. Best upgrade plans for single and

multiple source-destination pairs. GeoInformatica 19 (2015), 365–404.
[18] Hao Liu, Ying Li, Yanjie Fu, Huaibo Mei, Jingbo Zhou, Xu Ma, and Hui Xiong.

2020. Polestar: An intelligent, efficient and national-wide public transportation

routing engine. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2321–2329.

[19] Yubao Liu, Raymond Chi-Wing Wong, Ke Wang, Zhijie Li, Cheng Chen, and

Zhitong Chen. 2013. A new approach for maximizing bichromatic reverse nearest

neighbor search. Knowledge and information systems 36, 1 (2013), 23–58.

[20] Zihan Luo, Lei Li, Mengxuan Zhang, Wen Hua, Yehong Xu, and Xiaofang Zhou.

2022. Diversified top-k route planning in road network. Proceedings of the VLDB
Endowment 15, 11 (2022), 3199–3212.

[21] Sourav Medya, Petko Bogdanov, and Ambuj Singh. 2016. Towards scalable

network delay minimization. In 2016 IEEE 16th International Conference on Data
Mining (ICDM). IEEE, 1083–1088.

[22] Sourav Medya, Petko Bogdanov, and Ambuj Singh. 2018. Making a small world

smaller: Path optimization in networks. IEEE Transactions on Knowledge and
Data Engineering 30, 8 (2018), 1533–1546.

[23] Sourav Medya, Sayan Ranu, Jithin Vachery, and Ambuj Singh. 2018. Notice-

able network delay minimization via node upgrades. Proceedings of the VLDB
Endowment 11, 9 (2018), 988–1001.

[24] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Progressive top-k nearest neighbors search in large road networks. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1781–1795.

[25] Doowon Paik and Sartaj Sahni. 1995. Network upgrading problems. Networks
26, 1 (1995), 45–58.

[26] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. 2011. Suggesting ghost

edges for a smaller world. In Proceedings of the 20th ACM international conference
on Information and knowledge management. 2305–2308.

[27] Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Rong-Hua Li, and Ying Zhang.

2022. Efficient shortest path counting on large road networks. Proceedings of the
VLDB Endowment 15, 10 (2022), 2098–2110.

[28] Maytham Safar, Dariush Ibrahimi, and David Taniar. 2009. Voronoi-based reverse

nearest neighbor query processing on spatial networks. Multimedia systems 15
(2009), 295–308.

[29] Rade Stanojevic, Sofiane Abbar, and Mohamed Mokbel. 2018. W-edge: Weighing

the edges of the road network. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 424–
427.

[30] Huan-Liang Sun, Chao Jiang, Jun-Ling Liu, and Limei Sun. 2008. Continuous

reverse nearest neighbor queries on moving objects in road networks. In 2008
The Ninth International Conference on Web-Age Information Management. IEEE,
238–245.

[31] Xin Sun, Xin Huang, and Di Jin. 2022. Fast algorithms for core maximization on

large graphs. Proceedings of the VLDB Endowment 15, 7 (2022), 1350–1362.
[32] Xin Sun, Xin Huang, Zitan Sun, and Di Jin. 2021. Budget-constrained Truss Max-

imization over Large Graphs: A Component-based Approach. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management.
1754–1763.

[33] Sheng Wang, Yuan Sun, Christopher Musco, and Zhifeng Bao. 2021. Public

transport planning: When transit network connectivity meets commuting de-

mand. In Proceedings of the 2021 International Conference on Management of Data.
1906–1919.

[34] Raymond Chi-Wing Wong, M Tamer Özsu, Philip S Yu, Ada Wai-Chee Fu, and

Lian Liu. 2009. Efficient method for maximizing bichromatic reverse nearest

neighbor. Proceedings of the VLDB Endowment 2, 1 (2009), 1126–1137.
[35] Bin Yang, Manohar Kaul, and Christian S Jensen. 2013. Using incomplete infor-

mation for complete weight annotation of road networks. IEEE Transactions on
Knowledge and Data Engineering 26, 5 (2013), 1267–1279.

[36] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, and Yufei Tao. 2006. Reverse

nearest neighbors in large graphs. IEEE Transactions on Knowledge and Data
Engineering 18, 4 (2006), 540–553.

[37] JZ Zhang, XG Yang, and MC Cai. 2004. A network improvement problem under

different norms. Computational Optimization and Applications 27 (2004), 305–319.

642

https://doi.org/10.1007/BF01386390
https://www.dropbox.com/scl/fo/7jkd2bgwzvg5rv8bj2fmr/h?rlkey=673fyrek4rlvq10q4oyuva4ql&dl=0
https://www.dropbox.com/scl/fo/7jkd2bgwzvg5rv8bj2fmr/h?rlkey=673fyrek4rlvq10q4oyuva4ql&dl=0

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 RNN Computation

	3 The ERNN Problem
	3.1 Problem Definition
	3.2 Problem Hardness

	4 Problem Solution
	4.1 A Standard Greedy Algorithm
	4.2 Distance-Based Edge Inspection
	4.3 Incremental RNN Computation

	5 Experiments
	5.1 Settings
	5.2 Comparison of Different Methods
	5.3 Further Analysis of the Greedy Methods

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

