
MOSER: Scalable Network Motif Discovery using Serial Test
Mohammad

Matin Najafi

The University of

Hong Kong

Hong Kong, China

matin@cs.hku.hk

Chenhao Ma

The Chinese

University of Hong

Kong, Shenzhen

Shenzhen, China

machenhao@cuhk.edu.cn

Xiaodong Li

The University of

Hong Kong

Hong Kong, China

xdli@cs.hku.hk

Reynold Cheng

The University of

Hong Kong

Hong Kong, China

ckcheng@cs.hku.hk

Laks V.S.

Lakshmanan

The University of

British Columbia

Vancouver, Canada

laks@cs.ubc.ca

ABSTRACT
Given a graph 𝐺 , a motif (e.g., 3-node clique) is a fundamental

building block for 𝐺 . Recently, motif-based graph analysis has at-

tracted much attention due to its efficacy in tasks such as clustering,

ranking, and link prediction. These tasks require Network Motif

Discovery (NMD) at the early stage to identify the motifs of 𝐺 .

However, existing NMD solutions have two drawbacks: (1) Lack

of theoretical guarantees on the quality of the samples generated

using the existing methods, and (2) inefficient algorithms, which

are not scalable for large graphs. These limitations hinder the ex-

ploration of motifs for analyzing large graphs. To address the above

issues, we propose a novel solution named MOSER (MOtif Discov-
ery using SERial Test). This novel NMD framework leverages a

significance testing method known as the serial test, which differs

from the existing solutions. We further propose two fast incre-

mental subgraph counting algorithms, allowing MOSER to scale

to larger graphs than ever possible before. Extensive experimental

results show that using MOSER can improve the state-of-the-art

up to 5 orders of magnitude in efficiency and that the motifs found

by MOSER facilitate downstream tasks such as link prediction.

PVLDB Reference Format:
Mohammad Matin Najafi, Chenhao Ma, Xiaodong Li, Reynold Cheng, Laks

V.S. Lakshmanan. MOSER: Scalable Network Motif Discovery using Serial

Test. PVLDB, 17(3): 591 - 603, 2023.

doi:10.14778/3632093.3632118

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/momatinaj/MOSER.

1 INTRODUCTION
Given a graph𝐺 , a motif𝑚 is a small graph with a few nodes, whose

occurrence in 𝐺 is significantly higher than expected [39, 45]. A

motif is a fundamental building block of a graph, and it facilitates

the understanding of the non-random, structural, or evolutionary

design principles used to construct the graph [32, 34, 55]. For ex-

ample, a Feed-Forward Loop (FFL) motif (e.g., Fig. 1c) is used to

study the regulatory control mechanism in gene transcriptional

networks [39, 60]; an undirected triangle motif supports the

Xiaodong Li is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.

doi:10.14778/3632093.3632118

1 2
3

4

5

6

7

89
10

11

12

13

14

15
16

(a)

1 2
3

4

5

6

7

89
10

11

12

13

14

15
16 1 2

3

4

5

6

7

8910

11

12

13

14

15
16

…

(c) FFL𝐺 (d) 𝑛(b) 1R R

Figure 1: (a) A graph 𝐺 ; (b) random graph 𝑅1 after switching
(2, 14) and (16, 8) on 𝐺 ; (c) Feed-Forward-Loop (FFL); and
(d) uniform graph 𝑅𝑛 after 𝑛 switching operations. The red
dashed lines denote the edges that take part in the FFL motif,
which is observed four times in the actual network.

study of relationships in social and epidemiological contact net-

works [14, 15, 55]. In recent years, researchers have effectively

employed motifs in “high-order” graph analytics [30], including

clustering [8, 29], link prediction [29], conductance [57], and com-

munity search [21].

Several different types of motifs such as FFL, stars, and triangles

have been studied in the literature. Much of the prior work (e.g.,

[3, 20, 44, 47]) focuses on motif counting, i.e., given a graph, count

the occurrences of given motif types. Not every motif type (i.e.,

graph pattern) occurs, or occurs sufficiently often in every graph.

Thus, given a graph 𝐺 , we first need to discover what are the un-
derlying motifs that form a basis for constructing 𝐺 , so that they

can be leveraged for the “high-order" analytics tasks above. In the

literature, Motif Discovery (MD) algorithms [8, 29, 30, 57]) have

been developed for this purpose. A motif is a 𝑘-node subgraph 𝑔,

whose frequency in 𝐺 is higher than expected. In the literature, 𝑘

is usually small (e.g., 𝑘 = 3, 4, or 5). Fig. 1(a) shows a graph 𝐺 . The

frequency of the FFL motif in Fig. 1(c) in 𝐺 is 4, the four instances

being (9, 8, 16), (2, 11, 14), (3, 6, 7), and (4, 5, 10). Edges contributing

to a FFL instance are colored red.

Problem 1. Existing NMD algorithms are computationally
expensive.Given a graph pattern 𝑔 (e.g., Fig. 1(c)), a statistical sig-
nificance test has to be performed on 𝑔. Specifically, 𝑔 is considered

to be a motif, if the frequency of 𝑔 in𝐺 is higher than the expected

frequency of 𝑔 in some number of random graphs derived from

𝐺 [39]. This test is very time consuming, because generating a

uniform random sample is expensive. In current NMD solutions, a

random graph is often generated by applying switching operations
repeatedly on the graph of interest. Fig. 1(b) shows a random graph

𝑅1, generated by performing a switching operation on 𝐺 , where

two edges are randomly selected from 𝐺 (e.g., (2, 14) and (16, 8)).

591

https://doi.org/10.14778/3632093.3632118
https://github.com/momatinaj/MOSER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632118
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Switching Steps

(a) Motif

Switching Steps

Fr
eq

ue
nc

y

(b) Non-motif

Switching Steps

(c) Non-motif

Figure 2: The frequency of motif and non-motifs over the no.
of switching operations on Social dataset.

These are replaced by two new edges with the destination nodes

of the selected edges swapped (i.e., (2, 8), (16, 14)). Notice that the

random graph created in this way is degree-equivalent to𝐺 – i.e., the

in- and out-degrees of the nodes of the random graph are identical

to those of 𝐺 . In order for NMD to be accurate, a huge number of

switching operations have to be applied to𝐺 , so that an unbiased, or

uniform, random sample can be generated (e.g., Fig. 1(d)). Previous

approaches require the number of switching operations on 𝐺 to

be a multiple of the number of edges in 𝐺 , making the number of

switching operations prohibitive for large graphs with millions of

edges. The problem is aggravated by the fact that a number (e.g.,

1000 in the literature) of uniform samples have to be generated for

carrying out the significance test.

• Problem 2. Performing subgraph counting on a large graph
is expensive. In NMD solutions, one of the main bottlenecks is

to obtain the frequency of a given graph pattern 𝑔 in graph 𝐺

and its associated random samples. While several fast counting

solutions (e.g., ESCAPE [44]) have been developed, they do not

scale to large graphs. For example, it takes a few hours just to

obtain the frequency of 5-node graph patterns in a million-node

scale graph in our experiments.

To summarize, existing NMD solutions cannot scale to large

graphs, because generating a uniform random sample is expensive

(Problem 1), and subgraph counting is expensive (Problem 2) for

these graphs. As a reference, in our experiments on the web-google
network with 1M nodes and 4.5M edges, 5 minutes are needed to

draw a random sample uniformly. Using 𝑛 = 1000 random graphs,

the entire NMD process for discovering 5-node motifs takes around

4 days with the use of the state-of-the-art subgraph counting algo-

rithm ESCAPE [44].

Motif frequency and switching. To address the challenge

of developing a scalable and accurate NMD solution, we leverage

the observation that when a switching operation is repeatedly

performed on𝐺 , the frequency of a motif of𝐺 drops sharply unlike

that of a non-motif. For example, the tailed-triangle is known

to be a motif for the Social graph (details in Section 6, Table 2,

row 2). In Fig. 2(a), we can see that its frequency on the random

graph derived from Social drops very quickly with the number of

switching operations. For a graph pattern 𝑔 to qualify to be a motif

of a given graph 𝐺 , 𝑔 has to be frequent in 𝐺 . Hence, an edge 𝑒

selected for switching has a high chance to participate in one or

more instances of 𝑔. When 𝑒 is removed by switching, its associated

instances of 𝑔 may also be “destroyed”. In Fig. 1(a), for example,

𝐺 has 4 instances of FFL. After a switch is performed (Fig. 1(b)),

Significance
Test

Subgraph
Counting

Serial
Test

(b) MOSER

Biased Sampling
(a) Existing MD algorithms

G

G

M

M

Sec. 2.4

Unbiased
Sampling

Sec. 2.3 Sec. 2.1

Sec. 4.1Sec. 5
Switching Incremental Counting

(TAC, ATAC)

Figure 3: Roadmap of our paper (𝐺 : graph;𝑀 : motifs).

the random graph 𝑅1 has 2 instances; the number of FFL instances

drop to zero after 𝑛 switches are performed (Fig. 1(c)). As illustrated

in Fig. 2(b)-(c), we do not observe this phenomenon for the two

non-motifs.

MOSER: A novel NMD framework. Based on the above intu-

ition, we propose our algorithm MOSER (or MOtif discovery using

SERial test), which facilitates scalable and accurate motif discovery.

The main idea is to view a sequence of switching operations on

graph𝐺 as a Monte Carlo Markov Chain (MCMC), and apply Serial

Test, an advanced significance testing method, to quickly decide

whether graph pattern 𝑔 is a motif of 𝐺 . We show that MOSER

substantially reduces the sample complexity of the NMD problem

while achieving results equivalent to the state-of-the-art NMD so-

lution. An additional advantage of MOSER is that it supports any
subgraph counting algorithm (for finding frequency of 𝑔 in a graph).

To further enhance the efficiency of MOSER, we develop two algo-

rithms: (1) Track And Count (TAC) which computes the frequency

of 𝑔 on a random graph 𝑟 ′ quickly from another random graph 𝑟 ,

from which 𝑟 ′ is derived by; and (2) Accelerated Track And Count
(ATAC), a solution particularly optimized for simple graphs and for

up to 5-node motifs.

We have performed extensive experiments on a variety of graphs,

and found that MOSER performs much better (up to 5 orders of
magnitude) over existing solutions. We have also performed a case

study on a motif-based link prediction algorithm [2]. It shows that

the motifs produced by MOSER are effective for downstream link

prediction. Overall, we make the following contributions:

(1) We propose MOSER, a scalable framework for motif discovery

from large graphs;

(2) We prove that MOSER is equivalent to existing NMD solu-

tions, i.e., it discovers the same motifs;

(3) We develop two fast and scalable incremental subgraph count-

ing algorithms (TAC and ATAC); and

(4) We perform extensive experiments, which show that MOSER

is more efficient than existing solutions.

Paper Organization. Fig. 3 shows the roadmap of the paper.

Section 6 presents our experimental results. Section 7 discusses

related work. Section 8 concludes the paper.

2 BACKGROUND
In this section, we discuss the problem of Motif Discovery in detail.

We start with some basic notations and follow up with a description

of the classic framework for motif discovery.

592

2.1 Graph Notation
Let 𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 and edge set 𝐸. When

the edges are directed (resp. undirected), we refer to it as a directed

(resp. undirected) graph. A graph is simple if there are no self-loops
nor parallel edges. In this work, we only consider simple graphs.

Definition 2.1 (Subgraph and Induced Subgraph). A subgraph

𝑔 = (𝑉𝑔, 𝐸𝑔) of a graph𝐺 is a graph such that 𝑉𝑔 ⊆ 𝑉 and 𝐸𝑔 ⊆ 𝐸. It
is said to be an induced subgraph if 𝐸 = 𝑉𝑔 ×𝑉𝑔 ∩ 𝐸, i.e., 𝑔 contains
all edges of 𝐺 whose endpoints are in 𝑉𝑔 . For brevity, we refer to

induced subgraphs as subgraphs.

Definition 2.2 (Graph Isomorphism). Two graphs 𝐺 and 𝐻 are

said to be isomorphic, denoted as 𝐺 ∼ 𝐻 , if there exists a bijection

between the vertices of both graphs such that two vertices of 𝐺

share an edge if and only if their corresponding vertices in 𝐻 also

share an edge. The best known algorithm for testing if two graphs

are isomorphic runs in pseudo-polynomial time [19].

2.2 Motif Discovery
As defined byMilo et al. [39], motifs are patterns of interconnections

occurring in complex networks in numbers that are significantly

higher than those in degree-equivalent randomized networks.

Definition 2.3 (Degree-equivalent Graphs). A graph 𝐺 ′ = (𝑉 ′, 𝐸′)
is degree-equivalent to 𝐺 = (𝑉 , 𝐸) if and only if |𝑉 | = |𝑉 ′ | and |𝐸 |
= |𝐸′ | and there exists a bijection 𝜓 : 𝑉 → 𝑉 ′, such that for any

node 𝑣 ∈ 𝑉 , 𝑑𝑖𝑛(𝑣) = 𝑑𝑖𝑛(𝜓 (𝑣)) (in-degree), and 𝑑𝑜𝑢𝑡 (𝑣) = 𝑑𝑜𝑢𝑡 (𝜓 (𝑣))

(out-degree).

Let Λ be the set of all graphs degree-equivalent to 𝐺 , and let 𝑔

be a 𝑘-node subgraph pattern. We define 𝐹𝑔(𝐺) to be the frequency

of all the subgraph patterns isomorphic to 𝑔 in 𝐺 . We define the

Motif Discovery problem formally as:

Definition 2.4 (Motifs). Based on the definitions in the previous

works[39, 59], we define a motif as an induced 𝑘-node subgraph 𝑔

of 𝐺 such that it satisfies the following conditions:

𝐹𝑔(𝐺) ≥ 𝑢 , (1)

Prob
(
𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)

)
≤ 𝑝 , (2)

where𝑢 is aminimum frequency threshold that ensures𝑔 is frequent
in 𝐺 , 𝑅 is a randomized graph degree-equivalent to 𝐺 , and 𝑝 is the

𝑝-value, that ensures that the 𝐹𝑔(𝐺) is statistically significant.

Let R be a randomly selected subset of Λ with size 𝑛, the LHS of

the Eq. 2 can be calculated as:

Prob
(
𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)

)
=

1

𝑛

∑︁
𝑅∈R

𝛿
[
𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)

]
(3)

Here, 𝛿[𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)] is an indicator function defined as:

𝛿[𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)] =

{
1 𝐹𝑔(𝑅) > 𝐹𝑔(𝐺)

0 otherwise
(4)

The parameters {𝑝, 𝑢, 𝑛} are user-defined and Milo et al. [39]

have suggested {𝑝 = 0.01, 𝑢 = 4, 𝑛 = 1000}. We refer to the above

as the BaseTest for motif discovery. Later, in some works [24, 26, 33],

another significance metric known as the 𝑧-score, was also used:

𝑧 =

𝐹𝑔(𝐺) − 𝐹𝑔(𝑅)

𝜎
(
𝐹𝑔(𝑅)

) , (5)

where 𝐹𝑔(𝑅) refers to the mean frequency of 𝑔 for every 𝑅 in Λ, and

𝜎
(
𝐹𝑔(𝑅)

)
refers to the standard deviation of the frequency of𝑔 in the

random graphs. Note that these two criteria (resp. based on 𝑧 and

𝑝) can be converted to each other if the underlying distribution of

the frequencies is known. So, in this paper we focus on the 𝑝-value

test (Eq. 2).

Let 𝑆𝑘 be the set of all 𝑘-node non-isomorphic subgraph patterns

that are present in 𝐺 . We define the motif set of 𝐺 as the set of

subgraphsM = {𝑔 ∈ 𝑆𝑘 | 𝑔 passes the BaseTest}. To calculateM,

we need (1) to generate a set of 𝑛 random graphs R, each of which is
degree-equivalent to 𝐺 , and (2) to find the frequencies 𝐹𝑔 of 𝑔 ∈ 𝑆𝑘 .
We refer to (1) as Random Graph Generation and to (2) as Subgraph
Counting. Limited by space, we attach pseudocode in full version [1]

to describe the baseline motif discovery procedure in detail. Next,

we discuss the Subgraph Counting and Random Graph Generation
problems in depth.

2.3 Subgraph Counting
Given a graph 𝐺 and a parameter 𝑘 , the goal is to count the 𝑘-

node subgraphs 𝑔 of 𝐺 . Subgraphs that are different in at least one

node are considered distinct. Let 𝑆𝑘 be the set of all 𝑘-node non-

isomorphic subgraphs 𝑔 that are present in 𝐺 . Now we formally

define the subgraph counting problem:

F𝑘 (𝐺) =

{(
𝑔, 𝐹𝑔(𝐺)

)
| 𝑔 ∈ 𝑆𝑘

}
(6)

There are twomain challenges in the subgraph counting problem.

First, the number of instances of a subgraph 𝑔 increases exponen-

tially w.r.t. the size of𝐺 and 𝑘 . Second, for every subgraph instance

𝑔 ⊆ 𝐺 , it is necessary to find the isomorphic class of 𝑔 and incre-

ment the respective class frequency. As the number of subgraph

instances grows exponentially with the size of 𝐺 and with 𝑘 , as-

signing every instance 𝑔 to its class is the main bottleneck for the

subgraph counting problem. For example, in the web-google dataset
there are ∼ 6 × 10

12
instances of undirected 4-node subgraphs and

even assuming that visiting and classifying each instance takes a

microsecond, the enumeration itself would take more than 40 days.

This is the reason why most of the NMD algorithms have based

their solutions on reducing the number of isomorphism checks.

The next step of the NMD is to generate an ensemble of ran-

dom graph samples to apply significance testing. The details of the

random graph generation problem are discussed next.

2.4 Random Graph Generation
The goal is to generate 𝑅 = (𝑉 , 𝐸′), a random graph sample that is

degree-equivalent to 𝐺 = (𝑉 , 𝐸), and is uniformly drawn from Λ. In

other words, the probability of drawing a graph from Λ at random

should be exactly
1

|Λ | .

As suggested by Milo et al.[38], the most practical
1
random

graph generation algorithm to maintain the degree-equivalence is

the Switching Method. This is the most widely accepted and used

method in the NMD literature. To understand the switching method,

we first define a Single Switch.

1
By practical wemean, the algorithm strikes a balance between efficiency and accuracy.

593

2023/3/21 23:21 useless_switch_2.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/switch/useless_switch_2.svg 1/1

A

DC

B A

DC

B

(a) Origin

2023/3/21 23:21 valid_switch_1.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/switch/valid_switch_1.svg 1/1

A

DC

B A

DC

B

(b) Valid

2023/3/21 23:21 useless_switch_2.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/switch/useless_switch_2.svg 1/1

A

DC

B A

DC

B

(c) Useless

2023/3/21 23:17 invalid_switch_3.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/invalid_switch_3.svg 1/1

A

DC

B A

DC

B

(d) Invalid

2023/3/21 23:21 invalid_switch_4.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/switch/invalid_switch_4.svg 1/1

A

DC

B A

DC

B

(e) Invalid

Figure 4: Single Switch from (a) an original graph to random
graphs that (b) swap (𝑎, 𝑏) and (𝑐, 𝑑), (c) swap (𝑐, 𝑎) and (𝑐, 𝑑), (d)
swap (𝑐, 𝑎) and (𝑎, 𝑏), and (e) swap (𝑐, 𝑎) and (𝑏, 𝑑).

Definition 2.5 (Single Switch). Let 𝜉 : Λ → Λ be a function

that given an input graph 𝐺 = (𝑉 , 𝐸) draws two random edges

𝑒1 = (𝑢1, 𝑣1), 𝑒2 = (𝑢2, 𝑣2) from 𝐸 where 𝑢1 ̸= 𝑣2, 𝑢2 ̸= 𝑣1 (to avoid

self-loops), and 𝑒′
1

= (𝑢1, 𝑣2) /∈ 𝐸, 𝑒′
2

= (𝑢2, 𝑣1) /∈ 𝐸 (to avoid parallel

edges), and outputs 𝑅 = (𝑉 , 𝐸′) where 𝐸′ = (𝐸 \ {𝑒1, 𝑒2}) ∪ {𝑒′
1
, 𝑒′

2
}.

This ensures𝐺 and 𝑅 are degree-equivalent. Fig. 4 illustrates differ-

ent variations of a single switch.

Definition 2.6 (Switching Method). The procedure of starting with
a graph 𝐺 and performing 𝜏 single switches on 𝐺 , resulting in a

random graph sample 𝑅 from Λ is called the Switching Method.
Parameter 𝜏 must be chosen large enough to guarantee that 𝑅 is a

uniformly drawn sample.

Some questions arise governing the use of the switching method.

(1) Is the switching method capable of generating uniform samples

with a large enough 𝜏? (2) If so, how large should the 𝜏 be? In

the NMD literature [38], these questions have been only discussed

empirically, and only on small graphs. It is empirically shown that

the switching method is able to generate uniform samples when 𝜏 ≥
100 × |𝐸 |. In later works, due to the high computational complexity

of the previous bound, a much smaller 𝜏 = 3 × |𝑉 | is used [24, 26].

Both of these bounds are ad hoc and do not come with any formal
guarantees.

2.5 Complexity
The NMD algorithm consists of two main parts: (1) Generating 𝑛

random graph samples 𝑅, (2) subgraph counting on the original

graph 𝐺 and on the 𝑛 random graphs. The run time complexity of

the classic NMD algorithm is

𝑂(

Sampling︷ ︸︸ ︷
𝑛 · (𝜏 ·𝑇 (𝜉(𝐺))) +

Counting subgraphs on G and R︷ ︸︸ ︷
𝑇 (F𝑘 (𝐺)) +

∑︁
𝑅𝑖 ∈𝑅

𝑇 (F𝑘 (𝑅𝑖))) (7)

where 𝑛 is the number of random graph samples, 𝑇 (𝜉(·)) denotes
the time complexity of performing a single switch on a given graph,

𝜏 is the minimum number of switches to generate a uniform random

graph sample, and𝑇 (F𝑘 (·)) denotes the time complexity of counting

all the 𝑘-node subgraphs on a given graph. As shown above, there

are three main parameters that affect the time complexity of NMD.

We’ve discussed the effect of 𝜏 and F𝑘 before. The final essential

parameter is𝑛, the number of random graph samples. Milo et al. [38]

suggested 𝑛 = 1000 is sufficient in most cases. For further reference,

the notations and symbols used in this paper are summarized in

Table 1. To summarize, the key questions governing the use of the
switching method are:

Table 1: The symbols and notations table.

Symb. Definition Symb. Definition

𝐺(𝑉 , 𝐸) Graph(Vertices, Edges) 𝑆 Set of all 𝑘-node subgraphs in 𝐺

M Set of all 𝑘-node motifs in 𝐺 𝜏 Number of switches for sampling

𝑝 Significance level of motifs 𝑢 Minimum frequency of a motif

F𝑘 (𝐺) Freq. of all 𝑘-node subgraphs in 𝐺 𝑅𝑖 SSN’s 𝑖-th random graph

𝑛 Number of Random Graphs 𝜉(𝐺) The Single Switch function

𝑑(𝑖) Degree of node 𝑖 𝑇 (𝐺) Triangle counts in graph 𝐺

𝑡 (𝑒) Triangle counts around edge 𝑒 𝑡 (𝑖) Triangle counts around node 𝑖

(1) Is the switching method capable of generating uniform

samples given a large enough 𝜏?

(2) If yes, what is the minimum number of switches for uniform

sampling (bound on 𝜏)?

(3) Given 𝜏 , is it computationally feasible to generate samples

using the switching method on large graphs?

The answers to the above questions are critical to understanding

the accuracy of the NMD algorithms, and to solving the scalability

issue of NMD algorithms. We address these questions in the next

section. To the best of our knowledge, this is the first time this

analysis is done in the NMD literature.

3 THE SWITCHING METHOD REVISITED
In this section, we theoretically analyze the switching method as

a Markov chains problem and answer the key questions raised in

the previous section to rigorously examine the feasibility of extend-

ing the existing NMD approaches to larger graphs. An important

property of the random graph sampling via the switching method

has the Markov property. By definition, every single switch only

depends on the current state of the graph, meaning that given the

current state, it is independent of the previous states.

Let𝑀 be a Markov chain with the transition matrix 𝑃 . Vector ®𝜋 is

said to be M’s stationary distribution if ®𝜋 ·𝑃 = ®𝜋 . Every state 𝑅𝑖 ∈ 𝑀
is a random graph degree-equivalent to 𝐺 . To theoretically show

that this Markov chain is suitable for drawing uniform samples

from Λ, we need to prove it has the following properties:

(1) 𝑀 converges to its stationary distribution ®𝜋 after a long

enough random walk (Irreducibility and Aperiodicity [5]).

(2) ®𝜋 is a uniform distribution on the state space Λ, i.e.,

𝜋𝑖 =

1

|Λ| , ∀𝜋𝑖 ∈ ®𝜋

Proving the above conditions is equivalent to answering the key
question (1). We refer to the Markov chain created using the switch-

ing method as Switched State Network (SSN).

3.1 Switched State Network (SSN)
Let 𝑃 |Λ |× |Λ | be the transition matrix of𝑀 on Λ. Every state 𝑅𝑖 of

the chain, represents a random graph degree-equivalent to 𝑅0 B 𝐺 .

Every transition between the states happens with a single switch

operation, i.e., state 𝑅𝑖 transits to 𝑅 𝑗 if and only if there exist edges

𝑒1, 𝑒2 in 𝑅𝑖 such that switching them transforms 𝑅𝑖 to 𝑅 𝑗 . Let Ω𝑖

be the set of all the possible single switches on state 𝑅𝑖 = (𝑉𝑖 , 𝐸𝑖).

Formally, we define Ω𝑖 as:

Ω𝑖 = {(𝑒1, 𝑒2) | (𝑒1, 𝑒2) ∈ 𝐸𝑖 × 𝐸𝑖 ∧ 𝑒1 ̸= 𝑒2}

594

2023/3/21 23:21 SSN_full_example.svg

file:///C:/Users/Sheldon/Downloads/VLDB_MODESA/New folder/switch/SSN_full_example.svg 1/1

AB-CD
P01 = 1/6

AD-CB
P10 = 1/6

AD-BC
P12 = 1/6

AC-BD
P21 = 1/6

BA-CD
P32 = 1/6

BD-CA
P23 = 1/6

P44 = 5/6

P11 = 2/3

P22 = 2/3

C

A

D

B

P00 = 5/6

A B

CD

A B

CD

A B

CD

R R

R R

(a) SSN

…

…

Z3

Z2

Z1

Z4

8379

87

105

103

82 85

92

Y1

Y2

Y3

Y4

100

Z49

Trajectory Y

Y50

…

…

…

…

…

…

…

…

…

…

…

…

12

… … … …… … …

… … … …… … …

15

R0

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Trajectory Z

(b) Serial Test

Figure 5: A toy example of (a) SSN and (b) applying Serial
Test on a simple Markov chain, where darker color means
more FFL instances.

Note that |Ω𝑖 | =
(|𝐸𝑖 |

2

)
, and the number of edges will not change

after a switch, so the number of edges |𝐸𝑖 | = |𝐸 | for every 𝑖 . Now
we define Ω

𝑣𝑎𝑙
𝑖 ⊂ Ω𝑖 as the set of all the valid switch pairs and

Ω
𝑖𝑛𝑣
𝑖 = Ω𝑖 − Ω

𝑣𝑎𝑙
𝑖 as the set of all invalid switch pairs. The valid

switch pairs are the pairs of edges that if switched, do not result in

parallel edges nor self-loops in 𝑅𝑖 (cf. Fig. 4b). We include useless

switches (cf. Fig. 4c) also in Ω
𝑖𝑛𝑣
𝑖 .

Using the above sets, we define the transition matrix 𝑃 as:

𝑃𝑖 𝑗 =


1

|Ω𝑖 | if 𝑖 ̸= 𝑗 & a valid switch exists between states i, j

1 − |Ω
𝑣𝑎𝑙
𝑖 |
|Ω𝑖 | if i=j

0 if 𝑖 ̸= 𝑗 & no valid switch exists between states i, j

We can operationalize the transition rules as follows:

(1) From the current state 𝑅𝑖 = (𝑉𝑖 , 𝐸𝑖), calculate Ω𝑖 and Ω
𝑣𝑎𝑙
𝑖

sets.

(2) From Ω𝑖 , choose one pair (𝑒1, 𝑒2) uniformly at random.

(3) If (𝑒1, 𝑒2) ∈ Ω
𝑣𝑎𝑙
𝑖 apply switch on 𝑅𝑖 and transit to 𝑅 𝑗 , stay

in 𝑅𝑖 otherwise.

Example 3.1 (Toy Example). Fig. 5a illustrates a toy SSN example.

State 𝑅0 represents the original graph. Ω
𝑣𝑎𝑙
0

= {(𝑒1 = (𝐴, 𝐵), 𝑒2 =

(𝐶, 𝐷))} contains only one valid switch pair. There are 4 edges in 𝑅0,

so |Ω0 |=
(
4

2

)
= 6. So, 𝑃01 =

1

|Ω0 | =
1

6
and 𝑃00 = 1 − 1

6
=

5

6
. The entire

transition matrix is illustrated in Fig. 5a. □

Now that we have modeled the Switching Method using the SSN,

we show that the SSN converges to its stationary distribution after

a sufficiently long random walk. This requires showing that the

SSN is irreducible and aperiodic[5].

Property 3.1. Irreducibility: The SSN is irreducible, because the
chain consists of one connected component by definition.

Property 3.2. Aperiodicity: Periodicity is a class property. Two
states 𝑖 and 𝑗 are in the same communication class if and only if 𝑖
is reachable from 𝑗 and 𝑗 is reachable from 𝑖 . If state 𝑖 of a Markov
chain is periodic with period 𝜔 (resp. aperiodic), then all the states in
the same communication class as 𝑖 are periodic with period 𝜔 (resp.
aperiodic). In SSN, all the transitions are bidirectional (i.e., 𝑃𝑖 𝑗 = 𝑃 𝑗𝑖).

So all the states of the SSN are in the same communication class. So,
if any state 𝑖 in SSN is aperiodic, the whole chain will be aperiodic. It
is known that if a state has a self-loop (i.e., 𝑃𝑖𝑖 > 0), it is aperiodic
[5]. So, to show SSN is aperiodic it is sufficient to show there exists
a state in SSN that has a self-loop. According to the definition of 𝑃 ,

probability of self-loops on the chain is 1 − |Ω
𝑣𝑎𝑙
𝑖 |
|Ω𝑖 | . So, it is enough to

show |Ω𝑣𝑎𝑙
𝑖 |< |Ω𝑖 | which is true if there exists a node 𝑢 in𝐺 such that

𝑑𝑒𝑔(𝑢) ≥ 2, because there are always edges such as (𝑎,𝑢) and (𝑢,𝑏)

(or (𝑢, 𝑎) and (𝑢,𝑏)) in |Ω𝑖 | that cannot exist in |Ω𝑣𝑎𝑙
𝑖 | because their

switch will end in a self-loop (or a switch that does not change the
state) in 𝐺𝑖 and it’s an invalid switch. The invalid switch will cause
self-loops on the state 𝑖 of the SSN.

Given the properties above, it follows that the SSN will converge
to a stationary distribution [5]. We denote the stationary distribution

by ®𝜋 . As shown before, the transition probability between every

two states 𝑅𝑖 and 𝑅 𝑗 is either
1

|Ω0 | if these two states are a single
valid switch away, or 0 otherwise. We know that if state 𝑅𝑖 is a

single valid switch away from 𝑅 𝑗 , the reverse is also true due to

the fact that every single switch is reversible. So 𝑃𝑖 𝑗 = 𝑃 𝑗𝑖 holds for

every 𝑅𝑖 and 𝑅 𝑗 in Λ. We now prove that ®𝜋 is uniform, meaning

that after convergence, it is equally likely to be in any state 𝑖 of the

chain.

Lemma 3.2. SSN has a unique and uniform stationary distribution.

Proof. Let |Λ| be the number of states in Λ. We first check that

∀𝑖 : 𝜋𝑖 =
1

|Λ | satisfies ®𝜋 · 𝑃 = ®𝜋 . Write:

(®𝜋 · 𝑃)𝑖 =

∑︁
𝑖
𝜋𝑖 · 𝑃𝑖 𝑗 =

1

|Λ|
∑︁
𝑖
𝑃 𝑗𝑖 =

1

|Λ| · 1 = 𝜋𝑖

This shows that the uniform distribution satisfies the stationary

property on the SSN. Next, we show that ®𝜋 is the unique stationary

distribution of the chain. According to the Perron-Frobenius theo-

rem [43], an irreducible and aperiodic Markov chain has a unique

stationary distribution. The Perron-Frobenius theorem states that if

a square matrix has a positive dominant eigenvalue, then the matrix

has a unique stationary distribution. A Markov chain with an irre-

ducible and aperiodic transition matrix has a dominant eigenvalue,

and therefore has a unique stationary distribution. □

This answers key question (1). We address the key questions (2)

and (3) next.

3.2 Mixing Time of the SSN
Taking 𝜏 switches to generate a random graph sample in the switch-

ing method is equivalent to taking a random walk of 𝜏 steps on

the SSN and report the resulting state as our random graph sample.

The minimum number of steps that a random walk should take

before converging to the chain’s stationary distribution is called

the mixing time denoted by 𝜏𝑚𝑖𝑥 . So, the switching method needs

to apply 𝜏 ≥ 𝜏𝑚𝑖𝑥 switches to 𝐺 to draw a uniform sample from Λ.

To our best knowledge, there are no tractable theoretical bounds in

the literature on the 𝜏𝑚𝑖𝑥 for the switching method. For example,

the mixing time estimate in [23] take the form of upper bounds and

of 𝑂(|𝐸 |6). It is clear that this bound is intractable even for a graph

with more than a thousand edges.

595

Mixing Time Bounds: Milo et al. in [38] has empirically shown

that 𝜏 = 100× |𝐸 | is sufficient in practice for small graphs(1K nodes).

In later works[24, 26], 𝜏 = 3 × |𝑉 | is commonly used, as using

𝜏 = 100 × |𝐸 | is computationally expensive. In a later work, Ray

et al.[46] showed that the mixing time is linear to the number of

edges in the original graph, i.e. 𝜏𝑚𝑖𝑥 ≈ 𝑐 ·𝑂(|𝐸 |). They also show

empirically that 5 ≤ 𝑐 ≤ 30 is sufficient in most cases.

Infeasibility of Uniform Sampling: As an example, when ana-

lyzing the Web-Google dataset, which features approximately 876𝐾

nodes and 4.3𝑀 edges, even if we use 𝜏 = 3 × |𝐸 | (which is smaller

than the bounds provided in [46]) as a valid means of ensuring

mixing for large graphs, it remains computationally infeasible to

execute. Our experiments indicate that generating one unbiased

sample on the com-youtube dataset takes around 4 minutes, which

means generating 𝑛 = 1000 samples would require around 3 days.

In summary, we have demonstrated that the switching algorithm

can draw uniform samples from Λ if and only if sufficient (𝜏𝑚𝑖𝑥)

switching steps (key questions (1) and (2)) are taken. We have

established that generating uniform samples for large graphs is not

computationally feasible, evenwhen utilizing empirical bounds (key

question (3)). In the next section, we efficiently solve the problem

of NMD using dependent sampling without sacrificing quality.

4 ASSESSING SIGNIFICANCE IN A MARKOV
CHAINWITHOUT MIXING

We have discussed in Sec. 2 and 3 of the main draft that the goal of

NMD is to test the significance of the frequency of a given subgraph

𝑔 in graph 𝐺 , denoted as 𝐹𝑔(𝐺). This is tested by calculating the

probability (𝑝-value) of having 𝐹𝑔(𝐺) or higher in all the random

graphs degree-equivalent to 𝐺 , if this probability is lower than 𝑝 ,

this means that 𝐹𝑔(𝐺) is significantly large, and 𝑔 is a motif of 𝐺 .

Existing approaches compute the 𝑝-value by drawing 𝑛 samples

from the state space Λ. These random graphs are then ranked based

on decreasing frequency of 𝑔. The 𝑝-value is determined as
𝑘
𝑛 , with

𝑘 representing the rank of 𝐹𝑔(𝐺). A user-defined threshold (e.g., 0.05)

is used to decide motif status; if
𝑘
𝑛 is below this threshold, subgraph

𝑔 is identified as a motif in 𝐺 . Importantly, this method is effective
only under uniform random graph sampling, where each random

graph’s selection probability is
1

|Λ | . Consequently, the accuracy of

the computed 𝑝-value relies heavily on sample quality.

We have shown in Sec. 3.2 that drawing these uniform indepen-

dent samples on large graphs are infeasible. Using the intuition and

observation that if a subgraph 𝑔 is a motif of 𝐺 , every switching

step breaks one or more 𝑔 structures and transform them into new

subgraphs with a high probability, we use another statistical test to

assess significance.

Example 4.1. In Fig. 6(a), each switch breaks themotif’s structure,

leading to a decreasing trend in frequency of 𝑔 until𝐺 transforms

to a random graph and 𝑔 is no longer a motif, then the trend stabi-

lizes. However, in Fig. 6(b), while the subgraph’s structure might

temporarily break due to switches, it later regenerates.

This observation brings up the interesting question that “Is it

possible to test the significance without requiring to get uniform

independent samples?” We have found that there exists a test for

assessing significance on Markov chains without requiring the

chain to mix that works under certain conditions which we discuss

here.

4.1 Serial Test
This part formally introduces the Serial test, that assesses the signif-

icance in reversible Markov chains without requiring it to mix and

without the need for independent sampling. We start by proving

the reversibility of SSN, then discussing the details of the Serial

Test. This test was first introduced by Besag and Clifford in [9] and

then further discussed by Chikina et al. in [12].

Property 4.1. Reversibility SSN is reversible because it supports
the detailed balance property [5] which is 𝜋𝑖𝑃𝑖 𝑗 = 𝜋 𝑗𝑃 𝑗𝑖 , since 𝜋𝑖 =

𝜋 𝑗 = 1/|Λ|, and 𝑃𝑖 𝑗 = 𝑃 𝑗𝑖 = 1/
(|𝐸 |

2

)
.

0 5000 10000
Number of Steps

0

200

400

600

800

M
ot

if
C

ou
nt

(a) motif

trajectory 1 trajectory 2

Number of Steps
0 5000 10000

7000

7500

8000

8500

9000
(b) non-motif

burnout

Figure 6: Frequency trends of subgraphs in E.coli dataset
on iterative switching with double trajectory on (a) tailed-
triangle motif and (b) 3-path non-motif.

Theorem 4.2. (Serial Test) Fix any number 𝑡 and assume that 𝑅0

was chosen from the chain’s stationary distribution 𝜋 , and that 𝑡 ′ is
chosen uniformly from {0, 1, . . . , 𝑡}. Consider two independent trajec-
tories 𝑌0, 𝑌1, . . . , 𝑌𝑡 ′ and 𝑍0, 𝑍1, . . . , 𝑍𝑡−𝑡 ′ in the reversible Markov
chain𝑀 (whose states have real-valued labels) from 𝑌0 = 𝑍0 = 𝑅0. If
we choose 𝑅0 from a stationary distribution 𝜋 of 𝑀 , then for any 𝑡
we have that:

Prob (𝐹𝑔(𝑅0) is an 𝜀-outlier among
𝐹𝑔(𝑅0), 𝐹𝑔(𝑌1), . . . , 𝐹𝑔(𝑌𝑡 ′), 𝐹𝑔(𝑍1), . . . , 𝐹𝑔(𝑍𝑡−𝑡 ′)) ≤ 𝜀.

Item 𝑋 is an 𝜀-outlier if rank of 𝑋 is 𝑘 among a ranked list of

items where 𝜀 is 𝑘/𝑡 , where 𝑡 is the total number of states. Theorem

4.2 establishes that given 𝑡 samples, a number 𝑡 ′ is randomly drawn

between [0, 𝑡], and run the chain forwards for 𝑡 ′ and backwards in

𝑡 − 𝑡 ′ steps. Then, use a labelling function (e.g., subgraph counting)

to map the states to real numbers, and rank these numbers based

on a ranking criteria (e.g., descending sort), the probability of state

𝑅0 appearing at rank 𝑘 is ≤ 𝑘
𝑡 . This test uses the exact same number

of samples as the uniform independent test and does not require

the chain to mix. This property allows us to design a very efficient

algorithm for NMD.

4.2 MOSER
We design a novel NMD framework based on the serial test named

as MOSER. The details of how MOSER works are summarized in

the algorithm below:

596

Algorithm 1:MOSER

Input :𝐺 , 𝑡 , 𝑝 , 𝑢, 𝑔
1 𝑡 ′ ← Random(0, 𝑡) // pivot

2 Y← SwitchingMethod(𝐺, 𝑡 ′) // forwards run

3 Z← SwitchingMethod(𝐺, 𝑡 − 𝑡 ′) // backwards run

4 𝐹𝑦 ← SubgraphCounting(𝑌,𝑔) // value function

5 𝐹𝑧 ← SubgraphCounting(𝑍,𝑔) // value function

6 𝑟 ← Rank(𝐹𝑔(𝐺), 𝐹𝑦 ∪ 𝐹𝑧)

7 𝜀 ← 𝑟
𝑡+1

// significance level

8 if 𝜀 < 𝑝 AND 𝐹𝑔(𝐺) ≥ 𝑢 then
9 return True

10 return False

In Alg. 1, line 1, we start by drawing a random integer uniformly

between 0 and 𝑡 (number of samples). Next, we generate two tra-

jectories starting from state 𝐺 = 𝑌0 and 𝐺 = 𝑍0 for 𝑡 ′ and 𝑡 − 𝑡 ′
steps accordingly, by switching a pair of edges at every step using

the switching method (lines 2,3). Then, we compute the label value

for each state of chains 𝑌 and 𝑍 , which is the motif frequency of

the random graph, based on the subgraph counting methods (e.g.,

off-the-shelf counting methods, TAC, or ATAC) in lines 4 and 5. We

then find 𝐹𝑔(𝐺)’s ranking among the two trajectories frequencies

(𝐹𝑦 and 𝐹𝑧); 𝑟 is the index of 𝐹𝑔(𝐺) in the descending sorted list

of [𝐹𝑔(𝐺), 𝐹𝑦, 𝐹𝑧]. We finally calculate 𝜀 and check if it meets the

required significance level. If 𝐹𝑔(𝐺) is also larger than the minimum

frequency 𝑢, we report 𝑔 as a motif. It should be mentioned that in

this algorithm, for simplicity we assume that the 𝑘-node subgraph

𝑔 of interest is given as the input of the algorithm. We can simply

add an extra step to enumerate all the 𝑘-node subgraphs in 𝐺 and

then test one by one on each.

To better illustrate MOSER, we use Fig. 5b as an example of

applying the Serial Test on a toy SSN. Set the problem parameters to

𝑡 = 99 (number of samples), 𝑝 = 0.05. First randomly pick a number

𝑡 ′ between [0, 𝑡] uniformly (e.g., 𝑡 ′ = 50). Then, perform a random

walk starting from the initial state (𝑅0) in two different directions

(𝑌 and 𝑍) of lengths 𝑡 ′(=50), and 𝑡 − 𝑡 ′(=49) accordingly. Next,
calculate a label function (i.e., 𝐹𝑔) over every state (i.e., random

graphs) visited along the random walks. Finally, the Theorem 4.2

states that the probability of state 𝑅0 being an 𝜀-outlier is less

than or equal to 𝜀. This means that if we rank the states of the

random walks using a ranking function based on their values, the

probability of state 𝑅0 being at rank 𝑘 is less than or equal to
𝑘
𝑡 .

Here, our ranking function is the descending sort, although any

ranking function can be used. In our example, the sorted states

would be {𝑌2, 𝑍1, 𝑅0, 𝑍2, 𝑌1, 𝑍4, 𝑌3, 𝑍3, 𝑌4, ..., 𝑌50, 𝑍49}. So 𝑅0’s rank

would be 3, and the probability of being at rank 3 for 𝑅0 is ≤ 3

100

which is smaller than 𝑝 = 0.05. So we can say that 𝑔 is a motif of

𝑅0.

Based on the single trajectory trend, according to a test intro-

duced in [13], known as the

√
𝜀-test, the best bound on possible on

a single trajectory is a constant factor of

√
𝜀. The serial test takes

a step further and improves this bound to the best bound possible
on 𝜀 as if we are sampling using a perfect sampler. This is achieved

by using two trajectories of complimentary size running in two

different directions from the same source (𝑅0).

4.3 MOSER Complexity and Correctness
We show the complexity of MOSER:

𝑂(

Sampling︷ ︸︸ ︷
𝑛 ·𝑇 (𝜉(𝐺)) +

Counting subgraphs on G and R︷ ︸︸ ︷
𝑇 (F𝑘 (𝐺)) +

∑︁
𝑅𝑖 ∈𝑅

𝑇 (F𝑘 (𝑅𝑖))) (8)

As shown above, the parameter 𝜏 discussed earlier, which can be-

come very large on large graphs, is removed from the complexity

compared to the baseline NMD complexity discussed in Eq. 7. This

improvement removes the first bottleneck of baseline NMD by elim-

inating the need for expensive uniform random graph sampling.

Previously, we have shown the applicability of the Serial Test

to SSN and demonstrated the equivalence of the Network Motif

Discovery (NMD) problem to significance testing on SSN. It is

worth noting that the accuracy of our approach hinges on the

accuracy of the Serial Test, which has been established in [9] and

utilized in [12]. The rationale behind the proof in [9] is that typical

(i.e., stationary) states are unlikely to change in a consistent way

under two sequences of chain transitions of random complementary

lengths [12]. This proves that the 𝑝-value calculated by our method

is theoretically sound.

5 INCREMENTAL SUBGRAPH COUNTING
In the previous section, we formalized the sampling part of theMotif

Discovery, and we proposed a framework to rigorously calculate

the 𝑝-value using biased samples. In this section we are aiming

to describe how to leverage the biased sampling in the subgraph

counting phase based on the below observations:

(1) At step 𝑖 of the switching, the subgraph frequencies of step

𝑖 − 1 are known.

(2) A single switch entails exactly two edge deletions and addi-

tions. Every deletion/addition only affects the 𝑘-node sub-

graphs of (𝑘 − 2)-hops neighbourhood around the affected

edge since the edge already covers 2 nodes.

In what follows, we introduce the Track And Count(TAC) algo-
rithm that leverages the above properties.

5.1 Track And Count
The input of the TAC is a graph𝐺𝑖−1, and F𝑘 (𝐺𝑖−1). This algorithm

first picks two random edges from 𝐺𝑖−1, applies a single switch to

𝐺𝑖−1, updates the 𝑘-node subgraph frequencies based on the switch,

and returns 𝐺𝑖 and F𝑘 (𝐺𝑖).

To understand how the algorithm works, we are going to break

TAC into the following steps and discuss each in detail:

Edge Selection: The algorithm proceeds by selecting two edges

at random from the set of all edges, denoted by 𝐸. It should be

noted that some edge selections may result in invalid switches,

as illustrated in Figure 4. In such cases, the edges are re-selected.

Once the edges have been selected for switching, the next step is

to perform the switch. This can be broken down into two distinct

steps: First, the old edges are removed, and second, the new edges

are added. For each switch, denoted as (𝑎, 𝑏), (𝑐, 𝑑) → (𝑎, 𝑑), (𝑐, 𝑏),

there are four atomic actions. Specifically, two edge deletions are

597

performed to remove the edges (𝑎, 𝑏), (𝑐, 𝑑), and two edge additions

are performed to add the edges (𝑎, 𝑑), (𝑐, 𝑏). In each atomic action,

exactly one edge is involved.

Tracking: A fundamental observation is that removing/adding

an edge affects only the frequency of subgraphs containing that

edge, leaving the frequency of other subgraphs unchanged. Build-

ing on this insight, the first step of the Tracking algorithm is to

identify the 𝑘-node subgraphs that include the edge slated for re-

moval/addition. Since every edge connects two nodes, determining

the number of 𝑘-node subgraphs around an edge requires a search

of the (𝑘-2)-node neighborhood using a method such as BFS [28, 31].

The TAC algorithm exploits the two previously mentioned key

observations. Specifically, TAC selectively focuses on the local

neighborhood of the impacted edges and avoids unnecessary com-

putations in unaffected areas. TAC is versatile and supports all mo-

tif sizes, and works seamlessly with both directed and undirected

graphs. Moreover, TAC facilitates easy integration with existing

subgraph counting solutions.

5.2 Accelerated Track And Count
Although TAC is a general algorithm that supports different prob-

lem settings, it can be further optimized for specific setups that are

commonly studied in the literature. In particular, small undirected

subgraphs (up to 5-node) have been proven to be the most useful

in practice [44]. For this purpose, we introduce Accelerated Track
And Count (ATAC), an optimized algorithm based on ESCAPE [44],

that is more efficient than TAC.

The key concept is that subgraphs can be decomposed into

smaller patterns, and the frequency of the subgraph can be com-

puted efficiently based on the frequencies of these patterns using

formulas which we will refer to as the ESCAPE Formulas (ESF).

Notably, this approach avoids the need to enumerate all subgraph

instances and bypasses the isomorphism checks. The ESF returns

the non-induced subgraph counts, from which the induced counts

can be easily derived using a simple (invertible) linear transforma-

tion [44]. We now take a closer look at ESF, then we will extend

them to support the incremental nature of tracking.

Frequency Calculation for 4-node Subgraphs: Below please

find our derived formulas for tracking the count differences after

edge 𝑒 = (𝑖, 𝑗) is removed from the graph, based on those formulas

from [3, 22, 44].

(1) ∆ Wedge = −(𝑑(𝑖) + 𝑑(𝑗) − 2)

(2) ∆ Triangle = −|𝑁 (𝑖) ∩ 𝑁 (𝑗)|
(3) ∆ 3-Star = − 1

2
((𝑑(𝑖) − 1)(𝑑(𝑖) − 2) + (𝑑(𝑗) − 1)(𝑑(𝑗) − 2))

(4) ∆ 3-Paths =

∑
𝑢∈𝑁 (𝑖)∪𝑁 (𝑗) 1−𝑑(𝑢)−(𝑑(𝑖)−1)(𝑑(𝑗)−1)−3 ·∆𝑇

(5) ∆ Tailed-Triangles = ∆𝑡 · (𝑑(𝑖)−2)−𝑡2(𝑖) + ∆𝑡 · (𝑑(𝑗)−2)−𝑡2(𝑗)

+

∑
𝑢∈𝑉 ∗ 2 − 𝑑(𝑢)

(6) ∆ Diamonds =

∑
𝑒∗∈𝐸∗ 1 − 𝑡 (𝑒∗)+

(
∆𝑇
2

)
In the above formulation,𝑉 ∗ and 𝐸∗ refer to the affected edges

and nodes, namely the edges and nodes that form a triangle with 𝑒 .

We can track the number of 4-cycles that are removed by first

identifying the neighboring sets of nodes 𝑖 and 𝑗 , denoted as 𝑁 (𝑖)

and 𝑁 (𝑗), respectively. We then check how many edges in 𝑁 (𝑖) are

connected to nodes in 𝑁 (𝑗) to find 4-cycles. To track 4-cliques, we

look for two additional edges between the neighbors of 𝑖 and 𝑗 , and

vice versa.

The above formulation supports subgraph frequency update the

general case of dynamic graphs with deletion/addition of edges. For

the special case of switching, the node degrees always remain un-

changed, so the non-induced frequencies of star-shaped subgraphs

(wedges, 3-stars, etc) also remain unchanged as they only rely on

the node degrees. As shown in Sec. 6, ATAC improves the baseline

solution implemented using the ESCAPE counting algorithm by up

to five orders of magnitude.

5.3 Time and Space Complexity Analysis
We have shown in Eq. 7, that the complexity of the state-of-the-

art solutions is determined by the sampling complexity and the

subgraph counting complexity. As shown in Eq. 8, we have reduced

the sampling complexity. In this part we highlight the impact of

TAC and ATAC on reducing the subgraph counting complexity.

TAC: For a fair comparison, we use the same counting solu-

tion for both TAC and baseline, since TAC is compatible with any

subgraph counting solution. We refer to the subgraph counting

complexity as 𝑇 (F𝑘 (·)). Since the counting solution is identical, the

advantage lies in only counting on a substantially smaller portion

of the input graph, in contrast to baseline methods that perform

counting on the entire graph. We can update the counting part of

the Eq.8 to fit the TAC as below:

𝑂(

Sampling︷ ︸︸ ︷
𝑛 ·𝑇 (𝜉(𝐺)) +

Counting subgraphs on G and D︷ ︸︸ ︷
𝑇 (F𝑘 (𝐺)) + 2 ·

∑︁
𝐷𝑖 ∈D

𝑇 (F𝑘 (𝐷𝑖))) (9)

Where 𝐷𝑖 ∈ D refers to the (𝑘 − 2)-hops neighbourhood around

the edges added/removed during the 𝑖-th single switch operation.

Every single switch requires two counting operations, once before

and once after applying the switch. The size of subgraph 𝐷𝑖 =

(𝑉𝑖 , 𝐸𝑖) is determined as below:

|𝑉𝑖 | ≤ min

(
4 · (2 · 𝑑 (𝑘−2)

𝑚𝑎𝑥), |𝑉 |
)

|𝐸𝑖 | ≤ min (1/2 · |𝑉𝑖 |·𝑑𝑚𝑎𝑥 , |𝐸 |)

= min

(
4 · 𝑑 (𝑘−1)

𝑚𝑎𝑥 , |𝐸 |
)

The upper bound for |𝑉𝑖 | is calculated by considering that for

every edge containing nodes 𝑎 and 𝑏, both 𝑎 and 𝑏 need to be

expanded for 𝑘 − 2 hops, as 𝑎 and 𝑏 are already present in the

subgraph. This expansion is based on a pessimistic assumption that

𝑎, 𝑏, and their neighbors have 𝑑𝑚𝑎𝑥 neighbors. The factor of 4 in the

calculation is due to the involvement of four edges in each switch

operation. Similarly, the upper bound for |𝐸𝑖 | is determined using

a pessimistic assumption that every node in |𝑉𝑖 | has the maximal

degree.

ATAC: In this part, we break down the complexity of ATAC

analyzing every single formula separately.

(1) Wedge and (3) 3-Star: The non-induced frequency update

can be done in 𝑂(1) because it only depends on the node degrees

in the affected edges which can be accessed in constant time. (2)

Triangle: This requires the calculation of 𝑁 (𝑖) ∩ 𝑁 (𝑗), which can

be done in 𝑂(𝑑𝑚𝑎𝑥) given that 𝑁 (𝑖) and 𝑁 (𝑗) are sorted. (4) 3-Path:
This only requires the degrees of the one-hop neighbours of 𝑒 ,

and the updated global triangle count (calculated on the previous

598

step). One-hop degree gathering would be 𝑂(𝑑𝑚𝑎𝑥) for the worst

case scenario. (5) Tailed-Triangles: We access the degree (𝑂(1)) of

every node that forms a triangle with 𝑒 (𝑂(𝑑𝑚𝑎𝑥)). (6) Diamond: It
is necessary to iterate over all the triangles that 𝑒 is involved in

(𝑂(𝑑𝑚𝑎𝑥)). For each edge 𝑒∗ in those triangles we calculate 𝑡 (𝑒∗),
these calculations can be done in 𝑂(1), as we store the 𝑡 (𝑒) for all

𝑒 ∈ 𝐸 in the original triangle counting phase. (7) 4-Cycles: We check

whether the nodes in 𝑁 (𝑖) are connected to the nodes in 𝑁 (𝑗) or not,

which takes 𝑂(𝑑2

𝑚𝑎𝑥) (8) 4-Cliques: We go over the nodes that form

a triangle with our candidate edge and check if they are connected

to each other or not, so the algorithm would take 𝑂(|𝑡 (𝑒)|2).

We conclude that the most time-consuming 4-node subgraphs to

track during deletion or addition are the 3-paths and 4-cycles/cliques.

These bottlenecks will take 𝑂(|𝑡 (𝑒)𝑚𝑎𝑥 |2+𝑑𝑚𝑎𝑥2
) time, which can

be reduced to𝑂(𝑑2

𝑚𝑎𝑥) since |𝑡 (𝑒)𝑚𝑎𝑥 |≤ 𝑑𝑚𝑎𝑥 in the worst-case sce-
nario. On average, the time complexity can be reduced to 𝑂(𝑑𝑎𝑣𝑔2).

As mentioned before, this algorithm is extendable to support

5-node subgraphs, the details of the this extension and the formulas

are beyond the scope of this paper.

5.3.1 Space Analysis. The space used by most of the state-of-the-

art NMD algorithms consists of two main components: the original

graph size and the index built to reduce isomorphism checks. As

Track and Count is a versatile algorithm that utilizes the counting

algorithms, its memory usage is also affected by the counting solu-

tion. However, our proposed algorithm and framework do not add

extra memory usage to the counting algorithm.

6 EXPERIMENTS
We used C++ and Python to implement our algorithms, and exe-

cuted our experiments on a Ubuntu 18.04.6 machine that features

32-Core Intel Xeon Silver 4110 processors clocked at 2.1 GHz and

equipped with 256GB of memory. We conducted a series of exper-

iments to test our algorithms using both popular NMD datasets

from the bioinformatics community (Table 2 top) [24], and the pop-

ular data mining community datasets (Table 2 bottom) [27, 50]. For

further information on the datasets used in our experimentation,

please refer to Table 2.

Our dataset selection was influenced by multiple factors. The

first half of the datasets were sourced from the bioinformatics com-

munity [24] and were chosen for two primary reasons. Firstly we

utilized them to compare the accuracy of our results with base-

line solutions as baseline solutions cannot scale well to the larger

datasets, and secondly to showcase our superior efficiency and scal-

ability compared to state-of-the-art solutions. The latter half of the

datasets were acquired from the data mining community [27, 50]

and were considerably larger than the former datasets and any

other dataset used in previous methods. We employed them to test

our algorithm’s scalability on larger graphs, and to demonstrate

its efficiency in handling big data. In evaluating our algorithm’s

performance, we compared it to state-of-the-art solutions in the mo-

tif discovery domain, namely Kavosh[24], QuateXelero (QX) [26],

G-tries[48], and ACC-Motif[36]. We refer to these as BASE
initial

,

for example we use BASE
K
to refer to Kavosh. Similarly, we use

MOSER
initial

to refer to the implementation of MOSER without any

optimizations on the counting method (namely TAC and ATAC).

MOSER
+
uses TAC as the counting optimization technique, while

Table 2: MD Datasets from bioinformatics community (top)
and the data mining community (bottom).

Datasets |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥

Dolphins (DO) 62 159 5.12 12

Social (SO) 67 182 4.23 11

Electronic (EL) 252 399 3.16 14

E. coli (EC) 672 1276 2.57 23

Yeast (YE) 688 1079 3.13 71

ca-AstroPh (AS) 18.8K 198K 21.10 504

flickr (FL) 105K 2.32M 43.74 5425

soc-google-plus (SG) 211K 1.50M 10.82 1790

web-google (WG) 876K 4.32M 9.87 6332

com-youtube (YT) 1.34M 3M 5.26 28754

RoadNet (RN) 1.96M 2.76M 2.81 12

Flixster (FL) 2.52M 7.91M 6.27 1474

Actor-Collab (AC) 382K 15M 78.68 3956

USA-Road (US) 23.9M 28.8M 2.40 9

MOSER
++

leverages ATAC. As suggested in [13], we use the first

10% of the samples as the burnout stage
2
.

6.1 Method
We begin by presenting the parameter settings for both MOSER

and the BASE algorithms. Following this, we conduct a correctness

test on the datasets that are supported by the BASE algorithms,

by discovering motifs using MOSER and BASE, and comparing

these two sets with the Intersection over Union (IoU) similarity

measure. Subsequently, we analyze the efficiency improvement of

our method, and finally, we perform a case study to demonstrate

the effectiveness of our approach on motif-based downstream tasks.

Parameter Settings: Our experiments were conducted on the

datasets mentioned above, with motif sizes of 𝑘 = 3, 4, 5. Here we

list a few motifs that will be mentioned in the following sections:

Wedge, Triangle,

 3-star, 3-path, 4-cycle,

Tailed Triangle (T.Triangle for short), Diamond, 4-clique,

4-star, 4-path, Tailed 4-cycle (T.4-cycle for short) ,

Long Tailed Triangle (L.T.Triangle for short). The BASE solutions

were executed with 3 × |𝐸 | switches to produce one sample, and

𝑛 = 10𝐾 samples, and a significance threshold of 𝑝 = 0.01. To ensure

fair comparison, MOSER was also executed with 𝑡 = 10𝐾 samples,

and 𝑝 = 0.01. All the experiments have been performed with this

setup, unless mentioned otherwise.

6.2 Accuracy
To compare the effectiveness of our proposed solution with the

BASE framework, we conducted experiments using the MOSER

framework on the first half datasets with the parameter settings

mentioned previously. We refer to the motif set generated using the

MOSER asMMOSER and the motif set generated using the BASE as

MBASE. To compare the two sets of motifs, we used the Intersection

over Union (IoU) metric, also known as the Jaccard distance, defined

2
We do not use the first 10% of the steps made in the serial test.

599

as follows:

IoU =

|MMOSER ∩MBASE |
|MMOSER ∪MBASE |

The IoU metric ranges between 0 and 1, where a score of 1 indicates

that the motif sets generated using both frameworks are identical,

while a lower score indicates more differences between the resulting

sets. In our experiments, the IoU score for all the datasets and motif

sizes was exactly 1, indicating that theMOSER framework generates

identical results to the BASE framework in a more computationally

efficient manner.

6.3 Efficiency
Comparisonwith theBASEWebegin by comparing the efficiency

of our fastest
3
solution to the BASE solutions, including Kavosh,

G-Tries, QX, and ACC-Motif, as shown in Table 3. The selected

parameters used in these experiments are 𝑘 = 4 and 𝑛 = 10𝐾 . For

the AS graph, we ran the algorithm with 𝑛 = 100, and scaled the

results to match the previous setup since the running time grows

almost linearly with the number of random graphs.

Table 3: Runtime (s) Comparison between MOSER and BASE

Dataset Fastest
2

BASE
K

BASE
Q

BASE
G

BASE
A

Speedup

SO 0.15 8.09 6.05 8.22 5.33 35X

DO 0.38 56.62 35.8 41.32 11.76 30X

EL 0.40 8.05 13.91 8.04 5.87 14X

YE 0.54 1065.99 58.98 50.01 19.79 36X

EC 0.48 56.62 35.8 41.32 11.76 24X

AS 8.79 5.6 M 357 K 576 K 100 K 12,486X

We can see in Table. 3 that the BASE
𝐴
outperforms other BASE

solutions, it is because it leverages multi-core processing. The down-

side of the BASE
𝐴
is that it suffers from high variability of running

times. For this reason, we use the second fastest BASE algorithm

(the BASE
𝑄
) with low variability, in the rest of the experiments.

We have also conducted experiments to compare the perfor-

mance of our approach w.r.t. to the motif size 𝑘 , illustrated in Fig.

7.

(a) 3-node

Ti
m
e(
s)

(b) 4-node (c) 5-node

(a) 3-node

Ti
m
e(
s)

(b) 4-node (c) 5-node

Figure 7: Efficiency comparison between the MOSERQ+ and
BASEQ for Motif Discovery.

Comparison on larger graphs It is important to note that

none of the available BASE methods are able to scale to the larger

graphs used in our experiments. For example, the code provided by

the Kavosh[24] and QX[26] papers crashes while loading graphs

3
By fastest we mean, we used MOSER

++
on the undirected networks, and MOSER

Q+

on the directed ones.

with one million nodes or greater. To enable comparisons on larger

graphs, we implemented baseline motif discovery methods (BASE)

using the state-of-the-art subgraph counting method, ESCAPE [44],

which is faster than previous solutions and capable of scaling to

graphs of one million nodes or more. The second part of our effi-

ciency experiments compares our implementation of BASE using

ESCAPE (BASE
E
) with MOSER

E+
and MOSER

++
.

(a) 3-node

Ti
m
e(
s)

(b) 4-node

Ti
m
e(
s)

(a) Bioinformatics Graphs

Ti
m
e(
s)

(b) Data Mining Graphs

Ti
m
e(
s)

(a) 3-node

Ti
m
e(
s)

(b) 4-node

Ti
m
e(
s)

Figure 8: Comparison of Motif Discovery based on the
MOSERE+ and MOSER++ with BASEE.

Fig. 8 shows that MOSER
++

is up to 5 orders of magnitude faster

than BASE
E
. Our proposed framework and algorithms improve

upon the base framework in two dimensions: random graph sam-

pling and subgraph counting. We conduct experiments to demon-

strate the improvements in these two dimensions. Firstly, we com-

pare the sampling time improvements ofMOSER compared to BASE.

Next, we evaluate the impact of BASE
+
and BASE

++
on subgraph

counting enhancements.

(a) 3-node

Ti
m
e(
s)

Ti
m
e(
s)

(a) Bioinformatics Graphs

Ti
m
e(
s)

(b) Data Mining Graphs

Ti
m
e(
s)

(a) 3-node

Ti
m
e(
s)

(b) 4-node

Ti
m
e(
s)

Figure 9: Generating Time of 10K unbiased samples using the
Switching Method on (a) small graphs from the bioinformat-
ics community and (b) large graphs from the data mining
community.

Sampling Effect Previous research has predominantly focused

on optimizing subgraph counting, given its significant role in motif

discovery. As far as we are aware, our study represents the first

exploration of sampling complexity in this context. Prior works

generally utilize small input graphs where the effect of sampling

is negligible. However, as we scale towards graphs in the millions,

we will demonstrate that sampling becomes a noticeable factor. Fig

.9 shows how sampling becomes a bottleneck on large graphs, and

how MOSER is able to overcome this bottleneck.

Counting Effect In this part, we will focus on the efficiency

gains on how using TAC incremental counting algorithm can im-

prove over the BASE counting solution. Figs. 10 and 11 show the

effectiveness of TAC.

600

(a) 3-node

Ti
m
e(
s)

(b) 4-node (c) 5-node

(a) 3-node

Ti
m
e(
s)

(b) 4-node (c) 5-node

Figure 10: Counting efficiency comparison between the
MOSERQ+ and BASEQ on small dataset.

AS WG YT FL SG

100

102

104

Ti
m
e(
s)

AS WG YT FL SG
100

103

105

Ti
m
e(
s)

(a) 3-node (b) 4-node

Figure 11: Counting efficiency of BASEE and MOSERE+ on
large datasets.

Time(s)

3-node
4-node

Figure 12: Motif Discovery efficiency comparison between
the different BASE (BASEQ, BASEE) and MOSER variations
(MOSERQ, MOSERE, MOSERQ+, MOSERE+, and MOSER++),
on the AS dataset.

Fig. 12 fully compares the efficiency of different methods with all

the settings. We start by the BASE
Q
as the state-of-the-art baseline

solution, then we show that how using ESCAPE can improve the

baseline shown in BASE
E
. Next, we compare the effectiveness of

using MOSER without the counting optimizations. Then we add the

TAC optimization to the setup, and finally we show how MOSER
++

can improve the efficiency of NMD.

6.4 Scalability & Robustness
Experimental Setup Our method’s scalability has been evalu-

ated through two distinct approaches. Firstly, by employing large

real-world graphs, we examined how our algorithm responds to in-

creases in graph size within real-world datasets. Secondly, synthetic

graphs were employed to regulate experimental conditions, includ-

ing graph size and average degree, thereby enabling an assessment

of ourmethod’s robustness across various parameter configurations.

Real-World GraphsWe conducted experiments utilizing real-

world graphs of sizes up to 20 times greater than those examined

in the previous section. A comprehensive overview of the scalabil-

ity outcomes is provided in Table 4. An intriguing observation is

that a significant portion of the computational time for MOSER
++

when applied to graphs with low average degrees (RN, FL, US) is

consumed by the graph-loading process. For instance, the loading

of the RN dataset into memory necessitates approximately 2.88

seconds. Conversely, with denser graphs like AC, the execution of

a single sampling and counting step averages a mere 0.67 seconds

for 4-node subgraphs. However, the counting of 4-node subgraphs

within AC takes approximately 570 seconds. This finding highlights

the high efficacy of our method, even in the context of dense graphs.

Table 4: Scalability Test on Large Real Graphs

Graphs |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 3-node 4-node

RoadNet (RN) 1.96M 2.76M 2.81 3.171 3.183

Flixster (FL) 2.52M 7.91M 6.27 10.78 468.7

Actor-Collab (AC) 382.2K 15.0M 78.7 59.78 6926

USA-Road (US) 23.9M 28.8M 2.40 27.48 30.86

Synthetic Graphs Additionally, we have investigated the ro-

bustness of our method by generating synthetic datasets using the

BA model [7]. This allowed us to control the graph parameters

and assess the algorithm’s performance under different conditions.

Specifically, we examined the impact of the average degree on the

algorithm’s performance, as shown in Figure 13. Specifically, we

considered the following setups: graph sizes |𝑉 | of 100K, 500K, 1M,

10M, 100M, as well as average degrees 𝑑 of 2, 5, 10, 15, and 20. This

comprehensive range of setups enabled us to thoroughly evaluate

the behavior and performance of our algorithms across a diverse

set of graph configurations.

6.5 Case Study
We select the top-5motifs by bothNMD (i.e., the top-5most frequent

𝑘-node subgraphs that pass the significance test with 𝑝 = 0.01) and

Subgraph Counting (SC) approaches (i.e., the top-5 most frequent

𝑘-node subgraphs) in a subset of the Gavin dataset, which is a

standard dataset used in link prediction tasks [30], where each node

denotes a yeast cell protein and each edge denotes an interaction

between the corresponding proteins. Then these motifs are applied

to the Motif-aware Link Prediction task developed by the authors

0 5 10 15 20
Average Degree

0

20

40

60

80

Ti
m

e
(s

)

k=3
k=4

105 106 107 108

Number of Nodes

100

102

104
k=3
k=4

0 25 50 75 100
Number of Nodes (M)

0

1000

2000

3000

4000
k=3
k=4

Figure 13: Robustness and Scalability evaluations on random
graphs via BA-model, with respect to (a) average degree from
2 to 20 when 𝑛 = 1𝑀 , (b) graph size from 0.1𝑀 to 10𝑀 when
𝑑 = 10, and (c) its trend in logarithmic coordinates.

601

in [30, 51, 52], and the effectiveness of each motifs are reported

in Table 5 with the Area Under the Curve (AUC) score. 𝐹𝑔(𝐺) and

𝐹𝑔(𝑅) are also reported to help understand the difference between

SC results and NMD results. As show in the table, the top-5 𝑔𝑀𝐷

obtain 28% higher AUC scores on average than the top-5 𝑔𝑆𝐶 . It

is also observed that many of the 𝑔𝑆𝐶 cannot pass the significance
test; hence, we call such frequent 𝑘-node subgraphs as non-motifs.

Table 5: Link prediction effectiveness of top-5 motifs that
selected by NMD (lest side) and MC (right side) respectively.

Top-5 𝑔𝑀𝐷 𝐹𝑔(𝐺) 𝐹𝑔(𝑅) AUC Top-5 𝑔𝑀𝐶 𝐹𝑔(𝐺) 𝐹𝑔(𝑅) AUC

L.T.Triangle 2.7K 120 0.65 4-path 19.0K 20.0K 0.52

T.4-cycle 870 300 0.58 4-star 14.0K 16.4K 0.62

T.Triangle 650 55 0.68 3-path 7.1K 7.3K 0.49

Triangle 58 3 0.83 3-star 5.1K 5.7K 0.52

4-cycle 57 15 0.87 L.T.Triangle 2.7K 120 0.65

Average 867 99 0.72 Average 9.6K 9.9K 0.56

7 RELATEDWORKS
The idea of NMD that we use in this work, was first used by Milo et

al.[37]. There has been some recent surveys studying state-of-the-

art network NMD solutions [42, 59, 61]. We categorize the different

NMD solutions based on the different Subgraph Sounting (SC) and

random graph generation method they use.

Subgraph Counting Based on subgraph counting, the NMD al-

gorithms can be divided into two main categories of Exact Counting,
and Approximate Counting. The exact counting methods [10, 16, 24–

26, 36, 41, 48, 53, 58] use the SC methods that return the exact

subgraph frequencies. Both [58] and [25] have the support for

the Approximate approach that samples subgraphs from the input

graph𝐺 and the random graphs in 𝑅, and then identify motifs from

those samples. Noga Alon et al. [6] used an approximate approach

to find undirected non-induced network motifs. Approximate algo-

rithms do not provide any assurances regarding the quality of the

motifs found, so we focus on the exact counting methods in this

work.

We can further categorize the exact subgraph counting methods

into Subgraph-Centric [10, 16, 41, 53] and Network-Centric [24–

26, 36, 48, 58]. The former counts all the instances of a single given

subgraph 𝑔 in a given graph 𝐺 . The latter counts all the 𝑘-node

subgraph patterns that are present in𝐺 . The subgraph-centric ap-

proach is efficient for testing if a single candidate subgraph 𝑔 is a

motif or not, however for finding all motifs one requires to test all

the possible 𝑘-node candidate subgraphs. This renders the approach

infeasible to discover all 𝑘-node motifs. In contrast, network-centric

methods only count all the present 𝑘-node subgraphs in 𝐺 with a

single pass over 𝐺 , while discovering all the 𝑘-node motifs from

𝐺 . Note that TAC supports both counting approaches, although

our experiments are centered around the network-centric methods.

There have been methods to alleviate the bottleneck of counting

by parallelizing the counting [49] or utilizing GPU to accelerate

the performance [33]. Almost all of the mentioned solutions fo-

cused on discovering both directed and undirected motifs except

[6, 10] which can only support undirected discovery. Depending

on the subgraph counting used, TAC can support both directed and

undirected discovery.

There has been recent advancements in the subgraph counting

research, according to a survey by Ribeiro et al. [47], the ESCAPE

[44] is among the fastest and most recent subgraph counting so-

lutions which has not been used in the network motif discovery

prior to this work.

Random Graph generation The null model employed to test

the statistical significance of subgraphs is a random graph that is

degree-equivalent to 𝐺 . Several techniques have been developed

to generate such random graphs. In their study, Milo et al. [38]

conducted an empirical analysis comparing three primary algo-

rithms for generating degree-preserving random graphs: (1) The

Switching Method [46, 54, 56], (2) The Matching Algorithm [40],

and (3) Go With The Winners [4]. The Matching Algorithm starts

with an empty graph consisting of |𝑉 | nodes, where each node is

assigned a set of in-stubs and out-stubs based on its in-degree and

out-degree in 𝐺 , respectively. In each iteration, an in-stub and an

out-stub are randomly selected and connected by an edge until

all in-stubs and out-stubs are used. If the process generates a self-

loop or multiple edges, the graph is discarded and the procedure

is restarted. However, this algorithm has the drawback of rarely

sampling from Λ [38]. The Go With The Winners algorithm is an

improved version of the Matching Algorithm that aims to converge

faster and produces high-quality uniform samples, but it is not very

efficient [38]. On the other hand, the Switching Algorithm strikes

a balance between efficiency and quality, which is why it is the

preferred method for generating degree-preserving random graphs

by most state-of-the-art network motif discovery tools.

8 CONCLUSIONS
While most prior work using motifs for high-order analytics over

large graphs focus on counting given motifs, motif discovery is a

more fundamental task which is just as important. Known NMD

solutions fail to scale to large graphs and are based on approaches

that do not come with any guarantees. To address these limitations,

we introduced a novel NMD framework called MOSER based on the

serial test, and developed new algorithms (TAC and ATAC) on top

of MOSER to achieve up to five orders of magnitude improvement

in efficiency. Extensive experimental evaluation demonstrated the

efficacy of our approach, and we plan to demonstrate the practical

utility of our methods in more downstream tasks [11, 17, 18, 35].

ACKNOWLEDGMENTS
We thankMr. Christian Beth from the University of Kiel for his valu-

able assistance in proofreading and text editing. Reynold Cheng,

Matin Najafi, Chenhao Ma, and Xiaodong Li were supported by the

Hong Kong Jockey Club Charities Trust (Project 260920140), the

University of Hong Kong (Project 104006830), and the RGC Ger-

many/Hong Kong Joint Research Scheme (Project G-HKU710/21).

Lakshmanan’s research was supported in part by a grant from the

Natural Sciences and Engineering Research Council of Canada.

Chenhao Ma was supported by NSFC under Grant 62302421, Basic

and Applied Basic Research Fund in Guangdong Province under

Grant 2023A1515011280, Shenzhen Science and Technology Pro-

gram ZDSYS20211021111415025.

602

REFERENCES
[1] https://github.com/momatinaj/moser/blob/main/moser/full_version.pdf.

[2] Ghadeer Abuoda, Gianmarco De Francisci Morales, and Ashraf Aboulnaga. Link

prediction via higher-order motif features, 2019.

[3] Nesreen Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G. Duffield. Efficient

graphlet counting for large networks. 2015 IEEE International Conference on Data
Mining, pages 1–10, 2015.

[4] D. Aldous and U. Vazirani. "go with the winners" algorithms. In Proceedings 35th
Annual Symposium on Foundations of CS. IEEE Comput. Soc. Press.

[5] David Aldous. Markov chains and mixing times (second edition) by david a.

levin and yuval peres. The Mathematical Intelligencer, 41(1):90–91, 11 2018.
[6] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and

S. Cenk Sahinalp. Biomolecular network motif counting and discovery by color

coding. Bioinformatics, 24(13):i241–i249, July 2008.

[7] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random net-

works. science, 286(5439):509–512, 1999.
[8] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization

of complex networks. Science, 353(6295):163–166, 2016.
[9] JULIAN BESAG and PETER CLIFFORD. Generalized monte carlo significance

tests. Biometrika, 76(4):633–642, 1989.
[10] Jin Chen, Wynne Hsu, Mong Lee, and See-Kiong Ng. Nemofinder: Dissect-

ing genome-wide protein-protein interactions with meso-scale network motifs.

volume 2006, pages 106–115, 01 2006.

[11] Reynold Cheng, ChenhaoMa, Xiaodong Li, Yixiang Fang, Ye Liu, Victor YLWong,

Esther Lee, et al. The social technology and research (star) lab in the university

of hong kong. ACM SIGMOD Record, 51(2):63–68, 2022.
[12] Maria Chikina, Alan Frieze, et al. Separating effect from significance in markov

chain tests. Statistics and Public Policy, 7(1):101–114, 2020.
[13] Maria Chikina, Alan Frieze, and Wesley Pegden. Assessing significance in a

markov chain without mixing. Proceedings of the National Academy of Sciences,
114(11):2860–2864, 2017.

[14] Yixiang Fang, CK Cheng, S Luo, J Hu, and X Li. Effective community search over

large spatial graphs. Proceedings of the VLDB Endowment (PVLDB), 2017.
[15] Yixiang Fang, Zheng Wang, Reynold Cheng, Xiaodong Li, Siqiang Luo, Jiafeng

Hu, and Xiaojun Chen. On spatial-aware community search. IEEE Transactions
on Knowledge and Data Engineering, 31(4):783–798, 2018.

[16] Joshua A Grochow and Manolis Kellis. Network motif discovery using subgraph

enumeration and symmetry-breaking. In Annual International Conference on
Research in Computational Molecular Biology, pages 92–106. Springer, 2007.

[17] Xiaolin Han, Reynold Cheng, Tobias Grubenmann, Silviu Maniu, Chenhao Ma,

and Xiaodong Li. Leveraging contextual graphs for stochastic weight completion

in sparse road networks. In Proceedings of the 2022 SIAM International Conference
on Data Mining (SDM), pages 64–72. SIAM, 2022.

[18] Xiaolin Han, Tobias Grubenmann, Reynold Cheng, Sze Chun Wong, Xiaodong

Li, and Wenya Sun. Traffic incident detection: A trajectory-based approach. In

2020 IEEE ICDE, pages 1866–1869. IEEE, 2020.
[19] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms

in quasi-polynomial time, 2017.

[20] Himanshu and Sarika Jain. Impact of memory space optimization technique on

fast network motif search algorithm. InAdvances in Computer and Computational
Sciences, pages 559–567. Springer Singapore, 2017.

[21] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying

k-truss community in large and dynamic graphs. In ACM SIGMOD, 2014.
[22] Madhav Jha, C. Seshadhri, and Ali Pinar. Path sampling: A fast and provable

method for estimating 4-vertex subgraph counts. In Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, page 495–505, 2015.

[23] R Kannan, S Vempala, and P Tetali. Simple markov-chain algorithms for gener-

ating bipartite graphs and tournaments. 6 1997.

[24] Zahra Razaghi Moghadam Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas

Nowzari-Dalini, Elnaz Saberi Ansari, Sahar Asadi, Shahin Mohammadi, Falk

Schreiber, and Ali Masoudi-Nejad. Kavosh: a new algorithm for finding network

motifs. BMC bioinformatics, 10(1):1–12, 2009.
[25] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for es-

timating subgraph concentrations and detecting network motifs. Bioinformatics,
20(11):1746–1758, 03 2004.

[26] Sahand Khakabimamaghani, Iman Sharafuddin, et al. Quatexelero: An acceler-

ated exact network motif detection algorithm. PLOS ONE, 8(7):1–15, 07 2013.
[27] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and

graph-mining library. ACM TIST, 8(1):1, 2016.
[28] Xiaodong Li. Durs: A distributed method for k-nearest neighbor search on

uncertain graphs. In 2019 20th IEEE International Conference on Mobile Data
Management (MDM), pages 377–378. IEEE, 2019.

[29] Xiaodong Li, Tsz Nam Chan, Reynold Cheng, Kevin Chang, Caihua Shan, and

Chenhao Ma. Motif paths: A new approach for analyzing higher-order semantics

between graph nodes. HKU Technical Report, 2019.
[30] Xiaodong Li, Reynold Cheng, Kevin Chang, Caihua Shan, Chenhao Ma, and

Hongtai Cao. On analyzing graphs with motif-paths. PVLDB, 2021.

[31] Xiaodong Li, Reynold Cheng, Yixiang Fang, Jiafeng Hu, and Silviu Maniu. Scal-

able evaluation of k-nn queries on large uncertain graphs. In Proceedings of the
21st International Conference on Extending Database Technology (EDBT), 2018.

[32] Xiaodong Li, Reynold Cheng, Matin Najafi, Kevin Chen-Chuan Chang, Xiaolin

Han, and Hongtai Cao. M-Cypher: A GQL framework supporting motifs. In

ACM CIKM 2020, pages 3433–3436. ACM, 2020.

[33] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. Network motif discovery:

A gpu approach. IEEE TKDE, 29(3):513–528, March 2017.

[34] Chenhao Ma, Reynold Cheng, Laks Lakshmanan, Tobias Grubenmann, Yixiang

Fang, and Xiaodong Li. LINC: A motif counting algorithm for uncertain graphs.

Proc. VLDB Endow., 13(2):155–168, 2019.
[35] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, Xiaolin Han,

and Xiaodong Li. Accelerating directed densest subgraph queries with software

and hardware approaches. The VLDB Journal, pages 1–24, 2023.
[36] Luis A. A. Meira, Vinícius R. Máximo, Álvaro L. Fazenda, and Arlindo F. da Con-

ceição. acc-motif: Accelerated network motif detection. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 11(5):853–862, 2014.

[37] R. Milo. Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[38] R. Milo, N. Kashtan, S. Itzkovitz, M. Newman, and U. Alon. On the uniform

generation of random graphs with prescribed degree sequences. arXiv: Statistical
Mechanics, 2003.

[39] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.
[40] Michael Molloy and Bruce Reed. A critical point for random graphs with a given

degree sequence. Random Structures & Algorithms, 6(2-3):161–180, March 1995.

[41] Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. Moda: an efficient algorithm

for network motif discovery in biological networks. Genes & genetic systems,
84(5):385–395, 2009.

[42] Sabyasachi Patra and Anjali Mohapatra. Review of tools and algorithms for

network motif discovery in biological networks. IET Systems Biology, 14(4):171–
189, August 2020.

[43] Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263,
June 1907.

[44] Ali Pinar, C. Seshadhri, and V. Vishal. Escape: Efficiently counting all 5-vertex

subgraphs, technical report. 10 2016.

[45] Nataša Pržulj and Noël Malod-Dognin. Network analytics in the age of big data.

Science, 353(6295):123–124, 2016.
[46] J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains

when generating independent random graphs. Journal of Complex Networks,
3(2):204–220, December 2014.

[47] Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David Aparicio, and Fernando

Silva. A survey on subgraph counting: Concepts, algorithms, and applications

to network motifs and graphlets. ACM Comput. Surv., 54(2), mar 2021.

[48] Pedro Ribeiro and Fernando Silva. G-tries: An efficient data structure for discov-

ering network motifs. pages 1559–1566, 01 2010.

[49] Pedro Ribeiro, Fernando Silva, and Luís Lopes. Parallel discovery of network

motifs. Journal of Parallel and Distributed Computing, 72(2):144–154, 02 2012.
[50] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-

active graph analytics and visualization. In AAAI, 2015.
[51] Ryan A Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, and Nesreen Ahmed. From

closing triangles to closing higher-order motifs. In Companion Proceedings of the
Web Conference 2020, pages 42–43, 2020.

[52] Ryan A Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, et al. From closing triangles

to higher-order motif closures for better unsupervised online link prediction. In

Proceedings of the 30th ACM CIKM, pages 4085–4093, 2021.

[53] Falk Schreiber and Henning Schwöbbermeyer. Mavisto: a tool for the exploration

of network motifs. Bioinformatics, 21(17):3572–3574, 2005.
[54] Alexandre Stauffer and Valmir Barbosa. A study of the edge-switching markov-

chain method for the generation of random graphs. CORR, 12 2005.
[55] Lewi Stone, Daniel Simberloff, and Yael Artzy-Randrup. Network motifs and

their origins. PLOS Computational Biology, 15, 04 2019.
[56] R. Taylor. Contrained switchings in graphs. In Lecture Notes in Mathematics,

pages 314–336. Springer Berlin Heidelberg, 1981.

[57] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scal-

able motif-aware graph clustering. In Proceedings of the 26th WWW, 2017.

[58] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 3(4):347–359, 2006.

[59] Feng Xia, Haoran Wei, Shuo Yu, Da Zhang, and Bo Xu. A survey of measures

for network motifs. IEEE Access, 7:106576–106587, 2019.
[60] Vincent KC Yan, Xiaodong Li, Xuxiao Ye, Min Ou, Ruibang Luo, Qingpeng Zhang,

Bo Tang, et al. Drug repurposing for the treatment of covid-19: A knowledge

graph approach. Advanced Therapeutics, 4(7):2100055, 2021.
[61] Shuo Yu, Yufan Feng, Da Zhang, Hayat Dino Bedru, Bo Xu, and Feng Xia. Motif

discovery in networks: A survey. Computer Science Review, 37:100267, 08 2020.

603

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Notation
	2.2 Motif Discovery
	2.3 Subgraph Counting
	2.4 Random Graph Generation
	2.5 Complexity

	3 The Switching Method Revisited
	3.1 Switched State Network (SSN)
	3.2 Mixing Time of the SSN

	4 Assessing significance in a Markov chain without mixing
	4.1 Serial Test
	4.2 MOSER
	4.3 MOSER Complexity and Correctness

	5 Incremental Subgraph Counting
	5.1 Track And Count
	5.2 Accelerated Track And Count
	5.3 Time and Space Complexity Analysis

	6 EXPERIMENTS
	6.1 Method
	6.2 Accuracy
	6.3 Efficiency
	6.4 Scalability & Robustness
	6.5 Case Study

	7 RELATED WORKS
	8 Conclusions
	Acknowledgments
	References

