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ABSTRACT
Co-movement pattern mining from GPS trajectories has been an

intriguing subject in spatial-temporal data mining. In this paper, we

extend this research line by migrating the data source from GPS sen-

sors to surveillance cameras, and presenting the first investigation

into co-movement pattern mining from videos. We formulate the

new problem, re-define the spatial-temporal proximity constraints

from cameras deployed in a road network, and theoretically prove

its hardness. Due to the lack of readily applicable solutions, we

adapt existing techniques and propose two competitive baselines

using Apriori-based enumerator and CMC algorithm, respectively.

As the principal technical contributions, we introduce a novel

index called temporal-cluster suffix tree (TCS-tree), which performs

two-level temporal clustering within each camera and constructs

a suffix tree from the resulting clusters. Moreover, we present a

sequence-ahead pruning framework based on TCS-tree, which en-

ables the concurrent utilization of all pattern constraints to filter

candidate paths. Finally, to reduce verification cost on the candidate

paths, we propose a sliding-window based co-movement pattern

enumeration strategy and a hashing-based dominance eliminator,

both of which are effective in avoiding redundant operations.

We conduct extensive experiments for scalability and effective-

ness analysis. Our results validate the efficiency of the proposed

index and mining algorithm, which runs remarkably faster than

the two baseline methods. Additionally, we construct a video data-

base with 1169 cameras and perform an end-to-end pipeline analy-

sis to study the performance gap between GPS-driven and video-

driven methods. Our results demonstrate that the derived patterns

from the video-driven approach are similar to those derived from

groundtruth trajectories, providing evidence of its effectiveness.
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1 INTRODUCTION
As a prevalent analytical challenge in spatial-temporal data min-

ing, the discovery of co-movement patterns involves identifying all

groups of objects that move within spatial proximity for a specified

time interval. Several co-movement patterns have been proposed,

each with distinct constraints in terms of spatial proximity and tem-

poral consecutiveness. For instance, the flock [8, 24] and group [25]

patterns require all objects in a group to be enclosed by a disk with

a radius 𝑟 . On the other hand, the convoy [12, 16, 17], swarm [14],

and platoon [13] patterns adopt a more relaxed density-based spa-

tial clustering approach to determine spatial proximity. Regarding

the temporal dimension, flock and convoy patterns require global

consecutiveness, where all timestamps of candidate groups must be

consecutive. In contrast, group and platoon patterns tolerate local

gaps between consecutive segments.

This co-movement pattern mining problem has found practi-

cal applications in animal behavior studies such as bird migration

monitoring [24]. In addition, government agencies can leverage the

co-movement pattern mining task to support smart city manage-

ment, such as detecting traffic congestion at varying levels of gran-

ularity [17], computing evacuation schedules during disaster [2],

security surveillance upon suspicious groups [26], and assessing

the viability of launching public transport services in areas with

dense co-movement patterns [16]. Prior works in this domain rely

on large-scale GPS trajectories, which are primarily collected and

owned by commercial hail-riding or map-service companies. How-

ever, in practice, these GPS-based trajectory data are not directly

accessible to government agencies. Therefore, in this paper, we

migrate the data source from GPS sensors to surveillance cam-

eras and present the first work on co-movement pattern mining

against an urban-scale video database. The idea is feasible, because

with the rapid development of smart cities, numerous surveillance

cameras have been deployed throughout the road network. These

infrastructures and the video big data they generate are owned

by government agencies. Given the availability of computation-

efficient and accurate visual inference models, these data sources

can be leveraged to support the aforementioned applications of

co-movement pattern mining.
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Given a corpus of video data captured by the surveillance cam-

era network, we can extract the movement paths of individual

objects using trajectory recovery algorithms [15, 21, 27]. In con-

trast to GPS trajectories, the extracted path is represented by a

sequence of camera identifiers and time intervals (𝑐1, [𝑡𝑠
1
, 𝑡𝑒
1
]) →

(𝑐2, [𝑡𝑠
2
, 𝑡𝑒
2
]) → . . .→ (𝑐𝑚, [𝑡𝑠𝑚, 𝑡𝑒𝑚]), where 𝑐𝑖 denotes the camera

capturing the moving object and [𝑡𝑠
𝑖
, 𝑡𝑒
𝑖
] represents the period dur-

ing which the object is detected by 𝑐𝑖 . In this study, we assume

that the trajectory extraction has been performed by a black-box

algorithm and concentrate on devising efficient algorithms for min-

ing co-movement patterns. Notably, the practice of treating video

ingestion as a pre-processing step has also been adopted by recent

video mining studies [4, 5].

In our scenario, the spatial location information outside the

intervals of [𝑡𝑠
𝑖
, 𝑡𝑒
𝑖
] is not available. This property hinders the appli-

ance of original trajectory-based co-movement patterns and calls

for problem reformulation. To determine spatial proximity from a

video database, we leverage temporal proximity at the same camera

as an approximation. In other words, if two moving objects are

captured by the same camera within time interval Δ𝑡 , we consider
them spatially close to each other. As to the temporal duration

for spatial proximity, we replace it with a sequence of 𝑘 cameras.

In other words, we aim to identify platoons of objects that travel

together along the same route in the road network.

Figure 1 illustrates a toy example. Three distinct objects, namely

𝑜1, 𝑜2, and 𝑜3, traverse different routes on the road network. Specif-

ically, 𝑜1 and 𝑜2 follow the same trajectory, which is 𝑐1 → 𝑐2 →
𝑐4 → 𝑐5, while 𝑜3 travels from route 𝑐3 → 𝑐2 → 𝑐4 → 𝑐5. These

objects are captured by the cameras at different time intervals. Sup-

pose we set the minimum group size as 2 and require that the

minimum temporal gap at a camera to determine spatial proximity

is 5, and the objects must pass at least 3 cameras together. Based

on these conditions, we find that the temporal gap between 𝑜1 and

𝑜2 is too large to form a valid co-movement pattern even though

they share the same travel route. The minimum gap between their

time intervals at camera 𝑐4 is 7. Conversely, 𝑜2 and 𝑜3 are spatially

close to each other on the path 𝑐2 → 𝑐4 → 𝑐5, and we can identify

⟨{𝑜2, 𝑜3}, 𝑐2 → 𝑐4 → 𝑐5⟩ as a valid co-movement pattern.

c1

c2

c3

c4

c5

o1: [11, 16]

o2: [20, 25]

o3: [17, 22]

o1: [1,  4]

o2: [8,11]

o1: [21, 25]

o2: [32, 38]

o3: [29, 35]

o3: [7,10]

o1: [33, 37]

o2: [45, 50]

o3: [41, 47]

o1 : c1→ c2 → c4 → c5       o2 : c1→ c2 → c4 → c5 o3 : c3→ c2 → c4 → c5 

Figure 1: A toy example of co-movement pattern mining
from surveillance cameras.

In this paper, we formulate the problem of co-movement pattern

mining and formally define the spatial-temporal proximity con-

straints arising from video data. This mining problem is challenging

because of the potentially enormous search space that results from

a large number of moving objects travelling over a prolonged pe-

riod across a road network with a plethora of surveillance cameras.

We establish the hardness of this problem by demonstrating that it

is NP-Hard through the reduction of the maximum clique problem

to our pattern mining problem.

Given the absence of readily applicable solutions, we draw upon

the ideas from prior work and develop two baseline algorithms.

The first algorithm is inspired by SPARE [6], a parallel and general

co-movement pattern miner from trajectories. We adopt its Apriori-

based enumerator to systematically explore the search space. The

algorithm can be viewed as camera-ahead exploration that enu-

merates candidate paths with increasing length. The remaining

pattern constraints are then leveraged for further pruning. The

second baseline extends the Coherent Moving Cluster (CMC) algo-

rithm proposed in [12] for convoy pattern mining, with two tailored

improvements for the video-based setting. The algorithm can be

viewed as temporal-ahead since it searches across the temporal

dimension and dynamically updates the candidate patterns.

As the core technical contributions, we propose a new index

called temporal-cluster suffix tree (TCS-tree), which performs two-

level temporal clustering within each camera. We represent the

trajectory of each moving object as a sequence of cluster IDs and

build a suffix tree to facilitate frequent subsequence mining. Based

on TCS-tree, we propose a sequence-ahead pruning framework that

enables the concurrent utilization of all pattern constraints to filter

candidate travel paths. Finally, to minimize the verification cost of

candidate paths, we propose a sliding-window-based co-movement

pattern enumeration strategy and a hashing-based dominance elim-

inator, both of which effectively eliminate redundant operations.

In summary, we make the following contributions:

(1) This study pioneers the investigation of co-movement pat-

tern mining from video databases. We formulate this new

mining problem and theoretically prove its NP-hardness.

(2) We propose a novel index called temporal-cluster suffix

tree (TCS-tree), an efficient sequence-ahead pruning frame-

work to facilitate pruning, as well as an effective verification

scheme based on a sliding-window based candidate enumer-

ation strategy and a hashing-based dominance eliminator.

(3) We conduct extensive experiments to validate the superior-

ity of our proposed algorithm over the baselines. We also

construct a video database with 1169 cameras to perform

an end-to-end pipeline analysis and study the performance

gap between GPS-driven and video-driven co-movement

pattern miners.

(4) To benefit the research community, we make all datasets

and implementation code available on github
1
.

The remainder of this paper is organized as follows. We formu-

late the new mining problem and theoretically prove its hardness

in Section 2. Section 3 provides a survey of related works on co-

movement pattern mining. The two baseline algorithms are pre-

sented in Section 4 andwe propose our index andmining framework

in Section 5. In Section 6, we conduct comprehensive experiments

for performance evaluation. Finally, we conclude the paper and

discuss potential avenues for future research in Section 7.

1
https://github.com/Mateng0228/Co-movement-Pattern-Mining-from-Videos
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2 PROBLEM DESCRIPTION
2.1 Data Model
In our model for video database, a multitude of surveillance cameras

is deployed throughout the urban city. These cameras capture a vast

amount of objects in motion over different time periods. For ease of

presentation, we assume that the cameras are not overlapped and

each moving person or vehicle can only be captured by one camera.

The extension to support overlapped cameras will be discussed

in Section 5.5. As the data source solely comprises camera meta-

data (e.g., location, resolution, and view angle) and the recorded

video content, GPS trajectories of moving objects are not available

directly. Nonetheless, we can employ recent trajectory recovery

algorithms [15, 21, 27] to extract the travel routes of moving ob-

jects across different cameras. As such, to support spatio-temporal

pattern mining, we define the travel path of a moving object 𝑜𝑖 in

the form of a camera id sequence.

Definition 2.1. Travel Path
We define the travel path of an object 𝑜𝑖 as a sequence of camera

IDs, arranged in order of the time periods in which 𝑜𝑖 was captured:

𝑃𝑖 = (𝑐1, [𝑠1, 𝑒1]) → (𝑐2, [𝑠2, 𝑒2]) → . . . → (𝑐𝑛, [𝑠𝑛, 𝑒𝑛]), where
𝑠 𝑗 < 𝑒 𝑗 < 𝑠 𝑗+1 and (𝑐 𝑗 , [𝑠 𝑗 , 𝑒 𝑗 ]) implies that 𝑜𝑖 appears in 𝑐 𝑗 in the

time interval [𝑠 𝑗 , 𝑒 𝑗 ].

We call 𝑠 𝑗 the entrance timestamp and 𝑒 𝑗 the exit timestamp. The

time interval of 𝑃𝑖 is [𝑠1, 𝑒𝑛]. In cases without the need to mention

the temporal dimension, we simplify the path representation as

𝑃𝑖 = 𝑐1 → 𝑐2 → . . .→ 𝑐𝑛 .

Definition 2.2. Sub-path
We say 𝑃1 is a sub-path of 𝑃2, denoted by 𝑃1 ⊆ 𝑃2, if the camera

sequence of 𝑃1 is a subsequence of 𝑃2 and the time interval of 𝑃1 is

contained by 𝑃2.

From the travel paths of all objects, we can construct a camera

network in a data-driven manner. Its vertices contain all disjoint

cameras that appear in the travel paths. Two cameras 𝑐𝑖 and 𝑐 𝑗 are

connected in the camera network as long as there exists a travel

path containing 𝑐𝑖 → 𝑐 𝑗 . The data model of camera network will

be used in the two baseline algorithms.

2.2 Mining Task Formulation
To define co-movement patterns over the travel paths of moving

objects, we notice that the traditional definition of co-movement

patterns involves a parameter 𝜖 to determine spatial proximity,

where 𝜖 is either the radius of the disk or the threshold for density

reachability. However, in the scenario considered in this paper, the

exact GPS locations of moving objects are not available, and we

must rely on other clues to determine spatial proximity. In the

following definition, we utilize temporal proximity at the same

camera to infer spatial proximity.

Definition 2.3. 𝜖-reachability at camera 𝑐 𝑗
Two objects 𝑜1 and 𝑜2 are 𝜖-reachable at camera 𝑐 𝑗 if the gap be-

tween their entrance timestamp at 𝑐 𝑗 is no greater than 𝜖 .

The measurement of temporal duration, such as “𝑘 consecutive

timestamps” defined in convoy and flock patterns, is not applicable

in our scenario because the temporal dimension of travel path 𝑃𝑖

only involves a sequence of disjoint time intervals. In our problem

definition, we replace the constraint of temporal duration with “𝑘

consecutive cameras in the travel paths” of the grouped objects.

Definition 2.4. Co-movement Pattern from Videos

Given parameters 𝜖 ,𝑚 and 𝑘 , a co-movement pattern 𝐶𝑃 in this

paper is defined as ⟨𝑂𝑖 , 𝑃𝑖 ⟩, where 𝑂𝑖 is an object set and 𝑃𝑖 is a

travel path. They satisfy the following constraints:

(1) 𝑂𝑖 contains at least𝑚 objects, i.e., |𝑂𝑖 | ≥ 𝑚.

(2) 𝑃𝑖 contains at least 𝑘 cameras, i.e., |𝑃𝑖 | ≥ 𝑘 .

(3) For each object 𝑜 ∈ 𝑂𝑖 with travel path 𝑃𝑜 , 𝑃𝑖 is a sub-path

of 𝑃𝑜 , i.e., 𝑃𝑖 ⊆ 𝑃𝑜 .

(4) For any two objects 𝑜𝑖 , 𝑜 𝑗 ∈ 𝑂𝑖 and camera 𝑐𝑖 ∈ 𝑃𝑖 , 𝑜𝑖 and
𝑜 𝑗 are 𝜖-reachable at camera 𝑐𝑖 .

Under certain parameter settings, such as small values for𝑚 and

𝑘 or a large value of 𝜖 , it is possible that an extensive number of valid

patterns may arise. In this paper, we follow previous approach [17]

to study maximal co-movement pattern mining and define pattern

dominance as following.

Definition 2.5. Pattern Dominance

A co-movement pattern 𝐶𝑃1 = ⟨𝑂1, 𝑃1⟩ is dominated by 𝐶𝑃2 =

⟨𝑂2, 𝑃2⟩ if 𝑂1 ⊆ 𝑂2 and 𝑃1 ⊆ 𝑃2.

Our objective is to identify all the co-movement patterns 𝐶𝑃𝑖 =

⟨𝑂𝑖 , 𝑃𝑖 ⟩ that are both valid and non-dominated. The hardness of

the problem is proved in the following theorem.

Theorem 2.6. The problem of maximal co-movement pattern min-
ing in video database is NP-hard.

Proof. We prove the theorem by reducing the maximum clique

problem to our pattern mining problem.

Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 vertices. We conduct the re-

duction as follows. Each vertex 𝑣𝑖 ∈ 𝐺 is uniquely mapped to

a moving object 𝑜𝑖 in our problem. Let 𝜂 = max( |𝑉 |, 𝑘) and we

make all moving objects pass through the same camera sequence

𝑐1 → 𝑐2 → . . .→ 𝑐𝜂 . The entrance time of object 𝑜𝑖 at camera 𝑐 𝑗
is defined as

𝑡𝑖 𝑗 =


(2𝜖 + 1) ∗ 𝑗 − 𝜖 𝑖 ≠ 𝑗 ∧ 𝑖 and 𝑗 are not connected in 𝐺

(2𝜖 + 1) ∗ 𝑗 𝑖 ≠ 𝑗 ∧ 𝑖 and 𝑗 are connected in 𝐺

(2𝜖 + 1) ∗ 𝑗 + 𝜖 𝑖 = 𝑗

(1)

With the above settings, we know that if 𝑣𝑎 and 𝑣𝑏 are not connected

in 𝐺 , the entrance time of 𝑜𝑎 at camera 𝑐𝑏 is (2𝜖 + 1) ∗ 𝑏 − 𝜖 and

the entrance time of 𝑜𝑏 at camera 𝑐𝑏 is (2𝜖 + 1) ∗ 𝑏 + 𝜖 . These two
objects are not 𝜖-reachable at camera 𝑐𝑏 and will not be co-located

within a valid co-movement pattern. On the other hand, if 𝑣𝑎 and

𝑣𝑏 are connected in 𝐺 , we show that |𝑡𝑎𝑗 − 𝑡𝑏 𝑗 | ≤ 𝜖 for all cameras

𝑐1 → 𝑐2 → . . .→ 𝑐𝜂 :

(1) If 𝑗 = 𝑎 or 𝑗 = 𝑏, |𝑡𝑎𝑗 − 𝑡𝑏 𝑗 | ≤ |(2𝜖 + 1) ∗ 𝑗 + 𝜖 − (2𝜖 + 1) ∗ 𝑗 | ≤ 𝜖 .

(2) If 𝑗 ≠ 𝑎 and 𝑗 ≠ 𝑏, |𝑡𝑎𝑗 −𝑡𝑏 𝑗 | ≤ |(2𝜖 +1) ∗ 𝑗 −𝜖 − (2𝜖 +1) ∗ 𝑗 | ≤ 𝜖 .

Therefore, if there exists a maximum clique with size𝑚, we can also

find a co-movement pattern covering𝑚 objects through 𝜂 consecu-

tive cameras. Obviously, this co-movement pattern is maximal. □
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2.3 End-to-End Mining Pipeline
The complete mining pipeline that starts from the input of surveil-

lance videos includes three major steps:

Step 1: Pre-processing. The goal is to extract the cross-camera

trajectories from the surveillance cameras deployed in a road net-

work. This step can be achieved by adopting existing trajectory

recovery algorithms from large-scale videos [15, 21, 27] or multi-

camera multi-target tracking models [10, 11, 20]. The latter is more

accurate but consumes higher computation cost. The trajectory

extraction can be viewed as a pre-processing step and the extracted

trajectories can be used to support co-movement pattern mining or

video database queries.

Step 2: Online Index Construction. After extracting the camera

sequences for all moving objects, we can build index in an online

manner to facilitate co-movement pattern mining. For example,

we will build a temporal-clustering suffix tree, which relies on the

query threshold 𝜖 .

Step 3: Pattern Mining. Users can apply the mining algorithms

proposed in this paper to retrieve all the co-movement patterns

satisfying the spatial-temporal proximity constraints. For parameter

setting, 𝜖 can be set from 1-4 minutes to take into account the

effect of traffic lights. Parameters𝑚 and 𝑘 can be determined by

specific applications. Since the co-movement pattern mining is

an exploratory process, if the query user is not satisfied with the

results, he/she can adjust the parameters and proceed to step 2 for

the next round of pattern mining.

For ease of reference, the notations frequently used in the paper

are summarized in Table 1.

Table 1: Notation Table.

𝑐𝑖 , 𝑜𝑖 A surveillance camera 𝑐𝑖 and a moving object 𝑜𝑖

𝑃𝑖 The travel path of object 𝑜𝑖

𝑂𝑖 An object set

𝜖 The threshold for temporal closeness

𝑚 The minimum group size for co-movement pattern

𝑘 The minimum route length for co-movement pattern

𝐶𝑃 A co-movement pattern

𝑇𝐶 A temporal cluster represented as triplet (𝑂, 𝑙, 𝑟 )
TC𝑐𝑖 The temporal clusters in camera 𝑐𝑖

3 RELATED WORK
Among the co-movement patterns defined over GPS trajectories,

the flock [8, 24] and convoy [12, 16, 17] patterns require the candi-

date groups to appear in 𝑘 consecutive timestamps. Their difference

lies in the definition of spatial proximity. Flock requires objects in

the same cluster to be within a disk-region of diameter less than

parameter 𝜖 , while convoy uses density-based spatial clustering.

In their mining algorithm designs, performing clustering at every

timestamp is computationally expensive and can become a per-

formance bottleneck. Several techniques have been proposed to

alleviate this overhead, such as spatial partitioning [16, 24], trajec-

tory simplification [12], and the divide-and-conquer approach [17].

Different from flock and convoy, the group [25], swarm [14] and

platoon [13] patterns have more relaxed constraints on the pattern

duration. Their techniques of mining are of the same skeleton. The

main idea of mining is to grow an object set from an empty set in a

depth-first manner. Throughout this construction process, various

pruning techniques are employed to discard unnecessary branches.

Group pattern mining [25] uses a VGgraph to guide the pruning

of false candidates, while swarm mining [14] relies on two more

pruning rules called backward pruning and forward pruning. The

platoon mining algorithm in [13] takes advantage of a prefix table

structure to steer the depth-first search.

For co-moving pattern mining based on trajectory streaming,

CoMing [3, 7] leverages Apache Flink for streaming-based process-

ing, builds spatial indexes to accelerate clustering, and employs

pruning techniques to eliminate unnecessary verification. In [19],

the group pattern is relaxed to allow membership withdrawal or

re-join as long as some participators stay connected for all time in-

tervals. An incremental discovery solution is developed to retrieve

the evolving companion efficiently from trajectory streaming data.

Recently, video-based pattern mining has emerged as an inter-

esting database research topic. In [15, 21, 27], the task of snapshot

clustering is studied to recover trajectories from urban-scale videos.

The objective is to cluster snapshots of detected objects that are vi-

sually similar and spatially coherent. The items within each cluster

are considered to belong to the same vehicle. They are sorted by

the associated timestamp to form a trajectory. In [4, 5], Chen et al.

retrieved video segments that satisfy user-provided constraints on

the spatial or temporal relationships among objects of interest, as

well as other conditions on the object labels.

The differences betweenGPS-based and video-based co-movement

pattern mining are summarized as:

Table 2: Differences between GPS-based and video based co-
movement pattern mining.

Trajectory-based Video-based

Element in trajectory ⟨𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡𝑖𝑚𝑒 ⟩ ⟨𝑐 𝑗 , [𝑠 𝑗 , 𝑒 𝑗 ] ⟩
Trajectory representation synchronized and

fine-grained

asynchronized and

coarse-grained

Proximity Determination spatial clustering temporal clustering

within a camera

Duration Determination consecutive

timestamps

𝑘 consecutive paths in

the camera network

Performance bottleneck spatial clustering candidate verification

4 TWO BASELINE ALGORITHMS
In this section, we present two baseline algorithms for co-movement

pattern mining, by adapting the ideas from trajectory-based solu-

tions to the context of video database.

4.1 CMC Algorithm
The CoherentMoving Cluster (CMC) algorithm [12, 18] represents a

simple and general baseline technique for mining convoy patterns.

The algorithm operates by performing spatial clustering on the

moving objects at each timestamp, followed by a search for all

valid patterns across the temporal dimension. To this end, a global

buffer of candidate patterns is maintained. At each timestamp, each
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cluster is intersected with the partial patterns in the global buffer,

thus generating new patterns that adhere to the constraints of 𝑘

consecutive timestamps and minimum group size.

In this paper, we present a competitive baseline, which builds

upon CMC with two key improvements tailored for video-based

settings. Firstly, we substitute the traditional spatial clustering ap-

proach with a temporal clustering approach that ensures objects

within the same cluster are 𝜖-reachable. The temporal clustering is

performed independently within each camera. Secondly, we replace

the global buffer with distributed buffers across the cameras. At

each timestamp, when accessing a temporal cluster within camera

𝑐𝑖 , we intersect it with only the patterns in the local buffer of 𝑐𝑖 , thus

reducing the search space and enhancing computational efficiency.

The newly generated patterns are propagated to the buffers in the

neighboring cameras for future exploration.

4.1.1 Temporal Clustering. Recall that we utilize 𝜖-reachability in

the temporal dimension as an approximate means of representing

spatial proximity. For the set of objects captured by camera 𝑐𝑖 , we

propose a lightweight temporal clustering approach that ensures

objects within the same cluster are 𝜖-reachable. Additionally, its

linear complexity can prevent the clustering process from becoming

a performance bottleneck.

As demonstrated in Algorithm 1, we access the moving objects

in ascending order of their entrance time into camera 𝑐𝑖 , utilizing

two anchors, 𝑙 and 𝑟 to establish the boundaries of each cluster.

To store the resulting clusters of camera 𝑐𝑖 , we maintain a data

structure TC𝑐𝑖 = {𝑇𝐶1,𝑇𝐶2, . . . ,𝑇𝐶𝑖 , . . .}, where each temporal

cluster 𝑇𝐶𝑖 = (𝑂𝑖 , [𝑙𝑖 , 𝑟𝑖 ]) is associated with an object set 𝑂𝑖 and

time interval [𝑙𝑖 , 𝑟𝑖 ]. By employing the anchor 𝑟 to determine the

right boundary, all moving objects within temporal distance 𝜖 are

grouped into a single cluster. We exclude small clusters that contain

fewer than𝑚 objects.

Upon examining the temporal clustering, we can draw three

observations. First, as each object is accessed by the anchor points

at most twice, the time complexity of temporal clustering is linear

to the number of objects captured by camera 𝑐𝑖 . Assuming there

are 𝑁 objects, each with an average path length of 𝐿, the complex-

ity of temporal clustering on all cameras is 𝑂 (𝑁𝐿). Second, any
two objects within the same temporal cluster are guaranteed to

be 𝜖-reachable, as specified by line 5 in Algorithm 1. Finally, these

temporal clusters are not necessarily disjoint in the temporal di-

mension. Thus, it is possible that an object in a camera belongs to

multiple temporal clusters.

4.1.2 Candidate Pattern Enumeration. The search algorithm ex-

plores the temporal dimension for candidate pattern enumeration.

We sort the temporal clusters 𝑇𝐶𝑖 = (𝑂𝑖 , [𝑙𝑖 , 𝑟𝑖 ]) from all cameras

in ascending order of their starting time 𝑙𝑖 . Let 𝑉
𝑖
𝑖𝑛

denote the in-

coming neighbors of camera 𝑐𝑖 in the camera network and 𝑉 𝑖
𝑜𝑢𝑡

denote its outgoing neighbors. We maintain a local buffer for each

camera to store candidate patterns whose path ends at any node

in 𝑉 𝑖
𝑖𝑛
. Suppose we are presently examining the temporal cluster

𝑇𝐶𝑖 = (𝑂𝑖 , [𝑙𝑖 , 𝑟𝑖 ]) derived from camera 𝑐𝑢 , we perform object in-

tersection to generate new candidate patterns. This step is similar

to the original CMC algorithm which expands the time interval of

Algorithm 1: Temporal Clustering

1 TC𝑐𝑖 ← ∅;𝑇𝐶 ← (∅, [0, 0] ) ; 𝑟 ← 1; 𝑙 ← 1;

2 𝑆 ← object records in order of entrance time in camera 𝑐𝑖 ;

3 while 𝑟 ≤ |𝑆 | do
4 if 𝑆 [𝑟 ] .𝑡𝑖𝑚𝑒 − 𝑆 [𝑙 ] .𝑡𝑖𝑚𝑒 ≤ 𝜖 then
5 Enqueue 𝑆 [𝑟 ] .𝑜𝑏 𝑗 into𝑇𝐶.𝑂 ;

6 𝑇𝐶.𝑟 ← 𝑆 [𝑟 ] .𝑡𝑖𝑚𝑒 ; 𝑟 + +;
7 else
8 if |𝑇𝐶 | ≥ 𝑚 then
9 TC𝑐𝑖 ← TC𝑐𝑖

⋃
𝑇𝐶

10 while 𝑙 ≠ 𝑟 do
11 if 𝑆 [𝑟 ] .𝑡𝑖𝑚𝑒 − 𝑆 [𝑙 ] .𝑡𝑖𝑚𝑒 ≤ 𝜖 then
12 break;
13 Dequeue 𝑆 [𝑙 ] .𝑜𝑏 𝑗 from𝑇𝐶.𝑂 ;

14 𝑙 + +;𝑇𝐶.𝑙 ← 𝑆 [𝑙 ] .𝑡𝑖𝑚𝑒

15 if |𝑇𝐶 | ≥ 𝑚 then TC𝑐𝑖 ← TC𝑐𝑖
⋃
𝑇𝐶 ;

16 return TC𝑐𝑖 ;

Algorithm 2: CMC Algorithm

1 𝑇𝐶 ← Sort clusters𝑇𝐶𝑖 = (𝑂𝑖 , [𝑙𝑖 , 𝑟𝑖 ] ) from all cameras by 𝑙𝑖 ;

2 for each𝑇𝐶𝑖 associated with camera 𝑐𝑢 do
3 for each candidate pattern ⟨𝑂𝑏 , 𝑃𝑏 ⟩ ∈ 𝐵𝑢𝑓𝑐𝑢 do
4 if |𝑂𝑏

⋂
𝑂𝑖 | ≥ 𝑚 then

5 if |𝑃𝑏 | ≥ 𝑘 − 1 then
6 R← R⋃ ⟨𝑂𝑏

⋂
𝑂𝑖 , 𝑃𝑏 → 𝑐𝑢 ⟩;

7 for each camera 𝑐𝑜 ∈ 𝑉𝑢
𝑜𝑢𝑡 do

8 𝐵𝑢𝑓𝑐𝑜 ← 𝐵𝑢𝑓𝑐𝑜
⋃ ⟨𝑂𝑏

⋂
𝑂𝑖 , 𝑃𝑏 → 𝑐𝑢 ⟩;

9 for each camera 𝑐𝑜 ∈ 𝑉 𝑐𝑢
𝑜𝑢𝑡 do

10 𝐵𝑢𝑓𝑐𝑜 ← 𝐵𝑢𝑓𝑐𝑜
⋃ ⟨𝑂𝑖 , 𝑐𝑢 ⟩;

11 Remove dominated patterns in R;

12 return R;

a pattern from 𝑡 timestamps to 𝑡 + 1 timestamps. For each candi-

date pattern ⟨𝑂𝑏 , 𝑃𝑏⟩ in the local buffer of camera 𝑐𝑢 , we examine

the size of 𝑂𝑏

⋂
𝑂𝑖 . If |𝑂𝑏

⋂
𝑂𝑖 | ≥ 𝑚, we generate a new pattern

⟨𝑂𝑏

⋂
𝑂𝑖 , 𝑃𝑏 → 𝑐𝑢⟩ and propagate it to the outgoing neighbor cam-

eras in 𝑉𝑢
𝑜𝑢𝑡 . If this is a valid pattern, we also push it into result set

R. The algorithm terminates once all temporal clusters have been

evaluated. Finally, we remove the dominated patterns in R by build-

ing an inverted index to quickly examine the subset relationship

between object sets.

4.2 Apriori Based Enumerator
Our second baseline is inspired by SPARE [6], which is a parallel and

general framework to mine various co-movement patterns. Within

SPARE, an Apriori-based enumerator is introduced to facilitate

space pruning. To adopt the idea, we construct the combinatorial

space using cameras because we can leverage the ontology of cam-

era network to avoid enumerating all the combinations of cameras.

In addition, it is straightforward that the anti-monotonicity prop-

erty also holds:

Property 1. Let O𝑖 be the set of 𝜖-reachable objects in all the
cameras of 𝑃𝑖 . If 𝑃1 is a sub-path of 𝑃2, then O1 ⊇ O2.
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With the property, if we cannot find a group of objects with size

𝑚 that are 𝜖-reachable in all cameras of 𝑃𝑖 , then all the expanded

paths from 𝑃𝑖 can be pruned.

We present our Apriori-based enumerator in Algorithm 3. The

general idea is to enumerate candidate paths in increasing number

of cameras, evaluate their validity by assessing the constraints

related to object size𝑚 and spatial proximity 𝜖 , and eliminate any

illegal or dominated outcomes. The algorithm starts from the first

layer to construct candidate patterns with only one camera. In the

initialization stage (lines 1-4), temporal clustering via Algorithm 1

is employed to perform temporal clustering within each camera 𝑐𝑖 .

As long as its output TC𝑐𝑖 is not empty, the camera is considered

as a candidate path with 𝑙𝑒𝑛 = 1 and pushed into a buffer 𝑄 . These

candidate cameras constitute the bottom layer of the lattice for

Apriori-based enumeration.

In the subsequent layers, we adhere to the Apriori algorithm’s

procedure to enumerate candidate paths of length 𝑛 + 1 derived

from their two sub-paths of length 𝑛. Given 𝑃 = 𝑐1 → 𝑐2 →
. . . → 𝑐𝑛 → 𝑐𝑢 , we impose the condition that its two sub-paths,

𝑃1 = 𝑐1 → 𝑐2 → . . .→ 𝑐𝑛 and 𝑃2 = 𝑐2 → . . .→ 𝑐𝑛 → 𝑐𝑢 , must be

present in the output of the previous layer (lines 6-9). If either of

these sub-paths is absent, path 𝑃 can be pruned in accordance with

the anti-monotonicity property. We construct O𝑛𝑒𝑤 to maintain

a group of valid object sets that appear in both 𝑃1 and 𝑃2, i.e., we

intersect each pair of object set 𝑂1

⋂
𝑂2 and discard it if its size is

smaller than𝑚 or it is dominated by other object set (lines 11-13).

If O𝑛𝑒𝑤 is not empty, we find a new candidate path 𝑃𝑛𝑒𝑤 = 𝑐1 →
𝑐2 → . . .→ 𝑐𝑛 → 𝑐𝑢 and push (𝑃𝑛𝑒𝑤 ,O𝑛𝑒𝑤) into 𝑄 . If |𝑃 | ≥ 𝑘 , we

also add the valid candidate patterns into result set R. When the

buffer 𝑄 becomes empty, the Apriori-based enumerator terminates

and we remove dominated patterns in R. This step is the same as

the one employed in the CMC algorithm.

Algorithm 3: Apriori-Based Enumerator

1 for each camera 𝑐𝑖 do
2 Perform temporal clustering in 𝑐𝑖 using Algorithm 1;

3 𝑃𝑖 ← 𝑐𝑖 ; O𝑖 ← TC𝑐𝑖 ;
4 Add (𝑃𝑖 ,O𝑖 ) into buffer𝑄 ;

5 while𝑄 is not empty do
6 for each path 𝑃1 = 𝑐1 → 𝑐2 → . . .→ 𝑐𝑛 ∈ 𝑄 do
7 for each 𝑐𝑜 ∈ 𝑉𝑛

𝑜𝑢𝑡 do
8 Let 𝑃2 = 𝑐2 → 𝑐3 → . . .→ 𝑐𝑛 → 𝑐𝑜 ;

9 if 𝑄 contains 𝑃2 then
10 O𝑛𝑒𝑤 ← {𝑂1

⋂
𝑂2 |𝑂1 ∈ O1,𝑂2 ∈ O2};

11 if |𝑂𝑖 | <𝑚 or𝑂𝑖 ⊆ 𝑂 𝑗 ∈ O𝑛𝑒𝑤 then
12 Remove𝑂𝑖 from O𝑛𝑒𝑤 ;

13 if |O𝑛𝑒𝑤 | > 0 then
14 𝑃𝑛𝑒𝑤 = 𝑃1 → 𝑐𝑜 ;

15 𝑄 ′ ← 𝑄 ′
⋃ (𝑃𝑛𝑒𝑤 ,O𝑛𝑒𝑤 ) ;

16 if |𝑃𝑛𝑒𝑤 | ≥ 𝑘 then
17 for each𝑂𝑖 ∈ O𝑛𝑒𝑤 do
18 R← R⋃ ⟨𝑃𝑛𝑒𝑤 ,𝑂𝑖 ⟩;
19 𝑄 ← 𝑄 ′;𝑄 ′ ← ∅;
20 Remove dominated patterns in R;

21 return R;

5 SEQUENCE-AHEAD MINING FRAMEWORK
In this section, we first deliver the basic idea of sequence-ahead

mining framework and the construction of temporal-cluster suffix

tree (TCS-tree) to produce co-movement pattern candidates. Among

the candidates, we also propose an efficient sliding-window based

verification algorithm to remove false positives and a hashing-based

dominance elimination strategy to retain maximal patterns. At the

end of the section, we discuss the extended support of the current

data model for the scenario of overlapped cameras.

5.1 Basic Idea
A co-movement pattern involves three constraints that allow us to

devise pruning rules, including the 𝜖-reachable constraint for spa-

tial proximity, the minimum group size𝑚 and the minimum path

length 𝑘 . The two baseline algorithms adopt different strategies to

construct the search space for candidate enumeration. More specifi-

cally, the Apriori-based enumerator can be viewed as camera-ahead

exploration and its search space consists of all the possible paths

with length 𝑘 . During the candidate enumeration, the constraints

on parameters 𝜖 and𝑚 are further utilized for pruning. The CMC

algorithm is temporal-ahead because it explores the search space

from the temporal dimension. For each appearance of an object

within a camera, it joins with the candidate patterns that are 𝜖-

reachable. The validness is further verified using constraints on

parameters𝑚 and 𝑘 .

In this paper, we propose a sequence-ahead mining framework

with the objective of utilizing multiple constraints for candidate

enumeration. A straightforward solution is to model each object

𝑜𝑖 as a sequence of camera ids in ascending order of the entrance

time into the camera. Then, we can utilize the constraints of min-

imum group size𝑚 and minimum path length 𝑘 simultaneously,

and perform frequent subsequence mining (FSM) for candidate

generation. A subsequence is a candidate path only if it satisfies

two conditions, namely its length is at least 𝑘 , and its support is at

least𝑚. Since FSM is a fundamental data mining problem that has

been adequately addressed, we can readily adopt existing frequent

subsequence miners for candidate enumeration. For example, we

can construct a suffix-tree for the sequences and use the index to

identify frequent subsequences. For each candidate path, we can

further apply the constraint of 𝜖-reachability to eliminate false pos-

itives. Finally, the patterns that are not dominated will be returned

to the query user as mining results.

The aforementioned solution still has great room for improve-

ment. In the following, we first present the concept of meta-clusters

and propose a new index called temporal-clustering suffix tree (TCS-

tree) intends to integrate the three constraints for filtering in the

frequent subsequence mining process. To reduce redundant verifi-

cation overhead, we also propose a sliding-window based candidate

enumeration strategy and a hashing based dominance eliminator.

5.2 TCS-tree Construction
In order to further refine the efficacy of the sequence-ahead mining

framework and minimize the occurrence of false positive candi-

dates, we propose an innovative strategy that involves extending

the sequence of camera ids to incorporate temporal information

and generate a more nuanced representation. The original sequence
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is constructed using the one-to-one mapping function 𝐹 (𝑜𝑖 ) = 𝑐 𝑗 ,

with each element in the sequence representing a camera id. How-

ever, this representation is limited in that it is unable to differentiate

between two distinct travel paths that share the same sequence

of camera ids but possess substantially different starting times. To

address this limitation, we intend to partition the temporal dimen-

sion in a camera 𝑐 𝑗 into multiple disjoint intervals 𝐼1
𝑗
, 𝐼2
𝑗
. . ., and

extend 𝐹 (𝑜𝑖 ) to a new one-to-one mapping 𝐺 (𝑜𝑖 ) = 𝐼𝑡
𝑗
, thereby

representing each object as a sequence of 𝐼𝑡
𝑗
. This approach enables

us to incorporate the three constraints of 𝜖-reachability, minimum

group size𝑚, and minimum path length 𝑘 during the process of

frequent subsequence mining. Notably, it is possible for an object

𝑜𝑖 to be captured at multiple time periods at the same camera 𝑐 𝑗 .

In this case, we can simply use 𝑜1
𝑖
, 𝑜2

𝑖
, . . . to represent different

occurrence periods of 𝑜𝑖 such that each 𝑜𝑢
𝑖
becomes the input of

mapping function 𝐺 (·). For ease of presentation, we still use 𝐺 (𝑜𝑖 )
as the default notation unless further clarification is required.

It is obvious that smaller intervals are more powerful to distin-

guish false positives, i.e., if two objects share a travel path 𝑃𝑖 = 𝑐1 →
. . .→ 𝑐𝑛 but they are not 𝜖-reachable, it is more likely for these two

objects to be projected into different intervals. Therefore, we for-

mulate the construction of function 𝐺 (𝑜𝑖 ) as minimizing the total

size of all intervals

∑
𝑗,𝑡 |𝐼𝑡𝑗 |, with the following two constraints:

(1) 𝐺 (𝑜𝑖 ) is a one-to-one mapping in camera 𝑐 𝑗 , i.e., each object

𝑜𝑖 is uniquely mapped to an interval 𝐼𝑡
𝑗
at camera 𝑐 𝑗 .

(2) If 𝑜𝑢 and 𝑜𝑣 are 𝜖-reachable in camera 𝑐 𝑗 , they are mapped

to the same 𝐼𝑡
𝑗
. This requirement guarantees that there is

no missing valid pattern.

Note that we cannot directly apply the temporal clustering algo-

rithm in Algorithm 1 because it is possible that an object belongs

to multiple clusters. This violates the constraint of one-to-one map-

ping requirement for𝐺 (𝑜𝑖 ) and we cannot represent an object with

a sequence of cluster ids and then apply frequent subsequence min-

ing. To resolve the issue, we propose a two-level temporal clustering

algorithm and represent each object as a sequence of cluster ids,

based on which we build a temporal cluster suffix tree (TCS-tree)

for frequent subsequence mining.

In the first level of clustering, we apply Algorithm 1 to generate

temporal clusters that are 𝜖-reachable. In the second level, we pro-

gressively merge the temporal clusters that are overlapped. Two

temporal clusters 𝑇𝐶𝑖 and 𝑇𝐶 𝑗 are merged into a meta-cluster as

long as they contain common objects, i.e., 𝑇𝐶𝑖 .𝑂𝑖
⋂
𝑇𝐶 𝑗 .𝑂 𝑗 ≠ ∅.

In implementation, we can scan the temporal clusters along the

temporal dimension and treat the first cluster as a meta-cluster.

When we access a temporal cluster 𝑇𝐶𝑖 , it is merged into previ-

ous meta-cluster 𝑀𝐶 if they are overlapped. Otherwise, 𝑇𝐶𝑖 and

𝑀𝐶 are disjoint and we treat 𝑇𝐶𝑖 as a new meta-cluster to merge

its subsequent temporal clusters. The process terminates when all

clusters have been examined.

Example 5.1. We use a toy example to explain the results of meta-

clusters and the construction of TCS-tree. As depicted in Figure 2,

there are 5 objects that move in a road network with cameras 𝑐1 to

𝑐6. Each object is captured by part of these cameras. To construct

TCS-tree, we can perform temporal clustering within each camera

and merge the overlapped clusters into a meta-cluster. For example,

in camera 𝑐5, there are 3 temporal clusters {𝑜1, 𝑜2, 𝑜3}, {𝑜3, 𝑜4}, {𝑜5}
and we can merge them into two meta-clusters {𝑜1, 𝑜2, 𝑜3, 𝑜4}, {𝑜5}.
Each object is uniquely mapped to a meta-cluster 𝑀𝐶𝑖

𝑗
in camera

𝑐𝑖 . Therefore, as shown in the figure, we can construct a new data

model for each object and represent it as a sequence of meta-clusters.

Then, we can build a TCS-tree on top of these sequences whose

elements are meta-clusters. TCS-tree is essentially a suffix tree.

Each unique suffix in the meta-cluster sequences is stored as a

single node in a suffix tree. Each leaf node contains the starting

position of the suffix it represents. Originally, there are 8 frequent

subsequences. With the fine-grained representation, the number is

reduced to 4.

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔
camera

time
o1
o2
o3

o5

o4

Camera Track Sequence

𝐌𝐂𝟏
𝟐

TCS-tree

𝐌𝐂𝟐
𝟐

𝐌𝐂𝟏
𝟑

𝐌𝐂𝟏
𝟒

𝐌𝐂1
5

𝒐𝟏: 𝑐2 → 𝑐3 → 𝑐4 → 𝑐5
𝒐𝟐: 𝑐1 → 𝑐2 → 𝑐3 → 𝑐4 → 𝑐5 → 𝑐6
𝒐𝟑: 𝑐1 → 𝑐2 → 𝑐3 → 𝑐4 → 𝑐5
𝒐𝟒: 𝑐2 → 𝑐3 → 𝑐4 → 𝑐5 → 𝑐6
𝒐𝟓: 𝑐3 → 𝑐5 → 𝑐6

Cluster Sequence
𝒐𝟏: MC1

2−MC1
3−MC1

4−MC1
5

𝒐𝟐: MC1
2−MC1

3−MC1
4−MC1

5

𝒐𝟑: MC2
2−MC1

3−MC1
4−MC1

5

𝒐𝟒: MC2
2−MC1

3−MC1
4−MC1

5

𝒐𝟓: MC1
3

𝒐𝟑
𝒐𝟒

𝒐𝟏

MC1
3

𝒐𝟓

𝒐𝟏
𝒐𝟐 𝒐𝟑

𝒐𝟒

𝒐𝟏
𝒐𝟐 𝒐𝟑

𝒐𝟏 𝒐𝟐

𝒐𝟑

Figure 2: A toy example of the construction of TCS-Tree.

In the following, we analyze the properties of𝐺 (𝑜𝑖 ), which maps

an object 𝑜𝑖 into a meta-cluster generated by 𝑐 𝑗 . First, the mapping

is one-to-one because the temporal dimension is split into disjoint

meta-clusters and these meta-clusters cover all objects captured

by the camera. In this way, each object can only be assigned to

one of the meta-clusters. Second, for any two objects 𝑜1 and 𝑜2
that are 𝜖-reachable, they will appear in the same meta-cluster.

This is also straightforward because the temporal gap between

two disjoint meta-clusters is at least 𝜖 . If 𝑜1 and 𝑜2 are located at

different meta-clusters, they are unable to be 𝜖-reachable.

Finally, we can also show that the meta-clusters generate the

minimum interval size.

Lemma 5.2. The meta-clusters minimize
∑

𝑗,𝑡 |𝐼𝑡𝑗 |.

Proof. We prove this by contradiction. Suppose there exists

another mapping function 𝐺 ′ (𝑜𝑖 ) that generates smaller intervals

than the meta-clusters. Then, we can find a pair of objects (𝑜𝑖 , 𝑜 𝑗 )
that belong to the same meta-cluster 𝑀𝐶 , but 𝐺 ′ (𝑜𝑖 ) ≠ 𝐺 ′ (𝑜 𝑗 ).
If 𝑜𝑖 and 𝑜 𝑗 are 𝜖-reachable, we finish the proof because the new

mapping contradicts with the requirement that 𝐺 ′ (𝑜𝑖 ) = 𝐺 ′ (𝑜 𝑗 ) if
𝑜𝑖 and 𝑜 𝑗 are 𝜖-reachable. If 𝑜𝑖 and 𝑜 𝑗 are not directly 𝜖-reachable,

based on the construction of meta-clusters, we can find a sequence

of objects 𝑆 = 𝑜𝑖 → 𝑜𝑖1 → 𝑜𝑖2 → . . . 𝑜 𝑗 such that the neighboring

objects are 𝜖-reachable. Suppose 𝑜𝑢 → 𝑜𝑣 is the first pair of objects

in 𝑆 satisfying 𝐺 ′ (𝑜𝑖 ) = 𝐺 ′ (𝑜𝑢 ) ≠ 𝐺 ′ (𝑜𝑣). Then, we find a pair of

objects (𝑜𝑢 , 𝑜𝑣) that are 𝜖-reachable but𝐺 ′ (𝑜𝑢 ) ≠ 𝐺 ′ (𝑜𝑣). This also
leads to contradiction for mapping function 𝐺 ′ (·). □
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5.3 Optimized Verification and Dominance
Elimination

Assisted by TCS-tree, we can perform frequent subsequence mining

to quickly identify candidate paths with at least 𝑘 cameras and

traversed by at least𝑚 objects. To support efficient verification on

these candidates, we propose a sliding-window based candidate

enumeration strategy and a hashing-based dominance eliminator.

5.3.1 Sliding-window Based Candidate Enumeration. Let𝑀𝐶1 →
𝑀𝐶2 → . . . → 𝑀𝐶𝑛 (𝑛 ≥ 𝑘) be a candidate sequence of meta-

clusters generated by TCS-tree. Each meta-cluster𝑀𝐶𝑖 is derived

from a camera 𝑐𝑖 and merged by multiple temporal clusters. An

unoptimized verification procedure has to check all combinations

of temporal clusters from different cameras, perform object inter-

section among the temporal clusters, and preserve result sets with

at least 𝑚 objects. The idea of CMC algorithm can be adopted

to improve efficiency. We can traverse the cameras and main-

tain a buffer to store partial intersection results. When we ac-

cess camera 𝑐𝑖 , we only need to perform set intersection between

the temporal clusters in 𝑐𝑖 and the candidate object sets in the

buffer. Nonetheless, the procedure requires heavy object set inter-

section operators. Even though the operation can be optimized to

𝑂 (𝑚 log(𝑛/𝑚)) (𝑚 ≤ 𝑛) [1], this requires non-trivial implementa-

tion skills. In addition, the temporal clusters are overlapped with

high redundancy. If we can save cost from unnecessary computa-

tion cost incurred by the redundant data, the performance can be

further improved.

Algorithm 4 depicts our sliding-window based verification al-

gorithm. The sequence of meta-clusters 𝑀𝐶1 → 𝑀𝐶2 → . . . are

processed in order. Let𝑀𝐶𝑖 be the current meta-cluster in camera

𝑐𝑖 . It essentially consists of a sequence of objects ordered by the

entrance time to the camera and these objects are grouped into

temporal clusters. We access these objects in order and maintain

a sliding window𝑊 = [𝑜𝑙 , 𝑜𝑟 ] using the data structure of queue,

where 𝑜𝑟 is the current object and 𝑜𝑙 is the first object that belongs

to the same temporal cluster with 𝑜𝑟 . Then, enqueue and dequeue

operations are used for adding or removing an element from the

sliding window, respectively. We also maintain C to store the can-

didate patterns generated during the verification process. For each

candidate pattern 𝐶𝑃𝑖 = ⟨𝑂𝑖 , 𝑃𝑖 ⟩, we construct a queue 𝑄 [𝐶𝑃𝑖 ] to
store the common objects in 𝑂𝑖 and the objects in the sliding win-

dow [𝑜𝑙 , 𝑜𝑟 ]. The elements in 𝑄 [𝐶𝑃𝑖 ] will be dynamically updated

when the sliding window moves.

When we access the current object 𝑜𝑟 , we retrieve the set of

candidate patterns in C whose object set contains 𝑜𝑟 . This step can

be efficiently conducted by building an inverted index for the candi-

date patterns in an online fashion. For each pattern 𝐶𝑃𝑖 containing

𝑜𝑟 , we append 𝑜𝑟 to 𝑄 [𝐶𝑃𝑖 ] with complexity 𝑂 (1). If 𝑜𝑟 is the end
of a temporal cluster and |𝑄 [𝐶𝑃𝑖 ] | ≥ 𝑚, we find and store the new

candidate pattern ⟨𝑄 [𝐶𝑃𝑖 ], 𝑃𝑖 → 𝑐𝑖 ⟩. The sliding window is also

updated when 𝑜𝑟 switches to a new temporal cluster. We iteratively

remove 𝑜𝑙 from the sliding window until 𝑜𝑙 and 𝑜𝑟 belong to the

same temporal cluster. When 𝑜𝑙 is removed from the sliding win-

dow, we also dequeue 𝑜𝑙 from 𝑄 [𝐶𝑃𝑖 ] for those candidate patterns
𝐶𝑃𝑖 containing 𝑜𝑙 .

Example 5.3. We present an example in Figure 3 to explain the

procedure of sliding-window based verification. In this example, we

set𝑚 = 2, 𝑘 = 3 and group objects within the same temporal cluster.

Supposewe are now processingmeta-cluster𝑀𝐶4 and the candidate

patterns after processing𝑀𝐶1,𝑀𝐶2 and𝑀𝐶3 include𝐶𝑃1 and𝐶𝑃2.

The objects in𝑀𝐶4 are accessed in the order of 𝑜3 → 𝑜4 → 𝑜2 → 𝑜5
and they form two temporal clusters {𝑜3, 𝑜4, 𝑜2} and {𝑜4, 𝑜2, 𝑜5}.
When the first two objects 𝑜3 and 𝑜4 are accessed, the sliding win-

dow is expanded to [𝑜3, 𝑜4]. By checking the inverted index, we

also append 𝑜3 to 𝑄 [𝐶𝑃1] and 𝑜4 to 𝑄 [𝐶𝑃2]. When 𝑜2 is accessed,

it is enqueued into the sliding window, which becomes [𝑜3, 𝑜4, 𝑜2].
Since 𝑜2 is contained in 𝐶𝑃2, we add 𝑜2 to 𝑄 [𝐶𝑃2], resulting in a

new candidate pattern 𝐶𝑃 ′ = ⟨{𝑜4, 𝑜2}, 𝑐2 → 𝑐3 → 𝑐4⟩. Finally,
when the last object 𝑜5 is accessed, 𝑜3 is dequeued from the sliding

window and 𝑜5 is enqueued. 𝑄 [𝐶𝑃2] is updated and another new

candidate pattern 𝐶𝑃 ′′ = ⟨{𝑜4, 𝑜2, 𝑜5}, 𝑐2 → 𝑐3 → 𝑐4⟩ is generated.

𝒐𝟐𝒐𝟐
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𝐌𝐂𝟐

CP2 = 𝑜2, 𝑜4, 𝑜5 , 𝑐2 → 𝑐3

Inverted Index:
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o2 → CP2
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∅

𝒐𝟐
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𝒐𝟓 Enqueue 𝒐𝟓 →   [𝑜4, 𝑜2, 𝑜5]
Q CP1 : ∅

𝐐 𝐂𝐏𝟐 : [𝒐𝟒, 𝒐𝟐, 𝒐𝟓]

CP′ = 𝑜4, 𝑜2 , 𝑐2 → 𝑐3 → 𝑐4
CP′′ = 𝑜4, 𝑜2, 𝑜5 , 𝑐2 → 𝑐3 → 𝑐4
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→ → →

Figure 3: An example of Sliding-window Based Verification

Comparedwith traditional CMC algorithm that requires frequent

set intersection, our sliding-window based verification strategy has

two advantages. First, we require no explicit set intersection. The

objects are enqueued and dequeued with𝑂 (1) complexity to update

the common objects shared by the sliding window and candidate

patterns. Second, each object is accessed only once, even when it

is contained in multiple temporal clusters. This property is useful

to handle overlapped temporal clusters with high redundancy and

can save considerable computation cost.

5.3.2 Hashing-based Dominance Verification. In order to identify

all the maximal patterns, we need to perform dominance verifica-

tion among the co-movement patterns in R and eliminate those

that are dominated. A naive approach is to examine each 𝐶𝑃𝑖 =

⟨𝑂𝑖 , 𝑃𝑖 ⟩ ∈ R whether there exists a pattern𝐶𝑃 𝑗 = ⟨𝑂 𝑗 , 𝑃 𝑗 ⟩ ∈ R that

dominates it, by verifying whether 𝑂𝑖 ⊆ 𝑂 𝑗 and 𝑃𝑖 ⊆ 𝑃 𝑗 . However,

this approach is inefficient and entails a considerable amount of

unnecessary examination cost when 𝐶𝑃𝑖 is not dominated by 𝐶𝑃 𝑗 .

In order to enhance efficiency in dominance verification, we put

forward a hashing-based approach. Rather than comparing each
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Algorithm 4: Sliding-window Based Verification

1 C← ∅;
2 for each𝑀𝐶𝑖 with camera 𝑐𝑖 in the frequent sequence do
3 𝑊 ← queue;𝑄 ← ∅; C𝑛𝑒𝑤 ← ∅;
4 for each candidate pattern𝐶𝑃𝑖 ∈ C do
5 𝑄 [𝐶𝑃𝑖 ] ← queue;
6 𝑆 ← objects of𝑀𝐶𝑖 in order of entrance time in 𝑐𝑖 ;

7 for each object 𝑜𝑟 in 𝑆 do
8 Enqueue 𝑜𝑟 into𝑊 ;

9 for each𝐶𝑃𝑖 ∈ C containing 𝑜𝑟 do
10 Enqueue 𝑜𝑟 into𝑄 [𝐶𝑃𝑖 ];
11 if 𝑜𝑟 is the end anchor of a temporal cluster then
12 for each𝐶𝑃𝑖 ∈ C do
13 if |𝑄 [𝐶𝑃𝑖 ] | ≥ 𝑚 then
14 C𝑛𝑒𝑤 ← C𝑛𝑒𝑤 ∪ ⟨𝑄 [𝐶𝑃𝑖 ] , 𝑃𝑖 → 𝑐𝑖 ⟩;
15 while 𝑜𝑙 and 𝑜𝑟 in different temporal clusters do
16 Dequeue 𝑜𝑙 from𝑊 and𝑄 ;

17 for each candidate pattern𝐶𝑃𝑖 ∈ C do
18 if |𝑃𝑖 | ≥ 𝑘 then R← R ∪𝐶𝑃𝑖 ;
19 for each𝑇𝐶 𝑗 ∈ 𝑀𝐶𝑖 in the frequent sequence do
20 C𝑛𝑒𝑤 ← C𝑛𝑒𝑤 ∪

〈
𝑇𝐶 𝑗 , 𝑐𝑖

〉
;

21 C← C𝑛𝑒𝑤 ;

22 return R;

𝐶𝑃𝑖 against all other patterns in R, we need only examine whether

𝐶𝑃𝑖 is dominated by 𝐶𝑃 𝑗 with 𝑂𝑖 = 𝑂 𝑗 or 𝑃𝑖 = 𝑃 𝑗 , by virtue of the

following lemma:

Lemma 5.4. For any pattern 𝐶𝑃𝑖 = ⟨𝑂𝑖 , 𝑃𝑖 ⟩ in the result set R
generated by Algorithm 4, if 𝐶𝑃𝑖 is dominated in R, then there must
exist another pattern 𝐶𝑃 = ⟨𝑂, 𝑃⟩ ∈ R such that 𝑂𝑖 = 𝑂 or 𝑃𝑖 = 𝑃 .

Proof. We prove by contradiction. Let us assume 𝐶𝑃𝑖 is domi-

nated by a pattern 𝐶𝑃 𝑗 = ⟨𝑂 𝑗 , 𝑃 𝑗 ⟩ ∈ R and we have 𝑂𝑖 ⊆ 𝑂 𝑗 and

𝑃𝑖 ⊆ 𝑃 𝑗 . If there is no pattern 𝐶𝑃 = ⟨𝑂, 𝑃⟩ ∈ R with 𝑂𝑖 = 𝑂 or

𝑃𝑖 = 𝑃 , we can conclude that 𝑂𝑖 ≠ 𝑂 𝑗 and 𝑃𝑖 ≠ 𝑃 𝑗 (i.e., 𝑂𝑖 ⊂ 𝑂 𝑗

and 𝑃𝑖 ⊂ 𝑃 𝑗 ).

Without loss of generality, we denote 𝑃𝑖 = 𝑐1 → 𝑐2 → . . .→ 𝑐𝑛 .

Since 𝐶𝑃 𝑗 = ⟨𝑂 𝑗 , 𝑃 𝑗 ⟩ is a valid pattern, there exists a temporal

cluster with object set 𝑂𝑐 ⊇ 𝑂 𝑗 for camera 𝑐𝑛 . On the other hand,

since𝑂𝑖 is a pattern inR, we assume it is generated by the candidate

pattern 𝐶𝑃𝑢 = ⟨𝑂𝑢 , 𝑃𝑢⟩ with 𝑂𝑢 ⊇ 𝑂𝑖 and 𝑃𝑢 = 𝑐1 → 𝑐2 → . . .→
𝑐𝑛−1. Since𝑂𝑐 is also a temporal cluster in camera 𝑐𝑛 , we know from

Algorithm 4 that 𝑂𝑐 and candidate pattern 𝐶𝑃𝑢 can lead to a new

pattern ⟨𝑂𝑐
⋂
𝑂𝑢 , 𝑃𝑖 ⟩, which dominates𝐶𝑃𝑖 because𝑂𝑖 ⊆ 𝑂𝑐

⋂
𝑂𝑢

and their travel path is identical. The pattern ⟨𝑂𝑐
⋂
𝑂𝑢 , 𝑃𝑖 ⟩ will be

added into R and thus, we find a pattern leading to a contradiction.

□

In this way, we can build two hash maps 𝐻𝑇𝑃 and 𝐻𝑇𝑂 . 𝐻𝑇𝑃

uses the travel path as the key and 𝐻𝑇𝑂 uses the object set as the

key. For each candidate pattern𝐶𝑃𝑖 , we only need to compare with

the patterns in 𝐻𝑇𝑃 [𝑃𝑖 ] and 𝐻𝑇𝑂 [𝑂𝑖 ].

5.4 Complexity Analysis
Frequent subsequence mining. To build TCS-tree, temporal clus-

tering is performed within each camera with linear complexity.

Given 𝑁 objects with average travel path 𝐿, the complexity is

𝑂 (𝑁𝐿). Since the merge operation to generate meta-clusters, the

construction of suffix tree, and applying suffix tree for frequent

subsequence mining are all linear [23], the total complexity in this

module is 𝑂 (𝑁𝐿).
Sliding-window based verification. Given 𝑀 frequent subse-

quences generated from TCS-tree, we need to perform the sliding-

window based verification for each sequence ofmeta-clusters, whose

average length is assumed to be
¯𝑘 . From Algorithm 4, we know

that the processing cost of each meta-cluster (lines 3-21) is linearly

correlated with inverted index size and meta-cluster size. Suppose

there are 𝑏 candidate patterns in the buffer and each contains an av-

erage of 𝑚̄ objects. Let 𝑐 be the average size of a meta-cluster. Then,

the cost of sliding-window based verification is 𝑂 (𝑀 ¯𝑘 (𝑏𝑚̄ + 𝑐)).
Hashing-based dominance eliminator. The complexity of this

component is straightforward to estimate. For each candidate 𝐶𝑃𝑖 ,

we only need to comparewith the patterns in𝐻𝑇𝑃 [𝑃𝑖 ] and𝐻𝑇𝑂 [𝑂𝑖 ].
So the complexity is determined by the length of 𝐻𝑇𝑃 [𝑃𝑖 ] and
𝐻𝑇𝑂 [𝑂𝑖 ] and the examination cost of subset relationship.

5.5 Extension to Overlapped Cameras
In real-world surveillance camera systems, a moving object could

be captured by multiple cameras simultaneously, especially in the

area of road intersections. To handle the scenario, our idea is to

cluster the cameras with overlapped view into a virtual camera V.

For any camera 𝑐𝑖 ∈ 𝑉 , there exists 𝑐 𝑗 ∈ 𝑉 such that 𝑐𝑖 and 𝑐 𝑗 have

overlapped view. For any two cameras from different clusters, they

are not overlapped. Suppose a moving object is captured bymultiple

cameras within𝑉 , which we denote as (𝑐𝑖 , [𝑠𝑖 , 𝑒𝑖 ]), . . . , (𝑐 𝑗 , [𝑠 𝑗 , 𝑒 𝑗 ])
and these time intervals are overlapped. We can replace them

as (𝑉 , [min(𝑠𝑖 , . . . , 𝑠 𝑗 ),max(𝑒𝑖 , . . . , 𝑒 𝑗 )]). Hence, the travel path of

each object is represented as a sequence of camera cluster IDs and

the enlarged time intervals. In this way, the representation of travel

path is consistent with our original data model and we can still

apply the proposed mining algorithms to identify co-movement

patterns of grouped objects.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets. Since there lack large-scale and publicly-accessible tra-

jectories recovered from videos, we construct two types of datasets

for co-movement pattern mining. In the first group of datasets, we

use real GPS trajectories and road network to generate approxi-

mate trajectories recovered from videos. We can deploy a specified

number of cameras randomly on the road network. The position

and view field of each camera are considered as prior knowledge.

From the GPS trajectories, we can roughly estimate the entrance

time and exit time from a camera according to the travel speed

estimation and the attributes of the camera. In this way, we can

convert a GPS trajectory into a sequence of camera IDs and the

time interval captured by each camera is also available. In our im-

plementation, we use real trajectory datasets of DIDI Chengdu [22]

and Singapore Taxi [6] as well as their road network to construct

two video trajectories for co-movement pattern mining.

In the second group of dataset, we start from raw videos and

employ the end-to-end mining pipeline presented in Section 2.3
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to evaluate the effectiveness of co-movement pattern mining from

videos. We adopt Carla [9] to generate synthetic video benchmark

datasets. In this dataset, we generate 1169 cameras, with 1833 vehi-

cles moving across the road network. We apply recent trajectory

recovery algorithm [27] on these raw videos to generate a sequence

of camera id for each vehicle. As the counterpart, we can also de-

rive the GPS trajectories of vehicles from the simulation engine of

Visual Road. These GPS trajectories will be used as groundtruth for

effectiveness evaluation.

Comparison Approaches. We compare the proposed TCS-tree
with the two baselines derived from previous co-movement pattern

miners, namely CMC andApriori. In addition, we also incorporate

the baseline presented in Section 5.1. The algorithm, denoted by

FSM, adopts suffix tree and our proposed sequence-ahead mining

framework to mine frequent subsequences. It does not leverage our

improved strategies proposed in Section 5.

Parameter Setup. We examine the scalability of the proposed algo-

rithms in terms of the six parameters listed in Table 3. Among them,

𝑘 ,𝑚, 𝜖 are related to the definition of a co-movement pattern. The

remaining parameters are related to dataset settings, including mov-

ing object number, camera number and the average travel length

per object. We use the same settings for query parameters 𝑘 ,𝑚 and

𝜖 for pattern mining in Chengdu and Singapore datasets. However,

the parameters related to dataset settings are different. Overall, the

Singapore dataset has a much smaller number of distinct objects,

but with longer travel path per vehicle. The default parameters are

highlighted in bold.

Table 3: Parameter setup for scalability analysis.

Query path length 𝑘
Singapore

2, 3, 4, 5, 6, 7, 8
Chengdu

Group size𝑚
Singapore

2, 3, 4, 5, 6, 7, 8
Chengdu

Threshold 𝜖
Singapore

40, 50, 60, 70, 80, 90, 100
Chengdu

Camera number

Singapore 10k, 15k, 20k, 25k, 30k, 35k
Chengdu 3k, 4k, 5k, 6k, 7k, 8k, 9k

Object number

Singapore 1.5k, 2.1k, 2.3k, 2.5k, 2.7k
Chengdu 6k, 7k, 8k, 9k, 10k, 11k, 12k

Average path length Singapore 200, 300, 400, 500, 600, 700, 800
(#cameras per vehicle) Chengdu 90, 100, 110, 120, 130, 140, 150

All the algorithms are implemented in C++ language and con-

ducted on the server with a 3.20 GHz i9-12900K CPU, 128GB of

main memory and 1 TB hard drive. The server runs a Ubuntu Linux

release 20.04.5.

6.2 Scalability Analysis
Increasing path length k. In the first experiment, we report the la-

tency of co-movement pattern mining w.r.t. increasing 𝑘 . As shown

in Figure 4, the two baselines are inefficient, with their execution

time being at least 100 times greater than that of our proposed TCS-

tree approach. They need to enumerate and verify an enormous

number of candidate patterns, necessitating frequent operations of

object set intersection. To investigate this phenomenon further, we

examine the frequency of object set intersections incurred during

the pattern mining process. The findings reveal a direct correla-

tion between this indicator and the overall execution time. Apriori

and CMC trigger billions of set intersection operations, which be-

come the primary performance bottleneck. Moreover, we observe

that these two baselines are not sensitive to 𝑘 . Since the mining

task intends to find non-dominated maximal patterns, they need to

enumerate all the candidate paths with varying length.

The FSM algorithm incorporates our proposed sequence-ahead

mining framework, surpassing the performance of the baselines

and affirming the effectiveness of leveraging suffix trees to filter out

false positive candidates. Moreover, as 𝑘 increases, both FSM and

TCS-tree demonstrate enhanced pruning capabilities. The frequent

subsequence mining technique expeditiously filters a substantial

number of candidate patterns with lengths smaller than 𝑘 . Our TCS-

tree method achieves a significant improvement over FSM. Its index

is based on sequences of meta-clusters, which are more fine-grained

than the camera sequences in FSM. In addition, it incorporates a

sliding-window-based verification and a hashing-based dominance

eliminator to further improve efficiency.

(a) Chengdu (b) Singapore

(c) Chengdu (d) Singapore

Figure 4: Increasing query path length 𝑘 .

Increasing group sizem. The results with increasing group size𝑚

are reported in Figure 5. It is interesting to find that CMC and Apri-

ori are very sensitive to parameter𝑚. When𝑚 is large, the number

of candidate patterns undergoes a significant reduction, enabling

them to even surpass the performance of the FSM algorithm. This

behavior can be attributed to the fact that CMC and Apriori retain

candidate patterns comprising a minimum of𝑚 objects. When𝑚

increases, the number of candidate patterns is sharply reduced, re-

sulting in much lower computation cost for object set intersection.

For FSM and TCS-tree, their performances initially benefit from the

increase of𝑚 because fewer frequent subsequences are generated.

When𝑚 continues to grow, there exist a small number of candidate

patterns and the total computation overhead is dominated by the

index construction and frequent subsequence mining.
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(a) Chengdu (b) Singapore

Figure 5: Increasing m.

Increasing proximity threshold 𝜖 . As 𝜖 increases, there are more

valid candidate patterns, leading to an escalation in the running time

of all the algorithms. Notably, the FSM algorithm is less sensitive to

𝜖 because it does not leverage the parameter for candidate pruning

in the stage of frequent subsequence mining.

(a) Chengdu (b) Singapore

Figure 6: Increasing 𝜖.

Increasing dataset-related parameters. In Figure 7, we perform

scalability analysis w.r.t. concerning the number of cameras, moving

objects, and the average length of travel paths for each object.

It’s not surprising to observe that the figures illustrate an evident

ascending trend across all the algorithms.

Notably, the two baselines display a greater sensitivity to the

cardinality of the dataset, including the number of objects and the

travel path length of each object. They exhibit a considerably more

pronounced increasing trend in the two factors when compared

with the factor of camera number. Even though CMC applies Apri-

ori algorithm to the combination of cameras, the road network

ontology remains unchanged. Hence, the deployment of additional

cameras in the road network does not yield a significant increase

in the number of edges within the derived camera network.

6.3 Break-down Analysis and Ablation Study
This experiment is designed with two goals. Firstly, considering that

the TCS-tree algorithm comprises three essential steps, including

frequent subsequence mining, verification of candidate patterns,

and the elimination of dominated patterns, we conduct a break-

down analysis to assess the computational cost associated with

each component. Secondly, our technical contributions originate

from TCS-tree construction, sliding-window-based verification, and

hashing-based dominance elimination, so we perform an ablation

(a) Chengdu (b) Singapore

(c) Chengdu (d) Singapore

(e) Chengdu (f) Singapore

Figure 7: Adjusting dataset-related parameters.

study to evaluate their impact by devising three variants of our

proposed algorithm. The first variant, denoted as TCS-v1, replaces

the hashing-based dominance eliminator with the one employed

in the baseline methods. The second variant, known as TCS-v2,

substitutes the sliding-window-based verification with CMC algo-

rithm. The third variant, namely TCS-v3, builds TCS-tree on top of

sequences of camera ids instead of meta-clusters and applies our

proposed verification and de-dominance techniques. The goal is

to identify the pruning power of fine-grained representation for

frequent subsequence mining.

We run these algorithms with default parameter settings in Ta-

ble 3. From the running time results in Figure 8,the verification

module incurs the highest computational cost, accounting for ap-

proximately 75% of the total processing time in the Chengdu dataset.

Disabling the hashing-based dominance eliminator in TCS-v1 leads

to an almost twofold cost increase in this component. Similarly,

removing the sliding-window based verification in TCS-v2 results

in a significant cost escalation. The fine-grained data model that

represents each object as a sequence of meta-clusters plays the most

important role. Substituting this model with sequences of camera

IDs dramatically increases the expense of frequent subsequence

mining. The reason is that in the original TCS-tree, meta-clusters

with size smaller than𝑚 can be removed, yielding shorter sequences
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compared to TCS-v3 and reducing the computational cost for suf-

fix tree construction and frequent subsequence mining. TCS-v3

incurs higher costs for verification and dominance elimination due

to its generation of a greater number of candidate patterns. To

provide a baseline comparison, we also included FSM in the figure,

which lacks the fine-grained data model, sliding-window based

verification, and hashing-based dominance eliminator.

(a) Chengdu (b) Singapore

Figure 8: Break-down analysis and ablation study.

6.4 Effectiveness Analysis
In the final experiment, our goal is to examine the congruence

between the co-movement patterns derived from video recordings

and those generated by GPS trajectories. In our datasets generated

by Carla, the GPS trajectories can be predetermined by the simula-

tion engine, thereby enabling us to employ them as a reference to

generate accurate patterns. Regarding the video data, we utilize the

TCS-tree methodology on two distinct data sources. In the first data

source, we adopt an existing map matching algorithm to convert

the GPS trajectories into camera sequences, which are referred to as

oracle travel paths. This is equal to assuming the existence of a per-

fect trajectory recovery algorithm that generates correct sequences

for each moving object. In the second source, we implement the

pipeline outlined in Section 2.3, wherein the TCS-tree approach

is employed to identify co-movement patterns based on imperfect

trajectories extracted from the videos.

We employ the flock pattern mining algorithm [24] to establish

the groundtruth for co-movement patterns derived from GPS trajec-

tories. The flock pattern algorithm necessitates the consideration

of spatial proximity between pairs of objects, which aligns with

our requirement for 𝜖-reachability between object pairs. We utilize

the 𝐹1-score as the performance metric. A co-movement pattern

𝐶𝑃1 generated by our algorithm is deemed to match 𝐶𝑃2 from the

groundtruth patterns if they both encompass the same set of objects,

while ensuring that the intersection over union (𝐼𝑜𝑈 ) between their

respective time spans exceeds the threshold of 0.8.

Regarding the parameters associated with flock patterns, we set

the minimum group size as 2, the minimum time span as 10 seconds,

and the disk radius as 100 meters. It takes 36.6 seconds to mine

flock patterns from GPS data, whereas TCS-tree only consumes

0.2 seconds for co-movement pattern mining from the extracted

camera sequences. As to pre-processing step for trajectory recov-

ery from videos, it takes the method proposed in [27] 3.5 hours

to perform iterative clustering on the snapshots captured by the

cameras. The objects within the same cluster are considered to be

the same entity. Fortunately, this pre-processing step is executed

only once. Furthermore, in addition to facilitating co-movement

pattern analysis, the output of this step can be effectively leveraged

to support diverse downstream applications.

As shown in Figure 9, we report the 𝐹1-scores with varying travel

path length among the detected patterns. Notably, when executing

the TCS-tree algorithm on the oracle camera sequences derived

from GPS trajectories, the attained 𝐹1-scores are close to 1. This out-

come suggests a remarkable similarity between co-movement pat-

tern mining driven by video analysis and conventional GPS-driven

approaches. Hence, in scenarios where GPS data is inaccessible, a

sole reliance on video data sources for co-movement pattern mining

emerges as a viable alternative. In practical applications, it is worth

noting that trajectory recovery algorithms such as [27] inherently

generate imperfect travel paths. Consequently, when employing

the pipeline introduced in Section 2.3 on raw video footage, the

𝐹1-scores exhibit a noticeable decrease, yet they remain within an

acceptable range.

Figure 9: Effectiveness analysis for video-based co-movement
pattern mining.

7 CONCLUSION AND FUTURE STUDY
The study at hand makes the first attempt at co-movement pattern

mining from video data.We formulate the problem and theoretically

prove is NP-hardness. By adopting ideas from existing works, we

develop two baselines. We also propose a novel index TCS-tree and

an efficient verification strategy based on sliding window and a

hashing-based dominance eliminator. Experimental results validate

the efficiency of the proposed index and mining algorithm.

While this work is commendable, there remain certain limita-

tions that indicate a wide range of untapped opportunities. Firstly,

the focus of the present study is a specific case of co-movement

patterns. Future research can explore diversified co-movement pat-

tern definitions. Secondly, since the trajectories recovered from

videos are not perfect, probabilistic pattern mining could be an

interesting direction. Finally, we can explore co-movement pattern

mining from alternative sensory data such as bluetooth data.
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